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Abstract 10 

Objectives: The present research addresses a neglected aspect within the current Zeitgeist of 11 

improving methodological standards in (sport)psychology: reliable measurement. We discuss 12 

and highlight the importance of reliable measurement from different perspectives and 13 

empirically assess reliability of three commonly used performance outcome measures in order to 14 

give guidelines to researchers on how to increase reliability of measurements of performance 15 

outcomes.  16 

Method: In three studies we estimate 5 different reliability coefficients for three performance 17 

outcome measures based on 14 golf putts (study 1; N = 100), 14 dart throws (study 2; N = 200; 18 

100 sports students; 100 non-sports students) and 14 free throws in basketball (study 3; N = 192; 19 

100 non-basketball players; 92 basketball players). 20 

Results: The highest reliability was the odd-even reliability for darts for the whole sample (.888), 21 

followed by golf putts (.714 for distance from the hole, .614 for successful putts) and free throws 22 

(.504 non-basketball players; .62 for basketball players; and .826 for whole sample). 23 

Conclusions: Based on theoretical considerations and our empirical findings we give practical 24 

guidelines to improve reliability for performance outcome measures in sport psychology. 25 

183 words 26 

Keywords: Classical Test Theory, replicability, research quality, golf putts, darts, 27 

basketball 28 
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Reliable Measurement in Sport Psychology: The Case of Performance Outcome Measures 32 

“For my money, the #1 neglected topic in statistics is measurement” (Gelman, 2015). 33 

In the past ten years, there has been a controversial discussion regarding the quality of 34 

psychological research (e.g., Nelson, Simmons, & Simonsohn, 2018). Many authors have 35 

criticized what they perceive as problematic research practices, that lead to low rates of 36 

replications and weaker empirical support for psychological theories and interventions than 37 

researchers themselves may believe. Some authors even announced a “crisis of confidence” 38 

(Pashler & Wagenmakers, 2012, p. 528). Currently, the aforementioned discussion has 39 

developed from pointing out existing problems to creating viable practices for strengthening the 40 

quality of empirical research in the future (Lakens & Evers, 2014; Munafo et al., 2017; Nelson et 41 

al., 2018). For example, future research is supposed to benefit from appropriate sample sizes 42 

(Button et al., 2013; Fraley & Vazire, 2014; Schönbrodt & Perugini, 2013; Schweizer & Furley, 43 

2016), methodological advances and new software1 (e.g., Wagenmakers et al., 2018; Love et al., 44 

2019), replicability projects (Camerer et al., 2018; OSC, 2015; Soto, 2019), the avoidance of p-45 

hacking (e.g., Simmons, Nelson, & Simonsohn, 2011), the opportunity to preregister plans for 46 

studies and data analyses (e.g., Nosek, Ebersole, DeHaven, & Mellor, 2018), transparency (e.g., 47 

Nosek et al., 2015), and, maybe most importantly, a heightened awareness for the importance of 48 

these and other related issues. In the light of these changes, some authors have even gone as far 49 

as to proclaim a “renaissance” of psychological research (Nelson et al., 2018, p. 511). 50 

However, as indicated by the quote above, with few exemptions, measurement has long 51 

been absent from the current discussion on research quality2. This is particularly remarkable as 52 

measurement is strongly connected to many of the issues that have been debated, as we will 53 

show below. In the present publication, we will focus on one particularly important aspect of 54 
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measurement, namely reliability. Below, we will outline why we focus on reliability instead of 55 

other aspects of measurement. The main goal of the present paper is twofold: First, we aim to 56 

alert readers to the importance of reliable measurement. We illustrate why reliability is crucial 57 

for high-quality research in general, and particularly so for sport psychology, as we will argue. 58 

Second, we aim to assess reliability estimates for three performance outcome measures (golf 59 

putts, dart throws, and basketball free throws) commonly used in sport psychological research. 60 

Based on these estimates, we make recommendations for future research in sport psychology. 61 

What is Reliability? 62 

In Classical Test Theory (CTT), every observed value (Yobserved) consists of a true value 63 

(Ttrue) and measurement error (Yerror). Measurement error (Yerror) is defined as random in this 64 

context (e.g., Bühner, 2011; Lord & Novick, 1968; Steyer & Eid, 1993; Vaughn, Lee, & Kamata, 65 

2012). 66 

Equation 1 67 

Yobserved = Ttrue + Yerror 68 

This means that every measurement consists of the respective person’s true value and a 69 

random error which is due to the measurement’s imperfectness. The smaller a measurement 70 

procedure’s error, the closer each single measurement will be on average to the true value. As 71 

measurement error is defined as random, it must have an expectancy value of 0. Furthermore, it 72 

is defined as having a finite variance. Measurement error is usually supposed to be normally 73 

distributed. This means that averaged over a large number of individual measurements the mean 74 

of the measurement error is supposed to be 0. In other words, larger errors are supposed to be 75 

less likely than smaller errors, and errors cancel each other out. With only enough measurements, 76 

therefore, the mean of the observed values will equal the mean of the true values. The more 77 



RELIABILITY  5 

measurement error, the larger this number of measurements has to be (see Appendix A for more 78 

details). However, for every single measurement we cannot say how large its individual error 79 

(Yerror) is. In this context measurement error refers to the random error associated to every single 80 

measurement due to the measurement’s imperfection. It does not refer to sampling error (i.e., 81 

differences between samples due to interindividual variation of the true values) or intraindividual 82 

variation (i.e., differences between measurement points due to intraindividual variation of the 83 

true values). 84 

Reliability can be understood as the inverse of measurement error. In other words, the 85 

less error a measurement contains, the higher its reliability and vice versa. Formally, reliability is 86 

defined as the proportion of true variation among the entire variation: 87 

Equation 2 88 

 89 

Reliability can be estimated via several approaches (e.g., test-retest-reliability; split-half 90 

reliability; parallel-test reliability; Cronbach’s alpha; see Appendix A for more information on 91 

different coefficients). 92 

Why Does Reliability Matter? 93 

“Measurement error adds noise to predictions, increases uncertainty in parameter 94 

estimates, and makes it more difficult to discover new phenomena or to distinguish among 95 

competing theories” (Loken & Gelman, 2017, p. 584). 96 

The question why reliability matters could be answered in one sentence: The higher a 97 

measurement’s reliability (i.e., the less measurement error contained on average in a single 98 

observation), the more precise is every single measurement on average. However, it is possible 99 

to look at this feature from several perspectives, and different researchers may be more familiar 100 

ryy =
σ ytrue

2

σ ytrue

2 +σ yerror

2
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with some of these perspectives than with others. Therefore, we will explore the benefits of 101 

reliable measurement in more detail below. Importantly, the following arguments are not 102 

independent of each other, but they are all a direct consequence of the above mentioned 103 

observation. 104 

Reliability matters for Type-1 and Type-2 errors. 105 

Both Type-1 errors (false positives) and Type-2 errors (false negatives) can be found in 106 

psychological research. Researchers commit a Type-1 error (or false positive) when they report 107 

finding an effect when truly there is none; or when refuting a null hypothesis when in truth the 108 

null hypothesis is correct. Conversely, researchers commit a Type-2 error when they report not 109 

finding an effect when truly there is one; or when retaining a null hypothesis when in truth the 110 

null hypothesis is false (Fraley & Vazire, 2014). Reliability plays a role for both these errors 111 

(Loken & Gelman, 2017). Type-1 and Type-2 errors are often presented in the framework of 112 

Null-Hypothesis-Significance-Testing (NHST)3, however, they are relevant for all statistical 113 

perspectives that contain binary decisions such as accept-or-reject, present-or-absent, retain-or-114 

dismiss. 115 

It has been understood for more than a century that measurement error attenuates effect 116 

sizes (in this case correlations; Spearman, 1904, 1910). This means that when measuring an 117 

effect with less than perfect reliability, the estimated effect size will be smaller than the real-118 

world effect size. The lower the reliability, the smaller the estimated effect size will be compared 119 

to its real size. For example, when researchers estimate a correlation coefficient between two 120 

measures, then the estimated coefficient will be smaller than the true coefficient to the extent that 121 

one or both of the measurements are less than perfectly reliable. As larger effects are more easily 122 

detected, measurement error thus increases the likelihood of committing a Type-2 error (or false 123 
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negative): When planning for power, researchers usually plan their sample size with the goal of 124 

achieving a certain power (e.g., .9) based on an expected real-world effect size (e.g., rexpected = 125 

.7). The less reliable their measurement, the smaller the effect size they estimate in their study 126 

gets (e.g., restimated = .5). However, the likelihood of finding this smaller effect size is lower than 127 

the likelihood of finding the real-world (and larger) effect size. Thus, the researchers in this 128 

example risk committing a Type-2 error: They do not find the effect although it truly exists. 129 

In order to obtain the same power to detect an effect of the same (true) size, researchers 130 

need smaller samples when using reliable measures than when using unreliable measures. 131 

Therefore, research using more reliable measures is, all else equal, more economical than 132 

research with less reliable measures. 133 

Only recently have researchers suggested that in addition to deflating coefficient 134 

estimates, measurement error can also inflate coefficient estimates (Loken & Gelman, 2017). 135 

Whether measurement error deflates or inflates coefficient estimates depends primarily on 136 

sample sizes: In large samples, measurement error nearly always deflates coefficient estimates. 137 

Here, measurement error primarily leads to Type-2 errors. In small samples, measurement error 138 

can deflate and inflate estimates. Therefore, in small samples, measurement error can lead to 139 

Type-1 and Type-2 errors. When researchers are more likely to publish larger effect sizes than 140 

smaller ones (e.g., because they are more likely to be statistically significant or because they 141 

seem to be more impressive), measurement error is likely to contribute to the potentially high 142 

proportion of false-positive findings that have been diagnosed for psychological research, 143 

because it inflates effect sizes in small samples (Loken & Gelman, 2017). 144 

Taken together, all else being equal, a research field will benefit from more reliable 145 

measurement, due to less Type-1 and less Type-2 errors. Or stated differently, the field with 146 
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more reliable measures is both less likely to miss potentially important effects and it is less likely 147 

to report an effect that in reality does not exist. 148 

Reliability matters for replications. 149 

In past replication projects, several definitions and operationalizations of successful or 150 

unsuccessful replication attempts have been employed (Camerer et al., 2018; OSC, 2015; Soto, 151 

2019). What exactly constitutes a successful or unsuccessful replication remains a matter of 152 

debate (for an enlightening discussion and one possible solution see Simonsohn, 2015). Broadly, 153 

one can distinguish two strategies for defining a successful replication. The first strategy 154 

considers a replication as successful when both the original study and the replication study have 155 

significant results in the same direction. The second strategy compares the effect sizes of the 156 

original study and the replication study with each other. An effect is considered to be 157 

successfully replicated when the effect sizes produced by the original and the replication study 158 

do not differ. 159 

For the first strategy, reliability matters because it affects the studies’ power. The 160 

probability of replicating a true effect depends, among other factors, on the reliability of the 161 

measure with which the to-be-replicated effect is assessed (Stanley & Spence, 2014). The lower 162 

the reliability of a measure, the lower the probability of replicating an effect, even when the 163 

effect is true. Therefore, when measurement is unreliable, unsuccessful replication attempts may 164 

both be a consequence of an effect not being true or of an effect being measured with much 165 

error. For example, Soto finds that the successful replication rate in a large scale replication 166 

project from personality psychology was substantially higher than the respective rates in large 167 

scale replication projects from other behavioral sciences (2019). He goes on to speculate that one 168 

reason for this striking discrepancy (among others, such as sample sizes and type of focal effects) 169 
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might be that personality psychological research uses more standardized and thus more reliable 170 

measurements than, for example, social psychological research. 171 

For the second strategy, reliability matters because, as explained above, measurement 172 

error may both inflate and deflate estimates of effect sizes, making it less informative to compare 173 

two effect sizes to each other. As replication attempts are becoming ever more important in 174 

science, so does the role of reliable measurement, as without reliable measurement replication 175 

attempts are at least hard to interpret or at worst futile. 176 

Reliability matters for the impact of p-hacking. 177 

P-hacking refers to the practice of “selectively reporting data and analyses” or, in other 178 

words, “conducting multiple analyses on the same data set and then reporting only the one(s) that 179 

obtained statistical significance” (Nelson et al., 2018, p. 513). When researchers employ p-180 

hacking, the likelihood of obtaining a false-positive increases “dramatically” beyond the level 181 

usually assumed by researchers (Nelson et al., 2018, p. 513). Typical examples of p-hacking4 182 

include a) having two correlated dependent variables and selectively reporting one of them, b) 183 

adding observations to the sample and stopping once statistical significance has been reached, c) 184 

deciding whether to drop one out of several experimental conditions, d) selectively controlling 185 

for gender or for the interaction of gender with treatment, or e) combinations thereof (Simmons 186 

et al., 2011). In the simulations run by Simmons and colleagues, p-hacking could lead to a 187 

likelihood of obtaining a false-positive (i.e., finding a significant result when truly there is no 188 

effect) of up to 61% (Nelson et al., 2018; Simmons et al., 2011). As a result of p-hacking, there 189 

is supposed to be a high proportion of false and therefore non-replicable findings in the 190 

psychological literature. Nelson and colleagues (2018) suggest that p-hacking (i.e., analyzing the 191 

data until researchers find a significant result) and not publication bias (i.e., simply not 192 
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publishing non-significant results) is the real answer to the decades-old question how 193 

psychologists manage to publish such a high proportion of significant results when their studies 194 

typically have rather low power. In a recent paper, Friese and Frankenbach (in press) suggest that 195 

p-hacking and publication bias interact: In their simulation study, the extent to which p-hacking 196 

distorts meta-analytic effect size estimates depends on the level of publication bias and on true 197 

effect sizes. 198 

Although the problematic influence of p-hacking on research quality has been described 199 

in detail (Simmons et al., 2011), it remains an open question how to reduce its impact in future 200 

research. Again, reliability plays a role as p-hacking exploits random variation. For example, the 201 

strategy of successively increasing the sample size until a certain difference becomes (randomly) 202 

significant works “best” when this very difference is subject to lots of random variation. As 203 

random variation increases with measurement error, so do the opportunities to employ p-hacking. 204 

It follows then that highly reliable measurements should be less vulnerable to p-hacking. 205 

Therefore, one (rather indirect) method among others to reduce the impact of p-hacking would 206 

be to employ highly reliable measurements. Obviously, this would not entirely rule out the 207 

possibility of p-hacking, but it would at least to some extent decrease the potential for employing 208 

them. 209 

Reliability matters for comparisons between measurements. 210 

Whereas the abovementioned benefits of high reliability follow directly from its 211 

definition, namely a measurement with comparably low error, the reliability of measures is 212 

consequential beyond simple estimations of the parameter of interest. Reliability is particularly 213 

important for comparisons between measurements. This can be comparisons between different 214 
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studies, comparisons between different measurements in a single study or comparisons of some 215 

effect on different measurements in a single study. 216 

Suppose some researchers are interested in the question whether some treatment has a 217 

(differential) effect on two different variables. They find several studies reporting an effect on 218 

variable A, and several studies not finding an affect on variable B. They conclude that the 219 

treatment works for variable A, but nor for variable B. However, and unfortunately so, in this 220 

example variable A was assessed with a more reliable measure than variable B. Therefore, the 221 

observed difference might simply be due to measurement error. This hypothetical scenario gets 222 

worse when we assume that preferred measurement and theoretical background of researchers 223 

might be correlated. In this case, different theories might appear to be differentially supported by 224 

evidence, while the only real difference is measurement error. These observations also hold 225 

when researchers compare effects on different variables within one study5. For example, 226 

researchers might conclude that their treatment affects variable A (e.g., some symptom of a 227 

disease), but not variable B (e.g., an unwanted side effect). Again, this conclusion is only 228 

legitimate when both variables are measured with the same high reliability. 229 

Finally, this also holds for all kinds of multiple regression strategies and related attempts 230 

to control for one variable when estimating associations between two or more additional 231 

variables (Westfall & Yarkoni, 2016). For example, when one predictor significantly predicts the 232 

outcome variable while controlling for another predictor, researchers often interpret this finding 233 

as indicative of incremental validity, which itself may be interpreted as signifying that both 234 

predictors measure “strongly related but conceptually distinct constructs” (Westfall & Yarkoni, 235 

2016, e0152719). However, as Westfall and Yarkoni show, “… a simpler interpretation that is 236 

often equally consistent with the data is that both predictors are simply noisy indicators of the 237 
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same construct” (2016, e0152719). Westfall and Yarkoni conclude that reliable measurement is 238 

particularly important when trying to assess incremental validity in regression models. 239 

Why reliability matters: A summary. 240 

Taken together, increasing reliability should lead to both less Type-1 and less Type-2 241 

errors, a higher chance of replicating an effect given it is true as well as making replication 242 

attempts more informative in general. Additionally, when measurements are more reliable, 243 

smaller sample sizes are needed in order to safeguard against statistical errors, p-hacking, and 244 

biases. Likewise, comparing between measurements is easier when both measurements are 245 

reliable. Taken together, it seems safe to conclude that research without reliable measurement 246 

does not make much sense in general, and particularly it does not make much sense in the age of 247 

replicability. 248 

Reliability in Sport Psychology 249 

As we have outlined above there are good reasons to make efforts to increase reliability 250 

in science. Nevertheless, it is important to note that not every field of investigation or every 251 

measurement tool faces comparable challenges when it comes to both validity and reliability. In 252 

terms of validity it seems clear that certain psychological measures (e.g., a questionnaire 253 

measuring a person’s tendency to behave aggressively) struggle with more problems regarding 254 

validity as physical measures, for example assessing a person’s weight or body size, which has 255 

led researchers to speak of a validation crisis within the field of psychology (Schimmack, 2010; 256 

2019). 257 

While questionnaires can be both problematic in terms of validity and reliability, other 258 

measurement techniques have high face-validity (i.e., there is little doubt as to whether they 259 

actually measure what they claim to measure). For example, most people would probably agree 260 
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that measuring a person’s performance shooting basketball free throws is a valid measure of this 261 

person’s ability to shoot free throws. However, it is less clear how reliable this measure is, or 262 

what has to be taken into account when reliably trying to assess perceptual-motor performance in 263 

answering different research questions in sport psychology. Hence, the present research focused 264 

on reliability of commonly used individual sport performance outcome measures.  265 

Discussions of reliability have not been absent within sport science (Hopkins, 2000; 266 

2017; Zhu, 2013), and reliability has also been the focus of increasing research endeavors in 267 

some subfields of sport science, for example in determining both the validity and reliability of 268 

new technologies like GPS (Global Positioning System) in assessing sport performance data 269 

(Barbero-Álvarez, Coutts, Granda, Barbero-Álvarez, & Castagna, 2010; Coutts & Duffield, 270 

2010; Jennings, Cormack, Coutts, Boyd, & Aughey, 2010; Johnston, Watsford, Pine, Spurrs, 271 

Murphy, & Pruyn, 2012; Petersen, Pyne, Portus, & Dawson, 2009). In sport and exercise 272 

psychology, Eklund, Tenenbaum and Kamata (2012) provide an extensive overview about nearly 273 

all potentially important aspects of measurement in sport and exercise psychology, from basic 274 

concepts to specific issues, such as cognitive, motivational, emotional and behavioral 275 

measurement. These discussions and analyses have shown that reliable measurement of behavior 276 

in sports, although these measures appear high in face validity, is not a trivial topic. While 277 

measurement is an important topic at all levels of analyses within sports (e.g., biochemical 278 

measures, physiological measures, biomechanical measures, psychological questionnaires, 279 

anthropometric measures, behavioral measures, etc.), some of the most relevant measures (at 280 

least in terms of spectator interest or financial reward) are outcome measures of sports 281 

performance. 282 
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Somewhat surprisingly, we are not aware of any literature systematically analyzing the 283 

reliability of typically used sport performance outcome measures, although plenty of research 284 

uses sport performance measures as dependent variables. Maybe claims like “sport measures 285 

outcome with a finality of judgment that scientific papers would not pass” (Walsh, 2014, p. 860) 286 

have led researchers to simply assume sport outcome measures are reliable without needing to 287 

pay special attention to this. To address this shortcoming in the literature, we decided to first 288 

identify the most commonly used outcome measures of skilled perceptual-motor performance in 289 

sport psychology and subsequently calculate different reliability indices of these measures in a 290 

series of empirical studies. 291 

A literature search identified 40 papers using golf putts as a dependent variable, 37 292 

papers using darts, and 28 using free throws in basketball (see the reference list in the 293 

supplement for an overview). Therefore, it seems safe to argue that these are frequently 294 

employed individual sport performance outcome measures in sport psychology6. Reliabilities 295 

were not reported in any of these papers7. It is important to note that we are not pointing out or 296 

criticising these papers. We ourselves have not reported reliability coefficients in most of our 297 

papers, when employing other measures than questionnaires. 298 

However, this is precisely our point: Whereas everybody cares about reliable 299 

measurement when reporting questionnaire data, hardly anybody does when reporting 300 

performance outcome measures. There are probably several reasons for this. One, whereas it may 301 

seem rather straightforward how to compute reliabilities for questionnaires (e.g., most examples 302 

from the methodological literature refer to questionnaires), it may seem to be more unclear how 303 

to compute reliabilities for performance outcome data. Second, there is a common perception 304 

that a measure must have been reliable when there has been a significant result for this variable 305 
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(Loken & Gelman, 2017). Therefore, it may seem unnecessary to examine its reliability. As 306 

explained above, this is problematic for several reasons (see Loken & Gelman, 2017, for more 307 

details on this misconception). 308 

The Present Research 309 

The main goal of the present research was to estimate reliability coefficients for three 310 

commonly used individual performance outcome measures in sport psychology, namely golf 311 

putts (study 1), darts (study 2) and free throws in basketball (study 3). Furthermore, we aimed to 312 

investigate whether these reliability coefficients are dependent upon different samples in general 313 

and upon participants’ experience with the respective task in particular. 314 

General Method 315 

Here, we describe the rationale common to all three studies. In the section below we 316 

describe characteristics unique to each study. In all studies, participants provided informed 317 

consent before commencing the study and were thanked and debriefed before receiving some 318 

candy as compensation for participating. Participants were neither paid, nor were they 319 

incentivized dependent on their performance. In all studies, participants first performed 20 320 

training trials, before executing 14 test trials. We only estimated reliability coefficients for the 14 321 

test trials, not for the training trials. The training trials were intended to reduce the influence of 322 

potential short-term learning effects on the reliability estimates (Hopkins, 2000), to get 323 

participants calibrated to the performance context (Ajemian, D’Ausilio, Moorman, & Bizzi, 324 

2010; Wunderlich, Heurer, Furley, & Memmert, 2019), and in turn decrease measurement error. 325 

We assumed potential learning and calibration effects to reach an asymptotical level after the 326 

learning trials and therefore performance to be stable for the test trials. In all studies, the setup 327 

was highly standardized, including videos demonstrating the correct execution of the required 328 
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movements to all participants (regardless of their familiarity with the task). Participants were told 329 

to try to achieve optimal performance, but experimenters emphasized that we would not evaluate 330 

individual performance in order not to induce pressure (e.g., Baumeister & Showers, 1986). 331 

For all variables, we estimated their split-half reliability using two different methods, one 332 

method splitting each test in a first half and a second half and the odd-even method (please see 333 

Appendix A for further elaboration on our statistical approach). When using the “first-half vs. 334 

second half” method, for every participant, we computed one mean across the first seven test 335 

trials (i.e., trials 1-7) and one mean across the second seven test trials (i.e., trials 8-14). We then 336 

computed Pearson’s correlation coefficient for the correlation between the first and the second 337 

mean. When using the odd-even method, for every participant, we computed one mean across 338 

the seven odd-numbered test trials (i.e., trials 1, 3, 5, 7, 9, 11, 13) and one mean across the seven 339 

even-numbered test trials (i.e., trials 2, 4, 6, 8, 10, 12, 14). We then computed Pearson’s 340 

correlation coefficient for the correlation between the first and the second mean. According to 341 

Classical Test Theory (CTT), the resulting correlations can be considered one estimate for the 342 

respective measures’ reliability. Reliability depends on the number of items, and split-half 343 

reliabilities thus estimate the reliability for a test of half its original length (i.e., in our case, for 344 

seven instead of 14 trials). Therefore, we used the Spearman-Brown formula to estimate the 345 

reliability of all 14 trials, based on the obtained reliability coefficients (please see Appendix A 346 

for the formula). Additionally, we computed Cronbach’s Alpha for all measures. 347 

In all studies, we used performance measures (and respective instructions) that allowed 348 

for obtaining continuous measurements, which is a prerequisite for estimating reliability 349 

according to CTT (please see Appendix A for further information). Furthermore, where 350 
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necessary, we aimed at minimizing the number of missing values, that is attempts that we could 351 

not measure. 352 

We planned to total 200 participants per study (please see Appendix A for further 353 

elaboration on sample size planning). In all studies, we planned to collect data in two subsamples 354 

that differ regarding sports experience, each subsample totalling 100 participants. Below, we 355 

describe all studies in detail in order to facilitate interpretation and replication. We encourage 356 

researchers to contact us for more details. When we do not refer to a particular reliability 357 

coefficient, we always refer to the odd-even reliability, as it is usually considered superior to the 358 

“first-half vs. second half” reliability. In all studies and in all subsamples, there is no significant 359 

difference between the mean value for the odd and for the even items, and neither do standard 360 

deviations differ, which is considered a prerequisite for estimating odd-even reliability. 361 

Study 1: Golf Putts 362 

Participants 363 

One hundred students of Heidelberg University participated in the study (58 men and 42 364 

women; Mage = 24.9; SDage = 7.9). Sixty-six of them were sports students, 34 were not. None of 365 

them reported having experience playing golf that went beyond participating in one basic course. 366 

Contrary to our plans, we did not collect data from a second subsample (for an explanation why, 367 

please see the Discussion section below). 368 

Apparatus and Procedure 369 

Participants were positioned 200 cm away from the hole and instructed to assume a 370 

typical putting position. They could choose between a putter for left-handers and for right-371 

handers. In order to maximize standardization, the study was conducted in a laboratory room. 372 
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Therefore, participants did not perform on a real green but on a putting mat made of plastic, as is 373 

common in sport psychological studies (see Supplement for several examples). 374 

Participants were instructed to aim for the hole and informed that performance would be 375 

measured as distance from the hole. This allowed us to measure performance in a continuous 376 

way. Simply counting successful putts is also a commonly used measure and we therefore also 377 

estimated reliabilities for number of successful putts. This allowed us to compare the reliabilities 378 

of two different performance outcome measures constructed from the same task. In order to 379 

obtain continuous measurement, we added up all attempts, as sums of binary variables can be 380 

treated as continuous variables (e.g., Lunney, 1970). 381 

Results and Discussion 382 

In the whole sample, the average distance to the hole across all 14 putts was 257 mm (SD 383 

= 175; Md = 240; Mode = 241). On average, 53% of all putts were successful. When looking at 384 

the mean performances for each of the 14 putts separately, no learning trend was apparent (see 385 

Figure 1). Due to failures in data recording, in total the results of 15 putts out of 1400 were not 386 

recorded. Results do not change when excluding the respective participants. 387 

For the continuous performance outcome measure (i.e., distance from the hole), the 388 

different reliability coefficients do not differ from each other (see Table 1). Thus, results are not 389 

dependent on a particular coefficient. Reliability coefficients can not be considered acceptable 390 

for seven putts only. When estimating reliabilities for all 14 putts using the Spearman-Brown-391 

Formula, reliability coefficients expectably get higher, but they are still lower than what is 392 

usually considered acceptable (e.g., Vaughn et al., 2012). The Spearman-Brown corrected odd-393 

even reliability for the whole sample is .714 (CI95 [.602; .798]). 394 
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For the binary performance outcome measure (i.e., number of successful putts), the 395 

different reliability coefficients do not differ from each other (see Table 1). None of them 396 

reaches a level commonly considered as acceptable, with the highest estimate for all trials being 397 

.614 (CI95 [.475; .723]). Thus, at least descriptively, reliability estimates for the binary 398 

performance outcome measure are lower than for the continuous one. However, confidence 399 

intervals overlap. Based on our data and our sample, golf putts as conducted in the present study 400 

did not possess sufficient reliability to be employed as a performance outcome measure in a sport 401 

psychological study. Reliability estimates for distances from the hole are somewhat better, but 402 

they still do not reach levels usually considered acceptable for other psychological measurement 403 

procedures. Based on the reliability estimates for the number of putts in the current study, the 404 

Spearman-Brown formula allows to calculate what number of putts would be necessary in order 405 

to achieve a certain level of reliability (e.g., .8 or .9). We present these calculations in the section 406 

“comparison between performance outcome measures”. 407 

Putting distances in sport psychological studies vary from 100 to 400 cm, with 200 cm 408 

being common (see Supplement). Therefore, we decided to use 200 cm in our study. However, 409 

we realized that not only putting performance, but also reliability in golf putts probably strongly 410 

depends on the distance to the hole (as reliability of the performance measurement depends on 411 

the true score of the performance, which probably varies with distance). At the same time, there 412 

is no standard putting distance. Therefore, we decided not to conduct a second study with 413 

another 100 participants, as initially planned, but instead to move on to another performance 414 

measure. Our next two performance measures (darts and free throws) feature standard distances. 415 

Therefore, the problem described above does not apply to them. 416 

Study 2: Darts 417 
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Participants 418 

Study 2 consisted of two subsamples (sample 2a and sample 2b). Both samples consisted 419 

of 100 participants, totalling 200 participants. In sample 2a, there were 50 women and 50 men (4 420 

left-handed). All of them were students at Heidelberg University. In sample 2b, there were 44 421 

women and 56 men (10 left-handed). All of them were sports students at Heidelberg University. 422 

Thus, in the whole sample there were 94 women and 106 men (14 left-handed), 100 non-sports 423 

students and 100 sports students. 424 

Apparatus and Procedure 425 

In line with the World Darts Association’s standards, we placed the dart board in such a 426 

way that the centre of the bull (also called bullseye) was at 173 cm (5 ft 8 inches) above ground. 427 

The diameter of the dart board was 400 mm. Participants were positioned behind a line (the so-428 

called oche) that was 237 cm (7 ft 9.25 inches) away from the board. Behind the dart board we 429 

placed a board made of rigid foam (size: 120 cm x 120 cm; thickness: 40 mm). This setup 430 

allowed us to measure throws that missed the dart board but got stuck in the foam board, in order 431 

to minimize missing values. When a throw did not reach the board, participants were allowed to 432 

repeat the attempt (however, this happened hardly ever, due to the size of the foam board). We 433 

utilized regular tournament darts with a length of circa 155mm and a weight of circa 18g. 434 

Tournament darts come in different variants. Our darts consisted of a steel point, a brass barrel, 435 

an aluminium shaft and a standard shape flight. 436 

Participants were instructed to aim for the bull and informed that performance would be 437 

measured as distance from the bull. This allowed us to measure performance in a continuous way 438 

(i.e., to obtain interval scale data), which is a prerequisite for estimating reliability. The usual 439 

scoring system in darts, however, would probably not have produced continuous measurements 440 
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(Selkirk, 1976; Tibshirani, Price, & Taylor, 2011). Aiming for the bull is a common instruction 441 

in sport psychological studies (see Supplement). In line with our measurement and the 442 

instructions, we did not utilize a dartboard with radial sections and double and triple rings. 443 

Instead, we used a dartboard with concentric rings of equal width. 444 

Results and Discussion 445 

In the whole sample, the average distance to the bull across all 14 darts was 87 mm (SD = 446 

39; Md = 79; Mode = 65; see Table 2). The sports students (sample 2b) performed better than the 447 

non-sports students (sample 2a), and the men better than the women (see Table 2). When looking 448 

at the mean performances for each of the 14 darts separately, no clear learning trend was 449 

apparent (see Figure 2). 450 

The different reliability coefficients do not differ from each other in each sample (see 451 

Table 1). Thus, results are not dependent on a particular coefficient. Likewise, reliability 452 

coefficients do not differ between both subsamples. Neither does each reliability coefficient for 453 

the whole sample differ from the respective coefficients in both subsamples. 454 

Reliability coefficients can already be considered acceptable for seven throws only: The 455 

odd-even reliability for the whole sample based on seven throws is .799 (CI95 [.743; .844]). 456 

When estimating reliabilities for all 14 throws using the Spearman-Brown-Formula, reliability 457 

coefficients are high: The Spearman-Brown corrected odd-even reliability for the whole sample 458 

is .888 (CI95 [.855; .914]). At least in this study, both in the subsamples and in the overall 459 

sample, dart throws seemed to capture a substantial proportion of systematic variation as 460 

opposed to random variation and therefore seemed to be able to capture variation in participants’ 461 

true score rather well. 462 



RELIABILITY  22 

Furthermore, we investigated into the question whether reliability coefficients varied 463 

between different samples or between different groups of participants. We did so in a more 464 

exploratory manner, based on assumptions that we consider to be common when planning sport 465 

psychological experiments. As different reliability coefficients do not differ from each other, 466 

from now on we refer to the odd-even reliability, as we consider it the most appropriate (see 467 

Appendix A). In our further analyses, we distinguished between a) sports students and non-sports 468 

students, b) women and men, and c) participants who play darts and participants who do not. We 469 

distinguished between darts players and non-darts players based on a median split on 470 

participants’ answers to the question “How often did you play darts during the past twelve 471 

months?”. All participants who reported never to have played darts in the past twelve months 472 

were assigned to the group of non-darts players (n = 106), whereas all other participants were 473 

assigned to the group of darts players (n = 94). We conducted a median split in order to obtain 474 

groups of roughly equal sample size, although this approach has some disadvantages. The main 475 

disadvantage here is that the group of darts players did not only contain participants who played 476 

regularly, but also participants who had only played a couple of times. We address this 477 

shortcoming in study 3. 478 

First, mean performance differs between the two groups in all three comparisons (see 479 

Table 2). That means, a) sports students were significantly better than non-sports students 480 

(t[167.58] = 4.6, p < .001, d = 0.65), b) men were significantly better than women (t[137.62] = 481 

9.46, p < .001, d = 1.39), and c) darts players were significantly better than non-darts players 482 

(t[198] = 4.83, p < .001, d = 0.68). 483 

As already reported above, reliability coefficients did not differ between sports students 484 

and non-sports students (i.e., subsample 2b and subsample 2a, see Table 2). Descriptively, 485 
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reliability was somewhat higher for women than for men, but confidence intervals overlap (see 486 

Table 2). Finally, reliability coefficients do not differ between darts players and non-darts 487 

players (see Table 2). If at all, non-darts players have a slightly higher reliability coefficient, but 488 

again, confidence intervals overlap. 489 

Thus, and contrary to what one might have intuitively expected, neither gender, nor 490 

studying sports nor playing darts had an impact on reliability estimates. However, at least the last 491 

finding might be due to the fact that we distinguished darts players from non-darts players based 492 

on a median split, which is not the best method to compare different levels of experience. We 493 

address this issue in study 3. 494 

Study 3: Basketball Free Throws 495 

Participants 496 

As one goal of study three was to further investigate into the role of sports experience for 497 

reliability, we aimed to obtain two different subsamples. One subsample should consist of 498 

experienced basketball players, whereas the other one should consist of comparably 499 

inexperienced players. We assigned potential participants to the sample of experienced players, 500 

when they were active members of a basketball club and reported their free throw success rate to 501 

be at least 30%. We assigned potential participants to the sample of inexperienced players when 502 

they did not fulfil the inclusion criteria for the experienced sample. These rules were defined 503 

prior to data collection. Additionally, participants had to be able to hit the rim or score a basket at 504 

least ten out of 20 times during the practice trials in order to make sure that they were 505 

sufficiently skilled. 506 

Therefore, study 3 consisted of two subsamples (sample 3a and sample 3b). Sample 3a 507 

(the inexperienced sample) consisted of 100 participants (Mage = 24.8; SDage = 4.2). Sample 3b 508 
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(the experienced sample) consisted of 92 participants (Mage = 25.3; SDage = 7.7), totalling 192 509 

participants. In sample 3a, there were 50 women and 50 men. All of them were sports students at 510 

Heidelberg University. In sample 3b, there were 42 women and 50 men. All of them were 511 

players in regional basketball clubs. Thus, in the whole sample there were 92 women and 100 512 

men, 92 non-sports students and 100 sports students. As a result of the above mentioned criteria 513 

for inclusion of participants into the different subsamples, both subsamples differed considerably 514 

with regard to basketball experience. On average, participants in subsample 3a (the rather 515 

inexperienced) reported to play basketball for 28 minutes per week (SD = 52), whereas 516 

participants in subsample 3b (the experienced) reported to play basketball for 314 minutes per 517 

week (SD = 206). 518 

Apparatus and Procedure 519 

Participants conducted all free throws in line with the regulations of the Fédération 520 

Internationale de Basketball (FIBA, 2018a; b). Participants were positioned behind the free 521 

throw line 422.5 cm from the middle point of the basket. According to FIBA, basketballs for 522 

men are supposed to weigh 567-650 g with a circumference of 74.9-78.0 cm. Basketballs for 523 

women are supposed to weigh 510-567 g with a circumference of 72.4-73.7 cm. We used two 524 

balls: one ball for all men and one ball for all women. From time to time, we made sure that both 525 

balls were still within the limits specified by the regulations. According to FIBA, the basket ring 526 

has to be positioned at a height of 304.8 cm +/- 0.6 cm and have an inside diameter of 45.0-45.9 527 

cm. We made sure that the baskets utilized were within these specifications. 528 

We coded each shot as either successful (the ball went through the basket) or not (the ball 529 

did not go through the basket). There were no missing values, as all shots could be coded. We 530 

did not distinguish between different kinds of unsuccessful shots, for example, balls hitting the 531 
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rim or air balls, as researchers sometimes do. The reason for this is that assessing the difference 532 

between successful shots and different kinds of misses does not produce a continuous (i.e., 533 

interval scale) measurement. In order to obtain continuous measurement, we added up all 534 

attempts, as sums of binary variables can be treated as continuous variables (e.g., Lunney, 1970). 535 

Examples for this practice can be found, for example, in intelligence tests, where each single 536 

item produces a binary datum, however, items are summed up along scales and then treated in a 537 

continuous manner. 538 

Results and Discussion 539 

Experienced participants performed better than inexperienced participants. In the 540 

experienced sample (3b), the average success rate was 74% (SD = 17). In the inexperienced 541 

sample (3a), the average success rate was 32% (SD = 17%). When looking at the mean 542 

performances for each of the 14 throws separately, no learning trend was apparent, neither for 543 

sample 3a nor for sample 3b (see Figure 4 and Figure 5; see Appendix A for further elaboration 544 

on this issue).  545 

The different reliability coefficients do not differ from each other in each sample (see 546 

Table 1). Thus, results are not dependent on a particular coefficient. At least descriptively, 547 

reliability coefficients are higher for the experienced sample (sample 3b) than for the novice 548 

sample. However, confidence intervals still overlap for both groups. In both subsamples, 549 

reliability coefficients for seven shots only are low, and they are still not acceptable when 550 

correcting for all 14 shots using the Spearman-Brown formula. The Spearman-Brown corrected 551 

odd-even reliability for sample 3a is .504 (CI95 [.341; .637]) and for sample 3b it is .62 (CI95 552 

[.475; .732]). 553 
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Interestingly, the reliability coefficients for the whole sample are substantially higher 554 

than for each of the subsamples alone (i.e., confidence intervals do not overlap). The Spearman-555 

Brown corrected odd-even reliability for the whole sample is .826 (CI95 [.755; .866]). This 556 

observation cannot be explained by the sample size itself. Instead, it means that in the whole 557 

sample the ratio of systematic variation to random variation was higher than in each of the 558 

subsamples. This makes sense when considering that the whole sample included both 559 

inexperienced and experienced players (i.e., much variation between participants), whereas in 560 

each of the subsamples there were only inexperienced or only experienced players (i.e., less 561 

variation between participants). This observation illustrates a common misconception when 562 

planning sport psychological studies: Researchers are sometimes tempted to think that reliability 563 

must be higher the more experienced or the better athlete participants are. However, this is not 564 

true, as illustrated by our data. 565 

Comparison between Performance Outcome Measures 566 

The highest reliability estimated in our study was the odd-even reliability for darts, in the 567 

whole sample for all 14 darts (.888; see Table 1). The respective estimates for golf putts are .714 568 

(for distance from the hole) and .614 (for successful putts). The respective estimates for free 569 

throws are .504 (for the inexperienced sample 3a), .62 (for the experienced sample 3b) and .826 570 

(for the whole sample). As the reliability for darts is acceptable, we further calculated what 571 

number of putts and what number of free throws would have been necessary in order to achieve 572 

the same reliability as in darts (i.e., .888). The Spearman-Brown formula allows to calculate 573 

these numbers based on the existing reliability estimates (see Equation 4 in Appendix A for the 574 

Spearman-Brown formula solved for k, which is test length). In brackets, we report the number 575 
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of items researchers would have needed to achieve a reliability of .8 (instead of .888), which is 576 

often considered acceptable. 577 

Based on the procedures and samples as employed in our studies, estimations based on 578 

the Spearman-Brown formula suggest that in order to achieve the same odd-even reliability as 579 

with 14 dart throws, researchers would have needed 44 (22) golf putts (when measuring distance 580 

from the hole) or 70 (35) golf putts (when counting successful putts). Likewise, they would have 581 

needed 109 (55) free throws (in the inexperienced sample), 68 (34) free throws (in the 582 

experienced sample) and 23 (12) free throws in the whole sample. These results demonstrate that 583 

differences that may look small when expressed in reliability coefficients may have large 584 

consequences for number of items or trials: In the above example, in order to achieve the same 585 

reliability, number of trials varies from 14 to 109! 586 

The increases in item numbers in order to achieve a reliability of .8 are still substantial, 587 

however far smaller than the ones reported above for .888. This observation illustrates that 588 

increasing the number of items at first leads to relatively high increases in reliability, however, 589 

further gains in reliability need increasingly more items (Amelang & Zielinski, 2002). 590 

General Discussion 591 

Discussion of Results 592 

Our results suggest that common sport performance outcome measures exhibit 593 

reliabilities whose interpretations when computed for psychological questionnaires would range 594 

from good (for darts =.888 and free throws in the combined sample =.826) to barely acceptable 595 

for golf putts (.714) (e.g., Vaugh et al., 2012; see Table 1). Thus, our results suggest that 596 

different sport performance outcome measures may have different reliabilities. Furthermore, our 597 

results demonstrate that reliability estimates increase when the number of items increases, which 598 
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is a well known property of reliabilities according to CTT. Our results also demonstrate, that 599 

depending on a measurement’s reliability, vastly different numbers of items are required in order 600 

to achieve the same acceptable level of reliability. This observation has consequences for the 601 

construction of performance outcome measures as we will discuss in more detail below. 602 

Most importantly, our results demonstrate that reliabilities of sport performance outcome 603 

measurements may strongly depend on sample characteristics: Reliabilities estimates for both 604 

subsamples in basketball were very low (.504 and .62), however for the whole sample the 605 

estimated reliability was substantially higher (.826). This observation underlines the necessity of 606 

having samples with true-score variation when researchers want to obtain reliable measurement 607 

(see also Appendix A; Vaughn et al., 2012). At the same time this observation debunks what we 608 

(anecdotally) perceive to be a common misconception in sport psychological research, namely 609 

that reliability will be higher in expert samples than in non-expert samples. This also means that 610 

researchers need to be particularly careful when conducting studies with rather homogenous 611 

expert samples, as this approach might lead to low reliabilities. 612 

When interpreting the present results, it is important to keep in mind that all estimates 613 

reported here depend on the respective samples and operationalizations and therefore do not 614 

necessarily generalize to other situations or samples (see Appendix A). Furthermore, it is 615 

important to keep in mind that our results may paint a rosier picture of reliabilities than is 616 

actually warranted when looking at existing studies: One reason why estimates appear to be 617 

rather high in our studies is that we employed 14 trials. To the extent that past studies may have 618 

employed fewer trials, all else equal, they had less reliable measurements. 619 

Limitations and Unintended Consequences 620 
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We based our main conclusions on CTT in general and on specific estimators (i.e., odd-621 

even reliability and the Spearman-Brown formula) in particular. However, alternative approaches 622 

exist. They comprise a) different estimates that have existed within the framework of CTT for a 623 

long time (e.g., the Kristof or the Guttman formulas, see Bühner, 2011); b) novel estimates that 624 

have been proposed only recently (e.g., omega as an alternative to Cronbach’s alpha [McNeish, 625 

2018]; weighted kappa [Robinson & O’Donoghue, 2007] to assess agreement amongst observers 626 

in performance analysis; and special coefficients for particular research designs within sport 627 

science [Hopkins, 2017]); and c) estimates computed via structural equation modeling (SEM; 628 

e.g., Raykov, 1997). All of these approaches have advantages and disadvantages and it is 629 

impossible to say that one of them is per se superior. Just as one example, one presumed 630 

advantage of omega above Chronbach’s alpha is that omega relies less on modeling assumptions 631 

(McNeish, 2018). However, the advantages of omega have been questioned and currently there is 632 

a controversial discussion regarding its merits (Raykov & Marcoulides, 2019; Savalei & Reise, 633 

2019). 634 

Furthermore, CTT itself has some well-known weaknesses, for example its dependency 635 

on sometimes questionable assumptions and on sample characteristics (Bühner, 2011; see also 636 

Appendix A). Item Response Theory (IRT) in turn allows for modeling the probability of a 637 

response to an item as a joint function of both this item’s difficulty (the item parameter) and a 638 

person’s ability (the person parameter), which is a substantial advantage over CTT (Bühner, 639 

2011). Taken together, we consider it to be important to keep in mind that alternatives to the 640 

particular estimates that we employed and to CTT exist. We hope to stipulate a discussion on 641 

which theoretical approach and which coefficients are best suited for measurement in sport 642 

psychology. In order to foster this discussion, we make all of our raw data public, so that 643 
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researchers may take these data and calculate other estimates of reliability, SEMs or parameters 644 

from IRT. 645 

As we have mentioned above, our estimates depend both on our samples and on our exact 646 

operationalization of the different measures. For example, maybe the reliability estimate for the 647 

free throws would have been different had participants been closer to the basket. Hence, 648 

theoretically, reliability (and its estimates) always refer to a measurement, not to an instrument. 649 

Therefore, we cannot say that we estimated the reliability of darts, or the reliability of free 650 

throws, instead we estimated the reliabilities of our specific measurements. An unintended 651 

consequence of our study would be if from now on researchers in sport psychology would 652 

predominantly use darts as dependent variable, because “it has been proven to be reliable”. 653 

Future studies with different samples might be different in terms of reliability.  654 

Moreover, reliability must not be confused with validity. It would be a mistake if 655 

researchers simply used certain measures because they are reliable, and did not care about 656 

validity, a concern that has been raised in psychometrics (e.g., Bühner, 2011). To test theories 657 

that relate theoretical constructs to each other (e.g., construct A influences construct B for 658 

individuals drawn from population P under conditions C), it is necessary to not only have reliable 659 

measures, but also valid measures that actually measure construct A and B and control for P and 660 

C. Validity typically refers to whether a given measure in fact measures what it claims to 661 

measure. Unfortunately, frequently used measures within psychology (e.g., Schimmack, 2019) 662 

and sport science (Fischman, 2015) might not measure what they claim to measure. Although, 663 

the present paper focused on reliability and not validity, high quality measurement in any 664 

scientific field needs to focus on both. However, high reliability is a prerequisite for validity: A 665 

measurement that is not reliable cannot be valid. Finally, we would like to emphasize that our 666 
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results do not intend to undermine the credibility, quality or replicability of prior studies that 667 

have employed golf putts, darts, or free throws. Instead, they should draw attention to the 668 

importance of reliable measurement in sport psychology with the aim of securing it in the future. 669 

Conclusions 670 

Sport performance outcome measures may substantially differ regarding their reliability 671 

and may have different reliabilities for different samples (and not necessarily in an intuitive 672 

way). Suppose three research teams each used a different one of our measures with their 673 

respective reliabilities to answer a research question (e.g., the effects of pressure or fatigue on 674 

perceptual-motor performance). All else equal, these teams would have substantially different 675 

likelihoods of a) finding an effect, given it exists, of b) replicating an effect found in a prior 676 

study, and c) being able to make meaningful comparisons between studies, variables, and 677 

theories. 678 

When conducting studies, we hope that researchers in sport psychology will try to 679 

construct reliable measurements, that they will assess their measurement’s reliability, and that 680 

they will interpret their results in the light of these reliabilities. Reliabilities need to be high, and 681 

moderate reliabilities may exacerbate methodological problems. For example, Westfall and 682 

Yarkoni (2016) report that the Type-1 error rate when assessing incremental validity via 683 

regression models was highest for moderate reliabilities (at least for certain sample sizes). 684 

Regarding conclusions, we hope that researchers will be very careful when comparing 685 

findings to each other that may stem from measurements with different reliabilities. Likewise, 686 

we hope that researchers will consider the role of (different) reliabilities when assessing 687 

replications as being successful or not. If possible, we suggest that researchers pretest their 688 

performance outcome measure and try to determine an optimal number of trials that provides 689 
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sufficient reliability, but that does not induce threats to validity (such as fatigue or learning 690 

effects) and is still economically feasible (see Appendix A for more information and guidelines 691 

on these issues). Whereas increasing reliability by adding items only works to a certain extent for 692 

common psychological measurement procedures such as questionnaires, for performance 693 

outcome measures, such as discussed in this paper, it seems to be more promising (for more 694 

information see Appendix A). Furthermore, as mentioned above, in order to obtain the same 695 

power to detect an effect of the same (true) size, researchers need smaller samples when using 696 

more reliable measures than when using less reliable measures. Therefore, there is a trade-off 697 

regarding research economy8: On the one hand, adding items or trials to a measurement in order 698 

to make it more reliable will make the measurement less economical by increasing its duration. 699 

On the other hand, this approach will make the measurement more reliable and thus more 700 

economical because smaller sample sizes are needed. It seems to be an interesting endeavor for 701 

future research to try and formalize this trade-off depending on its various costs and benefits. 702 

In this endeavor, experimenters should attempt to use individual performance outcome 703 

measures that allow for sufficient variation in performance that is indicative of true performance 704 

variation and not random performance fluctuation and measurement error. To this end the 705 

following guiding questions might prove helpful (see also Table 3): a) what is my precise 706 

research question and how well do the variables in my research design measure the constructs in 707 

my research question; b) what is the skill level of my participants or how experienced are 708 

participants with the (or similar) tasks being measured; c) how difficult does the task have to be 709 

(e.g. putting distance in golf); and d) how many trials are sufficient to achieve adequate 710 

reliability, while not threatening validity (e.g. motivation, calibration, learning, fatigue, etc.). 711 

 712 
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Footnote 894 

1For example, the JASP software package includes Bayesian parameter estimation and 895 

Bayes factor hypothesis testing via a graphical user interface (see Love et al., 2019). 896 

Furthermore, free and open-source packages for specific procedures in R make it more feasible 897 

for researchers to use these procedures, to name only two examples. 898 

2Our point is not that measurement is generally absent in the methodological literature in 899 

psychology, quite the contrary. However, in the context of the current debate on methodological 900 

practices (as described by Nelson et al., 2018) only few papers focus on measurement (e.g., 901 

Loken & Gelman, 2017). 902 

3There is an ongoing debate in psychology whether researchers should abandon Null 903 

Hypothesis Significance Testing (NHST), and, if they do, which methods they should use 904 

instead. Some authors suggest abandoning not only NHST, but the frequentist perspective 905 

altogether by employing Bayesian methods (e.g., Wagenmakers et al., 2018). Some suggest 906 

abandoning statistical significance as a threshold, but to retain p-values and treat them as one 907 

(albeit continuous) piece of information among others (McShane, Gal, Gelman, Robert, & 908 

Tackett, 2019). Some authors retain a frequentist perspective, but suggest replacing NHST by 909 

focusing on confidence intervals (e.g., Cumming, 2012, 2014). Some authors defend the utility 910 

of NHST (e.g., García-Pérez, 2017; Savalei & Dunn, 2015), and some have even suggested 911 

improving NHST by redefining statistical significance (Benjamin et al., 2018). We would like to 912 

note that in this article, we do not take any position regarding these questions. Instead, we 913 

emphasize that reliable measurement plays a key role for all of the methods discussed above. 914 
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4As these examples refer to choices researchers can make, the underlying construct was 915 

initially called “researcher degrees of freedom” (Simmons et al., 2011, p. 1359). Later, Simmons 916 

and colleagues adopted the term p-hacking (Nelson et al., 2018, p. 513). 917 

5Generally, one needs to be careful when comparing significant and non-significant 918 

effects to each other: When one effect is significant and the other one is not, this does not mean 919 

that the difference between them is significant. This holds both for differences between groups 920 

(Gelman & Stern, 2006) and for differences between correlations (Diedenhofen & Musch, 2015). 921 

6First, we looked through the latest issues of sport psychological journals in order to 922 

identify generally used performance outcome variables. This search led us to golf putts, darts and 923 

free throws. Then, we conducted a literature search in google scholar using the key words “golf 924 

putts”; “darts”; “free throws”. We combined these key words with different search terms, such as 925 

“psychology”, “performance”; and “experiment”. Our criterion for inclusion was that the paper 926 

reported a study in which the respective outcome measure had been used (as compared to, for 927 

example, a mathematical model of darts performance). 928 

7At least in the ones we could access, we could not check the full text of nine articles due 929 

to difficulties acquiring the full text. 930 

8We thank an anonymous reviewer for this idea. 931 

 932 
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Table 1 933 

Reliability estimates for different measures 934 

  N 
split-half 

(odd-even) 
split-half 
(half-half) 

split-half 
(odd-even) 

split-half 
(half-half) 

Cronbach's 
alpha 

Golf (distance) 100 .555 (.402; .678) .552 (.399; .675) .714 (.602; .798) .711 (.598; .796) .670 (.567; .758) 

Golf (successful 
putts) 

100 .443 (.27; .588) .360 (.176; .52)  .614 (.475; .723)  .529 (.371; .657)  .598 (.472; .705) 

Darts-I 
(sample 2a) 

100 .797 (.712; .859) .700 (.584; .788) .887 (.836; .923) .824 (.749; .878) .855 (.81; .894) 

Darts-I 
(sample 2b) 

100 .742 (.639; .819) .736 (.631; .815) .852 (.787; .898) .848 (.782; .895)  .834 (.782; .878) 

Darts total 200 .799 (.743; .844) .732 (.66; .79) .888 (.855; .914) .845 (.8; .881) .863 (.833; .889) 

Basketball-I 
(sample 3a) 

100 .337 (.151; .5) .300 (.11; .469) .504 (.341; .637) .462 (.292; .604) .502 (.346; .634) 

Basketball-II 
(sample 3b) 

92 .449 (.269; .599) .392 (.204; .552) .62 (.475; .732) .563 (.405; .688) .547 (.399; .672) 

Basketball total 192 .703 (.623; .768) .677 (.592; .747)  .826 (.775; .866) .807 (.751; .851) .812 (.771; .849) 

Note. The first two columns for the split-half reliabilities report the simple correlation between the two test halfs. The third and the 935 

fourth columns report the respective coefficients for all 14 items, computed using the Spearman-Brown formula. Cronbach's alpha 936 

also refers to all 14 items. 937 

Numbers in brackets are 95% confidence intervals (rounded to the third decimal place). 938 

For estimating the 95% CIs for Cronbach's alpha we used the cocron package in R (via its web interface) (Diedenhofen & Musch, 939 

2016). 940 
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Table 2 941 

Darts performance for different subgroups 942 

  N 
mean 

performance 
split-half 

(odd-even) 

Darts-I 
(students) 

100 99 (45) .887 (.836; .923) 

Darts-II 
(sports students) 

100 75 (28) .852 (.787; .898) 

Darts total 200 87 (39) .888 (.855; .914) 

Women 94 111 (41) .871 (.812; .913) 

Men 106 66 (22) .742 (.642; .817) 

Darts players 94 73 (30) .85 (.78; .90) 

Non-darts players 106 99 (43) .89 (.84; .92) 

 943 

Note. The third column reports the mean distance from the bulls eye averaged over all 14 throws 944 

(in mm). Numbers in brackets are standard deviations. 945 

The fourth column reports the split-half reliability coefficient for all 14 items, computed using 946 

the Spearman-Brown formula. Numbers in brackets are confidence intervals (rounded to the 947 

third decimal place). 948 

949 
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Table 3 950 

Guidelines for creating reliable performance outcome measures 951 

 952 

953 
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 954 

Figure 1. Mean putting performance for all 14 putts (distance from the hole in centimeters) in 955 

Study 1. Error bars are standard deviations. 956 

 957 

Figure 2. Mean darts performance (distance from the bull in millimeters) in Study 2, sample 2a 958 

(students). Error bars are standard deviations. 959 
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 960 

Figure 3. Mean darts performance (distance from the bull in millimeters) in Study 2, sample 2b 961 

(sports students). Error bars are standard deviations. 962 

 963 

Figure 4. Mean free throw performance (percentage of hits) in Study 3, sample 3a 964 

(inexperienced). Error bars are standard deviations. 965 
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 966 

Figure 5. Mean free throw performance (percentage of hits) in Study 3, sample 3b (experienced). 967 

Error bars are standard deviations. 968 

969 
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Appendix A: Statistical considerations 970 

Justification of sample size planning 971 

In the context of CTT, reliability coefficients are estimated using correlations. Therefore, 972 

their size is independent of the respective sample size (i.e., unlike p-values, correlations do not 973 

change as a mere function of sample size). Thus, the sample size in a reliability analysis does not 974 

affect the estimated reliability per se, but instead the precision of the estimate. The precision of 975 

the estimate can be captured by the confidence interval around the estimate. As correlations 976 

stabilize only at rather high numbers of participants (e.g., Schönbrodt and Perugini [2013] 977 

suggest 250 participants as a reasonable sample size for interpreting single correlation 978 

coefficients), large sample sizes have been suggested for reliability analyses (e.g., Charter, 979 

1999). For example, Charter suggests at least 400 participants in order to conduct reliability 980 

analyses. This is particularly important for studies that aim to estimate a reliability coefficient 981 

which can be interpreted largely independent of the respective sample, for example when 982 

reporting the reliability of a certain questionnaire, as is often done in questionnaire construction. 983 

For this kind of analysis, samples are required that are representative of an underlying 984 

population. Still, reliability analyses are possible with fewer participants. They simply lead to 985 

somewhat less precise estimates. For example, with 250 participants, the 95% confidence 986 

interval for a correlation r = .85 ranges from .812 to .881, whereas for 200 participants it ranges 987 

from .806 to .884. Even for 100 participants, the respective CI still ranges from .785 to .897. In 988 

light of these considerations, and given that we had to conduct single-participant sessions, we 989 

considered 200 participants per variable to be acceptable for our approach. 990 

The role of sample homogeneity or heterogeneity for reliability 991 
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Whereas sample size does not affect the reliability estimate itself, (i.e., larger sample 992 

sizes do not lead to larger or smaller reliability estimates), true score variation in the respective 993 

sample does (e.g., Bühner, 2011; Steyer & Eid, 1993). That means that more heterogeneous 994 

samples may lead to higher reliability estimates than more homogenous ones. This follows 995 

directly from Equation 2: When variation in the true score increases more strongly than variation 996 

due to measurement error, reliability increases. This observation has some consequences: First, 997 

one and the same measurement instrument may have different reliabilities for different kinds of 998 

samples (or populations, respectively, from which these samples are drawn). For example, an 999 

instrument assessing political attitudes may be more reliable in a moderate sample (where people 1000 

have different political attitudes) than in an extremist sample (where people have rather similar 1001 

attitudes) (see Danner, 2015, for this example). This transfers to applications in sport 1002 

psychology: When used in a high-performance sample (where there is low variation in athletes’ 1003 

performance), a measurement instrument might have lower reliability than when used in a 1004 

sample of more moderate performance (where there is substantial variation in athletes’ 1005 

performance). Second, a certain reliability that was estimated based on a representative sample 1006 

of the population may not apply to a more homogenous subsample of that same population. 1007 

When one argues that larger samples are more likely to be heterogeneous, then it follows 1008 

that increasing reliability may be an indirect consequence of increasing sample sizes. However, 1009 

this only holds when heterogeneity increases (more technically, as described above, when due to 1010 

increased heterogeneity true score variation increases more strongly than error variation). 1011 

Restrictions and assumptions underlying reliability in CTT 1012 

Importantly, Classical Test Theory can only be applied to measurements that produce 1013 

interval-scale (i.e., continuous) data (Bühner, 2011; Steyer & Eid, 1993; for a disagreement with 1014 
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this position see Gaito, 1980). The reason for this restriction is that reliability is defined as a 1015 

proportion of variances (see Equation 2), and variances can only be calculated for continuous 1016 

data. Furthermore (following Equation 1), measurement error is defined as the difference 1017 

between the observed value and the true score (Yerror = Yobserved - Ttrue), which again is only 1018 

possible for continuous measurements. This restriction can be misunderstood as meaning that 1019 

reliability coefficients can only be calculated for continuous data, however its consequences are 1020 

more far reaching: Indeed, reliability according to CTT is only defined for continuous 1021 

measurements. It follows that when one wants to estimate reliability coefficients for a certain 1022 

measurement procedure, this procedure must yield continuous measurement outcomes. 1023 

The core of CTT are three definitions, sometimes also called axioms. The first definition 1024 

states that every observed value (Yobserved) consists of a true value (Ttrue) and random 1025 

measurement error (Yerror). That is, Yobserved = Ttrue + Yerror. The second definition states that 1026 

measurement error has an expectancy value of 0 and a finite variance. The third one states that a) 1027 

measurement error of a test t1 is independent from this test’s true values, b) measurement error of 1028 

one test t1 is independent from measurement error of another test t2, and c) that measurement 1029 

error of a test t1 is independent from the true values of another test t2. 1030 

Relatedly, CTT contains five models, that describe assumptions that are necessary for 1031 

estimating reliability (Bühner, 2011; Steyer & Eid, 1993). These five models are a) the model of 1032 

parallel measurement, b) the model of essentially parallel measurement, c) the model of tau-1033 

equivalent measurement, d) the model of essentially tau-equivalent measurement, and e) the 1034 

model of tau-congeneric measurement. These models contain assumptions regarding the true 1035 

scores and (the intercorrelations of) measurement error. 1036 
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When accepting the axioms of CTT, and when the above described modelling 1037 

assumptions hold, it can be shown that the different reliability coefficients are estimates of the 1038 

measurement instrument’s reliability. That is, their respective formulas can be converted (only if 1039 

one assumes that the axioms hold) into the definition of reliability according to Equation 2 (e.g., 1040 

see Steyer & Eid, 1993). However, when the modelling assumptions do not hold, estimates can 1041 

either under- or overestimate a measurement’s reliability (Savalei & Reise, 2019; Steyer & Eid, 1042 

1993). The exact nature of the deviation depends on the exact nature of the violation of the 1043 

assumptions. In cases of extreme violations of the assumptions, reliability estimates can become 1044 

entirely meaningless and unrelated to a measurement’s true reliability (Steyer & Eid, 1993). 1045 

Different reliability coefficients require different modelling assumptions. 1046 

Some considerations on different reliability coefficients 1047 

Whereas a measurement only has one reliability (defined by Equation 2), this reliability 1048 

can be assessed or estimated via different reliability coefficients. Reliability itself (and not only 1049 

the estimate) is sample dependant. That means that one and the same measurement may have 1050 

different reliabilities for different samples. When reliability was estimated using a representative 1051 

sample, one may assume that the same reliability holds for samples that are either a) also 1052 

representative or b) drawn randomly from the same population and sufficiently large. 1053 

So, why are there several reliability coefficients? First, as mentioned above, different 1054 

reliability coefficients require different modelling assumptions, and only when these are met can 1055 

the respective coefficients be used in order to estimate reliability. 1056 

Second, there are some conceptual and practical considerations. Using test-retest 1057 

reliability only makes sense when the construct to-be-measured is stable between the two 1058 

measurement points and when the measurement is not (differentially) affected by memory effects 1059 
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or learning. When test-retest reliability is calculated although these conditions are not met, the 1060 

resulting coefficient will underestimate an instrument’s reliability. Using parallel-test reliability 1061 

only makes sense when two absolutely parallel tests exist for measuring the same construct, in 1062 

other words when two tests exist that measure the same construct with different items. When 1063 

parallel-test reliability is calculated although these conditions are not met, the resulting 1064 

coefficient will underestimate an instrument’s reliability. In case that the above mentioned 1065 

conditions are not met, split-half reliabilities can be estimated. These tend to be higher the more 1066 

homogenous the measurement instrument is. Calculating split-half reliabilities requires to divide 1067 

all items of the measurement procedure into two equivalent halves. Subsequently, the correlation 1068 

between the two halves is calculated. This only makes sense when the two halves are indeed 1069 

equivalent. In the light of these considerations, we considered split-half reliabilities, and 1070 

particularly odd-even reliabilities to be the most appropriate estimators for our measurements. 1071 

The role of the number of items for reliability 1072 

Reliability itself, and not only its estimate, increases when the number of items that 1073 

measure the same underlying construct increases. This is a property of reliability according to 1074 

CTT (Bühner, 2011; Steyer & Eid, 1993). Intuitively, it can be understood when one considers 1075 

that according to CTT, measurement errors cancel each other out, and the more measurements 1076 

one has, the more they cancel each other out. Mathematically, the relationship between the 1077 

length of a measurement procedure and reliability is described by the Spearman-Brown-Formula 1078 

(Bühner, 2011; Steyer & Eid, 1993). 1079 

Equation 3: Spearman-Brown-Formula. rtt is the reliability of the current form of the 1080 

measurement procedure; k is the factor by which the length of the current measurement 1081 

procedure changes (e.g., k = 0.5 means half the number of items, k = 2 means twice the number 1082 
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of items, k = 3 means three times the number of items, and so on); rttcorr is the reliability of the 1083 

changed form of the measurement procedure. 1084 

 1085 

The Spearman-Brown-Formula can be used to predict how reliability will change when 1086 

the number of items of an existing measurement procedure with a known reliability changes. 1087 

Thereby, it can be used to predict how many items researchers need to add (or subtract) in order 1088 

to achieve a certain reliability, once they already know the reliability of a measurement 1089 

procedure with a given number of items. As one can deduce from the Spearman-Brown-Formula, 1090 

increasing the number of items at first leads to relatively high increases in reliability, however, 1091 

further gains in reliability need increasingly more items (Amelang & Zielinski, 2002). 1092 

Therefore, practically, researchers who want to obtain a reliable measure can increase the 1093 

number of items. It seems even possible to predefine a certain reliability one wants to achieve 1094 

(say, .90) and then to increase the number of items until this reliability is achieved. However, 1095 

there are three potential problems with this approach (Amelang & Zielinski, 2002). First, the 1096 

single items must all measure the same construct. This seems feasible for performance outcome 1097 

measures as discussed in this paper. However, it may be problematic for other kinds of 1098 

measurement procedures. For example, there may only be a limited number of items that are 1099 

suitable for assessing a certain construct in a questionnaire (e.g., there may only be a limited 1100 

number of items for assessing anxiety). Second, the relationship between reliability and economy 1101 

is an inverse one: When researchers increase reliability by increasing the number of items, they 1102 

also increase the time their measurement procedure takes. Both in applied and in research 1103 

contexts, time is usually limited (and important to consider; e.g. for motivational reasons). This 1104 

is the main reason why constructing short forms of widely used questionnaires has become 1105 
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common. Furthermore, when a measurement procedure takes more time, adverse effects such as 1106 

fatigue, boredom or concentration problems become more likely to influence the measurement 1107 

outcome, thus limiting the measurement’s validity. Still, time constraints do not seem to be a 1108 

major limiting factor for increasing the number of trials in studies employing performance 1109 

outcome measures, as the time needed per trial (e.g., per putt, dart throw or free throw) is very 1110 

short. Third, there may be a seemingly paradoxical relationship between reliability and validity. 1111 

On the one hand, reliability is a prerequisite for validity. That means, a measurement that is not 1112 

reliable cannot be valid. On the other hand, increasing reliability by increasing the number of 1113 

items can decrease validity. The reason for this seemingly paradoxical observation is that adding 1114 

items in order to increase reliability is often likely to make a measure more homogenous. To the 1115 

extent that the construct one intends to assess is rather heterogenous, then, the measurement 1116 

becomes less valid. One way to try and circumvent this problem is by having a measurement 1117 

procedure with several subscales. Each subscale is rather homogenous and constructed in order 1118 

to be highly reliable, whereas the heterogeneity of the construct is captured by the multitude of 1119 

different subscales (e.g., intelligence or personality tests). However, this approach will make the 1120 

measurement procedure less economical again. 1121 

Taken together, for the above mentioned reasons increasing reliability by adding items 1122 

only works to a certain extent for common psychological measurement procedures such as 1123 

questionnaires. For performance outcome measures, such as discussed in this paper, it seems to 1124 

be more promising. Therefore, if possible, we suggest that researchers pretest their performance 1125 

outcome measure and try to determine an optimal number of trials: A number, that provides 1126 

sufficient reliability, but that does not induce threats to validity (such as fatigue or learning 1127 

effects) and that is still economically feasible. 1128 
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As mentioned above, it is possible to use the Spearman-Brown-Formula in order to 1129 

estimate, based on a given reliability (rtt) for x items, how many additional items would be 1130 

necessary in order to achieve a prespecified reliability (r tt corr). In order to do so, Equation 3 needs 1131 

to be solved for k, which yields Equation 4. 1132 

Equation 4: 1133 

 1134 

Importantly, k is not the number of items but the factor, with which the original number 1135 

of items needs to be multiplied in order to achieve the prespecified reliability. That means, when 1136 

x is the original number of items, k*x is the new number of items. 1137 

 1138 



Initial considerations • Select a measurement procedure based on theoretical grounds and research goals.  

Pretest • Pretest the measurement’s reliability for a specific number of trials. 

• Use a sample that is drawn from the same population that you intend to draw your main 

study’s sample from. 

• When considering sample size, think about precision, not statistical significance (see, for 

example, Appendix A; Charter, 1999; Schönbrodt and Perugini, 2013). 

• Consider different estimates of reliability: Which one is best suited for your measurement 

based on practical and statistical assumptions (see Appendix A for a brief overview)? 

• Estimate reliability.  

Main study • Based on the above estimate of reliability, calculate the number of trials that you need in 

order to achieve a certain level of reliability. 

• Conduct your main study, and estimate reliability again.  

Future studies • Take into consideration that reliability is dependent (among other factors) on samples. 

• Different measurements using the same instrument may therefore lead to different 

estimations of reliability, for example when samples differ regarding true score variation.  

 



• Reliable measurement plays an important yet underrated role for research 

quality 

• Performance outcome measures used in sport psychology differ regarding 

reliability 

• Reliability of performance outcome measures depends on sample characteristics  

• Reliability of performance outcome measures depends on item number 

•  
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