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Abstract

ObjectivesThe present research addresses a neglected agh@cthe current Zeitgeist of
improving methodological standards in (sport)psyebg: reliable measurement. We discuss
and highlight the importance of reliable measurerfrem different perspectives and
empirically assess reliability of three commonlgdperformance outcome measures in order to
give guidelines to researchers on how to increalsahility of measurements of performance
outcomes.
Method:In three studies we estimate 5 different reliapitibefficients for three performance
outcome measures based on 14 golf putts (stubly=1100), 14 dart throws (study ®;= 200;
100 sports students; 100 non-sports students) amed throws in basketball (study= 192;
100 non-basketball players; 92 basketball players).
ResultsThe highest reliability was the odd-even reliapifior darts for the whole sample (.888),
followed by golf putts (.714 for distance from thele, .614 for successful putts) and free throws
(.504 non-basketball players; .62 for basketbayegis; and .826 for whole sample).
ConclusionsBased on theoretical considerations and our engpifiredings we give practical
guidelines to improve reliability for performancetcome measures in sport psychology.

183 words

Keywords Classical Test Theory, replicability, researclalgy, golf putts, darts,

basketball
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“For my money, the #1 neglected topic in statisiscsieasurement” (Gelman, 2015).

In the past ten years, there has been a contraldiscussion regarding the quality of
psychological research (e.g., Nelson, Simmons,r&Bisohn, 2018). Many authors have
criticized what they perceive as problematic resegractices, that lead to low rates of
replications and weaker empirical support for psjyabical theories and interventions than
researchers themselves may believe. Some authemsaewvmounced a “crisis of confidence”
(Pashler & Wagenmakers, 2012, p. 528). Currertly aforementioned discussion has
developed from pointing out existing problems teating viable practices for strengthening the
guality of empirical research in the future (Laké&nEvers, 2014; Munafo et al., 2017; Nelson et
al., 2018). For example, future research is supgptséenefit from appropriate sample sizes
(Button et al., 2013; Fraley & Vazire, 2014, Schiatt & Perugini, 2013; Schweizer & Furley,
2016), methodological advances and new softi@rg., Wagenmakers et al., 2018; Love et al.,
2019), replicability projects (Camerer et al., 20086C, 2015; Soto, 2019), the avoidance of p-
hacking (e.g., Simmons, Nelson, & Simonsohn, 20thE) opportunity to preregister plans for
studies and data analyses (e.g., Nosek, Eberseléazn, & Mellor, 2018), transparency (e.g.,
Nosek et al., 2015), and, maybe most importanthgightened awareness for the importance of
these and other related issues. In the light cfdlehanges, some authors have even gone as far
as to proclaim a “renaissance” of psychologicataesh (Nelson et al., 2018, p. 511).

However, as indicated by the quote above, withdégamptions, measurement has long
been absent from the current discussion on reseguaity’. This is particularly remarkable as
measurement is strongly connected to many of theessthat have been debated, as we will

show below. In the present publication, we willde®n one particularly important aspect of
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measurement, namely reliability. Below, we will ¢ why we focus on reliability instead of
other aspects of measurement. The main goal girdeent paper is twofold: First, we aim to
alert readers to the importance of reliable measent. We illustrate why reliability is crucial
for high-quality research in general, and partidylao for sport psychology, as we will argue.
Second, we aim to assess reliability estimatethfee performance outcome measures (golf
putts, dart throws, and basketball free throws) momly used in sport psychological research.
Based on these estimates, we make recommendatiofigure research in sport psychology.
What is Reliability?

In Classical Test Theory (CTT), every observed @gNpserved CONSists of a true value
(Twue) @and measurement errordy). Measurement error ¥,y is defined as random in this
context (e.g., Buhner, 2011; Lord & Novick, 1968 y&r & Eid, 1993; Vaughn, Lee, & Kamata,
2012).

Equation 1

Y observed= Ttrue + Yerror

This means that every measurement consists oé#ipective person’s true value and a
random error which is due to the measurement’s ifapess. The smaller a measurement
procedure’s error, the closer each single measurewil be on average to the true value. As
measurement error is defined as random, it must havexpectancy value of 0. Furthermore, it
is defined as having a finite variance. Measurereemtr is usually supposed to be normally
distributed. This means that averaged over a laugeber of individual measurements the mean
of the measurement error is supposed to be Ohkr @tords, larger errors are supposed to be
less likely than smaller errors, and errors careeh other out. With only enough measurements,

therefore, the mean of the observed values wilaktiee mean of the true values. The more
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RELIABILITY 5

measurement error, the larger this number of measemts has to be (see Appendix A for more
details). However, for every single measurementarot say how large its individual error
(Yerrop Is. In this context measurement error referhieorandom error associated to every single
measurement due to the measurement’s imperfedtidoes not refer to sampling error (i.e.,
differences between samples due to interindivigaahtion of the true values) or intraindividual
variation (i.e., differences between measurememtpdue to intraindividual variation of the
true values).

Reliability can be understood as the inverse ofsueament error. In other words, the
less error a measurement contains, the highezligdility and vice versa. Formally, reliability is
defined as the proportion of true variation amdmgéntire variation:

Equation 2

2
r _ Yirue

yy 2+2

Yirue Yerror

Reliability can be estimated via several approa¢ess, test-retest-reliability; split-half
reliability; parallel-test reliability; Cronbachapha; see Appendix A for more information on
different coefficients).

Why Does Réliability M atter ?

“Measurement error adds noise to predictions, as®e uncertainty in parameter
estimates, and makes it more difficult to discavew phenomena or to distinguish among
competing theories” (Loken & Gelman, 2017, p. 584).

The question why reliability matters could be ansddn one sentence: The higher a
measurement’s reliability (i.e., the less measurdgragor contained on average in a single
observation), the more precise is every single nreasent on average. However, it is possible

to look at this feature from several perspectiaes| different researchers may be more familiar
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101  with some of these perspectives than with othdnerdfore, we will explore the benefits of

102 reliable measurement in more detail below. Impdliyathe following arguments are not

103 independent of each other, but they are all a do@esequence of the above mentioned

104 observation.

105 Reliability mattersfor Type-1and Type-2 errors.

106 Both Type-1 errors (false positives) and Type-dr(false negatives) can be found in
107 psychological research. Researchers commit a Tygreet (or false positive) when they report
108 finding an effect when truly there is none; or whiefuting a null hypothesis when in truth the
109 null hypothesis is correct. Conversely, researcbensmit a Type-2 error when they report not
110 finding an effect when truly there is one; or whietaining a null hypothesis when in truth the
111 null hypothesis is false (Fraley & Vazire, 2014gliRbility plays a role for both these errors

112 (Loken & Gelman, 2017). Type-1 and Type-2 erroes@ten presented in the framework of
113  Null-Hypothesis-Significance-Testing (NHSThowever, they are relevant for all statistical
114 perspectives that contain binary decisions su@ctespt-or-reject, present-or-absent, retain-or-
115 dismiss.

116 It has been understood for more than a centurynieaisurement error attenuates effect
117 sizes (in this case correlations; Spearman, 1994))1 This means that when measuring an
118 effect with less than perfect reliability, the esdited effect size will be smaller than the real-
119 world effect size. The lower the reliability, thealler the estimated effect size will be compared
120 to its real size. For example, when researchemna a correlation coefficient between two
121 measures, then the estimated coefficient will bellemthan the true coefficient to the extent that
122 one or both of the measurements are less thancggrfeliable. As larger effects are more easily

123 detected, measurement error thus increases thiadikd of committing a Type-2 error (or false
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RELIABILITY 7

negative): When planning for power, researchersliysplan their sample size with the goal of
achieving a certain power (e.g., .9) based on geard real-world effect size (e.Dxpected=

.7). The less reliable their measurement, the emtie effect size they estimate in their study
gets (e.0.restimated= -D). HOwever, the likelihood of finding this shea effect size is lower than
the likelihood of finding the real-world (and laryeffect size. Thus, the researchers in this
example risk committing a Type-2 error: They do fird the effect although it truly exists.

In order to obtain the same power to detect arceffethe same (true) size, researchers
need smaller samples when using reliable measo@@sithen using unreliable measures.
Therefore, research using more reliable measuredl else equal, more economical than
research with less reliable measures.

Only recently have researchers suggested thatiti@uto deflating coefficient
estimates, measurement error can also inflateicmeft estimates (Loken & Gelman, 2017).
Whether measurement error deflates or inflatesfictezit estimates depends primarily on
sample sizes: In large samples, measurement exaolyralways deflates coefficient estimates.
Here, measurement error primarily leads to Typer@rg. In small samples, measurement error
can deflate and inflate estimates. Therefore, ialksamples, measurement error can lead to
Type-1 and Type-2 errors. When researchers are likehg to publish larger effect sizes than
smaller ones (e.g., because they are more likebg tetatistically significant or because they
seem to be more impressive), measurement erniely to contribute to the potentially high
proportion of false-positive findings that have bekagnosed for psychological research,
because it inflates effect sizes in small samplekén & Gelman, 2017).

Taken together, all else being equal, a reseagetth \fill benefit from more reliable

measurement, due to less Type-1 and less Type&eOr stated differently, the field with
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147 more reliable measures is both less likely to mp@entially important effects and it is less likely
148 to report an effect that in reality does not exist.

149 Reliability mattersfor replications.

150 In past replication projects, several definitionsl @perationalizations of successful or
151 unsuccessful replication attempts have been emgl@amerer et al., 2018; OSC, 2015; Soto,
152  2019). What exactly constitutes a successful ouceessful replication remains a matter of

153 debate (for an enlightening discussion and oneilplessolution see Simonsohn, 2015). Broadly,
154  one can distinguish two strategies for definingiecessful replication. The first strategy

155 considers a replication as successful when botbrilgenal study and the replication study have
156 significant results in the same direction. The secstrategy compares the effect sizes of the
157 original study and the replication study with eather. An effect is considered to be

158 successfully replicated when the effect sizes predby the original and the replication study
159 do not differ.

160 For the first strategy, reliability matters becaiis#fects the studies’ power. The

161 probability of replicating a true effect dependsioag other factors, on the reliability of the

162 measure with which the to-be-replicated effectsisessed (Stanley & Spence, 2014). The lower
163 the reliability of a measure, the lower the probgbof replicating an effect, even when the

164 effect is true. Therefore, when measurement isliabte, unsuccessful replication attempts may
165 both be a consequence of an effect not being troé an effect being measured with much

166 error. For example, Soto finds that the successfulication rate in a large scale replication

167 project from personality psychology was substalytisigher than the respective rates in large
168 scale replication projects from other behavior&msces (2019). He goes on to speculate that one

169 reason for this striking discrepancy (among oth&ush as sample sizes and type of focal effects)
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RELIABILITY 9

might be that personality psychological resear@sumsore standardized and thus more reliable
measurements than, for example, social psycholbgisaarch.

For the second strategy, reliability matters beeaas explained above, measurement
error may both inflate and deflate estimates adafgizes, making it less informative to compare
two effect sizes to each other. As replicationmfits are becoming ever more important in
science, so does the role of reliable measurerasntjthout reliable measurement replication
attempts are at least hard to interpret or at wat#eé.

Reliability mattersfor theimpact of p-hacking.

P-hacking refers to the practice of “selectivelyaging data and analyses” or, in other
words, “conducting multiple analyses on the santa dat and then reporting only the one(s) that
obtained statistical significance” (Nelson et 2018, p. 513). When researchers employ p-
hacking, the likelihood of obtaining a false-pogtincreases “dramatically” beyond the level
usually assumed by researchers (Nelson et al.,, 20B2.3). Typical examples of p-hacking
include a) having two correlated dependent varghbled selectively reporting one of them, b)
adding observations to the sample and stopping statistical significance has been reached, c)
deciding whether to drop one out of several expenital conditions, d) selectively controlling
for gender or for the interaction of gender witkattment, or €) combinations thereof (Simmons
et al., 2011). In the simulations run by Simmong aolleagues, p-hacking could lead to a
likelihood of obtaining a false-positive (i.e., diimg a significant result when truly there is no
effect) of up to 61% (Nelson et al., 2018; Simmenal., 2011). As a result of p-hacking, there
is supposed to be a high proportion of false aedefiore non-replicable findings in the
psychological literature. Nelson and colleagued 83uggest that p-hacking (i.e., analyzing the

data until researchers find a significant resuit) aot publication bias (i.e., simply not
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RELIABILITY 10

publishing non-significant results) is the realwmesto the decades-old question how
psychologists manage to publish such a high prapodf significant results when their studies
typically have rather low power. In a recent papeiese and Frankenbach (in press) suggest that
p-hacking and publication bias interact: In th@ngation study, the extent to which p-hacking
distorts meta-analytic effect size estimates dep@mctthe level of publication bias and on true
effect sizes.

Although the problematic influence of p-hackingresearch quality has been described
in detail (Simmons et al., 2011), it remains anrogeestion how to reduce its impact in future
research. Again, reliability plays a role as p-haglexploits random variation. For example, the
strategy of successively increasing the samplewitiea certain difference becomes (randomly)
significant works “best” when this very differenisesubject to lots of random variation. As
random variation increases with measurement esoodo the opportunities to employ p-hacking.
It follows then that highly reliable measuremertsidd be less vulnerable to p-hacking.
Therefore, one (rather indirect) method among sthereduce the impact of p-hacking would
be to employ highly reliable measurements. Obviguhkis would not entirely rule out the
possibility of p-hacking, but it would at leastdome extent decrease the potential for employing
them.

Reliability mattersfor comparisons between measur ements.

Whereas the abovementioned benefits of high rdiiabollow directly from its
definition, namely a measurement with comparably éoror, the reliability of measures is
consequential beyond simple estimations of therpatar of interest. Reliability is particularly

important for comparisons between measurements.cHm be comparisons between different
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studies, comparisons between different measurenreatsingle study or comparisons of some
effect on different measurements in a single study.

Suppose some researchers are interested in theoguebether some treatment has a
(differential) effect on two different variablesh@y find several studies reporting an effect on
variable A, and several studies not finding ancifte variable B. They conclude that the
treatment works for variable A, but nor for variald. However, and unfortunately so, in this
example variable A was assessed with a more reliaelasure than variable B. Therefore, the
observed difference might simply be due to measanerrror. This hypothetical scenario gets
worse when we assume that preferred measuremeti@ortical background of researchers
might be correlated. In this case, different theermight appear to be differentially supported by
evidence, while the only real difference is measaet error. These observations also hold
when researchers compare effects on differentbasavithin one study For example,
researchers might conclude that their treatmeptedfvariable A (e.g., some symptom of a
disease), but not variable B (e.g., an unwantesl efféct). Again, this conclusion is only
legitimate when both variables are measured wehsttime high reliability.

Finally, this also holds for all kinds of multiptegression strategies and related attempts
to control for one variable when estimating asdamia between two or more additional
variables (Westfall & Yarkoni, 2016). For exampien one predictor significantly predicts the
outcome variable while controlling for another potolr, researchers often interpret this finding
as indicative of incremental validity, which itsehfay be interpreted as signifying that both
predictors measure “strongly related but conceptubdtinct constructs” (Westfall & Yarkoni,
2016, e0152719). However, as Westfall and Yarkbaws “... a simpler interpretation that is

often equally consistent with the data is that hgkdictors are simply noisy indicators of the
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238 same construct” (2016, e0152719). Westfall and ¥airkonclude that reliable measurement is
239 particularly important when trying to assess inceatal validity in regression models.

240 Why reliability matters: A summary.

241 Taken together, increasing reliability should léadboth less Type-1 and less Type-2
242 errors, a higher chance of replicating an effeegqiit is true as well as making replication
243 attempts more informative in general. Additionallshen measurements are more reliable,
244 smaller sample sizes are needed in order to safg@gainst statistical errors, p-hacking, and
245 Dbiases. Likewise, comparing between measuremestssisr when both measurements are
246 reliable. Taken together, it seems safe to condderesearch without reliable measurement
247 does not make much sense in general, and particiildoes not make much sense in the age of
248 replicability.

249 Rédiability in Sport Psychology

250 As we have outlined above there are good reasomsike efforts to increase reliability
251 in science. Nevertheless, it is important to nb&g hot every field of investigation or every
252 measurement tool faces comparable challenges witemes to both validity and reliability. In
253 terms of validity it seems clear that certain pgjobical measures (e.g., a questionnaire

254 measuring a person’s tendency to behave aggregssiaiggle with more problems regarding
255 validity as physical measures, for example assgssperson’s weight or body size, which has
256 led researchers to speak of a validation crisibiwithe field of psychology (Schimmack, 2010;
257  2019).

258 While questionnaires can be both problematic imgeof validity and reliability, other
259 measurement techniques have high face-validity there is little doubt as to whether they

260 actually measure what they claim to measure). kamgle, most people would probably agree
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that measuring a person’s performance shootingeblaslk free throws is a valid measure of this
person’s ability to shoot free throws. Howeveisikess clear how reliable this measure is, or
what has to be taken into account when reliablngryo assess perceptual-motor performance in
answering different research questions in sportipsipgy. Hence, the present research focused
on reliability of commonly used individual sportrfigmance outcome measures.

Discussions of reliability have not been absenhiwisport science (Hopkins, 2000;
2017; Zhu, 2013), and reliability has also beenftiveis of increasing research endeavors in
some subfields of sport science, for example iemehing both the validity and reliability of
new technologies like GPS (Global Positioning Sygte assessing sport performance data
(Barbero-Alvarez, Coutts, Granda, Barbero-Alvag&gastagna, 2010; Coutts & Duffield,
2010; Jennings, Cormack, Coutts, Boyd, & Aughey,@@ohnston, Watsford, Pine, Spurrs,
Murphy, & Pruyn, 2012; Petersen, Pyne, Portus, &8, 2009). In sport and exercise
psychology, Eklund, Tenenbaum and Kamata (2012)igecan extensive overview about nearly
all potentially important aspects of measuremersiport and exercise psychology, from basic
concepts to specific issues, such as cognitiveivatainal, emotional and behavioral
measurement. These discussions and analyses lawve gtat reliable measurement of behavior
in sports, although these measures appear higlcenvalidity, is not a trivial topic. While
measurement is an important topic at all levelaraflyses within sports (e.g., biochemical
measures, physiological measures, biomechanicaumes psychological questionnaires,
anthropometric measures, behavioral measures, gme of the most relevant measures (at
least in terms of spectator interest or financalard) are outcome measures of sports

performance.
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Somewhat surprisingly, we are not aware of anyditege systematically analyzing the
reliability of typically used sport performance comne measures, although plenty of research
uses sport performance measures as dependentlesrisaybe claims like “sport measures
outcome with a finality of judgment that scientifapers would not pass” (Walsh, 2014, p. 860)
have led researchers to simply assume sport outomasures are reliable without needing to
pay special attention to this. To address thistsbaoring in the literature, we decided to first
identify the most commonly used outcome measure&itdéd perceptual-motor performance in
sport psychology and subsequently calculate diftargiability indices of these measures in a
series of empirical studies.

A literature search identified 40 papers using golits as a dependent variable, 37
papers using darts, and 28 using free throws ikdtlall (see the reference list in the
supplement for an overview). Therefore, it seenfis aargue that these are frequently
employed individual sport performance outcome messin sport psycholo§yReliabilities
were not reported in any of these papéltss important to note that we are not pointing or
criticising these papers. We ourselves have natrteg reliability coefficients in most of our
papers, when employing other measures than quasiies.

However, this is precisely our point: Whereas elvedy cares about reliable
measurement when reporting questionnaire datalyhangbody does when reporting
performance outcome measures. There are probal@dyadeeasons for this. One, whereas it may
seem rather straightforward how to compute religdsl for questionnaires (e.g., most examples
from the methodological literature refer to questiaires), it may seem to be more unclear how
to compute reliabilities for performance outcomé&d&econd, there is a common perception

that a measure must have been reliable when tlasrbden a significant result for this variable
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(Loken & Gelman, 2017). Therefore, it may seem gessary to examine its reliability. As
explained above, this is problematic for severatoms (see Loken & Gelman, 2017, for more
details on this misconception).
The Present Research

The main goal of the present research was to estirbability coefficients for three
commonly used individual performance outcome messsur sport psychology, namely golf
putts (study 1), darts (study 2) and free throwisaeketball (study 3). Furthermore, we aimed to
investigate whether these reliability coefficieate dependent upon different samples in general
and upon participants’ experience with the respedfisk in particular.

General Method

Here, we describe the rationale common to all tetedies. In the section below we
describe characteristics unique to each studyll biwalies, participants provided informed
consent before commencing the study and were thlsauke debriefed before receiving some
candy as compensation for participating. Partidiparere neither paid, nor were they
incentivized dependent on their performance. Iistaltlies, participants first performed 20
training trials, before executing 14 test trialse Bhly estimated reliability coefficients for thé 1
test trials, not for the training trials. The triaig trials were intended to reduce the influence of
potential short-term learning effects on the religbestimates (Hopkins, 2000), to get
participants calibrated to the performance conf@j@mian, D’Ausilio, Moorman, & Bizzi,
2010; Wunderlich, Heurer, Furley, & Memmert, 2018)d in turn decrease measurement error.
We assumed potential learning and calibration &fecreach an asymptotical level after the
learning trials and therefore performance to bblstéor the test trials. In all studies, the setup

was highly standardized, including videos demotisigeghe correct execution of the required
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movements to all participants (regardless of tfamiliarity with the task). Participants were told
to try to achieve optimal performance, but expentaes emphasized that we would not evaluate
individual performance in order not to induce pueege.g., Baumeister & Showers, 1986).

For all variables, we estimated theplit-half reliability using two different methods, one
method splitting each test in a first half and eosel half and the odd-even method (please see
Appendix A for further elaboration on our statiatiapproach). When using the “first-half vs.
second half” method, for every participant, we caitep one mean across the first seven test
trials (i.e., trials 1-7) and one mean across #uesd seven test trials (i.e., trials 8-14). Wenthe
computed Pearson’s correlation coefficient forecbeelation between the first and the second
mean. When using the odd-even method, for evemycpmant, we computed one mean across
the seven odd-numbered test trials (i.e., trial%, 5, 7, 9, 11, 13) and one mean across the seven
even-numbered test trials (i.e., trials 2, 4, 6,8,12, 14). We then computed Pearson’s
correlation coefficient for the correlation betweée first and the second mean. According to
Classical Test Theory (CTT), the resulting corielad can be considered one estimate for the
respective measures’ reliability. Reliability dedsron the number of items, and split-half
reliabilities thus estimate the reliability forest of half its original length (i.e., in our caga,
seven instead of 14 trials). Therefore, we usedfearman-Brown formula to estimate the
reliability of all 14 trials, based on the obtainediability coefficients (please see Appendix A
for the formula). Additionally, we computéZionbach’s Alphdor all measures.

In all studies, we used performance measures @spective instructions) that allowed
for obtaining continuous measurements, which iseagguisite for estimating reliability

according to CTT (please see Appendix A for furtindormation). Furthermore, where



351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

RELIABILITY 17

necessary, we aimed at minimizing the number osimisvalues, that is attempts that we could
not measure.

We planned to total 200 participants per studyagdesee Appendix A for further
elaboration on sample size planning). In all stsidige planned to collect data in two subsamples
that differ regarding sports experience, each supkatotalling 100 participants. Below, we
describe all studies in detail in order to factbténterpretation and replication. We encourage
researchers to contact us for more details. Whedonot refer to a particular reliability
coefficient, we always refer to the odd-even religh as it is usually considered superior to the
“first-half vs. second half” reliability. In all gtlies and in all subsamples, there is no significan
difference between the mean value for the odd anthé even items, and neither do standard
deviations differ, which is considered a preredeaifir estimating odd-even reliability.

Study 1: Golf Putts
Participants

One hundred students of Heidelberg University pigdited in the study (58 men and 42
women;Mage= 24.9;SDyge= 7.9). Sixty-six of them were sports studentsyw@de not. None of
them reported having experience playing golf thathieyond participating in one basic course.
Contrary to our plans, we did not collect data frasecond subsample (for an explanation why,
please see the Discussion section below).

Apparatus and Procedure

Participants were positioned 200 cm away from thle And instructed to assume a

typical putting position. They could choose betwaeutter for left-handers and for right-

handers. In order to maximize standardizationstbdy was conducted in a laboratory room.
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Therefore, participants did not perform on a reakg but on a putting mat made of plastic, as is
common in sport psychological studies (see Suppiefoe several examples).

Participants were instructed to aim for the holé exformed that performance would be
measured as distance from the hole. This allowed ogasure performance in a continuous
way. Simply counting successful putts is also amomy used measure and we therefore also
estimated reliabilities for number of successfutqurhis allowed us to compare the reliabilities
of two different performance outcome measures coct&d from the same task. In order to
obtain continuous measurement, we added up athptte as sums of binary variables can be
treated as continuous variables (e.g., Lunney, 1970
Resultsand Discussion

In the whole sample, the average distance to theedwvoss all 14 putts was 257 m8i
= 175;Md = 240;Mode= 241). On average, 53% of all putts were sucaésdfhen looking at
the mean performances for each of the 14 puttgaghg no learning trend was apparent (see
Figure 1). Due to failures in data recording, itatdhe results of 15 putts out of 1400 were not
recorded. Results do not change when excludingefgective participants.

For the continuous performance outcome measutedistance from the hole), the
different reliability coefficients do not differdm each other (see Table 1). Thus, results are not
dependent on a particular coefficient. Reliabitibefficients can not be considered acceptable
for seven putts only. When estimating reliabilitiesall 14 putts using the Spearman-Brown-
Formula, reliability coefficients expectably gegher, but they are still lower than what is
usually considered acceptable (e.g., Vaughn e2@12). The Spearman-Brown corrected odd-

even reliability for the whole sample is .714 {£J1602; .798]).
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395 For the binary performance outcome measure (uenpber of successful putts), the

396 different reliability coefficients do not differdm each other (see Table 1). None of them

397 reaches a level commonly considered as acceptaittethe highest estimate for all trials being
398 .614 (Cbs[.475; .723]). Thus, at least descriptively, relidy estimates for the binary

399 performance outcome measure are lower than facah#nuous one. However, confidence

400 intervals overlap. Based on our data and our sgrgpléputts as conducted in the present study
401 did not possess sufficient reliability to be em@dyas a performance outcome measure in a sport
402 psychological study. Reliability estimates for distes from the hole are somewhat better, but
403 they still do not reach levels usually considereckeatable for other psychological measurement
404 procedures. Based on the reliability estimatesifemumber of putts in the current study, the
405 Spearman-Brown formula allows to calculate what benof putts would be necessary in order
406 to achieve a certain level of reliability (e.g.,08.9). We present these calculations in the @ecti
407 “comparison between performance outcome measures”

408 Putting distances in sport psychological studigy f@m 100 to 400 cm, with 200 cm
409 being common (see Supplement). Therefore, we deé¢alase 200 cm in our study. However,
410 we realized that not only putting performance, dab reliability in golf putts probably strongly
411 depends on the distance to the hole (as relialfithe performance measurement depends on
412 the true score of the performance, which probablyeg with distance). At the same time, there
413 is no standard putting distance. Therefore, wed#gthot to conduct a second study with

414 another 100 participants, as initially planned, instead to move on to another performance
415 measure. Our next two performance measures (dadtbee throws) feature standard distances.
416 Therefore, the problem described above does ndy &pgthem.

417 Study 2: Darts
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Participants

Study 2 consisted of two subsamples (sample 2aamgle 2b). Both samples consisted
of 100 participants, totalling 200 participantssample 2a, there were 50 women and 50 men (4
left-handed). All of them were students at Heidggbdniversity. In sample 2b, there were 44
women and 56 men (10 left-handed). All of them wsperts students at Heidelberg University.
Thus, in the whole sample there were 94 women 86chien (14 left-handed), 100 non-sports
students and 100 sports students.
Apparatus and Procedure

In line with the World Darts Association’s standgrdie placed the dart board in such a
way that the centre of the bull (also called byksewvas at 173 cm (5 ft 8 inches) above ground.
The diameter of the dart board was 400 mm. Paantgpwere positioned behind a line (the so-
called oche) that was 237 cm (7 ft 9.25 inches)yafinam the board. Behind the dart board we
placed a board made of rigid foam (size: 120 cr@& dm; thickness: 40 mm). This setup
allowed us to measure throws that missed the aardbut got stuck in the foam board, in order
to minimize missing values. When a throw did netctethe board, participants were allowed to
repeat the attempt (however, this happened havely due to the size of the foam board). We
utilized regular tournament darts with a lengtitioéa 155mm and a weight of circa 18g.
Tournament darts come in different variants. Outsdeonsisted of a steel point, a brass barrel,
an aluminium shaft and a standard shape flight.

Participants were instructed to aim for the bull aiformed that performance would be
measured as distance from the bull. This allowetb useasure performance in a continuous way
(i.e., to obtain interval scale data), which isarpquisite for estimating reliability. The usual

scoring system in darts, however, would probablyhave produced continuous measurements
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441  (Selkirk, 1976; Tibshirani, Price, & Taylor, 201Biming for the bull is a common instruction
442 in sport psychological studies (see Supplementjnénwith our measurement and the

443 instructions, we did not utilize a dartboard widldial sections and double and triple rings.

444 Instead, we used a dartboard with concentric rafg=ual width.

445 Resultsand Discussion

446 In the whole sample, the average distance to theabwwss all 14 darts was 87 me=
447 39;Md = 79;Mode= 65; see Table 2). The sports students (samplpetbormed better than the
448 non-sports students (sample 2a), and the men lettethe women (see Table 2). When looking
449 at the mean performances for each of the 14 deptrately, no clear learning trend was

450 apparent (see Figure 2).

451 The different reliability coefficients do not différom each other in each sample (see
452 Table 1). Thus, results are not dependent on &pkat coefficient. Likewise, reliability

453  coefficients do not differ between both subsamp\esther does each reliability coefficient for
454  the whole sample differ from the respective coedfits in both subsamples.

455 Reliability coefficients can already be consideaedeptable for seven throws only: The
456 odd-even reliability for the whole sample basedewen throws is .799 (61[.743; .844]).

457  When estimating reliabilities for all 14 throws mgithe Spearman-Brown-Formula, reliability
458 coefficients are high: The Spearman-Brown correotddteven reliability for the whole sample
459 is .888 (Cis[.855; .914]). At least in this study, both in thebsamples and in the overall

460 sample, dart throws seemed to capture a substantidrtion of systematic variation as

461 opposed to random variation and therefore seembd &ble to capture variation in participants’

462 true score rather well.
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463 Furthermore, we investigated into the question eteliability coefficients varied

464 Dbetween different samples or between different gsaf participants. We did so in a more

465 exploratory manner, based on assumptions that wsider to be common when planning sport
466 psychological experiments. As different reliabildyefficients do not differ from each other,

467 from now on we refer to the odd-even reliabilitg,veée consider it the most appropriate (see
468 Appendix A). In our further analyses, we distingned between a) sports students and non-sports
469 students, b) women and men, and c) participantspldodarts and participants who do not. We
470 distinguished between darts players and non-dé&ayers based on a median split on

471 participants’ answers to the question “How oftesh yhhu play darts during the past twelve

472 months?”. All participants who reported never tedplayed darts in the past twelve months
473 were assigned to the group of non-darts players106), whereas all other participants were
474  assigned to the group of darts players ©4). We conducted a median split in order t@ivbt

475 groups of roughly equal sample size, althoughdpigroach has some disadvantages. The main
476 disadvantage here is that the group of darts pagiernot only contain participants who played
477 regularly, but also participants who had only ptagecouple of times. We address this

478 shortcoming in study 3.

479 First, mean performance differs between the twaigsan all three comparisons (see
480 Table 2). That means, a) sports students werefisigmily better than non-sports students

481 (t[167.58] = 4.6p < .001,d = 0.65), b) men were significantly better than veont[137.62] =

482 9.46,p<.001,d = 1.39), and c) darts players were significantligddethan non-darts players

483  ([198] = 4.83p <.001,d = 0.68).

484 As already reported above, reliability coefficiedid not differ between sports students

485 and non-sports students (i.e., subsample 2b arshsyile 2a, see Table 2). Descriptively,



486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

RELIABILITY 23

reliability was somewhat higher for women thanrfeen, but confidence intervals overlap (see
Table 2). Finally, reliability coefficients do ndiffer between darts players and non-darts
players (see Table 2). If at all, non-darts playerge a slightly higher reliability coefficient, tou
again, confidence intervals overlap.

Thus, and contrary to what one might have intuiyiexpected, neither gender, nor
studying sports nor playing darts had an impaatetiability estimates. However, at least the last
finding might be due to the fact that we distindpad darts players from non-darts players based
on a median split, which is not the best methocbtmpare different levels of experience. We
address this issue in study 3.

Study 3: Basketball Free Throws
Participants

As one goal of study three was to further inveséigato the role of sports experience for
reliability, we aimed to obtain two different subgales. One subsample should consist of
experienced basketball players, whereas the otfesloould consist of comparably
inexperienced players. We assigned potential paatints to the sample of experienced players,
when they were active members of a basketball ahdreported their free throw success rate to
be at least 30%. We assigned potential participanise sample of inexperienced players when
they did not fulfil the inclusion criteria for thexperienced sample. These rules were defined
prior to data collection. Additionally, participanhad to be able to hit the rim or score a bagket a
least ten out of 20 times during the practicedrialorder to make sure that they were
sufficiently skilled.

Therefore, study 3 consisted of two subsampleskaBa and sample 3b). Sample 3a

(the inexperienced sample) consisted of 100 ppéids Mage= 24.8;SDyge= 4.2). Sample 3b
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(the experienced sample) consisted of 92 partitsp@ge= 25.3;SDyge= 7.7), totalling 192
participants. In sample 3a, there were 50 womerb@naen. All of them were sports students at
Heidelberg University. In sample 3b, there werevtnen and 50 men. All of them were
players in regional basketball clubs. Thus, inwele sample there were 92 women and 100
men, 92 non-sports students and 100 sports studenesresult of the above mentioned criteria
for inclusion of participants into the differentomamples, both subsamples differed considerably
with regard to basketball experience. On averagricgpants in subsample 3a (the rather
inexperienced) reported to play basketball for 2Butes per week3D = 52), whereas
participants in subsample 3b (the experienced)rtegdo play basketball for 314 minutes per
week SD= 206).
Apparatus and Procedure

Participants conducted all free throws in line vilie regulations of the Fédération
Internationale de Basketball (FIBA, 2018a; b). Rgyants were positioned behind the free
throw line 422.5 cm from the middle point of theskat. According to FIBA, basketballs for
men are supposed to weigh 567-650 g with a circtentee of 74.9-78.0 cm. Basketballs for
women are supposed to weigh 510-567 g with a cifetence of 72.4-73.7 cm. We used two
balls: one ball for all men and one ball for allmen. From time to time, we made sure that both
balls were still within the limits specified by tinegulations. According to FIBA, the basket ring
has to be positioned at a height of 304.8 cm &-cth and have an inside diameter of 45.0-45.9
cm. We made sure that the baskets utilized werdmihese specifications.

We coded each shot as either successful (the leali through the basket) or not (the ball
did not go through the basket). There were no misgalues, as all shots could be coded. We

did not distinguish between different kinds of ucsessful shots, for example, balls hitting the
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rim or air balls, as researchers sometimes dor&&son for this is that assessing the difference
between successful shots and different kinds o$esisloes not produce a continuous (i.e.,
interval scale) measurement. In order to obtairticoous measurement, we added up all
attempts, as sums of binary variables can be ttesteontinuous variables (e.g., Lunney, 1970).
Examples for this practice can be found, for examnipl intelligence tests, where each single
item produces a binary datum, however, items amased up along scales and then treated in a
continuous manner.
Results and Discussion

Experienced participants performed better thanpegagnced participants. In the
experienced sample (3b), the average success aaté49o $D= 17). In the inexperienced
sample (3a), the average success rate was SP% (7%). When looking at the mean
performances for each of the 14 throws separatelyearning trend was apparent, neither for
sample 3a nor for sample 3b (see Figure 4 and &igusee Appendix A for further elaboration
on this issue).

The different reliability coefficients do not différom each other in each sample (see
Table 1). Thus, results are not dependent on &pkat coefficient. At least descriptively,
reliability coefficients are higher for the expereed sample (sample 3b) than for the novice
sample. However, confidence intervals still oveffiapboth groups. In both subsamples,
reliability coefficients for seven shots only aoev| and they are still not acceptable when
correcting for all 14 shots using the Spearman-Bréovmula. The Spearman-Brown corrected
odd-even reliability for sample 3a is .504 ¢£J1341; .637]) and for sample 3b it is .62 ¢£lI

[.475; .732]).
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Interestingly, the reliability coefficients for tlvehole sample are substantially higher
than for each of the subsamples alone (i.e., cendid intervals do not overlap). The Spearman-
Brown corrected odd-even reliability for the whekmple is .826 (G4 [.755; .866]). This
observation cannot be explained by the sampleitsielé. Instead, it means that in the whole
sample the ratio of systematic variation to rand@mation was higher than in each of the
subsamples. This makes sense when considerinththathole sample included both
inexperienced and experienced players (i.e., maciaton between participants), whereas in
each of the subsamples there were only inexperieocenly experienced players (i.e., less
variation between participants). This observatltusirates a common misconception when
planning sport psychological studies: Researchers@metimes tempted to think that reliability
must be higher the more experienced or the batiérta participants are. However, this is not
true, as illustrated by our data.

Comparison between Performance Outcome M easures

The highest reliability estimated in our study whaes odd-even reliability for darts, in the
whole sample for all 14 darts (.888; see Tabld kg respective estimates for golf putts are .714
(for distance from the hole) and .614 (for sucadgsfitts). The respective estimates for free
throws are .504 (for the inexperienced sample.B&)(for the experienced sample 3b) and .826
(for the whole sample). As the reliability for dars acceptable, we further calculated what
number of putts and what number of free throws Wdwlve been necessary in order to achieve
the same reliability as in darts (i.e., .888). Bpearman-Brown formula allows to calculate
these numbers based on the existing reliabilityredes (see Equation 4 in Appendix A for the

Spearman-Brown formula solved for k, which is tesgth). In brackets, we report the number
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576 of items researchers would have needed to achiesi@hility of .8 (instead of .888), which is
577 often considered acceptable.

578 Based on the procedures and samples as employped studies, estimations based on
579 the Spearman-Brown formula suggest that in ordectoeve the same odd-even reliability as
580 with 14 dart throws, researchers would have neddg@?2) golf putts (when measuring distance
581 from the hole) or 70 (35) golf putts (when countsugcessful putts). Likewise, they would have
582 needed 109 (55) free throws (in the inexperienesadpie), 68 (34) free throws (in the

583 experienced sample) and 23 (12) free throws imtiigle sample. These results demonstrate that
584 differences that may look small when expresseeliability coefficients may have large

585 consequences for number of items or trials: Inati@ve example, in order to achieve the same
586 reliability, number of trials varies from 14 to 109

587 The increases in item numbers in order to achieediability of .8 are still substantial,
588 however far smaller than the ones reported abave388. This observation illustrates that

589 increasing the number of items at first leads katreely high increases in reliability, however,
590 further gains in reliability need increasingly maesms (Amelang & Zielinski, 2002).

591 General Discussion

592 Discussion of Results

593 Our results suggest that common sport performantmme measures exhibit

594 reliabilities whose interpretations when computadpisychological questionnaires would range
595 from good (for darts =.888 and free throws in tbhebined sample =.826) to barely acceptable
596 for golf putts (.714) (e.g., Vaugh et al., 2012 Jable 1). Thus, our results suggest that

597 different sport performance outcome measures mag tferent reliabilities. Furthermore, our

598 results demonstrate that reliability estimatesease when the number of items increases, which
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is a well known property of reliabilities accorditmCTT. Our results also demonstrate, that
depending on a measurement’s reliability, vastffedent numbers of items are required in order
to achieve the same acceptable level of reliabilitys observation has consequences for the
construction of performance outcome measures agilv@iscuss in more detail below.

Most importantly, our results demonstrate thattslities of sport performance outcome
measurements may strongly depend on sample chasticte Reliabilities estimates for both
subsamples in basketball were very low (.504 a@yl lfwever for the whole sample the
estimated reliability was substantially higher 682T'his observation underlines the necessity of
having samples with true-score variation when nesesgis want to obtain reliable measurement
(see also Appendix A; Vaughn et al., 2012). Atshee time this observation debunks what we
(anecdotally) perceive to be a common misconceptigport psychological research, namely
that reliability will be higher in expert sampldgh in non-expert samples. This also means that
researchers need to be particularly careful whewlecting studies with rather homogenous
expert samples, as this approach might lead taéhabilities.

When interpreting the present results, it is im@otrto keep in mind that all estimates
reported here depend on the respective samplespandtionalizations and therefore do not
necessarily generalize to other situations or sasf@ee Appendix A). Furthermore, it is
important to keep in mind that our results may pairosier picture of reliabilities than is
actually warranted when looking at existing studi@se reason why estimates appear to be
rather high in our studies is that we employedridst To the extent that past studies may have
employed fewer trials, all else equal, they had tetiable measurements.

Limitations and Unintended Consequences
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We based our main conclusions on CTT in generalbanspecific estimators (i.e., odd-
even reliability and the Spearman-Brown formulapanticular. However, alternative approaches
exist. They comprise a) different estimates thaehexisted within the framework of CTT for a
long time (e.g., the Kristof or the Guttman forngjlaee Buhner, 2011); b) novel estimates that
have been proposed only recently (e.g., omega alteanative to Cronbach’s alpha [McNeish,
2018]; weighted kappa [Robinson & O’'Donoghue, 20074ssess agreement amongst observers
in performance analysis; and special coefficieatghrticular research designs within sport
science [Hopkins, 2017]); and c) estimates compui@dtructural equation modeling (SEM,;
e.g., Raykov, 1997). All of these approaches havamrtages and disadvantages and it is
impossible to say that one of them is per se sapehiist as one example, one presumed
advantage of omega above Chronbach’s alpha i®theaga relies less on modeling assumptions
(McNeish, 2018). However, the advantages of omega been questioned and currently there is
a controversial discussion regarding its meritsyi®& & Marcoulides, 2019; Savalei & Reise,
2019).

Furthermore, CTT itself has some well-known weakessfor example its dependency
on sometimes questionable assumptions and on saimulacteristics (Buhner, 2011; see also
Appendix A). Item Response Theory (IRT) in turroals for modeling the probability of a
response to an item as a joint function of both iie@m’s difficulty (the item parameter) and a
person’s ability (the person parameter), which ssilastantial advantage over CTT (Buhner,
2011). Taken together, we consider it to be impurta keep in mind that alternatives to the
particular estimates that we employed and to CTigteWe hope to stipulate a discussion on
which theoretical approach and which coefficiemestzest suited for measurement in sport

psychology. In order to foster this discussion,make all of our raw data public, so that
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researchers may take these data and calculateestimiates of reliability, SEMs or parameters
from IRT.

As we have mentioned above, our estimates depahdbamur samples and on our exact
operationalization of the different measures. B@meple, maybe the reliability estimate for the
free throws would have been different had participdoeen closer to the basket. Hence,
theoretically, reliability (and its estimates) algaefer to a measuremengtto an instrument.
Therefore, we cannot say that we estimdtedeliability of darts, othe reliability of free
throws, instead we estimated the reliabilities wf gpecific measurements. An unintended
consequence of our study would be if from now aeagchers in sport psychology would
predominantly use darts as dependent variableusec# has been proven to be reliable”.
Future studies with different samples might beedéht in terms of reliability.

Moreover, reliability must not be confused withiddl. It would be a mistake if
researchers simply used certain measures becaysarthreliable, and did not care about
validity, a concern that has been raised in psydtoos (e.g., Buhner, 2011). To test theories
that relate theoretical constructs to each other,(eonstruct A influences construct B for
individuals drawn from population P under condisd®), it is necessary to not only have reliable
measures, but also valid measures that actuallgune@onstruct A and B and control for P and
C. Validity typically refers to whether a given nsege in fact measures what it claims to
measure. Unfortunately, frequently used measurégsnypsychology (e.g., Schimmack, 2019)
and sport science (Fischman, 2015) might not meashat they claim to measure. Although,
the present paper focused on reliability and nbtig, high quality measurement in any
scientific field needs to focus on both. Howeveaghtreliability is a prerequisite for validity: A

measurement that is not reliable cannot be valithlly, we would like to emphasize that our
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results do not intend to undermine the credibiliyality or replicability of prior studies that
have employed golf putts, darts, or free throwstdad, they should draw attention to the
importance of reliable measurement in sport psyadoWith the aim of securing it in the future.
Conclusions

Sport performance outcome measures may substgrditir regarding their reliability
and may have different reliabilities for differesgmples (and not necessarily in an intuitive
way). Suppose three research teams each use@edifbne of our measures with their
respective reliabilities to answer a research ques$e.g., the effects of pressure or fatigue on
perceptual-motor performance). All else equal,eéiteams would have substantially different
likelihoods of a) finding an effect, given it exasof b) replicating an effect found in a prior
study, and c) being able to make meaningful corspas between studies, variables, and
theories.

When conducting studies, we hope that researchesgart psychology will try to
construct reliable measurements, that they wiksssheir measurement’s reliability, and that
they will interpret their results in the light dfdse reliabilities. Reliabilities need to high, and
moderate reliabilities may exacerbate methodoldgiczblems. For example, Westfall and
Yarkoni (2016) report that the Type-1 error rateewlassessing incremental validity via
regression models was highest for moderate reli@sil(at least for certain sample sizes).

Regarding conclusions, we hope that researcherbevitery careful when comparing
findings to each other that may stem from measunésneith different reliabilities. Likewise,
we hope that researchers will consider the rolgliffierent) reliabilities when assessing
replications as being successful or not. If possile suggest that researchers pretest their

performance outcome measure and try to determirogptmal number of trials that provides
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sufficient reliability, but that does not inducedhts to validity (such as fatigue or learning
effects) and is still economically feasible (segApdix A for more information and guidelines
on these issues). Whereas increasing reliabilitgdding items only works to a certain extent for
common psychological measurement procedures sughessionnaires, for performance
outcome measures, such as discussed in this piageems to be more promising (for more
information see Appendix A). Furthermore, as mergtbabove, in order to obtain the same
power to detect an effect of the same (true) seearchers need smaller samples when using
more reliable measures than when using less reliabhasures. Therefore, there is a trade-off
regarding research econofn®n the one hand, adding items or trials to a oressent in order
to make it more reliable will make the measurenkesg economical by increasing its duration.
On the other hand, this approach will make the mmesmsent more reliable and thus more
economical because smaller sample sizes are ndededms to be an interesting endeavor for
future research to try and formalize this tradedgfhending on its various costs and benefits.
In this endeavor, experimenters should attemps&individual performance outcome
measures that allow for sufficient variation infpemance that is indicative of true performance
variation and not random performance fluctuatiod emeasurement error. To this end the
following guiding questions might prove helpful ¢sglso Table 3): a) what is my precise
research question and how well do the variablesyimesearch design measure the constructs in
my research question; b) what is the skill levehgf participants or how experienced are
participants with the (or similar) tasks being meead; c) how difficult does the task have to be
(e.g. putting distance in golf); and d) how mangl$rare sufficient to achieve adequate

reliability, while not threatening validity (e.g.ativation, calibration, learning, fatigue, etc.).
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Footnote

'For example, the JASP software package includesddayy parameter estimation and
Bayes factor hypothesis testing via a graphical igerface (see Love et al., 2019).
Furthermore, free and open-source packages foifisp@ocedures in R make it more feasible
for researchers to use these procedures, to naljpéranexamples.

Our point is not that measurement is generally thisethe methodological literature in
psychology, quite the contrary. However, in theteghof the current debate on methodological
practices (as described by Nelson et al., 2018) fewV papers focus on measurement (e.g.,
Loken & Gelman, 2017).

*There is an ongoing debate in psychology whettssarehers should abandon Null
Hypothesis Significance Testing (NHST), and, ifytlde, which methods they should use
instead. Some authors suggest abandoning not d#&TN\but the frequentist perspective
altogether by employing Bayesian methods (e.g.,aagakers et al., 2018). Some suggest
abandoning statistical significance as a threshmitifo retain p-values and treat them as one
(albeit continuous) piece of information among osh@IcShane, Gal, Gelman, Robert, &
Tackett, 2019). Some authors retain a frequengiggective, but suggest replacing NHST by
focusing on confidence intervals (e.g., Cummind,Z2®014). Some authors defend the utility
of NHST (e.g., Garcia-Pérez, 2017; Savalei & Di#11,5), and some have even suggested
improving NHST by redefining statistical significa@(Benjamin et al., 2018). We would like to
note that in this article, we do not take any positegarding these questions. Instead, we

emphasize that reliable measurement plays a keyfookll of the methods discussed above.
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“As these examples refer to choices researchenmake, the underlying construct was
initially called “researcher degrees of freedomih{®ons et al., 2011, p. 1359). Later, Simmons
and colleagues adopted the term p-hacking (Nelsah,&2018, p. 513).

°Generally, one needs to be careful when compargmifisant and non-significant
effects to each other: When one effect is signifiead the other one is not, this does not mean
that the difference between them is significanisTolds both for differences between groups
(Gelman & Stern, 2006) and for differences betwemmnelations (Diedenhofen & Musch, 2015).

®First, we looked through the latest issues of spsythological journals in order to
identify generally used performance outcome vaegbThis search led us to golf putts, darts and
free throws. Then, we conducted a literature se@rgoogle scholar using the key words “golf
putts”; “darts”; “free throws”. We combined theseykwords with different search terms, such as
“psychology”, “performance”; and “experiment”. Ocriterion for inclusion was that the paper
reported a study in which the respective outcomasme had been used (as compared to, for
example, a mathematical model of darts performance)

’At least in the ones we could access, we couldhetk the full text of nine articles due

to difficulties acquiring the full text.

8We thank an anonymous reviewer for this idea.
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933 Table1l

934 Reliability estimates for different measures

N split-half split-half split-half split-half Cronbach's
(odd-even) (half-half) (odd-even) (half-half) alpha
Golf (distance) 100 555 (.402; .678p52 (.399; .675).714 (.602; .798).711 (.598; .796).670 (.567; .758)
Golf I(Osu“tfsc)ess““' 100 443 (27; 588) 360 (.176; .52)614 (.475: .723).529 (.371: .657).598 (.472; .705)

Darts-| 100 797 (.712; .859).700 (.584; .788) .887 (.836; .923) .824 (.749; .878) .855 (.81; .894)
(sample 2a)

Darts-I . . . . .
(sample 2b) 100 742 (.639; .819).736 (.631; .815) .852 (.787; .898) .848 (.782; .895) .834 (.782; .878)
Darts total 200 799 (.743; .844).732 (.66; .79) .888 (.855; .914).845 (.8; .881) .863 (.833; .889)
Basketball-| 100 337 (.151; .5)  .300 (.11; .469) .504 (.34B7)6 .462 (.292; .604).502 (.346; .634)
(sample 3a)

Basketball-1l ) \ . . .
(sample 3b) 92 449 (.269; .599).392 (.204; .552) .62 (.475;.732) .563 (.405; .688)547 (.399; .672)
Basketball total 192 703 (.623; .768p77 (.592; .747) .826 (.775; .866).807 (.751; .851).812 (.771; .849)

935 Note The first two columns for the split-half reliakigs report the simple correlation between the tegt halfs. The third and the
936 fourth columns report the respective coefficientsdll 14 items, computed using the Spearman-Brimnmula. Cronbach's alpha
937 also refers to all 14 items.

938 Numbers in brackets are 95% confidence intervalsn@ed to the third decimal place).

939 For estimating the 95% Cls for Cronbach'’s alphaigexl the cocron package in R (via its web intejfé@eedenhofen & Musch,

940 2016).
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941 Table 2

942 Darts performance for different subgroups

N mean split-half
performance (odd-even)

(S[t)j(;tesr']'ts) 100 99 (45) 887 (.836; .923)
(Spo?tzrtsﬁ::jents) 100 75(28)  .852 (.787; .898)
Darts total 200 87 (39) .888 (.855; .914)
Women 94 111 (41) .871 (.812; .913)
Men 106 66 (22) 742 (.642; .817)

Darts players 94 73 (30) .85 (.78; .90)
Non-darts players 106 99 (43) .89 (.84; .92)

943

944  Note The third column reports the mean distance frioenbulls eye averaged over all 14 throws
945 (in mm). Numbers in brackets are standard deviation

946 The fourth column reports the split-half relialyiltoefficient for all 14 items, computed using
947 the Spearman-Brown formula. Numbers in bracketeanéidence intervals (rounded to the
948 third decimal place).

949
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950 Table 3

46

951 Guidelines for creating reliable performance outeomeasures

Initial
considerations

Select a measurement procedure based on theoretical grounds and
research goals.

Pretest

Pretest the measureament's reliability for a specific number of trials.
Use a sample that is drawn from the same population that you intend
to draw your main study’s sample from.

When considering sample size, think about precision, not statistical
significance (see, for example, Appendix A; Charter, 1999;
Schonbrodt and Perugini, 2013).

Consider different estimates of reliability: Which one is best suited for
your measurement based on practical and statistical assumptions
(see Appendix A for a brief overview)?

Estimate reliability.

Main study

Based on the above estimate of reliability, calculate the number of
trials that you need in order to achieve a certain level of reliability.
Conduct your main study, and estimate reliability again.

Future studies

952
953

Take into consideration that reliability is dependent (among other
factors) on samples.

Different measurements using the same instrument may therefore
lead to different estimations of reliability, for example when samples
differ regarding true score variation.
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970 Appendix A: Statistical considerations

971 Justification of sample size planning

972 In the context of CTT, reliability coefficients aestimated using correlations. Therefore,
973 their size is independent of the respective sasipke(i.e., unlike p-values, correlations do not
974 change as a mere function of sample size). Thassdmple size in a reliability analysis does not
975 affect the estimated reliability per se, but indtd@e precision of the estimate. The precision of
976 the estimate can be captured by the confidencevaitaround the estimate. As correlations
977 stabilize only at rather high numbers of particigsaie.g., Schonbrodt and Perugini [2013]

978 suggest 250 participants as a reasonable samplésimterpreting single correlation

979 coefficients), large sample sizes have been sugdiést reliability analyses (e.g., Charter,

980 1999). For example, Charter suggests at least dfizipants in order to conduct reliability

981 analyses. This is particularly important for stigdileat aim to estimate a reliability coefficient
982 which can be interpreted largely independent ofdspective sample, for example when

983 reportingthereliability of a certain questionnaire, as is oftione in questionnaire construction.
984  For this kind of analysis, samples are requiretidharepresentative of an underlying

985 population. Still, reliability analyses are possillith fewer participants. They simply lead to
986 somewhat less precise estimates. For example 2b@itparticipants, the 95% confidence

987 interval for a correlation = .85 ranges from .812 to .881, whereas for 200qggzants it ranges
988 from .806 to .884. Even for 100 participants, thgpective CI still ranges from .785 to .897. In
989 light of these considerations, and given that wetheaconduct single-participant sessions, we
990 considered 200 participants per variable to beeabdée for our approach.

991 Theroleof sample homogeneity or heterogeneity for reliability
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Whereas sample size does not affect the relial@tymate itself, (i.e., larger sample
sizes do not lead to larger or smaller reliabdisgimates), true score variation in the respective
sample does (e.g., Buhner, 2011; Steyer & Eid, L9838t means that more heterogeneous
samples may lead to higher reliability estimatesitmore homogenous ones. This follows
directly from Equation 2: When variation in thedrscore increases more strongly than variation
due to measurement error, reliability increasess dhservation has some consequences: First,
one and the same measurement instrument may Héereni reliabilities for different kinds of
samples (or populations, respectively, from whlokse samples are drawn). For example, an
instrument assessing political attitudes may beemeliable in a moderate sample (where people
have different political attitudes) than in an extiist sample (where people have rather similar
attitudes) (see Danner, 2015, for this examplels Transfers to applications in sport
psychology: When used in a high-performance saffwhere there is low variation in athletes’
performance), a measurement instrument might rawverlreliability than when used in a
sample of more moderate performance (where thexgbistantial variation in athletes’
performance). Second, a certain reliability thas watimated based on a representative sample
of the population may not apply to a more homogsrsubsample of that same population.

When one argues that larger samples are more ligddg heterogeneous, then it follows
that increasing reliability may be an indirect ceqsence of increasing sample sizes. However,
this only holds when heterogeneity increases (rtemenically, as described above, when due to
increased heterogeneity true score variation ise®anore strongly than error variation).
Restrictions and assumptions underlying reliability in CTT

Importantly, Classical Test Theory can only be ggapto measurements that produce

interval-scale (i.e., continuous) data (Buhner,22®teyer & Eid, 1993; for a disagreement with
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this position see Gaito, 1980). The reason forrssriction is that reliability is defined as a
proportion of variances (see Equation 2), and waga can only be calculated for continuous
data. Furthermore (following Equation 1), measungneeror is defined as the difference
between the observed value and the true scQig:& Yobserved True), Which again is only
possible for continuous measurements. This restnican be misunderstood as meaning that
reliability coefficients can only bealculatedfor continuous data, however its consequences are
more far reaching: Indeed, reliability accordingX®T is onlydefinedfor continuous
measurements. It follows that when one wants timast reliability coefficients for a certain
measurement procedure, this procedure must yiglinaus measurement outcomes.

The core of CTT are three definitions, sometimss ahlled axioms. The first definition
states that every observed valugtyved consists of a true value {E) and random
measurement error (¥o). That is, Ypserved= Tirue + Yerror The second definition states that
measurement error has an expectancy value of @ &inde variance. The third one states that a)
measurement error of a tesistindependent from this test’s true values, b)sueament error of
one testtis independent from measurement error of ano#® 1t and c) that measurement
error of a testtis independent from the true values of anothérties

Relatedly, CTT contains five models, that descabgsumptions that are necessary for
estimating reliability (Buhner, 2011; Steyer & Ei§93). These five models are a) the model of
parallel measurement, b) the model of essentiatglfel measurement, c) the model of tau-
equivalent measurement, d) the model of essentalhequivalent measurement, and e) the
model of tau-congeneric measurement. These modetaio assumptions regarding the true

scores and (the intercorrelations of) measurenreoit. e



1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

RELIABILITY 53

When accepting the axioms of CTT, and when the aloescribed modelling
assumptions hold, it can be shown that the differelrability coefficients are estimates of the
measurement instrument’s reliability. That is, thespective formulas can be converted (only if
one assumes that the axioms hold) into the dedmibif reliability according to Equation 2 (e.qg.,
see Steyer & Eid, 1993). However, when the modgBissumptions do not hold, estimates can
either under- or overestimate a measurement’siiktia(Savalei & Reise, 2019; Steyer & Eid,
1993). The exact nature of the deviation dependi®@exact nature of the violation of the
assumptions. In cases of extreme violations oa#seimptions, reliability estimates can become
entirely meaningless and unrelated to a measurésrteums reliability (Steyer & Eid, 1993).
Different reliability coefficients require differémodelling assumptions.

Some considerations on different reliability coefficients

Whereas a measurement only has one reliabilityr@efoy Equation 2), this reliability
can be assessed or estimated via different ratiabdefficients. Reliability itself (and not only
the estimate) is sample dependant. That meansriaand the same measurement may have
different reliabilities for different samples. Whesliability was estimated using a representative
sample, one may assume that the same reliabilidlsHor samples that are either a) also
representative or b) drawn randomly from the saopifation and sufficiently large.

So, why are there several reliability coefficienffat, as mentioned above, different
reliability coefficients require different modelirassumptions, and only when these are met can
the respective coefficients be used in order tonasé reliability.

Second, there are some conceptual and practicaldsrations. Usingest-retest
reliability only makes sense when the construct to-be-measustable between the two

measurement points and when the measurement diffetentially) affected by memory effects



1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

RELIABILITY 54

or learning. When test-retest reliability is cabteld although these conditions are not met, the
resulting coefficient will underestimate an instemtis reliability. Usingparallel-test reliability
only makes sense when two absolutely parallel st for measuring the same construct, in
other words when two tests exist that measureaimeonstruct with different items. When
parallel-test reliability is calculated althougledle conditions are not met, the resulting
coefficient will underestimate an instrument’s abliity. In case that the above mentioned
conditions are not mesplit-half reliabilitiescan be estimated. These tend to be higher the more
homogenous the measurement instrument is. Caleglaglit-half reliabilities requires to divide
all items of the measurement procedure into twovadgnt halves. Subsequently, the correlation
between the two halves is calculated. This onlyesaense when the two halves are indeed
equivalent. In the light of these considerations,aensidered split-half reliabilities, and
particularly odd-even reliabilities to be the mappropriate estimators for our measurements.
Theroleof the number of itemsfor reliability

Reliability itself, and not only its estimate, ieases when the number of items that
measure the same underlying construct increasésisTa property of reliability according to
CTT (Buhner, 2011; Steyer & Eid, 1993). Intuitiveliycan be understood when one considers
that according to CTT, measurement errors cano#l ether out, and the more measurements
one has, the more they cancel each other out. Medtieally, the relationship between the
length of a measurement procedure and reliabgigeiscribed by the Spearman-Brown-Formula
(Buhner, 2011; Steyer & Eid, 1993).

Equation 3: Spearman-Brown-Formulgis the reliability of the current form of the
measurement procedure; k is the factor by whicHdhgth of the current measurement

procedure changes (e.g., k = 0.5 means half thdeuaof items, k = 2 means twice the number
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of items, k = 3 means three times the number afsteand so on)idor is the reliability of the

changed form of the measurement procedure.

k-r”

Fiteory = | — {R’— 1}-!'”

The Spearman-Brown-Formula can be used to predigtriliability will change when
the number of items of an existing measurementgahaie with a known reliability changes.
Thereby, it can be used to predict how many itezssarchers need to add (or subtract) in order
to achieve a certain reliability, once they alre&dgw the reliability of a measurement
procedure with a given number of items. As onedrauce from the Spearman-Brown-Formula,
increasing the number of items at first leads latineely high increases in reliability, however,
further gains in reliability need increasingly matiems (Amelang & Zielinski, 2002).

Therefore, practically, researchers who want t@aiola reliable measure can increase the
number of items. It seems even possible to predeficertain reliability one wants to achieve
(say, .90) and then to increase the number of itemtikthis reliability is achieved. However,
there are three potential problems with this apghiq@&melang & Zielinski, 2002). First, the
single items must all measure the same constrag.SEems feasible for performance outcome
measures as discussed in this paper. Howeveryibmaroblematic for other kinds of
measurement procedures. For example, there mayerdylimited number of items that are
suitable for assessing a certain construct in atqpenaire (e.g., there may only be a limited
number of items for assessing anxiety). Secondielationship between reliability and economy
is an inverse one: When researchers increaseil@jidly increasing the number of items, they
also increase the time their measurement procedkes. Both in applied and in research
contexts, time is usually limited (and importanttmsider; e.g. for motivational reasons). This

is the main reason why constructing short formaidely used questionnaires has become
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common. Furthermore, when a measurement proceakmse more time, adverse effects such as
fatigue, boredom or concentration problems becomeerikely to influence the measurement
outcome, thus limiting the measurement’s valid8ll, time constraints do not seem to be a
major limiting factor for increasing the numbertoéls in studies employing performance
outcome measures, as the time needed per trial pergoutt, dart throw or free throw) is very
short. Third, there may be a seemingly paradoxalationship between reliability and validity.
On the one hand, reliability is a prerequisitevfalidity. That means, a measurement that is not
reliable cannot be valid. On the other hand, irgiregareliability by increasing the number of
items can decrease validity. The reason for thesngegly paradoxical observation is that adding
items in order to increase reliability is oftendik to make a measure more homogenous. To the
extent that the construct one intends to asseaghiesr heterogenous, then, the measurement
becomes less valid. One way to try and circumvastgroblem is by having a measurement
procedure with several subscales. Each subscedthisr homogenous and constructed in order
to be highly reliable, whereas the heterogeneityhefconstruct is captured by the multitude of
different subscales (e.g., intelligence or persontdsts). However, this approach will make the
measurement procedure less economical again.

Taken together, for the above mentioned reasomsasing reliability by adding items
only works to a certain extent for common psychmalgmeasurement procedures such as
guestionnaires. For performance outcome measwels as discussed in this paper, it seems to
be more promising. Therefore, if possible, we sgggeat researchers pretest their performance
outcome measure and try to determine an optimabeumf trials: A number, that provides
sufficient reliability, but that does not induceehts to validity (such as fatigue or learning

effects) and that is still economically feasible.
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As mentioned above, it is possible to use the $paaBrown-Formula in order to
estimate, based on a given reliability) fior x items, how many additional items would be
necessary in order to achieve a prespecified i&tiafy  cor). In order to do so, Equation 3 needs
to be solved for k, which yields Equation 4.

Equation 4:

L= Freeprr 11— Frr)
Fer = A1 —Frecors)

Importantly, k is not the number of items but thetbr, with which the original number
of items needs to be multiplied in order to achitheeprespecified reliability. That means, when

x is the original number of items, k*x is the neunmber of items.



Initial considerations

Select a measurement procedure based on theoretical grounds and research goals.

Pretest

Pretest the measurement’s reliability for a specific number of trials.

Use a sample that is drawn from the same population that you intend to draw your main
study’s sample from.

When considering sample size, think about precision, not statistical significance (see, for
example, Appendix A; Charter, 1999; Schonbrodt and Perugini, 2013).

Consider different estimates of reliability: Which one is best suited for your measurement
based on practical and statistical assumptions (see Appendix A for a brief overview)?
Estimate reliability.

Main study

Based on the above estimate of reliability, calculate the number of trials that you need in
order to achieve a certain level of reliability.
Conduct your main study, and estimate reliability again.

Future studies

Take into consideration that reliability is dependent (among other factors) on samples.
Different measurements using the same instrument may therefore lead to different
estimations of reliability, for example when samples differ regarding true score variation.



Reliable measurement plays an important yet underrated role for research
quality

Performance outcome measures used in sport psychology differ regarding
reliability

Reliability of performance outcome measures depends on sample characteristics
Reliability of performance outcome measures depends on item number
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