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Highlights

• PreMiSE predicts failures and locates faults in multi-tier distributed sys-

tems

• PreMiSE combines anomaly-based and signature-based approaches

• Approach combination obtains highest accuracy and lowest false positive

rate

• Evaluation confirms excellent precision and low overhead in a cloud-based

system

• PreMiSE can scale well to large multi-tier distributed systems
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Abstract

Many applications are implemented as multi-tier software systems, and are

executed on distributed infrastructures, like cloud infrastructures, to benefit

from the cost reduction that derives from dynamically allocating resources on-

demand. In these systems, failures are becoming the norm rather than the

exception, and predicting their occurrence, as well as locating the responsible

faults, are essential enablers of preventive and corrective actions that can mit-

igate the impact of failures, and significantly improve the dependability of the

systems. Current failure prediction approaches suffer either from false positives

or limited accuracy, and do not produce enough information to effectively locate

the responsible faults.

In this paper, we present PreMiSE, a lightweight and precise approach to

predict failures and locate the corresponding faults in multi-tier distributed

systems. PreMiSE blends anomaly-based and signature-based techniques to

identify multi-tier failures that impact on performance indicators, with high

precision and low false positive rate. The experimental results that we obtained

on a Cloud-based IP Multimedia Subsystem indicate that PreMiSE can indeed

predict and locate possible failure occurrences with high precision and low over-

head.
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1. Introduction

Multi-tier distributed systems are systems composed of several distributed

nodes organized in layered tiers. Each tier implements a set of conceptually

homogeneous functionalities that provides services to the tier above in the lay-

ered structure, while using services from the tier below in the layered structure.5

The distributed computing infrastructure and the connection among the ver-

tical and horizontal structures make multi-tier distributed systems extremely

complex and difficult to understand even for those who developed them.

Indeed, runtime failures are becoming the norm rather than the exception

in many multi-tier distributed systems, such as ultra large systems [1] systems10

of systems [2, 3] and cloud systems [4, 5, 6]. In these systems, failures become

unavoidable due to both their characteristics and the adoption of commodity

hardware. The characteristics that increase the chances of failures are the in-

creasing size of the systems, the growing complexity of the system–environment

interactions, the heterogeneity of the requirements and the evolution of the15

operative environment. The adoption of low quality commodity hardware is

becoming common practice in many contexts, notably in cloud systems [7, 8],

and further reduces the overall system reliability.

Limiting the occurrences of runtime failures is extremely important in many

common applications, where runtime failures and the consequent reduced de-20

pendability negatively impact on the expectations and the fidelity of the cus-

tomers, and becomes a necessity in systems with strong dependability require-

ments, such as telecommunication systems that telecom companies are migrat-

ing to cloud-based solutions [7].

Predicting failures at runtime is essential to trigger automatic and operator-25

driven reactions to either avoid the incoming failures or mitigate their effects

with a positive impact on the overall system reliability. Approaches for predict-

ing failures have been studied in several contexts, such as mobile devices [9, 10],

system performance deviations [11, 12], distributed systems [13, 14], online and

telecommunication applications [15, 16, 17].30
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Current approaches for predicting failures exploit either anomaly- or signature-

based strategies. Anomaly-based strategies consider behaviors that significantly

deviate from the normal system behavior as symptoms of failures that may oc-

cur in the near future [18, 12, 19, 13, 20, 21, 22]. Anomaly-based techniques

suffer from false positives, because of the difficulty of distinguishing faulty from35

rare albeit legal behaviors, in the absence of information about failure patterns.

Signature-based strategies rely on known patterns of failure-prone behaviors,

called signatures, to predict failures that match the patterns [15, 10, 11, 23,

14, 16]. By working with known patterns, signature-based techniques cannot

cope with emerging failures. Moreover, signature-based techniques usually work40

with patterns of discrete events, such as error reports and system reboots, and

do not cope well with failures that directly impact on performance indicators

whose values vary in continuous domains over time. Performance indicators with

continuous variables that span a wide range of values are common in multi-tier

distributed systems, and signature-based techniques working on simple sample-45

based discretization often have limited accuracy in the presence of combinations

of values not experienced in the past.

In this paper, we present PreMiSE (PREdicting failures in Multi-tIer dis-

tributed SystEms), a novel approach that can accurately predict failures and

precisely locate the responsible faults in multi-tier distributed systems. By ad-50

dressing the challenges that characterize complex multi-tier distributed systems,

PreMiSE addresses also the subset of challenges that characterize singe-tier

systems. PreMiSE originally combines signature-based with anomaly-based

approaches, to improve the accuracy of signature-based approaches in predict-

ing failures that impact on performance indicators. As illustrated in Figure 1,55

PreMiSE

- monitors the status of the system by collecting (a large set of) performance

indicators from the system nodes, for instance CPU utilization for each

CPU in the system, that we refer to as Key Performance Indicators (KPIs)

(KPI monitoring in the figure),60
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Figure 1: The overall flow of PreMiSE online activities to predict failures

- identifies deviations from normal behaviors by pinpointing anomalous

KPIs with anomaly-based techniques (Anomaly detection in the figure),

- identifies incoming failures by identifying symptomatic anomalous KPI

sets with signature-based techniques.(Signature-based failure prediction in

the figure).65

In the KPI monitoring activity, PreMiSE collects KPIs from different layers

of the target multi-tier distributed system. KPIs are metrics collected on specific

resources, and are the performance indicators that failure prediction approaches

use to estimate the status of the system. In the anomaly detection activity,

PreMiSE exploits multivariate time series analysis to identify anomalies. In70

details, PreMiSE elaborates the KPI values collected during a training phase

to produce a baseline model that represents the legal behavior of the system,

and relies on time series analysis to combine the information from multiple
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KPIs provided in the baseline model for revealing anomalous behaviors. For

example the baseline model can identify a simultaneous increase in both memory75

usage and memory cached as either a symptom of an anomalous behavior when

occurring in the presence of a normal workload, or as a normal albeit infrequent

behavior when occurring in the presence of a high workload. The baseline

model accurately reveals anomalies in the behavior of the system as a whole, but

cannot (i) distinguish between malign and benign anomalies, that is, symptoms80

of incoming failures from normal albeit uncommon behaviors, (ii) predict the

type of the incoming failures, and (iii) locate the sources of the incoming failures.

In the failure prediction activity, PreMiSE exploits signature-based tech-

niques to accurately distinguish malign from benign anomalies: It identifies the

incoming failures that correspond to malign anomalies, predicts the type of in-85

coming failures, and locates the sources of incoming failures. More in details,

PreMiSE uses historical data about correct and failing behaviors to learn pat-

terns that correlate malign anomalies to failure types, and to relate failures

to failure sources. For example, the signature-based failure prediction activity

may discard as benign series of anomalous combination of memory usage, mem-90

ory cached and normal workload, and identify an excessive re-transmission of

network packets jointly with a lack of system service response as symptoms of

a possible packet loss problem in a network node, problem that may cause a

system failure in the long run.

We evaluated PreMiSE on a prototype multi-tier distributed architecture95

that implements telecommunication services. The experimental data indicate

that PreMiSE can predict failures and locate faults with high precision and

low false positive rates for some relevant classes of faults, thus confirming our

research hypotheses.

The main contributions of this paper are:100

- An approach that combines anomaly- and signature-based techniques to

predict failure occurrences and locate the corresponding faults with high

precision and low false positive rates, by exploiting information collected
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from performance indicators in multi-tier distributed systems. The pro-

posed PreMiSE approach can distinguish between anomalous albeit legal105

behaviors from erroneous behaviors that can lead to failures, and can

identify the type and location of the causing faults.

- A set of experimental results obtained on a multi-tier distributed sys-

tem that hosts a telecommunication system, which resembles an industrial

telecommunication infrastructure, and which provides evidence of the pre-110

cision and accuracy of the approach in the context of cloud systems, a

relevant type of multi-tier distributed systems.

The paper is organized as follows. Section 2 introduces the PreMiSE ap-

proach. Section 3 discusses the offline training of the models. Section 4 presents

the online failure prediction mechanism, based on an original combination of115

anomaly- and signature-based techniques. Section 5 illustrates the methodol-

ogy that we followed to evaluate the approach, introduces the evaluation metrics

and the experimental setting, provides the essential implementation details of

the evaluation infrastructure, and presents both the types of faults injected in

the system and the reference workload used to evaluate the approach. Section 6120

discusses the experimental results about the effectiveness and the overhead of

the proposed approach. Section 7 overviews the main related approaches, high-

lighting the original contribution of our approach. Section 8 summarizes the

main contribution of the paper, and indicates the research directions open with

the results documented in this paper.125

2. The PreMiSE approach

PreMiSE detects failure symptoms, correlates the detected symptoms to

failure types, and locates the resources responsible of the possible failures which

may occur in the near future.

Several anomalous behaviors of many types can often be observed well in130

advance with respect to system failures, which can be frequently mitigated or
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avoided, especially in multi-tier distributed systems. For instance in cloud sys-

tems, early observed communication issues can trigger dynamic reallocation of

resources to mitigate or avoid failures. Differently from current approaches,

which simply report anomalous behaviors [21, 24, 20, 19], PreMiSE135

- distinguishes anomalous behaviors that are caused by software faults and

that can lead to failures from anomalous behaviors that are derived from

exceptional albeit legal situations and that do not lead to failures, thus re-

ducing the amount of false alarms of current failure prediction approaches,

- correlates anomalous behaviors detected at the system level to specific140

types of faults, and predicts not only the occurrence but also the type of

possible failures, thus simplifying the identification of effective corrective

actions, and

- identifies the resources likely responsible for the predicted failure, thus

providing the developers with a useful starting point for investigating and145

solving the problem.

As illustrated in Figure 2, PreMiSE is composed of an offline model training

and an online failure prediction phase. As discussed in details in the next sec-

tions, in the offline model training phase, PreMiSE builds baseline and signature

models that capture the system behavior, and in the online failure prediction150

phase, PreMiSE uses the baseline and signature models to detect anomalies and

predict failures, respectively.

3. Offline Model Training

In the offline learning phase PreMiSE builds a baseline model and a signa-

ture model. The baseline model identifies anomalous behaviors that might be155

interpreted as symptoms of failures, while the signature model associates sets of

anomalous behaviors to either legal albeit spurious behaviors or symptoms of

future failures, and locate the resources likely responsible for the failure.
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Figure 2: The PreMiSE learning and predicting phases

As illustrated in Figure 2 in the offline learning phase, PreMiSE monitors

series of KPIs over time under normal execution conditions to learn the baseline160

model, and seeds faults of the target types to extract the signature model.

The baseline model is a system model and, as such, it is obtained by modeling

only the failure-free behavior, that is, the normal behavior of the system. The

model is used to calculate the expected values, at which the measured current

values are compared to. If the expected and actual values differ significantly,165

the system is suspected to not behave as intended. The detection of several

anomalous values is a relevant indicator of failures that may happen in the

future.

In contrast with the baseline model, which focuses on failure-free behaviors,

the generation of the signature model requires training data for both the failure-170

prone and failure-free executions. PreMiSE uses the signature model to decide

whether sets of anomalies are due to novel but normal behaviors or specific

classes of failures.

PreMiSE can build the models from different kinds of KPIs, granted that

their values can be monitored as series of values over time, and can train the sig-175
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nature model with different kinds of seeded faults, granted that the consequent

failures occur after some system degradation over time.

As a simple example, PreMiSE might detect combinations of anomalous

rates of packet re-transmission and aborted operations, by means of the baseline

model. It may then associate these anomalous behaviors to either a transient180

situation due to a high and unexpected peak of requests or to a communication

problem that will likely cause a system failure in the future, by means of the

signature model. It may also identify the subsystems likely responsible for

the incoming communication problems, from the information provided with the

detected violations patterns.185

While model incompleteness is both possible and probable, this can be com-

pensated by incrementally collecting additional evidence about the behavior of

the system. For instance, the baseline model can be improved incrementally

and the signature model can be retrained regularly.

3.1. KPI Monitor190

PreMiSE collects an extensive number of KPIs from different tiers of many

system components without interfering with the system behavior by relying on

lightweight monitoring infrastructures, often natively available at the different

levels [25, 26], and elaborates the collected data on an independent node that

executes the data processing routines. In this way PreMiSE affects the moni-195

tored nodes only with the negligible costs of collecting data, and not with the

relevant costs of the computation, which is relegated to an independent node.

The empirical results reported in Section 6 confirm the non-intrusiveness of the

monitoring infrastructure.

The values monitored for each KPI are time series data, that is, sequences200

of numeric values, each associated with a timestamp and a resource of the

monitored system. Table 1 reports a sample excerpt of the time series data for

the KPI BytesSentPerSec collected from a resource named Homer1. Columns

1Resource Homer is one of the virtual machines used in our empirical setting, a protoype
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Timestamp, Resource and BytesSentPerSec indicate the time information, the

name of the resource that produced the KPI value, and the number of bytes205

sent in the last second, respectively.

In the context of this paper, KPIs are metrics measured on specific resources.

More formally, a KPI is a pair < resource,metric >. For example, BytesSent-

PerSec collected at Homer is a KPI, and the same metric collected at another

resource is a different KPI. Thus, the number of collected KPIs depends on the210

product of monitored metrics and resources.

PreMiSE can be customized with different sets of KPIs, collected at het-

erogeneous levels. The selection of KPIs depends on the characteristics of the

target system, and impacts on the type of failures that PreMiSE can detect:

PreMiSE can detect only failures whose occurrence follows some anomalous215

behaviors that reflect in anomalies in the series of KPIs monitored over time.

We experimented with over 600 KPIs of over 90 different types, collected KPIs

at different abstraction levels, ranging from the Linux operating system to the

Clearwater application level, and predicted failures of different types, ranging

from network to memory failures. We discuss the experimental setting and the220

results in details in Section 5.3.

Table 1: Sample time series for KPI BytesSentPerSec collected at node Homer

Timestamp Resource BytesSentPerSec

. . . . . . . . .

Dec. 20, 2016 22:22:35 Homer 101376

Dec. 20, 2016 22:23:36 Homer 121580

Dec. 20, 2016 22:24:36 Homer 124662

Dec. 20, 2016 22:25:36 Homer 106854

. . . . . . . . .

of a cloud infrastructure used by telecommunication companies to provide SIP services, as

described in Section 5.3. Resource Homer is a standard XML Document Management Server

that stores MMTEL (MultiMedia TELephony) service settings of the users.
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3.2. Baseline Model Learner

The baseline model learner derives the baseline model from series of KPIs

collected under normal system executions, and thus represents correct system

behaviors. The baseline model learner generates models with inference solutions225

that capture temporal relationships in time series data, by including trends and

seasonalities [27]. In particular, the baseline model learner applies Granger

causality tests [28] to determine wether a time series variable can predict the

evolution of another variable.

A time series x is said to be a Granger cause of a time series y, if and only if230

the regression analysis of y based on past values of both y and x is statistically

more accurate than the regression analysis of y based on past values of y only.

The ability of Granger causality analysis to analyze the dependency between

KPIs is a key factor for improving the accuracy of the analysis, because many

KPIs are correlated. For instance the CPU load often depends on the rate of235

incoming requests, and several phenomena could be fully interpreted only by

considering multiple time series jointly. For instance, a high CPU load might be

anomalous or not depending on the rate of incoming requests that are received

by the system.

The PreMiSE baseline model includes both models for the single KPIs and240

models of the correlation among KPIs. Figure 3 illustrates a baseline model

of a single KPI, namely the model inferred for KPI BytesSentPerSec collected

from the Homer virtual machine. The figure indicates the average value of

the time series (dark blue line) and the confidence interval for new samples

(light green area around the line). Figure 4 shows an excerpt of a Granger245

causality graph that represents the causal dependencies among KPIs. Causal

dependencies indicate the strength of the correlation between pairs of KPIs, that

is, the extent to which changes of one KPI are related to changes of another

KPI. Nodes in the causality graph correspond to KPIs, and weighted edges

indicate the causal relationships among KPIs, as a value in the interval [0, 1],250

indicating the increasing strength of the correlation. In the example, the values

of BytesSentPerSec metric in node Homer are strongly correlated to and can
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11/29/16	  4	  AM 12/2/16	  6 PM 12/5/16	  8 PM 12/8/16	  10	  PM

AVG Baseline

Figure 3: A sample baseline model of a single KPI: The BytesSentPerSec KPI for the Homer

virtual machine

thus be used to predict values of Sscpuidle metric in node Homer.

3.3. Fault Seeder

The baseline model captures both the shape of the KPI values over time255

for single KPIs and the correlation among KPIs under normal execution con-

ditions. The signature model captures the relations among anomalous KPIs

observed both during normal execution conditions and with seeded faults. The

Signature Model Extractor can be trained with different types of seeded faults,

Sscpuidle in Sprout

Sscpuidle in Homer

BytesReceivedPerSec in Homer 

BytesReceivedPerSec in Sprout

0.31

0.26

0.53

0.12

0.44

Figure 4: A baseline model of the correlation among KPIs: an excerpt from a Granger causality

graph
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whose consequent failures occur after some system degradation over time. Being260

trained with seeded faults, the signature model can build patterns of anoma-

lies related to failures, and thus distinguish between benign and failure-prone

anomalies when monitoring the system execution. The Fault seeder injects a

fault of a given type in a system location for each system run. PreMiSE can

accurately predict failures and locate faults of the types of faults injected in the265

training phase. Following common practice, we chose the faults to inject accord-

ing to the Pareto distribution of the frequency and severity of the fault types.

The signature model can be extended incrementally to new types of faults.

3.4. Signature Model Extractor

The Signature model extractor derives the signature model from a sam-270

ple set of anomalous behaviors that correspond to correct as well as faulty

executions. The Signature model extractor learns the model from anomalies

identified by the Anomaly Detector2. Anomalies are tuples 〈(a1, . . . , an), f, r〉,
where (a1, . . . , an) is a (possibly empty) sequence of anomalous KPIs that are

detected during an execution window of a fixed length, f is a failure type,275

and r is the resource responsible for the failure. Thus, anomalous KPIs are

KPIs without time stamp, and indicate that the KPIs assume anomalous val-

ues for at least a time stamp within the considered window. For instance, the

tuple 〈(〈BytesReceivedPerSec,Homer〉, 〈Sprouthomerlatencyhwm,Sprout〉,
〈Sscpuidle, Sprout〉), Packetloss, Sprout〉 indicates three correlated KPIs that280

assume anomalous values in the considered execution window, and signals a

predicted packet loss failure in node Sprout with a likelihood encoded in the

tuple 〈30, 1〉, as discussed after in this section.

Both f and r are empty when the execution window corresponds to a normal

execution with no active faults. In the training phase PreMiSE seeds at most285

a fault per execution window, and considers execution windows that originate

2We discuss the Anomaly Detector in details in Section 4 reveals during the training phase,

by relying on the baseline model and faulty execution traces.
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with the activation of the fault and slide through the faulty execution up to

a maximum size, and thus collects anomalies that occur immediately after the

fault activation as well as along a possibly long lasting failing execution. We

discuss the tuning of the size of the sliding window in Section 6.290

PreMiSE records both the type of the failure and the resource seeded with

the fault to learn signatures that can predict the failure type and locate the

responsible resource. The Signature Model Extractor relies on several faults

for each type, seeded in different locations, and uses multi-label probabilistic

classifiers as signature extractors.295

Probabilistic classifiers generate probability distributions over sets of class

labels from given sets of samples. PreMiSE uses the probability distributions

to compute the confidence of the predictions, thus producing a signature model

that the Failure predictor can exploit to predict both the type of the failure and

the location of the resources that are most likely responsible for the failure, and300

to compute the confidence on the prediction. We empirically investigated sig-

nature extractors based on Support Vector Machine (SVM), Bayesian Network

(BN), Best-First Decision Tree (BFDT), Näıve Bayes (NB), Decision Table

(DT)), Logistic Model Tree (LMT) and Hidden Näıve Bayes (HNB) algorithms.

We introduce the algorithms in Section 5.3, and discuss their experimental eval-305

uation in Section 6.

As an example of signature model, Figure 5 shows an excerpt of a decision

tree that PreMiSE inferred for packet loss failures3. Nodes correspond to KPIs

and edges indicate the anomaly relation. Leaf nodes are annotated with the

confidence level of the prediction indicates as pairs 〈total, correct〉, where total310

is the amount of samples that reach the node, and correct is the amount of

samples that are correctly classified according to the leaf, that is, the number

of samples corresponding to failed executions of the specific type caused by the

specific resource, as indicated in the model. The ratio between correct and total

3We experimented with different models. Here we report a signature in the form of a

decision tree because decision trees are easier to visualise and discuss than other models.
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BytesReceivedPerSec in	  Homer

Sscpuidle in	  Sprout

Sprouthomerlatencyhwm in	  Sprout

……

anomalousnot	  anomalous

anomalous

anomalous

not	  anomalous

not	  anomalous

Likely	  Packet	  Loss	  Failure	  in	  Homer
⟨36,6⟩

Likely	  Packet	  Loss	  Failure	  in	  Sprout
⟨30,1⟩

Figure 5: A sample signature model based on decision trees

indicates the likelihood of the prediction to be correct.315

The model indicates that anomalous values of BytesReceivedPerSec in node

Homer are a symptom of a possible packet loss failure in node Homer, that a

combination of non-anomalous values of BytesReceivedPerSec in node Homer

with anomalous values of Sscpuidle in node Sprout are a symptom of a pos-

sible packet loss failure in node Sprout, and that the likelihood of a failure320

increases when both BytesReceivedPerSec in Homer and Sscpuidle in Sprout

are anomalous. This may happen because packet loss problems may cause a

drop in the number of accesses to the user service settings stored in the Homer

XDMS server, since a packet loss problem may decrease the frequency of au-

thentication requests received by Sprout and thus increasing the CPU idle time.325

The branches of the decision tree not reported in the figure indicate additional

relationship between symptoms and failures.

4. Online Failure Prediction

In the online failure prediction phase, PreMiSE uses the baseline model to

detect anomalies and the signature model to predict failures.330
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12/9/16	  9:45	  AM 12/10/16	  10	  AM 12/11/16	  10:15	  AM

AVG Baseline Anomaly

Figure 6: A sample univariate anomalous behavior

4.1. Anomaly Detector

Anomalies are behaviors that differ from the expectations, and are thus

suspicious. The baseline model encodes expected behavior as a collection of time

series of single KPIs and as the Granger correlation among KPIs, as illustrated

in Figures 3 and 4, respectively. The Anomaly Detector signals univariate and335

multivariate anomalies when the values of the collected or correlated KPIs differ

enough from the baseline model. Univariate anomalies depend on single KPIs,

while multivariate anomalies depend on the combination of more than one KPI,

each of which may or may not be identified as anomalous by the univariate

analysis.340

The Anomaly Detector detects univariate anomalies as samples out of range,

as shown in Figure 6. Given an observed value yt of a time series y at time t,

and the corresponding expected value ŷt in y, yt is anomalous if the variance

σ̂2(yt, ŷt) is above an inferred threshold.

The Anomaly Detector detects multivariate anomalies as joint unexpected345

values of subsets of samples for different variables. It deduces multivariate

anomalies among the KPI variables when their relation violates the Granger

correlation encoded in the Granger causality graph. For example, it can in-
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fer that successful call rate and number of incoming calls are correlated: the

successful call rate usually decreases with an increasing number of incoming350

calls, and thus the anomaly detector may signal a multivariate anomaly in the

presence of a decreasing successful call rate without a corresponding increase

of number of incoming calls, regardless of the results of the univariate analysis

of two values. The Anomaly Detector identifies multivariate anomalies with

the Granger causality test that checks if a set of correlated KPIs preserves the355

inferred casual relationships.

4.2. Failure Predictor

The Failure Predictor identifies possible failures as sets of anomalies that

find a matching in the signature model.

As discussed in Section 3.4, PreMiSE trains the signature model with sets of360

anomalies detected during execution windows of fixed size in terms of anomalous

KPI samples. The PreMiSE failure predictor analyzes the sets of anomalies de-

tected in a sliding windows of the same size of the windows used during training.

For instance, the Failure Predictor can predict an incoming packet loss failure in

the presence of an anomalous value of Sscpuidle (idle time for the authentication365

service) in node Sprout when occurring with a normal value of BytesReceivePer-

Sec (number of received requests) in the Homer XDMS server, based on the

signature model shown in Figure 5. In fact, the sequence 〈〈BytesReceivePerSec

in Homer, not anomalous〉, 〈Sscpuidle in Sprout, anomalous〉〉 in Figure 5 leads

to Likely Packet Loss Failure in Sprout370

PreMiSE generates both general and failure-specific alerts that correspond

to generic failure-prone behaviors and specific failures, respectively. Follow-

ing common practice in failure prediction solutions that focus their capability

to make prediction on recent observations [15], PreMiSE collects anomalies in

overlapping windows sliding over time. Anomalies first occur in the sliding win-375

dow that includes the first occurrence of the anomalous KPI, and persist in the

following windows, until the anomaly falls out of the windows themselves.
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Right after injecting a fault, sliding windows include mostly anomalies pro-

duced during the previous failure-free execution segments and only few anoma-

lies caused by the injected fault, while forward moving sliding windows include380

increasingly many anomalies caused by the activated fault. When sliding win-

dows includes only a small portion of anomalies, the prediction might be impre-

cise. The Failure Predictor refines the predicted failure type over time, until the

prediction stabilizes. The Failure Predictor copes with this transitory phase by

refining an initially general prediction into a failure-specific prediction once the385

prediction stabilizes, that is, it predicts the same failure type with a confidence

level of at least 90% for 4 consecutive times.

In the training phase, PreMiSE builds signature models starting with data

collected just after activating the injected fault, and thus the signature model

encodes early predictors, that is, sets of anomalies that occur as early as the390

fault is activated, often long before the consequent failure. This strategy al-

lows PreMiSE to quickly refine a general into a failure-specific prediction, as

confirmed by the experimental results reported in Section 6.

The predictions indicates the type of expected failure and the set of anoma-

lous KPIs that substantiate the prediction. PreMiSE uses the information about395

the anomalous KPIs to localize the source of the problem, which might be a re-

source different from the resources responsible for the anomalous KPIs. For

instance in our experiments, PreMiSE correctly predicted a packet loss failure

in a specific virtual machine by analyzing a set of 37 anomalous KPIs generated

by 14 different resources. This is a good example of the importance of locating400

the fault given a large set of resources involved in the anomalous samples.

5. Evaluation Methodology

In this section, we introduce the research questions (Section 5.1), the testbed

that implements a realistic telecom cloud-based system (Section 5.2), the pro-

totype implementation that we used in the experiments (Section 5.3), the fault405

seeding strategy that we adopted to collect data about failures caused by dif-
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ferent types of faults (Section 5.4), the workflow that we simulated in the ex-

periments (Section 5.5) and the quality measures that we used to evaluate the

results (Section 5.6).

5.1. Research Questions410

We address six research questions that evaluate the effectiveness of PreMiSE ,

compare PreMiSE with state of the art approaches and quantify the PreMiSE over-

head.

Effectiveness

To evaluate the capability of PreMiSE to successfully predict failures in a415

realistic cloud-based system we investigate four research questions:

RQ1 Does the size of the sliding window impact on the effectiveness of PreMiSE ?

We executed PreMiSE with different window sizes, and measured the im-

pact of the window size on the ability to correctly predict failures. We

used the results of this experiment to identify an appropriate window size420

that we used in the other experiments.

RQ2 Can PreMiSE accurately predict failures and localize faults? We executed

PreMiSE with different failure types and failure patterns, and measured

its ability to predict failures occurrence, types and locations. We exper-

imented with several multi-label mining algorithms, and compare their425

performance and effectiveness in predicting failures. We used the most

effective algorithm in the other experiments.

RQ3 Can PreMiSE correctly identify normal behaviors not experienced in the

past? We executed PreMiSE with workflows that differ significantly from

the workflow used in the training phase and measured its ability to classify430

these executions as normal executions.

RQ4 How early can PreMiSE predict a failure? We executed a number of

experiments to determine how early PreMiSE can predict failure occur-

rences, for different types of failures.
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RQ1 is intended to analyze the sensitivity of failure prediction and fault435

localization to changes in the window parameter. RQ2 focuses on the effec-

tiveness of PreMiSE mainly in case of faulty executions, while RQ3 studies

PreMiSE with perturbed workloads under normal conditions to study the false

positive rate. RQ4 investigates prediction time in faulty executions.

Comparison to state-of-the-art approaches440

[R2.1]We compare PreMiSE with IBM OA-PI — Operational Analytics -

Predictive Insights [22], an industrial anomaly-based approach, and with the

Grey-Box Detection Approach (G-BDA) of Sauvanaud et al. [22], a state-of-

the-art signature-based approach. We discuss the following research question:

RQ5 Can PreMiSE predict failures more accurately than state-of-the-art ap-445

proaches? We compare PreMiSE to OA-PI and G-BDA by executing all

approaches on the same set of normal and failing executions, and compar-

ing their ability to predict failures. Since OA-PI cannot predict the type

of failure and locate the corresponding fault, we only evaluated its ability

to predict failure occurrences.450

Overhead

We investigated the impact of PreMiSE on the overall performance of a

cloud-based system by addressing the following research question:

RQ6 What is the overhead of PreMiSE on the performance of the target sys-

tem? This question is particularly relevant in the context of multi-tier455

distributed systems with strict performance requirements, like telecom-

munication infrastructures. Thus, we designed an experiment referring to

such applications. PreMiSE executes the resource-intensive tasks, that is,

anomaly detection and failure prediction, on a dedicated physical server,

and thus the overhead on the system derives only from monitoring the460

KPIs.
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We evaluated the impact of monitoring the KPIs on the system perfor-

mance by measuring the consumption of the different resources when run-

ning the system with and without KPI monitoring active. Both PreMiSE

and data analytics solutions monitor the same KPIs, and thus share the465

same performance overhead, but PreMiSE further processes the anoma-

lies revealed with data analytics approaches, and presents more accurate

predictions than competing approaches.

5.2. Testbed

As representative case of multi-tier distributed system, we considered the470

case of a complete cloud-based environment running an industrial-level IP mul-

timedia sub-system. To control the study, we created a private cloud consisting

of (i) a controller node responsible for running the management services nec-

essary for the virtualization infrastructure, (ii) six compute nodes that run VM

instances, (iii) a network node responsible for network communication among475

virtual machines. The characteristics of the different nodes are summarized in

Table 2.

Table 2: Hardware configuration

Host Controller Network Compute (x2) Compute (x4)

CPU
Intel(R) Core(TM)2 Quad CPU Q9650

(12M Cache, 3.00 GHz, 1333 MHz FSB)

RAM 4 GB 4 GB 8 GB 4 GB

Disk 250 GB SATA hard disk

NIC Intel(R) 82545EM Gigabit Ethernet Controller

We used OpenStack [29] version Icehouse on Ubuntu 14.04 LTS as open

source cloud operating system and KVM [30] as hypervisor.

To evaluate our approach, we deployed Clearwater [31] on the cloud-based in-480

frastructure. Clearwater is an open source IP Multimedia Subsystem (IMS) and

provides IP-based voice, video and message services. Clearwater is specifically

designed to massively scale on a cloud-based infrastructure, and is a product
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originated from the current trend of migrating traditional network functions

from inflexible and expensive hardware appliances to cloud-based software so-485

lutions. Our Clearwater deployment consists of the following virtual machines:

Bono: the entry point for all clients communication in the Clearwater system.

Sprout: the handler of client authentications and registrations.

Homestead: a Web service interface to Sprout for retrieving authentication

credentials and user profile information.490

Homer: a standard XML Document Management Server that stores MMTEL

(MultiMedia Telephony) service settings for each user.

Ralf: a service for offline billing capabilities.

Ellis: a service for self sign-up, password management, line management and

control of multimedia telephony service settings.495

Each component is running on a different VM. Each VM is configured with

2 vCPU, 2GB of RAM and 20GB hard disk space, and runs the Ubuntu 12.04.5

LTS operating system.

Our multi-tier distributed system is thus composed of eight machines running

components from three tiers: the operating system, infrastructure and applica-500

tion tiers, running Linux, OpenStack, and virtual machines with Clearwater,

respectively. We refer to this environment as the testbed.

5.3. Prototype Implementation

Our prototype implementation of the monitoring infrastructure collects a to-

tal of 633 KPIs of 96 different types from the 14 physical and virtual machines505

that comprise the protoype. We collected KPIs at three levels: 162 KPIs at the

application level with the SNMPv2c (Simple Network Management Protocol)

monitoring service for Clearwater [25], 121 KPIs at the IaaS level with the Open-

Stack telemetry service (Ceilometer) for OpenStack [26] and 350 KPIs at the

operating system level with a Linux OS agent that we implemented for Ubuntu.510
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We selected the KPIs referring to the multi-tired distributed nature of our pro-

totype and the low-impact requirements that characterize most industrial scale

systems. We collected KPIs from all the tiers characterizing the system, by re-

lying on already available services, when possible, and on ad-hoc build monitors

otherwise. We collected only KPIs that can be monitored with no functional515

impact and negligible performance overhead. As expected, PreMiSE did not

impose any limitation on the set of collected and processed KPIs, and we ex-

pect this to be valid in general. Studying the impact of noisy and redundant

KPIs on the performance of PreMiSE may further improve the technique.

At the application tier, PreMiSE collects both standard SNMP KPIs, such as520

communication latency between virtual machines, and Clearwater specific KPIs,

such as the number of rejected IP-voice calls. At the IaaS tier, PreMiSE col-

lects KPIs about the cloud resource usage, such as the rate of read and write

operations executed by OpenStack. At the operating system tier, PreMiSE col-

lects KPIs about the usage of the physical resources, such as consumption of525

computational, storage, and network resources. In our evaluation, we used a

sampling rate of 60 seconds.

PreMiSE elaborates KPIs from both simple and aggregated metrics, that is,

metrics that can be sampled directly, such as CPU usage, and metrics derived

from multiple simple metrics, for example the call success rate, which can be530

derived from the number of total and successful calls, respectively. The KPI

Monitor sends the data collected at each node to the predictor node that runs

PreMiSE on a Red Hat Enterprise Linux Server release 6.3 with Intel(R) Core

(TM) 2 Quad Q9650 processor at 3GHz frequency and 16GB RAM.

We implemented the Baseline Model Learner and the Anomaly Detector535

on release 1.3 of OA-PI [22], a state-of-the-art tool that computes the corre-

lation between pairs of KPIs. OA-PI detects anomalies by implementing the

following anomaly detection criteria: normal baseline variance, normal-to-flat

variation, variance reduction, Granger causality, unexpected level, out-of-range
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values, rare values4, and issues alarms after revealing anomalies in few consecu-540

tive samples. OA-PI can analyze large volumes of data in real-time (the official

IBM documentation show an example server configuration to manage 1, 000, 000

KPIs)5, and thus enables PreMiSE to deal with the amount of KPIs that char-

acterise large-scale distributed systems. The OP-PI learning phase requires data

from at least two weeks of normal operation behaviors, thus determining the545

PreMiSE two weeks training interval.

We implemented the Signature Model Extractor and the Failure Predictor

on top of the Weka library [32], a widely used open-source library that supports

several classic machine learning algorithms. We empirically compared the ef-

fectiveness of seven popular algorithms for solving classification problems when550

used to generate signatures:

• a function-based Support Vector Machine (SVM) algorithm that imple-

ments a sequential minimal optimization [33],

• a Bayesian Network (BN) algorithm based on hill climbing [34],

• a best-first Best-First Decision Tree (BFDT) algorithm that builds a de-555

cision tree using a best-first search strategy [35],

• a Näıve Bayes (NB) algorithm that implements a simple form of Bayesian

network that assumes that the predictive attributes are conditionally inde-

pendent, and that no hidden or latent attributes influence the prediction

process [36],560

• a Decision Table (DT)) algorithm based on a decision table format that

may include multiple exact condition matches for a data item, computing

the result by a majority vote [37],

4https://www.ibm.com/support/knowledgecenter/SSJQQ3_1.3.3/com.ibm.scapi.doc/

intro/r_oapi_adminguide_algorithms.html
5https://www.ibm.com/support/knowledgecenter/en/SSJQQ3_1.3.3/com.ibm.scapi.

doc/intro/c_tasp_intro_deploymentscenarios.html
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• a Logistic Model Tree (LMT) algorithm that combines linear logistic re-

gression and tree induction [38],565

• a Hidden Näıve Bayes (HNB) algorithm that uses the mutual information

attribute weighted method to weight one-dependence estimators [39].

As discussed in Section 6 and illustrated in Table 5, the results of our evalu-

ation do not indicate major differences among the considered algorithms, with

a slightly better performance of Logistic Model Trees that we adopt in the ex-570

periments.

5.4. Fault Seeding

In this section, we discuss the methodology that we followed to seed faults in

the testbed. Fault seeding consists of introducing faults in a system to reproduce

the effects of real faults, and is a common approach to evaluate the dependability575

of systems and study the effectiveness of fault-tolerance mechanisms [40, 41] in

test or production environments [18, 42].

Since we use a cloud-based system to evaluate PreMiSE, we identify a set

of faults that are well representative of the problems that affect cloud-based

applications. We analyze a set of issue reports6 of some relevant cloud projects580

to determine the most relevant fault types that threat Cloud applications. We

analyze a total of 106 issue reports, 18 about KVM7, 62 about OpenStack8,

19 about CloudFoundry9, and 7 about Amazon10, and we informally assess

the results with our industrial partners that operate in the telecommunication

infrastructure domain.585

We classify the analyzed faults in thirteen main categories. Figure 7 plots

the percentage of faults per category in decreasing order of occurrence for the

6We conducted the analysis in July 2014 selecting the most recent issue reports at the time

of the inspection.
7https://bugzilla.kernel.org/buglist.cgi?component=kvm
8https://bugs.launchpad.net/openstack
9https://www.pivotaltracker.com/n/projects/956238

10http://aws.amazon.com
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analyzed fault repositories. The figure indicates a gap between the three more

frequent and the other categories of faults, and we thus experimented with

the three most frequent categories: Network, Resource leaks and High overhead590

faults. Network faults consist of networking issues that typically affect the

network and transport layers, such as packet loss problems. Resource leaks

occur when resources that should be available for executing the system are not

obtainable, for instance because a faulty process does not release memory when

not needed any more. High overhead faults occur when a system component595

cannot meet its overall objectives due to inadequate performance, for instance

because of poorly implemented APIs or resource-intensive activities.

Figure 7: Occurrences of categories of faults in the analyzed repositories

Based on the results of this analysis, we evaluate PreMiSE with injected

faults of six types, that characterize the three top ranked categories of faults

in Figure 7: Network faults that depend on Packet Loss due to Hardware and600

Excessive workload conditions, increased Packet Latency due to network delay

and Packet corruption due to errors in packet transmission and reception, Re-
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source leak faults that depend on Memory Leaks, and High overhead faults that

depend on CPU Hogs. In details, (i) A packet loss due to hardware conditions

drops a fraction of the network packets, and simulates the degradation of the605

cloud network; (ii) A packet loss due to excessive workload conditions corre-

sponds to an extremely intensive workload, and causes an intensive packet loss;

(iii) An increased packet latency and (iv) corruption due to channel noise, rout-

ing anomalies or path failures, simulates degraded packet delivery performances;

(v) A memory leak fault periodically allocates some memory without releasing610

it, simulates a common software bug, which severely threaten the dependability

of cloud systems; (vi) A CPU Hog fault executes some CPU intensive processes

that consume most of the CPU time and cause poor system performance.

We limited our investigation to the most relevant categories of faults to

control the size of the experiment, which already involves an extremely large615

number of executions. The results that we discuss in Section 6 demonstrate the

effectiveness of PreMiSE across all the faults considered in the experiments. We

expect comparable results for other fault categories with the same characteristics

of the considered ones, namely faults that lead to the degradation of some KPI

values over time before a failure. This is the case of most of the fault categories620

of Figure 7, with the exception of host and guest crashes, which may sometime

occur suddenly and without an observable degradation of KPI values over time.

Confirming this hypothesis and thus extending the results to a broader range

of fault categories would require additional experiments.

We inject packet loss, packet latency, packet corruption, memory leaks and625

CPU Hogs faults into both the host (Openstack) and guest (Clearwater) lay-

ers, and excessive workload faults by altering the nature of the workload, fol-

lowing the approaches proposed in previous studies on dependability of cloud

systems [40] and on problem determination in dynamic clouds [41].

We study a wide range of situations by injecting faults according to three630

activation patterns:

Constant: the fault is triggered with a same frequency over time.
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Exponential: the fault is activated with a frequency that increases exponen-

tially, resulting in a shorter time to failure.

Random: the fault is activated randomly over time.635

Overall, we seeded 12 faults in different hosts and VMs. Each fault is char-

acterized by a fault type and an activation pattern.

5.5. Workload Characteristics

In practice, it is hard to know if a set of executions is general enough. In our

specific settings, we define the workload used in the experimental evaluation to640

replicate the shape of real SIP traffic as experienced by our industrial partners

in the telecommunication domain. We carefully tuned the peak of the workflow

to use as much as 80% of CPU and memory. We generate the SIP traffic with

the SIPp traffic generator [43], which is an open source initiative from Hewlett-

Packard (HP) and is the de facto standard for SIP performance benchmarking.645

SIPp can simulate the generation of multiple calls using a single machine.

The generated calls follow user-defined scenarios that include the exact defini-

tion of both the SIP dialog and the structure of the individual SIP messages. In

our evaluation, we use the main SIP call flow dialogs as documented in Clear-

water11.650

Our workload includes a certain degree of randomness, and generates new

calls based on a call rate that changes according to calendar patterns. In par-

ticular, we consider two workload patterns:

Daily variations The system is busier on certain days of the week. In particu-

lar, we consider a higher traffic in working days (Monday through Friday)655

and lower traffic in the weekend days (Saturday and Sunday). Figure 8

graphically illustrates the structure of our workload over a period of a

week.

11http://www.projectclearwater.org/technical/call-flows/
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Figure 8: Plot with calls per second generated by our workload over a week

Hourly variations To resemble daily usage patterns, our workload is lighter

during the night and heavier during the day with two peaks at 9am and660

7pm, as graphically illustrated in Figure 9.

In our empirical evaluation, we obtained good results already with the work-

load that we designed, without the need of introducing extensive variability in

the normal executions used for training. This is probably a positive side effect

of the usage of anomaly detection and failure prediction in a pipeline. In fact,665

the failure predictor component can compensate the noise and false positives

produced by anomaly detector.

5.6. Evaluation Measures

We addressed the research questions RQ1, RQ2 and RQ5 by using 10-fold

cross-validation [44]. PreMiSE analyzes time series data, and collects anomalous670

KPIs every 5 minutes, to comply with the requirements of IBM OA-PI [22],

the time series analyzer used in PreMiSE . Signature-base analysis does not

consider the order in which the sliding windows are arranged, thus we collected

the samples necessary to apply 10-fold cross validation during the execution of
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Figure 9: Plot with calls per second generated by our workload over a day

our workload with sliding windows of length l. Since each run lasts 120 minutes675

and the size of the interval in the sliding window is 5 minutes, each workload

execution produces (120− l)/5 samples that can be used for prediction. In the

evaluation, we first studied the impact of l on the results (RQ1), and then used

the best value in our contest for the other experiments.

Overall we collected samples from a total of 648 runs, which include 24680

passing executions and 24 failing executions for each type of failure. A failing

execution is characterized by a fault of a given type injected in a given resource

with a given activation pattern. As discussed in Section 5.4, we injected faults

of six different types (packet loss, excessive workload, packet latency, packet

corruption, memory leak and cpu hog) following three activation patterns (con-685

stant, exponential and random). For all but excessive workload, we injected

faults on five different target resources (the Bono, Sprout, and Homestead vir-

tual machines in Clearwater and two compute nodes in OpenStack), resulting

in 5× 3× 5 = 75 failure cases. For excessive workload, we injected faults with

three patterns with no specific target resource, since excessive workload faults690

target the system and not a specific resource. We thus obtained 75 + 3 = 78
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failure cases. To avoid biases due to the fault injection pattern, we repeated

every experiment 8 times, thus obtaining 624 failing executions for the evalua-

tion. The extensive investigation of the different fault types, activation patterns,

and affected resources made the set of executions available for the experiment695

unbalanced between passing executions (24 cases) and failing executions (624

cases).

Since we use l = 90 for RQ2 and RQ5, we obtained a total of 4,782 samples

collected from both passing and failing executions. The number of samples

available for RQ1 is higher because we tried different values for l. To apply700

10-fold cross-validation, we split the set of samples into 10 sets of equals size,

using nine of them to learn the prediction model and the remaining set to

compute the quality of the model. The PreMiSE failure prediction algorithm

does not consider the order of the samples in time, since it classifies each sample

independently from the others.705

We evaluated the quality of a prediction model using the standard measures

that are used to define contingency tables and that cover the four possible

outcomes of failure prediction (see Table 3). We also measured the following

derived metrics:

Precision: the ratio of correctly predicted failures over all predicted failures.710

This measure can be used to assess the rate of false alarms, and thus

the rate of unnecessary reactions that might be triggered by the failure

predictor.

Recall: the ratio of correctly predicted failures over actual failures. This mea-

sure can be used to assess the percentage of failures that can be predicted715

with the failure predictor.

F-Measure: the uniformly weighted harmonic mean of precision and recall.

This measure captures with a single number the tradeoff between precision

and recall.

Accuracy: the ratio of correct predictions over the total number of predictions.720
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The accuracy provides a quantitative measure of the capability to predict

both failures and correct executions.

FPR (False Positive Rate): the ratio of incorrectly predicted failures to the

number of all correct executions. The FPR provides a measure of the false

warning frequency.725

Table 4 summarizes the derived metrics that we used by presenting their

mathematical formulas and meanings.

Table 3: Contingency table

Predicted

Failure Not-Failure

Actual
Failure

True Positive (TP)

(correct warning)

False Negative (FN)

(missed warning)

Not-failure
False Positive (FP)

(false warning)

True Negative (TN)

(correct no-warning)

We addressed the research question RQ3 by computing the percentage of

samples that PreMiSE correctly classifies as failure-free given a set of sam-

ples collected by running workflows that differ significantly from the workflow730

used during the training phase. To this end, we designed two new workflows:

random40 and random100. The random40 workflow behaves like the training

workflow with a uniformly random deviation between 0% to 40%, while the

random100 workflow behaves with a deviation of up to 100%.

We addressed the research question RQ4 by computing the time needed to735

generate a prediction and the time between a failure prediction and its occurrence

from a total of 18 faulty runs lasting up to twelve hours. The former time

measures the capability of PreMiSE to identify and report erroneous behaviors.

The latter time estimates how early PreMiSE can predict failure occurrences.

As shown in Figure 10, we define four specific measures:740

Time-To-General-Prediction (TTGP): the distance between the time a
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Table 4: Selected metrics obtained from the contingency table

Metric Formula Meaning

How many predicted

Precision TP
(TP+FP ) failures are actual

failures?

How many actual

Recall TP
(TP+FN) failures are correctly

predicted as failures?

Harmonic mean of

F-measure 2 ∗ (Precision∗Recall)
(Precision+Recall) Precision and Recall

How many predictions

Accuracy (TP+TN)
(TP+TN+FP+FN) are correct?

How many correct

FPR (FP )
(TN+FP ) executions are

predicted as failures?

fault is active for the first time and the time PreMiSE produces a general

prediction,

Time-To-Failure-Specific-Prediction (TTFSP): the distance between the

time a fault is active for the first time and the time PreMiSE predicts a745

specific failure type,

Time-To-Failure for General Prediction (TTF(GP)): the distance between

the time PreMiSE predicts a general failure and the time the failure hap-

pens,

Time-To-Failure for Failure-Specific Prediction (TTF(FSP)): the dis-750

tance between the time PreMiSE predicts a specific failure type and the

time the system fails,

34

                  



TTGP

TTFSP

TTF	  (GP)

TTF	  (FSP)

time

Fault	  
occurrence

General
prediction

Failure-‐specific	  
prediction Failure

Figure 10: Prediction time measures

where the Fault occurrence is the time the seeded fault becomes active in the

system, the General prediction is the first time PreMiSE signals the presence of

a failure without indicating the fault yet, that is, it identifies an anomaly with755

an empty fault and resource, the Failure-specific prediction is the first time

PreMiSE indicates also the fault type and the faulty resource, the Failure is the

time the delivered service deviated from the system function. Failures depend

on the seeded faults. In our case, failures manifest either as system crashes or

as success rate dropping below 60%, as indicated in Section 6 when discussing760

RQ4.

To answer RQ6, we measured the resource consumption as (i) the percentage

of CPU used by the monitoring activities, (ii) the amount of memory used by

the monitoring activities, (iii) the amount of bytes read/written per second by

the monitoring activities, and (iv) the packets received/sent per second over the765

network interfaces by the monitoring activities.

6. Experimental Results

In this section we discuss the results of the experiments that we executed to

answer the research questions that we introduced in the former section.

RQ1: Sliding window size770

PreMiSE builds the prediction models and analyses anomalies referring to

time sliding windows of fixed size. The sliding windows should be big enough to
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Figure 11: Average effectiveness of failure prediction approaches with different sliding window
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Figure 12: Average false positive rate for different sliding window sizes

Table 5: Comparative evaluation of the effectiveness of PreMiSE prediction and localization

with the different algorithms for generating signatures

Model Precision Recall F-measure Accuracy FPR

BN 84.906 82.438 82.430 82.438 0.685

BFDT 97.746 97.719 97.726 97.719 0.093

NB 83.931 80.925 80.786 80.925 0.745

SVM 98.632 98.632 98.632 98.632 0.057

DT 92.650 88.555 89.943 88.555 0.470

LMT 98.798 98.797 98.797 98.797 0.050

HNB 92.307 91.831 91.765 91.831 0.325
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contain a sufficient amount of information to predict failures and small enough

to be practical and sensitive to failure symptoms.

With this first set of experiments, we investigate the impact of the window775

size on the effectiveness of the prediction. We experimented with the seven

algorithms described in Section 5.3, each with sliding windows of size 60, 90

and 120 minutes to study the impact of the window size, and to chose the

size for the next experiments. We built a total of 27 prediction models. We

executed the prototype tool with the different prediction models both with and780

without seeded faults, for a total of 24 execution for 27 configurations, 26 of

which corresponding to configurations each seeded with a different fault, and

one no-faulty configuration, for a total of 648 executions. The configurations

correspond to the raw of Table 6 that we discuss later in this section.

Figure 11 compares the average precision, recall, F-measure and accuracy785

over all the experiments. These results indicate that the window size has a mod-

erate impact on the predictions, and that a window size of 90 minutes reaches

the best prediction effectiveness among the experimented sizes. Figure 12 shows

the average false positive rates for the different window sizes, and confirms the

choice of a window of 90 minutes as the optimal choice among the evaluated790

sizes. The results collected for the individual algorithms are consistent with the

average ones. In all the remaining experiments, we use 90-minutes windows.

RQ2: Predicting Failures and locating faults

We evaluated the effectiveness of PreMiSE as the ability of predicting in-

coming failures and identifying the kind and location of the related faults.795

Table 5 shows the precision, recall, F-measure, accuracy and False Posi-

tive Rate (FPR) of failure prediction and fault localization for PreMiSE with

the prediction algorithms presented at the end of Section 5.3. The table indi-

cates that PreMiSE performs well with all the algorithms, with slightly better

indicators for LMTs (Logistic Model Trees) that we select for the remaining800

experiments.

Table 6 shows the effectiveness of PreMiSE with LMT for the different fault
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types and locations. The metrics were calculated on a window basis as you need

to make a forecast about each window. This means that windows that belong

to both failed and correct executions are taken into account. The results in805

the table indicate that the approach is extremely accurate: PreMiSE suffered

from only 74 false predictions out of 4,782 window samples. PreMiSE can

quickly complete the offline training phase. To learn the baseline model, the

data collected from two weeks of execution required less than 90 minutes of

processing time. When the training phase runs in parallel to the data collection810

process, it completes almost immediately after the data collection process has

finished. The signature model extractor has taken less than 15 minutes to be

learnt using the anomalies from two weeks.

RQ3: Detecting Legal Executions

While the workload conditions do not alter the failure detection and fault lo-815

calization capabilities, they may impact on the false positive rate in the absence

of faults. Thus experimented with different types of workloads in the absence of

faults: workload random40 that differs from the workload used in the training

phase for 40% of the cases, and random100 that differs completely from the

workload used in the training phase.820

We generated 72 samples for random40 and random100 by running each

workload for 2 hours, producing a total of 144 samples. PreMiSE has been

able to correctly classify all the samples as belonging to failure-free executions.

Jointly with the results discussed for RQ2, we can say that PreMiSE shows a

very low number of false positives, even if we are analyzing data from normal825

executions with workloads completely different from those used in the training

phase.

RQ4: Prediction Earliness

We evaluated the earliness of the prediction as the Time-To-General-Prediction

(TTGP), the Time-To-Failure-Specific-Prediction (TTFSP), the Time-To-Failure830

for General Prediction (TTF(GP)) and the Time-To-Failure for Failure-Specific
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Table 6: Effectiveness of the LogicModel tree (LMT) failure prediction algorithm for fault

type and location

Fault type (Location) Precision Recall F-Measure Accuracy FPR

CPU hog (Bono) 100% 93.529% 96.657% 0.998% 0%

CPU hog (Sprout) 100% 97.059% 98.507% 0.999% 0%

CPU hog (Homestead) 100% 97.041% 98.498% 0.999% 0%

CPU hog (Compute #5) 93.820% 98.817% 96.254% 0.997% 0.236%

CPU hog (Compute #7) 96.875% 91.716% 94.225% 0.996% 0.107%

Excessive workload 100% 100% 100% 1.000% 0%

Memory leak (Bono) 100% 98.810% 99.401% 1.000% 0%

Memory leak (Sprout) 100% 95.833% 97.872% 0.999% 0%

Memory leak (Homestead) 100% 96.429% 98.182% 0.999% 0%

Memory leak (Compute #5) 76.119% 91.071% 82.927% 0.987% 1.031%

Memory leak (Compute #7) 93.333% 75.000% 83.168% 0.989% 0.193%

Packet corruption (Bono) 85.973% 99.476% 92.233% 0.993% 0.669%

Packet corruption (Sprout) 87.558% 99.476% 93.137% 0.994% 0.583%

Packet corruption (Homestead) 99.429% 91.579% 95.342% 0.996% 0.022%

Packet corruption (Compute #5) 100% 100% 100% 1.000% 0%

Packet corruption (Compute #7) 100% 100% 100% 1.000% 0%

Packet latency (Bono) 96.000% 100% 97.959% 0.998% 0.173%

Packet latency (Sprout) 76.777% 84.375% 80.397% 0.984% 1.058%

Packet latency (Homestead) 72.028% 53.646% 61.493% 0.973% 0.864%

Packet latency (Compute #5) 82.857% 75.521% 79.019% 0.984% 0.648%

Packet latency (Compute #7) 62.069% 75.000% 67.925% 0.972% 1.900%

Packet loss (Bono) 100% 73.837% 84.950% 0.991% 0%

Packet loss (Sprout) 99.429% 100% 99.713% 1.000% 0.022%

Packet loss (Homestead) 94.152% 95.833% 94.985% 0.996% 0.215%

Packet loss (Compute #5) 100% 100% 100% 1.000% 0%

Packet loss (Compute #7) 82.266% 99.405% 90.027% 0.992% 0.773%

Correct execution 100% 100% 100% 1.000% 0%
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Prediction (TTF(FSP) illustrated in Figure 10.

In the experiments, failures correspond to either system crashes or drops

in the successful SIP call rate below 60% for 5 consecutive minutes. Table 7

reports the results of the experiment. The columns from fault occurrence to835

failure prediction show the time that PreMiSE needed to predict a general

(TTGP) and specific (TTFSP) failure, respectively. PreMiSE has been able to

produce a general failure prediction in some minutes: 5 minutes in the best case,

less than 31 minutes for most of the faults, and 65 minutes in the worst case.

Moreover, PreMiSE has generated the failure specific prediction few minutes840

after the general prediction, with a worst case of 35 minutes from the general to

the specific prediction. The readers should notice that we measure the time to

prediction starting with the first activation of the seeded fault, which may not

immediately lead to faulty symptoms.

The columns From failure prediction to failure indicate that the failures are845

predicted well in advance, leaving time for a manual resolution of the problem.

PreMiSE has detected both the general and failure specific predictions at least

48 minutes before the failure, which is usually sufficient for a manual interven-

tion. These results are also valuable for the deployment of self-healing routines,

which might be activated well in advance with respect to failures.850

PreMiSE predicts failure based on the analysis of OA-PI, which works with

sampling intervals of 5 minutes. Indeed PreMiSE can effectively predict a failure

with few anomalous samples. It could predict failures in a shorter time than 5

minutes with an anomaly detector that requires smaller sampling intervals.

Faults of different type have very different impacts on the system, and can855

thus result in largely different patterns. Figure 13 exemplifies the different

impact of faults of various types by plotting the percentage of successful calls

in the experiments characterized by the longest and shortest Time-to-Failure,

which correspond to CPU hog and packet corruption faults, respectively. Packet

corruption faults have a gradual impact on the system, while the CPU hog860

faults do not cause failures in the first three hours of execution for the reported

experiment.
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Figure 13: Call success rate over time

Overall, PreMiSE demonstrated to be able to effectively predict failures,

including their type well in advance to the failure time for the four classes of

problems that have been investigated.865

RQ5: Comparative Evaluation

We compare PreMiSE to both OA-PI and G-BDA on the same testbed.

OA-PI is a widely adopted industrial anomaly-based tool, G-BDA is a state-of-

the-art signature-based approach. We use OA-PI as a baseline approach, and

G-BDA as a relevant representative of competing approaches. Table 8 reports870

precision, recall, F-Measure, accuracy and false positive rate of PreMiSE , OA-

PI and G-BDA.

OA-PI infers the threshold of normal performance for KPI values, and raises

alarms only for persistent anomalies, that is, if the probability that a KPI is

anomalous for 3 of the last 6 intervals is above a certain threshold value [45].875

Columns OA-PI (anomalies) and OA-PI (alarms) of Table 8 report all and

the persistent anomalies that OA-PI detects and signal, respectively. In both

cases OA-PI is less effective than PreMiSE : OA-PI does not raise any alarm,

thus failing to predict the failure (recall = 0%, precision and F-measure not
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Table 7: PreMiSE prediction earliness for fault type and pattern

From fault occurrence From failure prediction

to failure prediction to failure

Fault Type (Pattern) TTGP TTFSP TTF (GP) TTF (FSP)

CPU hog (Random) 65 mins 80 mins >12 hours >12 hours

CPU hog (Constant) 45 mins 60 mins >12 hours >12 hours

CPU hog (Exponential) 5 mins 30 mins >12 hours >12 hours

Excessive workload

(Random)
35 mins 50 mins 192 mins 177 mins

Excessive workload

(Constant)
40 mins 55 mins 110 mins 95 mins

Excessive workload

(Exponential)
30 mins 45 mins 80 mins 65 mins

Memory leak (Random) 5 mins 20 mins 55 mins 40 mins

Memory leak (Constant) 5 mins 20 mins 56 mins 41 mins

Memory leak

(Exponential)
5 mins 20 mins 56 mins 41 mins

Packet corruption

(Random)
30 mins 60 mins 121 mins 91 mins

Packet corruption

(Constant)
30 mins 60 mins 172 mins 148 mins

Packet corruption

(Exponential)
30 mins 55 mins 48 mins 23 mins

Packet latency (Random) 45 mins 70 mins 132 mins 107 mins

Packet latency (Constant) 30 mins 60 mins 132 mins 102 mins

Packet latency

(Exponential)
45 mins 60 mins 59 mins 44 mins

Packet loss (Random) 50 mins 65 mins 142 mins 127 mins

Packet loss (Constant) 30 mins 65 mins 85 mins 50 mins

Packet loss

(Exponential)
50 mins 65 mins 52 mins 37 mins

>12 hours indicates the cases of failures that have not been observed within 12 hours,

although in the presence of active faults that would eventually lead to the system failures.
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Table 8: Comparative evaluation of PreMiSE and state-of-art approches

Measures PreMiSE
OA-PI

(alarms)

OA-PI

(anomalies)

G-BDA

(single-tier)

G-BDA

(multi-tier)

Precision 98.798% – 94.118% 90.967% 87.933%

Recall 98.797% 0% 100% 90.567% 87.533%

F-Measure 98.797% – 96.970% 90.367% 87.400%

Accuracy 98.797% 5.882% 94.118% 90.567% 87.533%

FPR 0.05% 0% 100% 2.833% 2.3%

computable), and records far too many anomalies, thus signalling all potential880

failures (recall of 100%) diluted in myriads false alarms (false positive rate =

100%). In a nutshell, OA-PI reports every legal executions as a possible fail-

ure. PreMiSE is effective: The high values of the five measures indicate that

PreMiSE predicts most failures with a negligible amount of false positives.

G-BDA is a signature-based approach that collects VM metrics to detect885

preliminary symptoms of failures. G-BDA detects both excessive workload and

anomalous virtual machines. G-BDA analyzes a single tier of a distributed

system. Columns G-BDA (single-tier) and G-BDA (multi-tier) of Table 8 report

precision, recall, F-measure, accuracy and FPR of G-BDA, by referring to the

analysis of faults injected in a single VM and faults injected in different tiers,890

respectively. In both cases PreMiSE outperforms G-BDA on all five measures,

and reduces FPR from over 2% to 0.05%.

In summary, the PreMiSE combination of anomaly detection and signature-

based analysis is more effective than either of the two techniques used in isola-

tion.895

RQ6: Overhead

PreMiSE interacts directly with the system only with the KPI Monitor,

which in our prototype implementation collects the KPIs by means of the SN-

MPv2c monitoring service for Clearwater [25], the Ceilometer telemetry service

for OpenStack [26] and a Linux OS agent that we implemented for Ubuntu. All900

other computation is performed on a dedicated node, and does not impact on
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the overall performance of the target system. Thus, the PreMiSE overhead on

the running system is limited to the overhead of the monitoring services that

we expect to be very low.
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14.82% W/O Metric Collectioin
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Figure 14: PreMiSE overhead

The experimental results confirm the absence of overhead, which means no905

measurable difference, on the target system. We only observe small differences

in resource consumption as reported in Figure 14, which reports cpu, memory,

disk and network consumption when the system is executed with and without

the monitoring infrastructure. The monitoring infrastructure has a negligible

impact on disk (measured as read and written bytes) and network (measured910

as number of sent and received packets) usage, accounting for few hundreds

bytes over tens of thousands and few packets over thousands, respectively. The

impact on CPU and memory usage is also quite low, with an average increase

of 2.63% and 1.91%, respectively. These results are perfectly compatible with

systems with strong performance requirements, such as telecommunication in-915

frastructures.
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Threats To Validity

In this article, we reported our experience with an IMS in a network function

virtualization environment. Although we have achieved success predictors under

different runtime conditions, this may not generalize to other cloud systems.920

While the approach is generalised easily, it cannot be assumed in advance that

the results of a study will generalise beyond the specific environment in which it

was conducted. This is an external threat to the validity. One way to mitigate

this threat is to analyze other real-world cloud systems. However, there is no

publicly available benchmark from realistic cloud deployments such as Project925

Clearwater. To overcome this limitation, we are partnering with industrial

companies to test PreMiSE in their pre-production systems.

An internal threat to validity is the limited number of faults we examined in

the study. We chose popular faults without apriori knowledge of their behavior.

However, it is possible that there are faults that do not exhibit any performance930

deviations. To mitigate the threat mentioned above, we plan to extend the

study with a larger set of experiments, so that statistical significant test can be

meaningfully applicable.

7. Related Work

State-of-the-art techniques for predicting failures and locating the corre-935

sponding faults are designed to support system administrators, enable self-

healing solutions or dealing with performance issues [46, 47]. Current techniques

to predict system failures derive abstractions of the behavior of a system in the

form of models and rules, and exploit either signature- or anomaly-based strate-

gies to dynamically reveal symptoms of problems, and predict related failures.940

Signature-based approaches capture failure-prone behaviors that indicate

how the monitored system behaves when affected by specific faults, and aim to

reveal faults of the same kinds at runtime. Anomaly-based approaches capture

non-failure-prone behaviors that represent the correct behavior of the moni-

tored system and aim to reveal behaviors that violate these abstractions at945
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runtime. Performance-related approaches dynamically identify anomalies and

bottlenecks.

Signature-based approaches can accurately predict the occurrences of failures

whose symptoms are encoded in the models that capture the fault signatures,

but are ineffective against failures that do not correspond to signatures encoded950

in the models. Anomaly-based approaches can potentially predict any failure,

since they reveal violations of models of the positive behaviors of the application,

but depend on the completeness of the models, and suffer from many false

alarms. In a nutshell, signature-based approaches may miss several failures while

anomaly-based approaches may generate many false alarms.955

PreMiSE integrates anomaly- and signature-based approaches to benefit

from both the generality of anomaly-based techniques and the accuracy of

signature-based techniques. While current signature-based approaches derive

failure signatures from application events [23, 14, 16], the original PreMiSE ap-

proach derives failure signatures from anomalies that are good representative of960

failure-prone behaviors, and thus particularly effective in predicting failures.

Performance-related approaches address performance problems by detect-

ing anomalies and bottlenecks that do not affect the functional behavior of

the system, and as such are largely complementary to PreMiSE and related

approaches.965

7.1. Signature-Based Approaches

The main signature-based approaches are the Vilalta et al.’s approach [23],

hPrefects [14], SEIP [16], Seer [15], Sauvanaud et al. [18], SunCat [10] and the

approach defined by Malik et al. [11].

Vilalta et al. introduced an approach that mines failure reports to learn970

associative rules that relate events that frequently occur prior to system failures

to the failures themselves, and use the mined rules to predict failures at runtime,

before their occurrence [23]. Fu and Zu’s hPrefects approach extends Vilalta et

al.’s rules to clustered architectures [14]. hPrefects learns how failures propagate

in time and space from failure records, represents temporal correlations with a975
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spherical covariance model, and spatial correlations with stochastic models, and

includes a cluster-wide failure predictor that uses the learned models to estimate

the probability that a failure occurs in the current execution.

Salfner et al.’s SEIP approach synthesizes a semi-Markov chain model that

includes information about error frequency and error patterns [16], and signals980

a possible system failure, when the model indicates that the probability that

the current execution will produce a failure exceeds a given threshold.

Ozchelik and Yilmaz’s Seer technique combines hardware and software mon-

itoring to reduce the runtime overhead, which is particularly important in

telecommunication systems [15]. Seers trains a set of classifiers by labeling985

the monitored data, such as caller-callee information and number of machine

instructions executed in a function call, as passing or failing executions, and

uses the classifiers to identify the signatures of incoming failures.

Sauvanaud et al. capture symptoms of service level agreement violations:

They collect application-agnostic data, and classify system behaviors as normal990

and anomalous with a Random Forest algorithm, and show that collecting data

from an architectural tier impacts on the accuracy of the predictions [18].

Nistor and Ravindranath’s SunCat approach predicts performance problems

in smartphone applications by identifying calling patterns of string getters that

may cause performance problems for large inputs, by analyzing similar calling995

patterns for small inputs [10].

Malik et al. [11] developed an automated approach to detect performance

deviations before they become critical problems. The approach collects perfor-

mance counter variables, extracts performance signatures, and then uses signa-

tures to predict deviations. Malik et al. built signatures with a supervised and1000

three unsupervised approaches, and provide experimental evidence that the su-

pervised approach is more accurate than the unsupervised ones even with small

and manageable subsets of performance counters.

Lin et al.’s [48] MING technique uses an ensemble of supervised machine

learning models to predict failures in cloud systems by analyzing both temporal1005

and spatial data. Compared to PreMiSe, MING does not consider the multi-
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level nature of cloud systems and can predict failures only at the granularity of

the host.

El-Sayed et al. [49] note that unsuccessful jobs across different clusters ex-

hibit patterns that distinguish them from successful executions. On the basis of1010

this observation, they use random forests to identify signatures of unsuccessful

terminations of jobs or tasks running in the cluster. Predictions at the job level

are then used to mitigate the effect of unsuccessful job executions.

PreMiSE introduces several novel features that improve over current signature-

based approaches: (i) it creates signatures from anomalies, which better rep-1015

resent failure occurrences than general events, (ii) predicts the type of failure

that will occur, (iii) integrates and correlates data extracted from all layers and

components of a multi-tier distributed architecture, and (iv) restricts the scope

of the location of the causing faults.

7.2. Anomaly-Based Approaches1020

The main anomaly-based approaches are the algorithms proposed by Fulp et

al. [50], Jin et al. [12] and Guan et al. [19], and the Tiresias [13], ALERT [20],

PREPARE [21] and OA-PI [22] technologies.

Fulp et al.’s approach and PREPARE address specific classes of failures.

Fulp et al. defined a spectrum-kernel support vector machine approach to pre-1025

dict disk failures using system log files [50], while PREPARE addresses perfor-

mance anomalies in virtualized systems [21]. Fulp et al. exploit the sequential

nature of system messages, the message types and the message tags, to distill

features, and use support vector machine models to identify message sequences

that deviate from the identified features as symptoms of incoming failures. PRE-1030

PARE combines a 2-dependent Markov model to predict attribute values with

a tree-augmented Bayesian network to predict anomalies. Differently from both

thees approaches that are specific to some classes of failures, PreMiSE is general

and can predict multiple types of failures simultaneously.

Guan et al. proposed an ensemble of Bayesian Network models to character-1035

ize the normal execution states of a cloud system [19], and to signal incoming
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failures when detecting states not encoded in the models. ALERT introduces

the notion of alert states, and exploits a triple-state multi-variant stream clas-

sification scheme to capture special alert states and generate warnings about

incoming failures [20]. Tiresias integrates anomaly detection and Dispersion1040

Frame Technique (DFT) to predict anomalies [13].

Jin et al. use benchmarking and production system monitoring to build an

analytic model of the system that can then be used to predict the performance of

a legacy system under different conditions to avoid unsatisfactory service levels

due to load increases [12].1045

Anomaly-based approaches are inevitably affected by the risk of generat-

ing many false positives as soon as novel legal behaviors emerge in the mon-

itored system. PreMiSE overcomes the issue of false positives by integrating

an anomaly detection approach with a signature-based technique that issues

alarms only when the failure evidence is precise enough. The results reported1050

in Section 6 show that PreMiSE dramatically improves over current anomaly-

based detection techniques, including modern industrial-level solutions such as

IBM OA-PI [22].

7.3. Performance-Related Approaches

Performance anomaly detection approaches predict performance issues and1055

identify bottlenecks in production systems, while performance regression ap-

proaches detect performance changes [46].

Classic performance anomaly detection approaches work with historical data:

they build statistical models of low-level system metrics to detect performance

issues of distributed applications [51, 52, 53, 54]. They derive formal represen-1060

tations, called signatures, that are easy to compute and retrieve, to capture

the state of the system, and quickly identify similar performance issues that

occurred in the past. These approaches aim to discriminate different types of

performance issues in order to aid root cause analysis.

The most recent performance anomaly detectors, BARCA, Root and TaskIn-1065

sight, do not need historical data. BARCA monitors system metrics, computes
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performance indicators, like mean, standard deviation, skewness and kurtosis,

and combines SVMs, to detects anomalies, with multi-class classifier analysis,

to identify related anomalous behaviors, like deadlock, livelock, unwanted syn-

chronization, and memory leaks [55]. Root works as a Platform-as-a-Service1070

(PaaS) extension [56]. It detect performance anomalies in the application tier,

classifies their cause as either workload change or internal bottleneck, and lo-

cates the most likely causes of internal bottlenecks with weighted algorithms.

TaskInsight detects performance anomalies in cloud applications, by analysing

system level metrics, such as CPU and memory utilization, with a clustering1075

algorithm, to identify abnormal application threads[57]. It detects and identifies

abnormal application threads by analyzing system level metrics such as CPU

and memory utilization.

Differently from PreMiSE, these approaches (i) do not locate the faulty re-

source that causes the performance anomaly, and (ii) cannot detect performance1080

problems at different tiers, which remains largely an open challenge [46].

Performance regression approaches detect changes in software system per-

formance during development aiming to prevent performance degradation in

the production system [58]. They reveal changes in the overall performance of

the development system due to changes in the code. Ghaith et al. [59] detect1085

performance regression by comparing transaction profiles to reveal performance

anomalies that can occur only if the application changes. Transaction profiles

reflects the lower bound of the response time in a transaction under idle con-

dition, and do not depend on the workload. Foo et al. [60] detect performance

regressions in heterogeneous environments in the context of data centers, by1090

building an ensemble of models to detect performance deviations. Foo et al.

aggregate performance deviations from different models, by using simple voting

as well as weighted algorithms to determine whether the current behavior really

deviate from the expected one, and is not a simple environment-specific vari-

ation. Performance regression approaches assume a variable system code base1095

and a stable runtime environment, while PreMiSE collects operational data to

50

                  



predict failures and localize faults caused by a variable production environment

in an otherwise stable system code base.

8. Conclusions

In this paper, we presented PreMiSE, an original approach to automatically1100

predict failures and locate the corresponding faults in multi-tier distributed sys-

tems, where faults are becoming the norm rather then the exception. Predicting

failure occurrence as well as locating the responsible faults produce information

that is essential for mitigating the impact of failures and improving the depend-

ability of the systems. Current failure prediction approaches rarely produce1105

enough information to locate the faults corresponding to the predicted failures,

and either suffer from false positives (anomaly-based) or work with patterns of

discrete events and do not cope well with failures that impact on continuous

indicators (signature-based).

PreMiSE originally blends anomaly- and signature-based techniques to ad-1110

dress failures that impact on continuous indicators, and to precisely locate the

corresponding faults. It uses data time series analysis and Granger causality

tests to accurately reveal anomalies in the behavior of the system as a whole,

probabilistic classifiers to distill signatures that can distinguish failure-free al-

beit anomalous behaviors from failure-prone executions, and signature-based1115

techniques to accurately distinguish malign from benign anomalies, predict the

type of the incoming failures, and locate the sources of the incoming failures.

PreMiSE executes on a node independent from the target system, and limits

the online interactions with the monitored applications to metric collection.

In this paper, we report the results of experiments executed on the implemen-1120

tation of a Clearwater IP Multimedia Subsystem, which is a system commonly

adopted by telecommunication companies for their VOIP (voice over IP), video

and message services. The results confirm that PreMiSE can predict failures

and locate faults with higher precision and less false positives than state of the

approaches, without incurring in extra execution costs on the target system.1125
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Differently from state-of-the-art approaches, PreMiSE can effectively identify

the type of the possible failure and locate the related faults for the kinds of

faults and failures used in the training phase.

We designed and studied PreMiSE in the context of multi-tier distributed

systems, to predict failures and locate faults at the level of individual tier of the1130

nodes of the system. Studying the PreMiSE approach in the context of other

systems that can be extensively monitored is a promising research direction.
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Appendix A. KPI List

Metrics used in the experiments grouped by tier.1330

Linux server

CPU user cpu utility, system cpu utility, busy cpu utility,

wait io cpu utility

Network bytes received per sec, bytes transmitted per sec

System context switches per sec, pages swapped in per sec,

pages swapped out per sec, pages faults per sec, total

num of processes per sec

Virtual

Memory

percentage of swapped space used, percentage of mem-

ory used, percentage of memory in buffers, percentage

of memory cached.

Socket sockets in use

I/O device name, avg wait time, avg request queue length,

read bytes per sec, write bytes per sec
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OpenStack

Compute existence of instance and instance type, allocated and

used RAM in MB, CPU time used, avg CPU utilisa-

tion, num of VCPUs, num of read and write requests,

avg rate of read and write requests per sec, volume of

reads and writes in Byte, avg rate of reads and writes

in Byte per sec, num of incoming bytes on a VM net-

work interface, avg rate per sec of incoming bytes on

a VM network interface, num of outgoing bytes on a

VM network interface, avg rate per sec of outgoing

bytes on a VM network interface, num of incoming

packets on a VM network interface, avg rate per sec of

incoming packets on a VM network interface, num of

outgoing packets on a VM network interface, avg rate

per sec of outgoing packets on a VM network interface

Network existence of network, creation requests for this net-

work, update requests for this network, existence of

subnet, creation requests for this subnet, update re-

quests for this subnet, existence of port, creation re-

quests for this port, update requests for this port, ex-

istence of router, creation requests for this router, up-

date requests for this router, existence of floating ip,

creation requests for this floating ip, update requests

for this floating ip

Controller image polling, uploaded image size, num of update on

the image, num of upload of the image, num of delete

on the image, image is downloaded, image is served

out
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Clearwater1335

CPU and Mem-

ory

SNMP CPU and memory usage stats

Latency avg latency, variance, highest call latency,

lowest call latency

Incoming Re-

quests

num of incoming requests

Rejected Re-

quests

num of requests rejected due to overload

Queue avg request queue size, variance, highest

queue size, lowest queue

Cx Interface avg latency, variance, highest latency and

lowest latency seen on the Cx interface

Multimedia-

Auth Requests

avg latency, variance, highest latency and

lowest latency seen on Multimedia-Auth

Requests

Server-

Assignment

Requests

avg latency, variance, highest latency and

lowest latency seen on Server-Assignment

Requests

User-

Authorization

Requests

avg latency, variance, highest latency and

lowest latency seen on User-Authorization

Requests

Location-

Information

Requests

avg latency, variance, highest latency

and lowest latency seen on Location-

Information Requests

Sprout avg latency, variance, highest and lowest la-

tency between Sprout and Homer XDMS

TCP Connec-

tions

num of parallel TCP connections
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