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Abstract 

  Piecewise linear functions have been used to model and solve non-linear problems in 

science, social science, and technology fields since the 1950‟s. Multi-choice goal 

programming (MCGP) has been widely used to solve multiple objective decision-making 

(MODM) problems in which each goal mapping with multiple aspiration levels is 

allowed, expanding the original feasible region to obtain better solutions in the MODM 

problems. This paper integrates the efficient S-shaped penalty method, arbitrary piecewise 

linear utility functions, trapezoidal utility functions, and MCGP to solve a topology design 

problem in a remote patient monitoring system (RPMS) by providing universal senior 

citizen coverage in which quantitative (e.g., patient satisfaction-related cost) and 

qualitative (e.g., satisfaction) issues are considered simultaneously. In addition, some 

novel utility functions such as the force utility function, indicator utility function, and 

arbitrary utility function are proposed to improve the usefulness of MCGP in the field of 

management science. These proposed utility functions can be easily used to model 

qualitative issues in real-world problems. A topology design problem for an RPMS is 

demonstrated to justify the feasibility, usefulness, and compatibility of the proposed 
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methods. Further, sensitivity analysis and managerial implications are provided using an 

RPMS in Taiwan. 

Keywords: Remote patient monitoring; Piecewise linear function; Utility Function; 

Multi-choice Goal programming;  

1. Introduction 

Given the aging society and falling birth rate, Taiwan has been classified as an “aged” 

society since 2018 and will turn into a “hyper-aged” society by 2025. The increasing 

healthcare costs for the growing population of elderly, chronic diseases, as well as the 

demand for new technologies and treatments in addition to the decrease in the number of 

healthcare professionals compared to the elderly increase make the traditional healthcare 

service model inadequate. Conventional healthcare model inadequacy can be explained by 

the following two aspects: (1) large hospitals (e.g., accredited hospitals and medical 

centers) are always overcrowded, and as a result, people often don‟t have access to 

outpatient clinics and must wait a long time for inpatient care; and (2) increasing 

healthcare costs also place a considerable burden on the government‟s finances. 

Nowadays, establishing an efficient remote patient monitoring system (RPMS) to take 

care of the greater number of elderly people as well as reduce healthcare costs is essential 

in Taiwan. Moreover, it is very important to build an RPMS with a more complete 

topology network under a limited budget to take care of senior citizens. To implement the 

RPMS for serving senior citizens, several goals and criteria should be considered 

simultaneously. These goals and criteria contain both quantitative (e.g., the RPMS setup 

cost and investment cost) and qualitative (e.g., satisfaction of senior citizens) issues, and 

the balance between them (e.g., balancing the setup cost and the satisfaction of senior 

citizens), complicates the problem. This is a typical multiple objective decision making 

(MODM) problem with conflicting goals. For example, under the limited budget, the 

decision maker (DM) would like to take care of more people to improve senior citizens‟ 

satisfaction level. The biggest challenge in modeling the RPMS in measuring the senior 

citizens‟ satisfaction level is it is a nonlinear problem. To deal with this problem, two 

nonlinear techniques, piecewise linearization technique and mixed-integer program (MIP) 

are introduced. Then, novel methods for modeling arbitrary piecewise utility functions 

(APUF) and trapezoidal utility functions (TUF) are proposed. The proposed methods not 

only assist in measuring senior citizens‟ satisfaction in practice, but also enrich the field 

of qualitative method in theory. To express senior citizens‟ satisfaction, S-shaped utility 

                  



 4 

functions (UF) and linear UF are introduced. In addition, force UF (FUF) and indicate UF 

(IUF) are also derived to enrich the qualitative research. To force the solution of the 

investment cost of RPMS further away (approach) from (to) the target value to attract 

investors into the development of RPMS, penalty functions (PF) are introduced. 

Multi-choice goal programming (MCGP) has widely been used to solve multiple criteria 

decision making (MCDM) and MODM problems. Thus, the MCGP is used to model and 

solve the topology design problem of an RPMS with quantitative issues. All the above 

mentioned points improve the linkage between the related techniques and the 

development of RPMS. In the field of management science, few works exist that address 

qualitative and quantitative issues at the same time in one model. Therefore, this paper 

proposes an integrated method to resolve the RPMS problem considering quantitative, 

qualitative, and balance issues simultaneously. This reduces the gap between the research 

and health sector to improve the usefulness of proposed methods in solving the MCDM 

problems. 

In the 1950‟s, it was shown a nonlinear problem can be modeled using piecewise 

linear functions (PLF) and binary variables within a MIP (Markowitz and Manne 1957, 

Sherali 2001, Croxton et al. 2003, Li et al. 2009, Toriello and Vielma 2012) and that such 

problems can be solved by specialized heuristic algorithms (Keha et al. 2006). This type 

of linearization was instrumental in formulating optimization problems in multiple 

domains including the fields of science, economics, and social science, and specifically in 

Very-Large-Scale Integrated circuit design, big data analytics, network analysis, portfolio 

optimization, and supply chain optimization. Comprehensive monographs on related 

subjects have been offered (Bazaraa et al. 1993, Floudas 1999). However, such techniques 

(i.e., linearization by adding binary variables) may lead to significantly increased 

computational burden when the problem size becomes too large. Hence, a special ordered 

set of the type 2 (SOS 2) method was proposed by Beale and Tomlin (1970) to reduce the 

complexity of these MIP problems; the SOS 2 is defined as: a set of variables },...,{ 1 n
 

 

having at most two adjacent variables that are nonzero to indicate which line segment is 

activated. Thereafter, many extensions of these models have been studied (Vielma and 

Nemhauser 2011, Li et al. (2009, 2012), Vielma and Nemhauser (2010, 2011)). Recently, 

Chang (2018) proposed an efficient S-shaped penalty method (ESPM) to model an 

S-shaped PF enabling the solution of a realistic large-scale problem within a reasonable 
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amount of time. This paper uses the principle of goal programming (GP), plus newly 

created techniques to deal with PLF, so we first introduce the related technology of GP. 

The initial goal programming (GP) model was proposed by Charnes et al. (1955) with 

further development by Tamiz et al. (1998), Ignizio (1985), and Lee (1972). Recently, 

more advanced variants were proposed for more complex decision problems with multiple 

conflicting goals such as fuzzy GP (Narasimhan 1980), meta-GP (Rodríquez et al. 2002), 

extended GP (Romero 2001), and MCGP (Chang 2007). Fuzzy GP is used to resolve 

MODM problems with imprecisely defined model goals and/or constraints in a 

decision-making environment. The concept of a meta-goal is proposed by the meta-GP 

method as a high-level goal going beyond a single goal and giving an overall measure of 

satisfaction for the DM. An extended GP comprises two meta-goals: normalizing 

unwanted deviations and minimizing the maximal goal. MCGP is used to solve MODM 

problems where each goal can be achieved from different aspiration levels (Chang 2007, 

2008). Subsequently, MCGP has been widely applied to resolve various practical 

problems, including coffee shop location selection (Ho et. al., 2013), house selection (Ho 

et. al., 2015), stochastic transportation problem (Mahapatra et al., 2013), e-learning 

system evaluation (Lin et. al., 2014), a supply chain order allocation problem (Chang et al., 

2014), course planning (K1r1ş, 2014), supplier selection problems (Jadidi, et al. (2015), 

renewable energy facilities location selection problem (Chang, 2015), reverse logistics 

providers selection problem (Govindan et al. 2017), consumer choice behavior (Swait et 

al., 2018) and others (Shalabh and Sonia, 2017). Multi-objective transportation problems 

are solved using various methods such as grey parameters, the conic scalarization 

approach, UF, dual-hesitant fuzzy number, fuzzy MCGP, and multi-choice interval GP 

(Roy et al. 2017a, 2017b, Roy and Maity 2017, Maity et al. 2016, 2019, Maity and Roy 

2016).  

The purpose of the study is to integrate ESPM, APUF, TUF, and MCGP to solve a 

topology design problem of an RPMS considering quantitative, qualitative, and balance 

issues. The contributions of the paper are (1) the qualitative and quantitative issues can be 

simultaneously considered in solving the topology design problem for an RPMS, (2) new 

utility functions such as FUF, IUF, APUF, and TUF are proposed to enhance the 

usefulness of the UF, and (3) the optimal topology of the RPMS in Taiwan is obtained to 

provide universal senior citizen coverage by considering multiple criteria, subject to 

resource limitations. This will help Taiwan‟s long-term care planning for the “hyper-aged” 

society in the future. 
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The following section briefly reviews previous methods such as piecewise linear 

methods, MCGP, and MCGP with utility functions. New utility functions (UIF, APUF and 

TUF) are proposed in Section 3. Section 4 demonstrates a topology design problem of 

RPMS. Discussion, sensitivity analysis, and the management implications are also 

provided in Section 4. Conclusions are presented in Section 5. 

2. Previous related methods for qualitative and quantitative issues 

In the past, several methods have been proposed for MCDM problems involving 

qualitative or quantitative objectives. These methods should be addressed as follows. 

2.1 Piecewise penalty functions for qualitative issues 

Charnes and Collomb (1997) proposed an interval GP method to deal with the 

importance of marginal changes in goal achievement based on distance to the goal target. 

These penalty functions serve to increasingly penalize the objective function of the 

problem as the solution becomes further away from the goal. Later, various methods were 

proposed to model the increasing PF, reverse PF, and nonlinear PF. These methods were 

used to solve many practical problems such as constrained optimal control problems, tax 

payment problems, and search engine advertising problems. The S-shaped PF is a more 

general model appearing in models of technological innovation, labor, and economics 

(Chang and Lin, 2009). Therefore, a simple S-shaped PF is discussed here; the penalized 

behavior is depicted in Figure 1, and the scale data is listed in Table 1. Yang et al. (1991) 

derived a novel method to solve an S-shaped PF problem. To formulate the problem, one 

additional binary variable is needed to interpret the „either-or‟ relationship for the union of 

the ramp-type linear functions. Chang and Lin (2009) derived an efficient mixed-integer 

model to solve the S-shaped PF problem. Later, an efficient model was proposed by Lu 

and Chen (2013) for the S-shaped PF in which the number of extra binary variables can be 

reduced from n  down to  )1(log2 n . However, all the above methods formulate the 

S-shaped PF as an MIP problem by adding extra binary variables.   

Table 1. Scale data of the S-shaped PF 

Goals Unit (%) Marginal 

penalty 

The value 

of )(xif  

Marginal 

penalized 

Directions 

1g  

 

 

 

below 80 

80-90 

90-100 

over 100 

0.8 

2 

1 

0 

75 

85 

95 

105 

34 

20 

5 

0 

Left 

four-sided 

penalty 
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below 110 

110-120 

120-130 

over 130 

0 

1 

2 

0.8 

105 

115 

125 

135 

0 

5 

20 

34 

Right 

four-sided 

penalty 

  

 

 

 

 

 

 

 

 

    

    

    

           Figure 1. An example of a two-side S-shaped PF  

Adding binary variables to an MIP problem does not improve the linear programming 

relaxation, as indicated by Keha et al. (2004, 2006). Therefore, it is essential to create a 

new efficient model to deal with a large size MIP problem. A typical right-side S-shaped 

PF with marginal penalties equal to 1, 2, and 0.75 is depicted in Figure 2. 

Penalty ))(( xifg  

 

 

 

 

 

 

 

 

 

 

Figure 2. An example of the right-side S-shaped PF 

Based on a right-side S-shaped PF, as shown in Figure 2, Chang (2018) proposed an 

ESPM to approximate the S-shaped function. To save space, we only express the 

right-side S-shaped PF as follows. 

Penalty 
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(P1) 

Min ))((
3

1

xiij

j

ij fgpw 


 

s.t. 

  ))(( xifg = 3322111)( iiiiiii pspspsbg  , for right-side S-shaped function        (1) 

  
1321)( iiiii bpppf x ,                                             (2) 

  ijijij bbp  10 , 3,2,1j ,                                            (3) 

  ,Fx  ( F  is a feasible set),                                            (4) 

where ))(( xifg  denotes the right-side S-shaped PF; the slope of the line segment [
ijb , 

1ijb ], 321 ,,j   is denoted as 
ijij

ijij

ij
bb

bgbg
s










1

1 )()(
, 321 ,,j  ; the deviational variable is 

denoted as ijp ; PF is represented by ))(( xifg ; the weight ijw  must be appropriately 

assigned to ijp  in the objective function to ensure the active priority as 1ip  2ip  3ip  

in (2) automatically.  

In general, organizations often have a predefined budget for their system constructions, 

and the budget is expected to be balanced, not either too high or too low. Hence, the 

S-shaped PF is a useful technique to guide the construction cost of the RPMS to approach 

the predefined target cost. 

2.2 MCGP with utility functions on qualitative issues 

  A popular linear UF, )( ii yμ , can be found in Lai and Hwang (1994). It is widely used 

to represent individual or organizational preferences in various decision and management 

models. Thus, the UF is used to formulate the satisfaction of senior citizens in the RPMS. 

The senior citizens‟ satisfaction is measured using the system coverage rate. The function 

is characterized as follows. 

)( ii yμ =


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
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






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


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gyif

gygif
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gyif

     Case I - left linear UF (LLUF) 
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)( ii yμ =






















min,

max,min,

min,max,

min,

max,

,0

,

,1

ii

iii

ii

ii

ii

gyif

gygif
gg

gy

gyif

     Case II - right linear UF (RLUF) 

where max,ig ( min,ig ) is the upper (lower) bound for the i th goal. According to the 

principle of maximizing expected utility, the DM would like to increase the utility value 

)( iii yμλ   as much as possible. Therefore, the left linear UF and the right linear UF 

should be addressed (see Figure 3). 

 

Figure 3. The left and right linear utility function 

In some situations, the DM prefers to increase the value of UF, )( ii yμ , as much as 

possible in the above cases (Case I and Case II) for their decision models (e.g., DM would 

like to increase the senior citizens‟ satisfaction level of using the RPMS), called FUF. That 

is, the achievement model will add some deviational variables to force the value of iy  to 

approach min,ig or max,ig  (i.e., 1)( ii yμ ). This simple case has been addressed by 

Chang (2011); please refer to Appendix 1. The MCGP with FUF has been applied to solve 

some practical problems such as renewable energy portfolios under uncertainty (Hocine et 

al., 2018), the supplier selection problem (Alizadeh and Yousefi, 2018), and consensus 

models (Gong, 2015). 

2.3 MCGP methods on quantitative issues 

To solve an MODM problem with multiple goals and each goal being achieved from 
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some specific aspiration levels, MCGP was proposed by Chang (2007, 2008). In the 

MCGP method, the DM is allowed to set multiple goals for their MODM problems, and 

each goal maps to multiple aspiration levels (i.e., discrete aspiration levels). MCGP can 

extend the feasible solution region to improve solution quality. MCGP can be expressed 

as in Appendix 2. Later, Chang (2008) proposed a revised MCGP for MODM problems 

with multiple goals with each goal being able to be achieved from some vector aspiration 

levels (i.e., continuous aspiration levels), as shown in Appendix 3. The history of MCGP 

is listed in Figure 4. In fact, MCGP related methods have been constructed as a 

preliminary processing system for qualitative and quantitative issues. It is easy to see 

there are fewer methods to handle qualitative issues than quantitative issues. Therefore, if 

more qualitative methods (e.g., IUF, APUF, and TUF) can be added by this paper, the 

MCGP system will be more colorful and powerful in its contribution to solving MODM 

and MCDM problems in management science. The RPMS topology design problem is a 

typical MODM problem with qualitative and quantitative issues. Therefore, we integrate 

MCGP and other methods (e.g., FUF, IUF, APUF, and TUF) to be one model for the 

problem. A comprehensive analysis of MCGP theories and applications was addressed by 

Shalabhs and Sonia (2017). Other improved MCGP methods were proposed: Behzad et al. 

(2012) derived a fuzzy MCGP approach to solving the fuzzy MODM problem; the conic 

scalarizing function utilized in MCGP was proposed by Ustun (2012); the computation of 

an MCGP problem was addressed by Patro et al. (2015). 
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Figure 4. The history of MCGP 

3. Proposed new utility functions for MCGP 

3.1 Indicator utility function for MCGP 

   In some situations, the multiple-step decision process is required in the decision 

model. In this case, the DM prefers to know the current value of UF, )( ii yμ , for the 

next step of the decision-making process. Thus, the DM does not need to force iλ  to 

approach min,ig or max,ig . In other words, the action of iλ  
is as an indicator of the value 

of UF, )( ii yμ , namely IUF. Although this method is not used in modeling the RPMS, it 

is worth introducing to enrich qualitative research. The idea of IUF is first proposed in 

this paper to improve the usefulness of UF in multiple-step decision-making methods. 

Generally, using mathematical programming to solve decision problems involves 
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formulating the decision problem into a decision model and then solving it in one step. 

In contrast, many decision problems exist in real situations that may require using many 

solution steps (Swait et al., 2018). This issue is critical, however, it is rarely discussed in 

the literature. Therefore, we propose a new IUF to express this case as follows.  

(P2) expresses the left linear UF shown in Figure 3(a) 

Min )(

1





 ii

n

i

i ddw  

s.t.  

  
min,max,

max, )(

ii

ii

i
gg

fg
λ






x
, ni ,...,2,1 ,                                           (5) 

  i)( gddf iii  
x , ni ,...,2,1                                          (6) 

  

id , 0

id , ni ,...,2,1 ,                                              (7) 

  ,Fx  ( F  is a feasible set),                                            (8) 

where iw  is the weight attached to deviational variables 

id  and 

id ; indicator variable 

iλ  represents the value of the utility function of 
min,imax,i

imax,i

gg

fg



 )(x
; the lower (upper) bound  

is denoted as min,ig ( max,ig ) for the i th goal. 

(P3) expresses the right linear UF shown in Figure 3(b) 

Min )(

1





 ii

n

i

i ddw  

s.t.   

  
min,max,

min,)(

ii

ii

i
gg

gf
λ






x
, ni ,...,2,1 ,                                       (9) 

  Eqs.(6)-(8),                                                       (10) 

where all variables are defined as in P2. 

As seen in P2 and P3, the value of iλ  provides useful information for the DM to resolve 

a multiple-step decision-making problem. This new idea can enrich the formulation of 

qualitative methods. To briefly describe the idea of IUF, a two-step decision-making 

process is shown in Figure 5. As seen in Figure 5, the IUF can be classified into the 

following two types of roles. 

(i) IUF as an IF condition. 
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  When the role of IUF is an IF condition control, it guides the direction of the 

decision-making process to either feedback to step one of the decision-making process or 

progress towards step two of the decision-making process. 

(ii) IUF as a CASE condition. 

  When the role of IUF is a CASE condition control, it guides the direction of the 

decision-making process to different paths of the step two decision making process. 

  

Figure 5. An example of two steps decision making process 

3.2 Piecewise utility function for MCGP 

To enrich the usefulness of UFs in the field of mathematical programming, an APUF 

should be provided because of its generality. For simplicity, an APUF example with a 

negative slope is depicted in Figure 6. 
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Figure 6. A simple example of APUF 

Figure 6 can be intuitively formulated as follows.  

(P4) 

Min 



3

0

)(
i

iiii pwyμ  

s.t.  

  )( ii yμ = 



2

0

330 )(
i

iii pspsaμ ,                                         (11) 

  0

3

0

apy
i

ii 


,                                                      (12) 

  1 iii apa , 3,2,1,0i ,                                              (13) 

where iw  ( 3210 wwww  ) is the weight attached to deviational variable ip  in the 

objective function and ip  is bounded by Eq.(13); Eq.(11) is the summation of the 

deviations used to represent the APUF, )( ii yμ ; Eq.(12) is the control constraint utilized 

to indicate the exact value of the APUF in iy  axis; the slope of the line segment 

],[ 1ii aa  is denoted as 
ii

iiii

i
aa

aμaμ
s










1

1 )()(
, 3210 ,,,i  ; An appropriate weight, iw , 

is used to ensure the activation sequence of ip  in Eq.(12) as 0p 1p 2p 3p , 

automatically.  

Proposition 1. )( ii yμ  in P4 and )( ii yμ  in Figure 6 are equivalent in the sense that 

they have the same optimal solutions. 

Proof.  

Clearly, 32100 ppppayi   2100 pppa  , the constraint, 

03210 appppyi   is therefore covered by the constraint, 0210 apppyi   

in Eq.(12). In addition, 1 ii ww , are the weights, in the objective function, attached to 

ip , i . This essentially forces the activation priority of ip  to be higher than 
1ip , i  

in the minimization problem (from Eq.(12)). This automatically ensures the activation 

sequence of 
ip  in Eq.(12) is as 0p 1p 2p 3p . Furthermore, the active priority must 

be guaranteed by an appropriate weight, iw , which is assigned to 
ip , i . )( ii yμ  in the 

objective function of P4 can be replaced by Eq.(11). )( 0aμi  in Eq.(11) is a constant that 

can be ignored. Thus, P4‟ objective function can be expressed as follows. 

00 ps + 11 ps + 22 ps + 33 ps + 00 pw + 11 pw + 22 pw + 33 pw
     

                  (14) 
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= 000 )( psw  +…+ 333 )( psw 
              

                             (15) 

To guarantee the active priority: 3210 pppp   in Eq.(12) , the following weights 

sequence is given. 

)( 00 sw  < )( 11 sw  < )( 22 sw  < )( 33 sw 
  

                                (16) 

This essentially forces 
332211000)( pspspspsayμ ii   in Eq.(11). )( ii yμ  in 

P4 is then equivalent to )( ii yμ  in Figure 6. The proof of Proposition 1 is completed.  

To demonstrate P4 in finding the appropriate weights, Figure 6 is used as an example 

below. The objective function of P4 can be replaced by Eq.(11); we yield the following 

equation: 

332211003210 5.15.1 pwpwpwpwpppp   

= 33221100 )5.1()1()5.1()1( pwpwpwpw                           (17) 

Based on Eq.(17), we obtain the following weights sequence for 
0p ,

1p ,
2p  and 

3p , 

respectively. 

 )1( 0w  )5.1( 1w  )1( 2w )5.1( 3w                                   (18) 

It is observed the appropriate weight sequence of Eq.(18) can be applied to any APUF 

problem. 

Based on Proposition 1, the weights sequence of Eq.(18) is strictly increasing to ensure  

the value of )( ii yμ  can be computed exactly corresponding to the value of iy  in 

Figure 6. However, if the weights sequence of Eq.(18) is violated, then the value of iy  

will be invalidated in Eq.(12). This means the value of )( ii yμ  cannot be obtained 

exactly in Eq.(11).  

Eqs.(11)-(12)
nR  with a nonempty interior is robust because P4 is a convex set 

nR . 

Proposition 1 is very easy to deduce for all cases where n

m Raa  ],[ 0  and 

n

i Rδμ  )(  are valid.  

Remark 1. Expressing )( yμi
 with 1m  breakpoints using P4 requires zero additional 

binary variables and two auxiliary constraints (i.e., Eqs.(11)-(12)), regardless of the 

number of breakpoints.  

Based on P4, the following multiple APUF is established in far greater generality than 

S-shaped UF. 

(P5) 
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Min 
 



n

j i

ijij

n

j

ijij pwyμ

1

3

01

)(  

s.t.  

  )( ijij yμ = 




2

0

330

i

jjijijjij psps)a(μ , ,n,...,,j 21                              (19) 

  j

i

ijij apy 0

3

0




, ,n,...,,j 21                                            (20) 

  j,iijij apa 1 , 3,2,1,0i , ,n,...,,j 21                                   (21) 

where all variables are similarly defined as in P4. 

3.3 Trapezoidal utility function for MCGP 

Triangular UF and TUF are often used to measure the satisfaction levels of individuals or 

organizations (Paksoy and Pehlivan 2012). In addition, triangular UF is a subset of TUF. 

Thus, TUF is discussed here. For simplicity, a TUF in the left graph of Figure 7 can be 

expressed as Eq.(22). 
































max
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1

max

1

1

11

1

min

1min

11

min

1

max

1

min

1
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,0

)(

ici

cii

ci

cibi

bii

ibi

i

ii

i

gygif
gg

gy

gygif

gygif
gg

gy

gyorgyif

yM                               (22) 

 

 

 

 

 

       

 

 Figure 7. Two trapezoidal utility functions 

An example of two TUFs in Figure 7 can be represented by i1M = 21 iii1 μRμ   and 

2iM = 423 iii μRμ  . Therefore, Figure 7 can be formulated as follows.  

(P6) 

Min 







6

11

)(
j

ijijii

n

i

ewdd  

s.t. 
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)1()1()1()z-)(1(1

)1()1()(

32163215i3214

32133232

iiiiiiiiiii

iiiiiii1i2iii1i1iii

zzzyzzzyzzy

zzzyzzzyzzzyddyf



 

, ni ,...,1      (23) 

 
min

11

11

~

~
1

ibi

ibi
i1

gg

yg
μ




 ,  

cii

cii

gg

gy
μ

1

max

1

12

i2 ~

~
1




  , ni ,...,1                       (24) 

 111  

ii eμ , 122  

ii eμ , ni ,...,1                                      (25) 

 3211 )1( iiii zzzR  , 131  
ii eR , ni ,...,1                                 (26) 

 
min

22

42

3 ~

~
1

ibi

ibi
i

gg

yg
μ




 , 

cii

cii
i

gg

gy
μ

2

max

2

25

4 ~

~
1




 , ni ,...,1                        (27) 

 143  

ii eμ , 154  

ii eμ , ni ,...,1                                      (28) 

 )1()1( 3212 iiii zzzR  , 162  

ii eR , ni ,...,1                            (29) 

 max

2

min

1 )( iii gyfg  , ni ,...,1                                          (30) 

where 

id  ( 

id ) is the positive (negative) deviational variable for ii g~yf )( ; 

)1()1(...~
32163211 iiiiiiiii zzzyzzzyg  ; the weight ijw  is the weight attached to 



ije ;  

the i th objective function is denoted as )(yf i ; the binary variable is denoted as iuz ; the

ixμ  is the subset of the TUF; the negative deviational variable 

ie  is used to force ixμ  

and ivR  approaching 1 (i.e., max value of TUF); the )( minmax

iviv gg  is an upper (lower) 

bound on ixy ; ]~[ 11 bi

min

ii1 g,gy  , ]~,~[ 1c11 ibii ggR  , ],~[ 112

max

icii ggy  , ]~,[ 2

min

i23 bii ggy  , 

]~,~[ i2c22 ggR bii   and ]~[4

max

i2i2ci ,ggy   are additional variables; indices are ni ,...,1 , 

321 ,,u  , 61,..,x  , and 21,v  .  

Proposition 2. P6 and Figure 7 are equivalent in the sense that they have the same 

optimal solutions. 

Proof. To prove P6 and Figure 7 are equivalent, all values of y  fall in all intervals 

]~[ 11 bi

min

i g,g , ]~,~[ 1c1 ibi gg , ],~[ 11

max

ici gg , ]~,[ 2

min

i2 bigg , ]~,~[ i2c2 gg bi  and ]~[ max

i2i2c ,gg  in Figure 7 

should be checked below. 

Case (i). ]~ ,[ 11 bi

min

i ggy : 
min

11

11

1 ~

~
1

ibi

ibi
i

gg

yg
μ




  is activated (from Eq.(24)). This forces 

132i1  ii zzz  (from Eq.(23)) and 1iμ  approaching 1 (from Eq.(25)). 

Case (ii). ]~,~ [ 11 cibi ggy : 11 iR  is activated (from Eq.(26)). This forces 

1,0,1 321  iii zzz  (from Eq.(23)). 
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Case (iii). ],~ [ max

11c ii ggy  : 
cii

cii
i

gg

gy
μ

1

max

1

12

2 ~

~
1




  is activated (from Eq.(24)). This 

forces 0,1 321  iii zzz  (from Eq.(23)) and 2iμ  approaching 1 (from Eq.(25)). 

Case (iv). ]~ ,[ 12 bi

min

i ggy  : 
min

22

42

3 ~

~
1

ibi

ibi
i

gg

yg
μ




  is activated (from Eq.(27)). This 

forces 1,0,1 321  iii zzz  (from Eq.(23)) and 3iμ  approaching 1 (from Eq.(28)). 

Case (v). ]~,~ [ 22 cibi ggy : 12 iR  is activated (from Eq.(29)). This forces 

0,1,0 321  iii zzz  (from Eq.(23)). 

Case (vi). ],~ [ max

22c ii ggy  : 
cii

cii
i

gg

gy
μ

2

max

2

25

4 ~

~
1




  is activated (from Eq.(27)). This 

forces 1,1,0 321  iii zzz  (from Eq.(23)) and 4iμ  approaching 1 (from Eq.(28)). 

Based on the above checked, 21 iii1 μRμ   and 423 iii μRμ   in P6 are then 

equivalent to )( yM i
 in Figure 7. The proof of Proposition 2 is completed. 

4. A topology design problem of a remote patient monitoring system 

  A feasible way of solving the RPMS problem concerning qualitative and quantitative 

issues is demonstrated in the proposed method. A presentation structure is shown in 

Figure 8. As seen in Figure 8, two goals are designed for the presentation: (1) to 

demonstrate the proposed method is a good way of solving the topology design problem 

for an RPMS with feasible, compact and integrated characteristics, and (2) to provide 

useful information to the government for future RPMS planning references. 
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Figure 8. The presentation structure of the topology design problem of RPMS 

A company would like to promote its RPMS to senior citizens in Taiwan. The RPMS 

platform is depicted in Figure 9. An RPMS can help patients confined to their home, who 

are perhaps aged or disabled, to obtain timely healthcare anytime they need. Accompanied 

by a fast-growing aging population, the booming demand for RPM makes it an essential 

part of the future healthcare system. There are seven components, including foreign care, 

sensor, patient, platform administrator, physician, and agent server, as seen in Figure 9. 

The function of these components is as follows: (1) Nursing staff: Nursing staff frequently 

contact physicians to discuss regular follow-up, medical referral, intervention, and to 

understand disease changes. (2) Agent Server: The agent server is used to ensure the 

RPMS operates automatically, such as monitoring elderly people with a diaper sensor. (3) 

Physician: Physicians and nurses often consult with one another in relevant medical 

treatments. (4) Platform Administrator: A Platform Administrator controls the platform, 

including network monitoring, software deployment, abnormal message monitoring, data 

transmission, and hardware sensor management. (5) Patient: According to patients‟ 

physiological data received using sensing devices, appropriate medical treatment can be 

given. (6) Sensor: Different kinds of instruments collecting the patients‟ physiological 

data. (7) Foreign care: Responsible for training patients to wear the sensing devices in the 

correct way to ensure the system can receive the emergency alert signal. 
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Figure 9. The remote patient monitoring system 

The RPMS contains cloud computing home monitoring, servers (CCS), healthcare 

devices, distributed databases, audio/video tools, and a graphic user interface. As seen in 

Figure 9, Taipei is a political and economic center in Taiwan, so the establishment of an 

RPMS is required, but does Taitung county or other countries need the establishment an 

RPMS? Under budget limitations, which cities are the priorities? This is a typical 0-1 MIP 

problem. To implement the RPMS for serving senior citizens, several goals and criteria 

should be considered simultaneously. This is a typical MODM problem. Therefore, RPMS 

is a mixed-integer MODM problem. A major element of RPME is CCS. To consider the 

RPMS risk, an S-shaped PF is given in Figure 10, which guides the CCS setup cost. The 

DM assigns a penalty of 0.75 to a deviation surpassing 16 million dollars because when 

the total setup cost is over 16 million dollars, the investor may prefer to join the RPMS, a 

penalty of 2 to a deviation falling between 10 and 16 million dollars, a penalty of 1 to a 

deviation falling between 1 and 10 million dollars, and zero penalty to a deviation falling 

under 1 million dollars. The risk of the RPMS will be decreased when the new investor 

joins, so the DM assigns a penalty of 0.75 to a deviation surpassing 16 million dollars. For 

achieving reliability in the RPMS, the three major cities of Taiwan, i.e., Kaohsiung, 

Taichung, Taipei, must install CCS connecting to one another as a basic three-hub-node 

ring trunking network. The achievement model can be expressed as follows. 

Notations: 
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 y  is the additional variable. 

 ip , 


1e , 


1e , 


2e , 


2e  are deviational variables. 

Decision variables: 

 }1,0{ix  is i th city/county in Taiwan 

   is the value of the penalty function 

 
1  is the value of the utility function 

To demonstrate the usefulness of the proposed methods, scenario 1 is given. 

Scenario 1. 

G1: the RPMS can cover senior citizens in Taiwan, and the more citizens covered, the 

better. (major goal) 

The DM would like to know senior citizens‟ satisfaction with the use of RPMS for 

improving its functions in the future. The satisfaction function, )( ii yμ , is represented by 

the RPMS coverage rate, which can be depicted as shown in Figure 11. That is, the role of 

)( ii yμ  is IUF. The parameters of the CCS, including all cities in Taiwan, capital 

requirements in each city, and the number of senior citizens in each city are given in Table 

2. Subject to the resource limitations of the company, three constraints should be 

considered as follows. 

(i) The total investment budget must not exceed 30 million dollars. 

(ii) The RPMS must serve at least 500 thousand senior citizens. 

(iii) At least 8 CCSs should be implemented. 

 

 

 

 

 

 

 

 

Figure 10. S-shaped penalty function for building cost 

 

Penalty 

Setup cost 

=1 

=2 

=0.75 
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Figure 11. Satisfaction for number of senior citizens coverage 

Table 2. CCS parameters 

Decision Decision variable Capital 

requirements 

The number of 

senior citizens  

CCS in New Taipei city 
1x  2 million 399 thousand 

CCS in Taichung city 
2x  2 million 279 thousand 

CCS in Kaohsiung city 
3x  2 million 277 thousand 

CCS in Taipei city 
4x  2 million 266 thousand 

CCS in Taoyuan city 
5x  2 million 221 thousand 

CCS in Tainan city 
6x  1.5 million 188 thousand 

CCS in Changwa county 
7x  1.5 million 127 thousand 

CCS in Pingtung county 
8x  1.3 million 82 thousand 

CCS in Yunlin county 
9x  1.2 million 68 thousand 

CCS in Hsinchu county 
10x  1.2 million 55 thousand 

CCS in Miaoli county 
11x  1.2 million 54 thousand 

CCS in Chiayi county 
12x  1.1 million 50 thousand 

CCS in Nanto county 
13x  1 million 49 thousand 

CCS in Ilan county 
14x  1 million 45 thousand 

CCS in Hsinchu city 
15x  1 million 44 thousand 

CCS in Keelung city 
16x  0.9 million 37 thousand 

CCS in Hualien county 
17x  0.8 million 32 thousand 

CCS in Chiayi city 
18x  0.7 million 26 thousand 

CCS in Taitung county 
19x  0.7 million 21 thousand 

CCS in Kinmen county 
20x  0.5 million 13 thousand 

# of senior citizens   

(one hundred thousand) 

Satisfaction  
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CCS in Penghu county 
21x  0.4 million 10 thousand 

CCS in Lienchiang county 
22x  0.2 million 1 thousand 

Based on MCGP, FUF, and APUF, the topology design problem for the RPMS can be 

formulated as follows. 

(P7) 

Min 







2

1

3

1

)(
i

iii

i

ii eepw   

s.t. 

  yeexxx  

112221 ...279399                                    (31) 

  upperboundeey  

22                                            (32) 

  








,12.0...22

,75.02

3212221

321

pppxxx

pppλ
    (S-shaped penalized)            (33) 

  302.0...22 2221  xxx , (Budget)                                    (34) 

  3431  xxx , (three-hub-node ring trunking network)                     (35) 

  8... 2221  xxx , (At least 8 CCS)                                   (36) 

  500...279399 2221  xxx , (At least 500 thousand senior citizens coverage)  (37) 

  100 1  p , 60 2  p , 140 3  p , upperboundy 0                 (38) 

  1400/)200...279399( 22211  xxxλ , (Satisfaction)                   (39) 

where ix  ( 22,...,2,1i ) is the binary variable indicating whether the i th city is selected  

or not; “upperbound” is a large value; the i  is the weight attached to deviations 


ie  

and 


ie ; Eqs.(31)-(32) are used to force universal senior citizen coverage, the more, the 

better; Eq.(33) represents the S-shaped penalty; Eqs.(34)-(37) are constraints for budget, 

ring trunking, number of CCS, and coverage; Eq.(39) is the senior citizens‟ satisfaction 

with the use of the RPMS.  

Appropriate weights are given as ( 1w , 2w , 3w )= (1,1,3) based on Proposition 1. LINGO 

(Schrage 2004) is used to solve P7 to obtain the solution as ( 1x , 2x ,…,

22x )=(0,1,1,1,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), with the penalized value of 4.23λ  

where i =5 is given. The CCS topology is shown in Figure 12. The CCS are established 

in 18 cities such as Taichung city, Kaohsiung city,…, and Lienchiang county. The total 

setup cost is 19.2 million dollars. The RPMS serves 1409 thousand senior citizens. The 

senior citizen satisfaction is 86.35%. The investor will choose to join the new RPMS 

when the satisfaction rating is high, and the total setup cost is over 16 million dollars. 
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Figure 12. The topology of the CCS  

To demonstrate accurate satisfaction using APUF, scenario 2 is given. 

Scenario 2. 

 In general, senior citizen satisfaction will be diminished because Scenario 1 assumes the 

senior citizen satisfaction is a linear function. Therefore, a more accurate satisfaction 

function is used to represent it as shown in Figure 13.  

Based on P4, an accurate satisfaction function can be formulated as follows.  

(P8) 

Min 



2

0

)(
i

iiii vwyμ  

s.t.  

  )( ii yμ = 



2

0

0 )(
i

iii vsaμ ,                                                   (40) 
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  0

2

0

avy
i

ii 


,                                                            (41) 

  1 iii ava , 2,1,0i ,                                                     (42) 

Based on Proposition 1, the following the weight sequence is given for 0v , 
1v , and 

2v  as  

)1( 0w < )7.0( 1w < )3.0( 2w                                                (43) 

Based on Eq.(43), we can choose the weight values as ( 0w ,
1w ,

2w )=(1, 1.5, 2.5). P8 can 

be transformed into the following program. 

(P9) 

Min 210 5.25.1)( vvvyμ ii   

s.t. 

  )( ii yμ = 1400/)3.07.0( 210 vvv  ,                                           (44) 

  200210  vvvyi ,                                                     (45) 

  4000 0  v , 6000 1  v , 4000 2  v ,                                   (46) 

Combine P7 and P9 into an achievement program as follows. 

(P10) 

Min 







2

1

3

1

)(
i

iii

i

ii eepw  + 210 5.25.1)( vvvyμ ii   

s.t. Eqs.(31)-(38) and Eqs.(40)-(42), 

LINGO (Schrage 2004) is used to solve P10 to obtain the same solution as P7 where i

=300 is given, except for the solution of senior citizens‟ satisfaction being 63.05%. In 

addition, the value of i  is increased to 500. P10 is again solved to obtain the solutions 

as ( 1x , 2x ,…, 22x )= (0,1,1,1,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), with the penalized value of 

5.24λ . The new system serves 1536 thousand senior citizens. The total setup cost is 

20.7 million dollars. The senior citizens satisfaction is 65.77%.  
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Figure 13. Accurate satisfaction function 

To demonstrate the feasibility of the proposed methods, scenario 3 is given. 

Scenario 3. 

One more goal is added to Scenario 1 for balancing citizens‟ satisfaction (i.e., qualitative 

issue) and investment cost (i.e., quantitative issue) as follows. 

G2: under the condition the senior citizens‟ satisfaction is not less than 50%, the lower the 

investment cost, the better. 

Based on MCGP, the following model is formulated for G2.  

(P11) 

Min 


 
2

1

)(
i

iii zzβ  

s.t.  

  1112221 2.0...22 yzzxxx  
,                                     (47) 

  lowerboundzzy  

221 ,                                          (48) 

Combine P10, P11, and P7 into an achievement program as follows. 

(P12) 

Min 







2

1

3

1

)(
i

iii

i

ii eepw  + 210 5.25.1)( vvvyμ ii  +


 
2

1

)(
i

iii zz  

s.t.     

  5.0)( ii yμ ,                                                        (49) 

  Eqs.(31)-(38), Eqs.(44)-(46), and Eqs.(47)-(48), 

LINGO (Schrage 2004) is used to solve P12 again to obtain the solutions as ( 1x , 2x ,…,

 

# of senior citizens  

(one hundred thousand) 

Satisfaction  

=1 

=0.7 

=0.3 
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22x )= (0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,1,0,1,1,1,1,1). The topology of the CCS is shown in 

Figure 14. The total setup cost is 11.5 million dollars. The RPMS serves 1029 thousand 

senior citizens. The senior citizens satisfaction is 50%.  

 

Figure 14. The topology of the CCS  

To demonstrate the feasibility and reality of the proposed methods using TUF, scenario 4 

is given. 

Scenario 4. 

The DM would like to balance the setup cost and the number of senior citizens covered. 

Therefore, two TUFs are given in Figures 15 and 16. Four constraints are also given as 

follows. 

1. The RPMS must serve at least 1000 thousand senior citizens. 

2. The total investment budget must not exceed 20 million dollars. 

3. At least eight CCSs should be established. 
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4. Three major cities in Taiwan, i.e., Kaohsiung, Taichung, and Taipei, must install CCSs. 

Based on MCGP, FUP, and APUF, the topology design problem of the RPMS can be 

formulated as follows. 

(P13) 

Min 






 
6

1

2

1

)(
i

ii

i

ii ewdd  

s.t. 

  202.0...22 2221  xxx , (Set up cost   Budget)                        (50) 

  3431  xxx , (three-hub-node ring trunking network)                     (51) 

  8... 2221  xxx , (At least 8 CCS)                                   (52) 

  1000...399 221  xx , (At least 1000 thousand senior citizens coverage)       (53) 

  213212211111 )1()1()( zzyzzyzzyddf  
x , (for 

1M )                (54) 

  
min

b

b

gg~
yg~

μ
11

11

1 1



 ,  

c

max

c

g~g

g~y
μ

11

12

2 1



  ,                                (55)       

111  eμ , 122  eμ ,                                              (56) 

  211 )1( zzR  , 131  eR ,                                            (57) 

  436435434222 )1()1()( zzyzzyzzyddf  
x , (for 

2M )               (58) 

  
min

b

b

gg~
yg~

μ
22

42

3 1



 ,  

c

max

c

g~g

g~y
μ

22

25

4 1



 ,                                (59) 

  143  eμ , 154  eμ ,                                               (60) 

  432 )1( zzR  , 162  eR ,                                           (61) 

  bgyg 11

min

1
~ , max

121
~ gyg c  , b

min g~yg 242  , max

c gyg~ 252  ,           (62) 

  max

11

min

1 )( gfg  x , maxmin gfg 222 )(  x ,                                 (63) 

where ix  ( 22,...,2,1i ) is defined as in P7; Eqs.(50)-(53) are the constraints for the 

budget, ring trunking, number of CCS, and coverage; the )(1 xf  is the setup cost; the 

)(2 xf  is the number of senior citizens covered; the deviational variable 


ie  is used to 

force TUF to approach the highest value of “1”; Eqs.(54)-(61) represent two of the TUFs 

as shown in Figures 15 and 16; Eq.(62) represents the upper (lower) bound of 1μ , 2μ , 

3μ , and 4μ . Eq.(63) represents the upper (lower) bound of the setup cost and the number 

of senior citizens covered.  

For simplicity, we assume 1iw , i . LINGO (Schrage 2004) is used to solve P13 to 
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obtain solutions as ( 1x , 2x ,…, 22x )= (0,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,1,0,1,1,1). The CCS 

topology is shown in Figure 17. The total setup cost is 14.1 million dollars. The RPMS 

serves 1254 thousand senior citizens. Two TUF satisfactions are fully achieved (e.g., 
1M

=1 and 
2M =1).  

 

 

 

 

 

Figure 15. Trapezoidal utility function for setup cost 

 

 

 

 

 

 

 

Figure 16. Trapezoidal utility function for senior citizens coverage 
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Figure 17. The topology of the CCS 

All the goals and results of scenarios are listed in Table 3. This information is of great 

value to the development of RPMS. 

Table 3 Remote patient monitoring system scenarios 

Scenarios Goals Results 

1 Cover senior citizens, the more, the better   18 cities have been selected 

 Setup cost equals 19.2 million dollars 

 1409 thousand senior citizens have  

been covered 

 Satisfaction rate being 86.35% 

2 Measures the satisfaction of senior citizens with an 

accurate  

satisfaction function 

 19 cities have been selected 

 Setup cost equals 20.7 million dollars. 

 1536 thousand senior citizens have 

been covered 

 Satisfaction rate being 65.77% 

3 Minimize the investment cost under senior citizens  

satisfaction > 50% 

 11 cities have been selected 

 Setup cost equals 11.5 million dollars 

 1029 thousand senior citizens have 
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been covered 

 Satisfaction rate being 50% 

4 Balance the setup cost and the number of senior 

citizens 

covered with the trapezoidal utility function 

 11 cities have been selected 

 Setup cost equals 14.1 million dollars 

 1254 thousand senior citizens have 

been covered 

 Satisfaction rate being 100% in TUT 

4.1 Discussion 

   As seen in Table 3, DMs can add different utility functions, constraints, and models to 

the proposed method, demonstrating its feasibility and compatibility for MCDM/MODM 

problems involving quantitative and qualitative issues. Given the evident falling birth rate 

and aging society in Japan, Italy, Germany, and Taiwan, more and more counties are 

having a similar problem; countries‟ productivity is declining, and more elderly people 

need to be taken care of, but medical expansion simply cannot catch up. The RPMS can 

take care of more elderly people than the traditional method of care in the hospital and 

saves on medical resources to reduce the burden on the government‟s finances. The 

topology design problem of the RPMS is a major element of success in implementing 

RPMS for aging societies. This paper provides a novel integrated method to contribute to 

the development of the RPMS considering qualitative, quantitative, and balance issues, 

reducing the gap between management science and the healthcare sector to implement the 

RPMS. In addition, the authors hope the proposed method can increase the adoption of 

MCDM methods that are used by companies to solve practical problems.  

4.2 Sensitivity analysis 

In establishing an RPMS, the most important issue for DMs is to understand the 

relationship between setup cost and senior citizens‟ satisfaction, so we conducted the 

following sensitivity analysis, and the results of the analysis can provide a reference for 

DMs. To understand how a change in the weight values of the setup cost from 1000% to 

1600% in the objective function of P13 will affect the achieved target value (i.e., the rate 

of satisfaction, setup cost, number of senior citizens covered), sensitivity analysis is 

performed. LINGO (Schrage, 2004) is used to solve P13 again to obtain the optimal 

solution shown in Table 4. The value of M1 and M2 is 1, regardless of the weight increase. 

The setup cost and the number of senior citizens covered change slightly when the weight 

increases from 1300% to 1500%. 

Table 4. Results of sensitivity analysis 

weight Set up cost Number of senior citizens coverage M1 M2 

1000% 16.7 1259 1 1 

1100% 16.7 1259 1 1 

1200% 16.7 1259 1 1 
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1300% 16.7 1259 1 1 

1400% 13.2 1232 1 1 

1500% 15.8 1277 1 1 

1600% 15.8 1277 1 1 

Consequently, the management implications of the proposed methods are: (1) the 

proposed integrated method can easily be used to help the DM find an appropriate 

topology CCS solution with various weights, i  (2) the non-linear UF can easily be 

approximated by the proposed piecewise method where binary variables are no longer 

needed. This result makes it possible to solve a realistic large-scale problem within a 

reasonable amount of time, and (3) the APUF and TUF can easily be used to solve 

MODM problems with quantitative and qualitative issues. 

5. Conclusions 

FUF, IUF, APUF, and TUF often appear in business and industrial decision-making 

models. However, any given efficient mathematical method is yet to be able to define 

these types of problem very well. A novel integrated method is proposed by this paper to 

solve the S-shaped PF where extra binary variables are no longer needed. This reduces the 

complexity of the S-shaped PF formulation. It can improve the efficiency in processing 

the solution for the S-shaped PF and APUF in MCGP. In addition, ESPM, APUF, TUF, 

and MCGP approaches also proved conducive to addressing a topology design problem 

for an RPMS with qualitative and quantitative issues. By demonstrating the RPMS in 

Section 4, several merits were shown: (1) RPMS implementation benefited from the 

satisfaction of senior citizens, (2) the proposed method provided good guidance for RPMS 

planning, and (3) constraints and scenarios could easily be added to the proposed model to 

show the feasibility of RPMS. These improve the usefulness of the MCGP method in 

dealing with qualitative and quantitative issues in MODM problems. The framework and 

contributions of the paper are shown in Figure 18. As seen in Figure 18, the TUF, FUF, 

IUF, and UFU methods are created by this paper to contribute to the field of qualitative 

methods. The proposed model is an integrated MCGP method containing qualitative and 

quantitative functions to resolve MCDM, MODM, and the topology design of RPMS 

problems. 
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            Figure 18. Framework and contributions of the paper 

  It is clear that the proposed methods are potentially serviceable, the promising results 

also shed light on future directions, such as all-unit discount cost structure in supply chain 

management (Chan et al. 2002), inventory models with controllable lead time (Chang et al, 

2006), and more real-world oriented adaptation. 
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Appendix 1 

(AP1) for LLUF 
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x , ni ,...,2,1                                     (A2) 
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  ,Fx  ( F  is a feasible set),                                       (A6) 
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where iw  and i  are weights attached to deviations 

id , 


id  and 

if ; the role 

of weight i  can be seen as a preferential component for the utility value )( ii yμ ; 

the utility value of )( ii yμ  is denoted as i ; Eq.(A1) is the LLUF; the highest 

possible value of the LLUF is 1 , as described in Eq.(A5). 

(AP2) for RLUF 

Min ])([
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 , ni ,...,2,1 ,                                    (A7) 

  Eqs.(A2)-(A6)                                                   (A8) 

where all variables are defined as in AP1. 

Appendix 2 

(AP3) 
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  ,Fx  ( F  is a feasible set),                                      (A12) 

where )(BS ij  represents a function of the binary serial number; the function of 

resources limitations is denoted as )(xRi ; other variables are defined as in GP. 

Appendix 3 

(AP4)  for the case of the more the better of MCDM 
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where 

id  is the positive deviation attached to the i th goal ii yf )(x  in 

Eq.(A13); the positive and negative deviations 

ie  and 

ie  are attached to 

i,maxi gy   in Eq.(A14); the weight i  is attached to i,maxi gy  ; other variables 

are defined as in AP3. 

(AP5)  for the case of the less the better of MCDM 

Min )]([ i

1





 iii

n

i

i ffdw  

s.t.   

  iii ydf  )(x , ni ,...,2,1 ,                                      (A18) 

  i,miniii gffy   , ni ,...,2,1 ,                                 (A19) 

  maxi,imini, y gg  ,                                              (A20) 

  

id , 

if , ,0f 

i  ni ,...,2,1 ,                                     (A21) 

  ,Fx  ( F  is a feasible set),                                      (A22) 

where 

id  is the positive deviation attached to the i th goal ii yf )(x  in 

Eq.(A18); the positive (negative) deviational variable 

if  ( 

if ) is attached to 

i,mini gy   in Eq.(A19); the weight i  is attached to i,mini gy  ; other variables are 

defined as in AP3. 

 

                  


