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a b s t r a c t 

Managing maintenance and its impact on business results is increasingly complex, calling for more 

advanced operational research methodologies to address the challenge of sustainable decision-making. 

This problem-based research has identified a framework of methods to supplement the operations re- 

search/management science literature by contributing a hybrid simulation-based optimization framework 

(HSBOF), extending previously reported research. 

Overall, it is the application of multi-objective optimization (MOO) with system dynamics (SD) and 

discrete-event simulation (DES) respectively which allows maintenance activities to be pinpointed in the 

production system based on analyzes generating less reactive work load on the maintenance organization. 

Therefore, the application of the HSBOF informs practice by a multiphase process, where each phase 

builds knowledge, starting with exploring feedback behaviors to why certain near-optimal maintenance 

behaviors arise, forming the basis of potential performance improvements, subsequently optimized using 

DES + MOO in a standard software, prioritizing the sequence of improvements in the production system 

for maintenance to implement. 

Studying literature on related hybridizations using optimization the proposed work can be considered 

novel, being based on SD + MOO industrial cases and their application to a DES + MOO software. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Maintenance considerably increases the budget in manufac-

uring industries. Even though a cost focus belongs to the past

nd maintenance has shifted towards being an organizational

trategic capacity ( Simões, Gomes & Yasin, 2011 ), the tradeoff

etween invested costs and their benefits is still of great concern

or decision makers. A cost focus leads to reactive maintenance,

hich according to Geary, Disney and Towill (2006) , potentially

eads to increased disruption in real-world supply chains, causing

xcess variance in performance. Recent developments in terms

f increased automation, more expensive equipment, and more

omplex production systems have required larger capital tied up

n assets ( Garg & Deshmukh, 2006 ), and proactive maintenance

olicies are therefore considered a necessity ( Pinjala, Pintelon &

ereecke, 2006 ). Nonetheless, identifying appropriate practices

nd implementing sound strategies for developing maintenance

erformance are still non-trivial. A clear measure of this is the
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requently-emphasized gap between theory and practice in the

aintenance optimization literature (e.g. Fraser, Hvolby and Tseng

2015), Linnéusson, Ng and Aslam (2018a) . One aspect of this gap

s that little attention has been paid to making model results

nderstandable to practitioners ( Dekker, 1996 , p.235). Moreover,

oodhouse (2001) identifies the organizational capabilities to

anage the implementation of sustainable maintenance practices

 crucial limiting factor. According to Baldwin and Clark (1992) ,

apabilities such as identifiable combinations of skills, procedures,

hysical assets, and information systems are sources of superior

erformance. It is therefore worth understanding how these capa-

ilities are improved and decreased, and putting the focus on their

ong-term significance for the organizational performance ( Teece,

isano & Shuen, 1997 ). Baldwin and Clark (1992) describe the im-

ortance of the capacity to experiment as a tool in developing the

nowledge which leads to organizational learning. System exper-

ments using computer simulation ( Forrester, 1961 ) has amongst

ther approaches served as such supporting tool. Simulation in

anufacturing and business, specifically discrete-event simulation 

DES) and system dynamics (SD) simulation as the most common

 Jahangirian, Eldabi, Naseer, Stergioulas & Young, 2010 ), have

een considered necessary approaches for the proposed research
id simulation-based optimization framework supporting strategic 

an Journal of Operational Research, https://doi.org/10.1016/j.ejor. 
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resulting in a hybrid simulation-based optimization framework

(HSBOF). Combining operational research (OR) methods to ap-

proach complex problems using a larger system view based on

problem characteristics is growing, and examples of hybrid models

and frameworks for such endeavors are more and more frequently

found in OR ( Brailsford, Eldabi, Kunc, Mustafee & Osorio, 2018 ).

Hence, this paper presents a conceptual framework to support de-

veloping long-term maintenance performance in conflict with the

persisting short-term economic pressure from keeping required

production performance levels. The framework designed here build

on previously reported research studies which has approached the

above challenge to support maintenance management in their in-

dustrial setting, resulting in a mixed-method framework to inform

practice. This paper describes the pieces put together to follow in

a rather intricate process: starting with SD modeling to frame the

strategic path of attaining the desired level of proactive mainte-

nance, formulating the “why”, then, SD is aided by optimization in

order to allow evaluating multiple near-optimal tradeoff solutions

on the basis of their short- and long-term consequences to the

modelled system, ending with the selected SD simulation results

affecting the DES study, which integrated with optimization sup-

ports identifying the “how” and “where” in the practice. In all, the

framework includes several phases of generating knowledge on

several levels, allowing opportunities of problem structuring and

learning of how maintenance performance is generated, hence can

be improved in the context of discrete production systems form a

strategic and operational perspective. 

The paper is structured as follows. Section 2 presents the

necessary background information of challenges in supporting

maintenance development and the methods applied in the frame-

work, ending with a brief literature review of hybrid simulations

using optimization. Section 3 introduces a theoretical model of

maintenance-driven change in the production system, presenting

the specific relevance of the methods of DES and SD in the frame-

work including three levels of maintenance development that the

HSBOF addresses. Section 4 contains the core contents of this

paper, describing the HSBOF by combining previous work into its

various phases. In Section 5 we reflect on the HSBOF and future

research in a discussion and conclusions section. 

2. Background 

2.1. Simulation and optimization to support maintenance 

development 

The heritage in maintenance policy optimization research is

analytical modeling, see Dekker (1996) , and to bridge its insuffi-

ciency Nicolai and Dekker (2008) argued for simulation to enable

tracing the effects of maintenance policies. Traditional preventive

maintenance (PM) policy studies are identified based on simplified,

non-realistic assumptions, and do not consider costs with enough

viability ( Kenné et al., 2007; Lad & Kulkarni, 2011 ). Simulation is

an emerging trend to include more complex dynamics, in order to

optimize maintenance cost ( Sharma, Yadava & Deshmukh, 2011 ).

Nevertheless, formulations of such typical maintenance problems

are often treated in isolation, and the maintenance literature

generally suffers from oversimplified simulation studies ( Alrabghi

& Tiwari, 2015 ). In fact, current research in maintenance policy

optimization does not sufficiently address the matter of practical

applicability in production systems ( Ding & Kamaruddin, 2015 ). It

could potentially be addressed, according to De Almeida, Pires Fer-

reira and Cavalcante (2015) , by the application of multi-objective

optimization (MOO), in order to better capture decision makers’

preferences regarding the decision problem and include conflicting

tradeoffs in maintenance policy optimization. 
Please cite this article as: G. Linnéusson, A.H.C. Ng and T. Aslam, A hybr
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To address the deficiencies of overly narrow simulation appli-

ations, Alabdulkarim, Ball and Tiwari (2013) proposed DES to po-

entially add to the maintenance field what it has delivered to OR

nto manufacturing systems. Applying DES to evaluate maintenance

trategies at the operational level has therefore emerged more re-

ently ( Alrabghi & Tiwari, 2016 ), providing frameworks for gen-

ral cases of time-based preventive maintenance (PM), opportunis-

ic maintenance, and periodic condition-based maintenance (CBM).

n the other hand, according to Alrabghi and Tiwari (2015) , and

lrabghi, Tiwari and Savill (2017) , the application of DES to evalu-

te PM has been very little explored. 

On the other hand, according to Gunal and Pidd (2010) , DES

nadequately visualizes feedback behavior and cannot explain why

ertain behaviors arise, which is of interest in order to study the

trategic development of systems ( Warren, 2005 ). In conducting

tudies that explain feedback behavior, the application of system

ynamics (SD) has brought insights into industrial systems ever

ince Forrester (1961) explained the bullwhip effect in supply

hains and further claimed that simulation could be used to

emonstrate that the feedback’s structure can have greater influ-

nce on system behavior than its specific parameter values. The

uitability of SD as a structural theory for operations management

pplied to maintenance has been advocated by Größler, Thun and

illing (2008) . However, quantified SD models of maintenance

pplications and subsequent documentation are generally rare,

ccording to Linnéusson, Ng and Aslam (2018c) ; except for their

roposed approach, no previous SD studies were identified having

nvestigated the dynamic tradeoff between availability, mainte-

ance cost, and maintenance consequential costs. Nevertheless,

D cannot be used in studying complexity at the detailed level

equired for production systems leading us back to the need of

ixing SD with DES. 

Subsequently, based on the industrial need for maintenance

evelopment this paper proposes the HSBOF with the purpose

o synthesize the strengths of each method to support better

nformed practice. Yet, applying merely simulation studies lim-

ts analyses to “what if” scenarios, and calls for the integrated

pplication of optimization to identify the best option. However,

ingle-objective optimization (SOO), commonly applied in SD (e.g.,

angerfield (2014); Jones (2014) ), has its limits in terms of seeking

radeoffs and cannot include several conflicting objectives. More

pecifically, we need simulation-based optimization (SBO), which

pplies SD integrated with MOO, see, e.g., Bandaru, Aslam, Ng

nd Deb (2015), Duggan (2008) , and Linnéusson et al. (2018a) ,

s well as DES integrated with MOO, as previously proposed by

g, Bernedixen and Pehrsson (2014) , to achieve more complete

redictions of the objective landscape to inform decision making

t both the strategic and operational levels. 

.2. SD + DES and hybrid simulation modeling 

SD is a conceptual framework essential to thinking about

hings ( Thompson, Howick & Belton, 2016 ), applicable to support

he formulation of prudent strategies based on a simulated theory

f how organizational change is generated and operated by means

f organizational learning ( Senge & Sterman, 1992 ). SD models use

tocks and flows calculated using differential equations and are

enerally deterministic ( Tako & Robinson, 2010 ). Using SD focuses

uch on usefulness and on stakeholder involvement with the ut-

ost purpose to affect people’s mental models to achieve change,

hich if achieved is considered one important proof of validation

 Sterman, 20 0 0 ). DES, on the other hand, represents individual en-

ities in systems viewed as queuing networks ( Brailsford, 2014 ), its

uitableness of mimicking production systems on the operational

evel and excellent handling of stochastic dynamic complexity have

aturally resulted in traditionally being used in the manufacturing
id simulation-based optimization framework supporting strategic 

an Journal of Operational Research, https://doi.org/10.1016/j.ejor. 

https://doi.org/10.1016/j.ejor.2019.08.036


G. Linnéusson, A.H.C. Ng and T. Aslam / European Journal of Operational Research xxx (xxxx) xxx 3 

ARTICLE IN PRESS 

JID: EOR [m5G; September 6, 2019;11:12 ] 

s  

m  

S  

a  

o  

r  

v  

l  

c  

(  

t  

t  

a  

m  

s  

h  

2  

t  

t  

l  

p

 

D  

g  

f  

r  

c  

e  

l  

i  

H  

b  

s

 

c  

(  

M  

f  

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

t  

l  

m  

r  

i  

o  

t  

i  

s  

p  

p

2

 

w  

t  

e  

a  

f  

s  

s  

s

i  

M  

t  

t  

P

 

p  

a  

t  

i  

o  

h  

i  

r  

a  

t  

o  

M  

f

 

D  

m  

c  

“  

W  

t  

i  

 

i  

p  

S  

s

g  

g  

K  

m  

w  

o

 

p  

t  

t  

p  

T  

o  

a  
ector ( Tako & Robinson, 2010 ), for which DES is unarguably the

ost common applied OR method ( Jahangirian, Eldabi, Naseer,

tergioulas & Young, 2010 ). Hence, validation in DES has tradition-

lly focused on statistical performance evaluation between model

n high detail level and the real system due to its capability to rep-

esent such tangible systems and their stochastic dynamics. For SD

alidation, there are a set of tests to perform, yet, due to the high

evel of intuition inbuilt in the process of producing models, they

annot be tested using falsification but if they are useful or not

 Sterman, 20 0 0 ). Applying group model building in comparison to

he traditional modeler-client approach, is one approach to facili-

ate productive discussions of complex problems, see, e.g., building

nd simulating strategies in manufacturing systems together with

anagers, ( Linnéusson & Aslam, 2014 ); or modeling business

trategies with focus on deeper levels of understanding using re-

earsals on developed simulation models ( Torres, Kunc & O’Brien,

017 ). Such facilitated modeling is less common using DES, yet,

here is such recent work which proposes moving away from the

raditional approach of DES using solely detailed models to simple

ess accurate models with purpose of learning and debate on com-

lex problems ( Robinson, Worthington, Burgess & Radnor, 2014 ). 

From a technical viewpoint, there are two reasons for mixing

ES and SD: the feedback control level incorporated in SD and the

reat detail level that can be included in DES models ( Viana, Brails-

ord, Harindra & Harper, 2014 ). Although feedback may be incorpo-

ated to some extent in DES models, Gunal and Pidd (2010) have

laimed that the use of DES as a tool tends to emphasize the op-

rational level of specific areas, whereas the use of DES for policy-

evel analysis is rare and feedback behavior is inadequately visual-

zed to support the determination of why certain behaviors arise.

owever, achieving the complete mix, realizing the full potential of

oth approaches may not be attained due to the divergent philo-

ophical standpoints of each approach ( Brailsford et al., 2010 ). 

The mixed SD + DES approach has interested researchers in re-

ent two decades and many applications have been reported in OR

 Brailsford et al., 2018; Howick & Ackermann, 2011 ). More recently,

organ, Howick and Belton (2017) presented a toolkit of designs

or mixing the DES and SD methods, identifying five modes of in-

ormation exchange between simulation methods: 

Parallel: SD and DES applied in isolation for the purpose of con-

trasting their respective contributions to a commonly stud-

ied phenomenon, identifying problems which share their use

paradigm. 

Sequential: alternately applying SD and DES, each method sup-

plying input to the other, allowing both methods to be fully

developed within their specific use paradigms. 

Enrichment: one primary method is enriched with techniques

from one or more other paradigms, for example, using dis-

crete events in an SD model or continuous behaviors in a

DES model. 

Interaction: allows feedback exchange between methods, relax-

ing the paradigm restrictions between SD and DES, exploit-

ing both methods’ benefits in one methodology. The level of

interaction can range from the frequent exchange of infor-

mation between SD and DES models in one simulation eval-

uation to just a few interactions during an evaluation period.

Integration: full integration in which one simulation evaluation

includes both discrete and continuous time steps, taking a

shared system view. 

Brailsford et al. (2018) , provided a review of the growing liter-

ture on hybrid simulation modeling from an OR perspective. In

heir life-cycle based framework they present a systematic check-

ist for hybrid simulation models using DES, SD and agent-based

odeling (ABM), unifying around their common four stages of (1)

eal world problem, (2) conceptual modeling, (3) computer model-
Please cite this article as: G. Linnéusson, A.H.C. Ng and T. Aslam, A hybr
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ng, and (4) solution & understanding. However, outside the scope

f both Morgan et al. (2017) and Brailsford et al. (2018) is the fer-

ilization of optimization in a hybrid simulation framework, which

n the proposed HSBOF here, is a vital component part of the

election-sequence and knowledge extraction, from the phase of

roblem structuring in SD modeling to the phase of informing

ractice; reviewed in Section 4 . 

.3. Optimization in hybrid simulation modeling 

Optimization is a technique which applies best to integration

ith a single simulation model ( Pidd, 2012 ). MOO is a discipline

hat, in contrast to SOO which considers one objective function,

valuates two or more conflicting objectives against each other,

nd obtains the Pareto-optimal solutions that constitute the Pareto

ront ( Basseur, Talbi, Nebro & Alba, 2006 ). The comparison of the

olutions utilizes the domination concept in which solution s 1 is

aid to dominate solution s 2 if s 1 is no worse then s 2 , with re-

pect to all optimization objectives, but s 1 is strictly better than s 2 
n at least one optimization objective ( Deb, 2001 ). Moreover, in a

OO study one must identify which parameters, and their respec-

ive ranges, are part of the decision space to be explored through

he lens of the model and multiple evaluations, resulting in the

areto-optimal solutions in the objective space. 

Hence, unless a fully integrated hybrid simulation model is ap-

lied, using SD + DES in a seamless combined time sequence, which

ccording to Brailsford et al. (2010) above may never be developed,

he application of optimization requires a sequence of SD + MOO

ntegration and DES + MOO integration respectively, and a sequence

f them depending on purpose of usage. Moreover, depending on

ow decision data from MOO analyses are applied, as in need of

nterpreting the conflicting tradeoffs between complex decision pa-

ameters, it may require a convoluted selection process to man-

ge the distillation of data into valid decision criteria. Accordingly,

he proposed HSBOF presented later is not directly applicable into

ne of the modes of mixing SD and DES in Section 2.2 above by

organ et al. (2017) , but needs to combine several phases into its

ramework detailed in Section 4 . 

On the other hand, optimization integrated with either SD or

ES in a hybrid simulation model or framework is not so com-

only reported. To provide some examples a Scopus search was

onducted using the keywords “discrete event simulation” and

system dynamic ∗” and “optim 

∗” in titles, abstracts, and keywords.

e initially identified 56 items, but on closer examination, only a

otal of six papers could be identified actually mixing DES and SD

ncluding contents related to optimization; summarized in Table 1 .

The above survey of available research applying optimization

ntegrated with any approach mixing DES and SD provided sur-

risingly few examples. Only the work of Venkateswaran and

on (2005) and Venkateswaran, Son, .Jones & Min (2006) pre-

ented proof-of-concept experiments applying optimization. Re- 

arding MOO, its application in modeling patient flows in emer-

ency departments was emphasized by El-Zoghby, Farouk, & El-

ilany (2016) as the most frequently studied topic in healthcare

anagement and therefore had a legitimate place in their frame-

ork. Even so, their experiment was merely a what-if analysis and

ptimization was not used. 

Additionally, identifying applications of DES + SD in maintenance

roduced few results, and with a different industrial focus from

hat considered here: (1) a performance forecast model for cutting

ool replacements in mechanized tunneling projects that also ap-

lied agent-based modeling ( Conrads, Scheffer, Mattern, König &

hewes, 2017 ); (2) a hybrid model of the availability assessment

f an oil field ( Droguett, Jacinto, Garcia & Moura, 2006 ); and (3)

 thesis on how to technically address the limitations of SD, with
id simulation-based optimization framework supporting strategic 

an Journal of Operational Research, https://doi.org/10.1016/j.ejor. 
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Table 1 

Examples of SD + DES works using optimization. 

Article Research scope Level of optimization Optimization objective 

Venkateswaran and Son (2005) Solving the hierarchical 

production planning problem 

using SD and DES coupled with 

optimization 

Inputs to SD model use SOO. DES 

model applies outputs from SD 

evaluations, and uses SOO. DES + SD 

level evaluates. 

SD: evaluates SOO input 

DES: max. throughput 

SD + DES: evaluation 

Venkateswaran et al. (2006) Proposing an approach for 

integrating vendor inventory 

supply chain and production 

planning 

Inputs to SD model use SOO. DES 

model applies outputs from SD 

evaluations, and uses SOO. DES + SD 

level evaluates. 

SD: evaluates SOO input 

DES: min. tardiness 

SD + DES: evaluation 

Wang and van den Heuvel (2011) Developing a hybrid 

service-network simulation 

approach 

Not implementing; emphasizes 

optimization 

Tuning towards optimal 

performance 

Jovanoski, Nove, Lichtenegger and 

Voessner (2013) 

Providing examples to justify a 

hybrid simulation approach for 

managing strategy and production 

levels 

Not implementing; emphasizes 

optimization 

Enable optimal storage capacities 

and number of salespersons 

Albrecht, Kleine and Abele (2014) Providing computerized decision 

support for designing changeable 

production systems 

Not implementing; “optimization” is 

mentioned in title and abstract but 

not emphasized elsewhere. 

DES: evaluates given state 

SD: evaluates changeability of the 

production system 

El-Zoghby et al. (2016) Presenting a conceptual 

framework for a multilevel 

approach to optimizing an 

emergency department 

A theoretical review of a framework: 

DES model should use MOO; SD 

model evaluates and iteratively 

provides input to the DES fitness 

computation until satisfactory results 

are obtained. 

Claims to improve multiple 

objectives; no tradeoff objectives 

defined; experiments apply 

what-if analysis 

Fig. 1. Generalized model over the different alignments of SD and DES to the levels 

of maintenance development. 
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(  
DES used to represent individual entities and stochastic behavior,

using a simplified SD model of maintenance ( Bell, 2015 ). 

3. Combining SD and DES for maintenance development 

Supported by the schema in Fig. 1 , we define a theory of

maintenance-driven change in production systems taking account

of three levels of maintenance development and of how the SD

and DES methods can support them. It also explicitly shows why

mixing SD and DES can add value to achieve momentum for sus-

tainable change in the applied production system environment. 

Maintenance interventions are either, proactive combining PM

and systemic procedures, or reactive with run-to-failure at their

extreme. Generally, the more proactive the better, however, the

economic justification may not be equally distributed, as this

depends on the production system configuration, which can pro-

duce significantly nonuniform consequences. According to Warren
Please cite this article as: G. Linnéusson, A.H.C. Ng and T. Aslam, A hybr
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2005) , performance reflects the current state of resources in any

eriod, so performance development requires the strategic man-

gement of steering the rates of resource use. For maintenance,

trategy implies controlling the rates of resource use, which in due

ime leads to proactiveness. Moreover, such control is dependent

n many, often ambiguous, accumulations in the system – such

s hidden defects in equipment, the quality of developed PM

ork to address the defects, skill and competence levels of staff,

nd more – which are affecting the required strategy. It is there-

ore hard to foresee and trace the consequences of the applied

trategies. Operations of production systems, on the other hand,

nable a relatively tangible modeling and verification procedure

ith the physical real-world, though simultaneously extremely

omplex due to numerous configurations. Also, operations are

ften subject to short-term pressures that displace the strategic

ctivities ultimately leading to proactiveness. Hence, the need for

n overarching framework for operational and strategic views is

rominent for achieving better informed practices. 

Fig. 1 contains several semantic items, all of which are mean-

ngful, connected to the defined levels as follows: 

Level One: The circle represents operations and produce current

results. At this level, change is manifested in activities to op-

timize the operation of the production system, using current

maintenance capabilities which deliver a certain balance of

proactive and reactive service to operations. 

Level Two: The wedge represents the dynamics of maintenance

operations, e.g., the slow-working continuous interaction of

equipment and their care. At this level, the current rates of

capability change are produced, as in moving towards proac-

tiveness or reactiveness. 

Level Three: The large arrow represents the maintenance strat-

egy and is where the quality of the current learning mech-

anisms, generated from perceived knowledge of the real-

world system, are generating the changes that improve or

degrade the conditions for performance. 

Further, the ongoing work of maintenance operations (level

wo) serves as a wedge upholding the current operational perfor-

ance of production system operations (level one), balancing the

ntropy-driven deterioration of the maintenance system, e.g., Levitt

2011) , with applied resources. The force of the deterioration can
id simulation-based optimization framework supporting strategic 

an Journal of Operational Research, https://doi.org/10.1016/j.ejor. 
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e illustrated using different slopes and is largely defined by the

equirements defined in the acquisition of the production system

quipment. At the same time, the “friction” slowing this deteri-

ration can be increased by improving the efficiency of currently

pplied basic maintenance policies (see Pintelon and Gelders

1992) or, in other words, maintenance methodologies ( Tsang,

002 ), which in the figure is called mix of PM work). Balancing

hese conditions on production system level involves complex

eedback among the components. Accordingly, many preconditions

t level one are governed by capabilities at level two, which

ogether generate the current availability and total maintenance

osts of the production system. Hence, when conditions change at

evel one they will affect level two, for example, reducing the time-

rames for PM work in operations. In the real world practice, it is

empting to neglect any longer-term consequences of such changes,

s well as in applying a DES study. Again, in the real world, we

now that there are delayed consequences, such as an increasing

acklog of PM work and an increasing load on the equipment,

otentially resulting in more unplanned breakdown events in oper-

tions, but we lack the proper tools to draw such conclusions from

he decision-maker perspective. Much can be gained from experi-

enting in DES studies, for example, considering how maintenance

ould provide better service to operations (see Gopalakrishnan

2016) , who addresses level one, and Alrabghi et al. (2017) , who

ddress levels one and two by exploring different PM strategies).

owever, although DES studies at best optimize the use of current

aintenance operation capabilities, they cannot evaluate the rates

f capability change, as in moving towards proactiveness or reac-

iveness. Still, DES studies can affect the formulation of a mainte-

ance strategy (level three), but from a limited long-term perspec-

ive, explaining the size of the dotted oval shape labeled “DES.”

SD studies presents the perspective of exploring maintenance

ehavior, (see Linnéusson et al. (2018c) , who address levels

wo and three by exploring SD to better understand the con-

equences of feedback between the operational load, its effect

n equipment health, and how the applied mix of mainte-

ance methodologies can support the balance between proactive

nd reactive interventions in operations). Given the limitations

f maintenance operations at the aggregate level, the dotted

val labeled “SD” in Fig. 1 is also including interaction with

roduction operations on the level of generalized availability

erformance. 

Accordingly, the objective of the HSBOF is to support all three

evels of maintenance development in interaction with operations.

s noted, no single method is applicable to all three levels and

heir diverse characters of change and accordingly requires the

pplication of SD and DES. Moreover, these levels can be ad-

ressed with different degrees of precision, so a vital precondition

s integration with MOO to support the evaluation of accurate,

ear-optimal tradeoff solutions. In subsequent section the HSBOF

s described, which has evolved from recently conducted studies

y Linnéusson et al. (2018a), Linnéusson, Ng and Aslam (2017),

innéusson, Ng and Aslam (2018b) , and Linnéusson et al. (2018c) in

rder to address the challenge of managing maintenance within

he economical short-termism framework and simultaneously

onsider maintenance consequential long-term costs. The con-

ucted research began with both SD and DES in mind in order

o address the above-mentioned complex maintenance dynamics,

et, identified SD and specifically SD + MOO to contain a higher

evel of novelty, and applicability to study feedback dynamics of

ossible strategies, than did extending the application area of the

lready available DES + MOO software. However, as researching

he problem unveiled the inability of SD to support with tangible

irectives to practice, besides suggesting on overarching policies of

eveloping the maintenance management, DES + MOO was consid-

red to complement, hence, a focus of identifying a procedure for
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ligning the reported SD + MOO approach with existing DES + MOO

ethod initiated this reported research. 

. Description of the HSBOF 

Applying the HSBOF, depicted in Figs. 2 and 3 , to support deci-

ion making is not straightforward. First of all, it is noticed that

ig. 2 includes many potential iterations where its subsequent

escription takes the point of origin from applying SD first and

ot DES (Phase 4). However, as indicated by the framework de-

ign, Phase 4 and Phase 1 can be independent. Starting with DES

nd DES + MOO could also be the case, as its output can feedback

hanges the conditions governing the ratio of proactive mainte-

ance behavior studied in Phase 1. Yet, including the consideration

hat starting with DES results in that the considered input to the

ES + MOO study from the strategy-selection process (Phase 1 to

hase 3) described in Fig. 3 is obsolete. 

As depicted in Fig. 2 each phase in the process of applying

he framework involves steps of many feedback iterations due

o that more and more learning of the problem undertaken is

ained. From the initial iterative process of problem structuring

ith stakeholders, developing an SD model in phase 1, which in-

olves much examination of multiple potential paths to address

he modelled problem, see, e.g., ( Hämäläinen & Lahtinen, 2016 ),

o the multiple knowledge extractions during the explorative pro-

ess of getting to phase 2 which results in producing initial re-

ults from MOO with SD, thoroughly testing the behavioral space

f the designed model, allowing even more choices of paths for-

ard regarding the undertaken study. Even so, the presented deci-

ion space in phase 3 involves multiple choices depending on the

ecision-makers’ preferences about strategies to employ, and fur-

her DES + MOO studies to conduct in order to identify where in

he production system specific activities can be implemented by

aintenance. 

Fig. 3 complements the technical schematic in Fig. 2 by explain- 

ng the steps in each phase that are required. Phase 3, which ends

he strategy-selection process, has three potential outputs: 

1. DES t1 – the potential changes to the structure of subsequent

DES + MOO cases 

2. Define DES + MOO decision space – based on the behavioral re-

sults from phase 3 explained in Section 4.4 

3. Strategies, policies, guidelines, key performance indicators

(KPIs), etc. – which represents the results of phases 1–3 ex-

tracted to general guidelines for the maintenance system 

Subsequent subsections include a walkthrough of the HSBOF.

t uses a previously reported SD model as basis in order to com-

rehend the subsequent walkthrough of the various phases of the

SBOF. Hence, Phase 1 illustrates and briefly reviews an exam-

le SD model; where detailed explanations were presented by

innéusson et al. (2018c) , and, all model equations and aspects of

odel boundary and validity supported by SD + MOO are found in

innéusson et al. (2018a) . Phase 2 then describes in short the ap-

lication of MOO to the SD model. Phase 3 presents how results

rom studying new experiments (from Phase 2) are selected and

nalyzed in order to illustrate how results from Phase 3 are inte-

rated into the application of DES + MOO, detailed in the descrip-

ion of Phase 5. And, in the preceding description of Phase 4 a

hort review of the motivation of DES + MOO studies previously re-

orted from other cases, using an in-house developed software, are

ound. Finally, Phase 6 presents reflections upon the implementa-

ion of the HSBOF in practice. 

After the walkthrough, Section 4.7 summarizes the HSBOF in its

ontext underlining its application as a generalizable framework,

s regards to the application of developing proactive maintenance

erformance and the link of the output from the strategy-selection
id simulation-based optimization framework supporting strategic 
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Fig. 2. A technical description of the HSBOF design. 
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Fig. 3. Phases 1–6 and their steps in applying the HSBOF. 
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process into the activity-selection process, which is the KPIs of

MTTF and MTTR according to Fig. 2 . 

4.1. Phase 1 – An exemplar SD model 

Phase 1, step 1a) to step 1d) in Fig. 2 , follows the general model

building process in SD and is here illustrated by an SD model de-

signed to serve as the basis for better-informed strategies by en-

abling the exploration of arbitrary tradeoffs between short- and

long-term dependencies in the maintenance system. The applied

SD model is a generalization, developed with support from two

large maintenance organizations in the Swedish automotive indus-

try, that includes the following elements: 

• a mix of currently applied maintenance methodologies, such

as run-to-failure ( RTF ), PM using fixed intervals ( PM fi), and

condition-based maintenance using inspections ( CBM i ) or sen-

sors ( CBM s ) ( Tsang, 2002 ); 
• defect-generating and defect-eliminating activities resulting in

an aggregate equipment health ( EH ) relating to the breakdown

frequency ( R BD ) of the production system ( Sterman, 20 0 0 ); 
• the resulting balance between unscheduled and scheduled

maintenance, based on the above points together with applied

repair workers ( S R ) (inspired by Ledet and Paich (1994) ; 
• continuous improvement ( CI ), based on root-cause analy-

ses ( RCA ) of breakdowns, changing the mix of maintenance

methodologies depending on available maintenance engineers

( S E ) (inspired by industrial partners); and 

• maintenance total costs ( C T ), based on direct maintenance costs

( C M 

), and estimated maintenance consequence costs ( C Q ), based

on variable behaviors such as R BD , planned takedowns ( R TD ),

inventories, and applied resources, (inspired by how costs are
generated). e
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Fig. 4 . is a simplified schematic of the SD model using Ven-

im DSS software, showing a stock and flow structure for keeping

rack of the condition of equipment in operations; the remaining

tructure is simplified into causal loop diagramming (CLD) nota-

ions ( Sterman, 20 0 0 ) to support the qualitative explanation of the

ynamics. 

Reactive maintenance leads to breakdowns ( R BD ) fixed by un-

cheduled repairs to restore equipment to its functional condition.

 BD not only degrade equipment health ( EH ), which can lead to

ore R BD , but also reduce availability ( A T ), yet, simultaneously a

ower level of A T is limiting the impact of equipment deteriora-

ion, having a combined effect resulting from two different feed-

ack loops. If the number of repair workers ( S R ) is kept constant,

ll this feedback eventually generates an equilibrium performance

evel. Regarding Fig. 1 , this would correspond to the wedge keeping

he circle in a fairly stationary position on the slope; accordingly,

eactive maintenance corresponds to level two. 

Proactive maintenance leads to scheduled repairs restoring

quipment to functional condition before failure. The flow of take-

owns ( R TD ) depends on the planned work order backlog and the

ressure to produce, giving rise to a growing gap between the tar-

eted and current A T . This gap will delay the proactive work and

ncrease the risk of R BD . The precision with which defects can be

dentified depends on the applied mix of RTF , PM fi, CBM i , and CBM s ,

epresented by the boxed variable “PM work” and the current EH

tatus. At this point, related to Fig. 1 , these dynamics correspond

o level two, similar to reactive maintenance. However, the intro-

uction of new PM work according to the continuous improvement

 CI ) principle, based on policies set by goal PM work and applied

esource policies, changes the mix of maintenance methodologies

pplied during different periods. These dynamics correspond to

evel three in Fig. 1 , to shift the equilibrium towards higher lev-

ls of proactiveness. 
id simulation-based optimization framework supporting strategic 
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Fig. 4. Schematic of the maintenance dynamics of the SD model, incorporating CLD notations. 
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.2. Phase 2 – MOO + SD studies 

Phase 2 includes the steps to extract multiple knowledge from

he applied SD model using MOO. A MOO study is dependent on

he purpose of the SD model, the understanding of the dynamics

ncluded in a SD model, and an idea of what should be studied

n the tradeoff analyses, since it defines what is found. Similarly,

s in any SD studies, a large variety of possible tradeoff studies

s available when using MOO in an SD model. It is therefore the

tudy at hand that defines the exact criteria to use. The applied

OO criteria identified in step 2a) in Fig. 3 define the MOO model,

here the exemplar case is depicted in Fig. 5 . 

Fig. 5 shows the parameters of the decision space searched in

he SD model, defined in the InputFile, and the searched objec-

ives, defined in the OutputFile. The selection of input parameters

ust be based on knowledge of their effects in the SD model;

ny constant can be explored, but more parameters increase the

imensionality of the search. It is desirable to include parameters

ffecting the major steering rates. The outputs in the exemplar

tudy included the conflicting objectives: maximize availability

 A T ); minimize maintenance costs ( C M 

); and minimize mainte-

ance consequence costs ( C Q ), which are evaluated together with

uitable constraints. 

Objective space exploration, step 2b), involves evaluating how

ell the integration of MOO and the SD model works. It there-

ore involves a process of refining the integration through steps

a), 2b), and 2c), also improving the validity of the SD model, with

urther details found in Linnéusson et al. (2018a) . And, then allows

erforming the near-optimal tradeoff analysis of interest, i.e., step

d). Several examples of results on step 2e) are found in previ-

usly reported studies which allows to study multiple patterns of

otential policies for the near-optimal solutions: (1) experiments

sing different coefficients for maintenance consequence costs ( C Q )

nding different Pareto frontiers of optimal tradeoff solutions sug-

esting two very different panoramas of strategies for mixing the

aintenance methodologies, but for the best A T solutions points

o unities ( Linnéusson et al., 2017 ); (2) experiments explored how

ifferent time horizons of 1–7 years will allow more or less proac-
 T  
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ive behavior and their respective policies, clearly showing imbal-

nce to reactive results using a short-term strategy ( Linnéusson et

l., 2018b ); (3) experiments exploring how three different start-

ng points in the PM work matter substantially for the subsequent

trategic development of maintenance, where, for instance, policies

n a setting with poorer starting conditions are limited by this fact

nd added proactive resources fail to be utilized ( Linnéusson et al.,

018a ). 

Overall, SD + MOO enables presenting the spectrum of poten-

ial near-optimal tradeoffs in the studied system, yet it is impor-

ant to note that the results are no better than the applied SD

odel. However, the application of MOO provides meta-knowledge

f system behavior tradeoffs which cannot be identified using SD

lone, confirmed by above-mentioned case studies. Furthermore,

OO analyses allow the comparison of tradeoff solutions between

onflicting objectives, which cannot be done using SOO. 

.3. Phase 3 – Study of SD model behavior 

Phase 3 is illustrated using an SD + MOO experiment optimized

sing the abovementioned criteria with a simulation period of fif-

een years. Three near-optimal tradeoff solutions are selected ac-

ording to Fig. 6 . Solutions 40,992 and 42,962 are at the same level

f A T , but perform divergently in terms of maintenance total costs

 C T ), while solution 13,785 is the best performing in C T , yet not

ptimal in A T . 

Table 2 presents the resulting input values obtained to achieve

he solutions in Fig. 6 . These values are then applied in the SD

odel, i.e., steps 3b) and 3c). Figs. 7–9 illustrate some selected be-

avior graphs. Fig. 7 presents the cost results, indicating that solu-

ion 13,785, line 3 in the graphs, requires substantial initial costs,

oth C M 

and C Q , indicating clear worse-before-better behavior. This

ehavior is not as apparent in the other solutions, but is somewhat

vident in solution 40,992, line 2 in Fig. 7 . This information pro-

ides a basis for what to expect from policies applied to achieve

ong-term results, i.e., higher initial costs should be expected. 

To provide guidelines and KPIs, the configuration of inputs in

able 2 needs interpretation, using careful investigation of the SD
id simulation-based optimization framework supporting strategic 
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Fig. 5. Diagram of MOO model, from modeFRONTIER software. 

Table 2 

The configuration of inputs generating the selected solutions. 

Input parameters 13,785 40,992 42,962 

1. numberRepairWorkers (Number of S R ) 36 22 23 

2. numberMaintenanceEngineers (Number of S E ) 5 5 2 

3. fractionPMiFromRCA (% of PM fi from RCA ) 0.25 0.25 0.35 

4. fractionCBMiFromRCAhelp (factor to calculate% of CBM i and CBM s from RCA ) 0.95 0.4 1 

5. goalFractionCBMoverPM (Goal% CBM i + CBM s of total PM) 1 1 1 

6. inspectionInterval ( CBM i interval (Weeks)) 4 6 50 

7. goalCBMsensors (Goal CBM s ) 500 150 325 

Fig. 6. Result graph over Pareto-front solutions and selected solutions. 
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odel behaviors. For example, the distribution between preven-

ive and reactive work that S R can implement can be studied in

reater depth in Fig. 8 , which characterizes an initially higher un-

cheduled workload eventually leading to a shift towards sched-

led work, especially in line 3. Still, this is a result of higher lev-

ls of the underlying conditions sustaining such proactive behavior.

urther examining the hidden defect level of EH , the left-hand side

f Fig. 9 , reveals that the three solutions have divergent effects;

here the hidden defects measure results from other ongoing ac-

ion flows, such as the flow of RCA , the right-hand side of the same

gure, which is a flow of implemented countermeasures leading

o the improved PM work in the SD model. Effort s to understand

he preconditions enabling the flow of RCA countermeasures are

orthwhile, as they enable better-informed knowledge of the driv-

ng forces of the studied system. In other words, the SD model al-

ows many potential studies of the underlying behaviors to support

tep 3c), i.e., formulation of strategy guidelines and KPIs, building

upport to achieve the turnaround point in the worse-before-better

ehavior shown in line 3 in Fig. 7 . 
id simulation-based optimization framework supporting strategic 
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Since an SD model allows multiple investigations of the in-

errelations in its modeled structures, step 3d) is by no means

ully approached by the above example graphs. By means of such

tudies, information can be generated that builds confidence in

nd motivation to implement the selected strategy, helps prepare

or any potential pitfalls, and provides prudent KPIs for measur-

ng/monitoring important developments considered necessary for

he end results. Moreover, phase 3 may prompt study refinements,

s indicated in Fig. 2 , due to redefined knowledge. 
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.4. Phase 4 – DES + MOO studies 

The bottleneck in a production line is where the infinitesimal

mprovement with the largest impact on throughput is located ( Ng

t al., 2014 ). Ng et al. (2014) and Pehrsson, Ng and Bernedixen

2016) argued that the numerous methods – such as machine uti-

ization, blocking and starving patterns, data-driven approaches,

hifting bottleneck detection, and multiple bottlenecks detection –

ll sharing the same deficiency of lacking sufficient information to
id simulation-based optimization framework supporting strategic 
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Table 3 

Example of calculated improvement ranges in DES + MOO study based on outputs in 

Fig. 10 . 

Type of improvement 

variable in SD model 

( Fig. 10 ) 

DES + MOO range Start value Value at 

156 weeks 
min max 

MTTF line1 0% 12.7% 13.07 14.73 

MTTF line2 0% 16.9% 13.07 15.28 

MTTF line3 0% 106.0% 13.07 26.93 

MTTR line1 0% –13.9% 1 0.8614 

MTTR line2 0% –17.6% 1 0.8236 

MTTR line3 0% –45.4% 1 0.5459 
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(

determine what improvement action(s) must be taken at the iden-

tified workstation or machine. Instead, they apply conflicting ob-

jective functions, in which the integration of DES and MOO works

simultaneously to maximize the throughput and minimize the sum

of improvement combinations. Bernedixen, Ng, Pehrsson and An-

tonsson (2015) compared DES + MOO with the utilization method

and the shifting bottleneck detection method, which more accu-

rately pinpointed the activity for the DES + MOO study, which had

a larger improvement effect in their comparison. 

A DES + MOO study is also dependent on the purpose of the ap-

plied DES model, which in our case is to identify bottlenecks in

processing time, availability, and mean time to repair (MTTR). Two

suitable studies, i.e., by Bernedixen et al. (2015); Ng et al. (2014) ,

well represent how DES + MOO results are generated and what in-

formation they provide. Both cases were generated using in-house

developed software, the FACTS Analyzer, which provides a tightly

integrated MOO-simulation functionality, making the optimization

of production systems straightforward ( Ng et al., 2014 ). Further

technical details were presented by Pehrsson et al. (2016) . Interest-

ingly, for all the three aforementioned papers improved availability

was the potential solution for increased throughput, and not the

traditionally expected processing time. Availability and MTTR are

often maintenance KPIs in the servicing of operations and applies

to the traditional measure of availability performance ( Hagberg &

Henriksson, 2010; Ljungberg, 20 0 0 ), as defined in Eq. (1) . Some

use the term mean time between failures (MTBF) to define the

time interval during which an item is performing its required func-

tion, see Campbell and Reyes-Picknell (2016); EN_15341 (2010);

Nord, Pettersson and Johansson (1997) . And, some consider MTTR

as equivalent to mean downtime (MDT), see Campbell and Reyes-

Picknell (2016); EN_15341 (2010) . We think that it is better to de-

scribe MDT as consisting of MWT and MTTR, according to Eq. (2) ,

in order to clarify the different contributions of maintenance to op-

erations. MTBF, as defined in Eq. (3) , can then be seen as the over-

all measure of maintenance organization performance for a cer-

tain piece of equipment; where MWT is a measure of maintenance

supportability to supply the right maintenance resources and ma-

terials, documentation, and tools to start a repair; and MTTR is

a measure of the ability to repair and standardize equipment.

Further, the frequency of MDT follows the average failure rate

( Eq. (4) ), which relates to the operating reliability measure MTTF.

A v ail abil ity = 

MT T F 

( M W T + M T T R + MT T F ) 
(1)

M DT = M W T + M T T R (2)

M T BF = M W T + M T T R + MT T F (3)

F ailure rate ( λ) = 

1 

MT T F 
(4)

Accordingly, a DES study which applies the availability mea-

sure as an input for a piece of equipment, together with MDT,

jointly define the discrete events of time between failures and time

to repair according to their respective statistical distributions. The

resulting improved long-term mean reliability measure of main-

tenance performance is MTTF, considered to generate the corre-

sponding improvement of availability in a DES + MOO study. 

Overall, the available industrial case study examples and the ap-

plicability of the ready developed FACTS Analyzer software point

towards a proven practical method that supplies knowledge of

where in the production system to intervene, and of which param-

eters to adjust. 
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.5. Phase 5 – SD + DES interaction study 

Using the presented SD model, and its results presented in

ection 4.3 , enables monitoring of MTTF, since the stock and flow

tructure represents both the average equipment in full operational

unctionality and the breakdown rate ( Eq. (5) ). The variable names

n Eqs. (5) –( 7 ) follow Fig. 4 . MTTR ( Eq. (6) ), on the other hand,

eeds some interpretation. Eq. (7) shows how MTTR is applied

o obtain the measure presented in Fig. 10 , which is based on

q. (6) . In Fig. 10 the resulting measure is a dimensionless ratio

etween reactive and proactive maintenance interventions in oper-

tions. This means that the development shown in Fig. 10 can be

nterpreted as the ratio shifting from reactive to proactive for the

elected simulation experiments from Fig. 6 . 

T T F = 

Equipment in operation 

breakdowns 
(5)

T T R = 

∑ 

t ime scheduled repairs + 

∑ 

t ime unscheduled repairs 
∑ 

scheduled repairs + 

∑ 

unscheduled repairs 

(6)

T T Rproacti v e = 

MT T R 

time per unscheduled repair 
(7)

The phase 5 SD + DES interaction study, consequently applies

he combined output of the selected strategy in phase 3, rep-

esented by the measures MTTF ( Eq. (5) ) and MTTRproactive

 Eq. (7) ). These measures define the potential percentage improve-

ent in the DES + MOO study. In the example illustrated in Fig. 10 ,

he dotted line indicates a three-year period for this purpose. The

alue of the specific solution is read at the end of the defined pe-

iod, and the improvement is calculated (see Eq. (8) ), defining the

aximum value of the range in the DES + MOO study, according to

able 3 . 

MT T F or �MT T R 

= 

v alue at end of time period − v alue at start 

v alue at start 
(8)

The example presented in Fig. 10 implies that the improvement

etails according to Table 3 are applied in the DES + MOO study of

TTF and MTTR, respectively. 

Finally, the explored potential strategies, seen in Fig. 10 , result

n this case in three potential experiments for the DES + MOO

tudy. The resulting analyses, which optimize throughput with the

ewest and most rewarding improvements in MTTF and MTTR in

he production system, present a prioritized plan for maintenance

o consider when planning improvement activities; now based

n a desired future state in a three year period. This specific

ES + MOO study is not presented here; to understand its prin-

iples in detail, the reader is referred to, for example, Ng et al.

2014) and Bernedixen et al. (2015) . 
id simulation-based optimization framework supporting strategic 
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Fig. 10. Output behavior of selected strategies for the variables interacting with the DES + MOO study. 
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.6. Phase 6 – Reflections on implementation 

The strength of the application of SD studies to problems con-

ains a process of problem structuring, approaching ambiguous as-

ects of the addressed problem boundary. A process which poten-

ially affects how we think about our problems, making them more

angible. Therefore, as insights grow applying the framework good

deas can be implemented even during the process of identifying

olicies, guidelines, and KPIs. Above all, the HSBOF is a learning

rocess based on both the strategy- and activities-selection pro-

ess. However, the limitation of attaining a relevant SD model to

upport addressing maintenance dynamics is in itself a challenge,

ontaining potential pitfalls and is restricted to the organizational

apability to interpret and model those dynamics. Building a simu-

ation model based on the dynamic problem and test its hypothesis

s a highly intuitive process ( Sterman, 20 0 0 ) and there are no for-

al descriptions of how to implement system dynamics projects

 Linnéusson, 2009 ). Hence, building modeling skills to perform SD

tudies is also a learning process and it can be hard to retrieve tan-

ible results. Hence, as mentioned in Section 3 , the support from

he tangible DES + MOO application, which is verified towards the

hysical production system, is needed to bridge the difficulty of

roviding accessible advises on activity level. Altogether, the HS-

OF defines the activities of the maintenance plan and budget for

he coming year, containing both concrete and policy aspects. 

Accordingly, the activities studied using DES + MOO are guided

y their importance to the throughput of the production system. At

o  
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uch specific levels, the guiding principles from the maintenance

trategy perspective may be less significant, but from the systems

erspective, such strategy evaluation provides insights on the ag-

regated level of how to balance the work load and achieve proac-

iveness; meaning that the two perspectives are interdependent. 

.7. Concluding summary of the HSBOF 

Fig. 11 illustrates the contributions and exchanges between the

ethods of the HSBOF and the production system environment. SD

ith the integrated use of MOO facilitates the strategy-selection

rocess, exposing and evaluating the tradeoffs between conflict-

ng objectives in both the short and long terms, in order to in-

orm maintenance strategy and the applicable supporting KPIs to

chieve proactive maintenance behavior. The obtained strategy has

mplications for the levels of proactiveness and equipment health,

hich are related strategy output results serving as input into the

ES + MOO study, which represents the operational level. By apply-

ng the potential improvements in the DES + MOO study generated

y the applied strategy in terms of measures such as MTTF and

TTR, the optimization of operations provides the prioritized mea-

ures that maintenance can include in their plans. 

In summary, the HSBOF helps improve our iterative knowl-

dge building regarding the complexities to manage proactive

aintenance in order to be prepared for future demands. Ac-

ordingly, SD is used for its abilities to illuminate the ambigu-

us structures of decision-making processes, which, according to
id simulation-based optimization framework supporting strategic 
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Forrester (1961) , consist of processes of converting information

into action. While the application of DES + MOO produces accurate

information to guide the next actions of the maintenance organi-

zation at the production system level. 

5. Discussion and conclusions 

This paper presents a resulting framework from studies imple-

menting system dynamics (SD), and SD with multi-objective opti-

mization (MOO), to support maintenance management to address

the difficulty of balancing economic short-term requirements while

proactive maintenance behavior have long-term effects on the pro-

duction system. A complex system in which one decision based on

economic budget, easily dis-attached from consequence to the real-

world system, can tip the continuous work of excellence performed

by maintenance and cause poor availability and high consequential

costs. And, at the same time, maintenance can claim budget while

not performing excellence because of too large safety margins in-

ducing high maintenance costs caused by lack of knowledge of the

complex systems. 

Nevertheless, SD alone cannot adequately clarify the complexity

of the production system. Therefore, the application of discrete-

event simulation (DES) is also needed, enabling identification of

where in the production system maintenance should intervene for

maximum effect. To achieve this analytical efficacy MOO is ap-

plied, creating a hybrid simulation-based optimization framework

(HSBOF), in order to support maintenance management. MOO

has proven ability to exhaustively examine SD models, present-

ing Pareto-front optimal tradeoff solutions to the decision maker,

and effectively seek optimal configurations in DES models; ensur-

ing the use of the best known and most effective approach to ad-

dress the accurate sequence of activities in improving bottlenecks.

Actually, each method can inform practice separately, but to in-

tegrate strategic and operational maintenance development, they

have been synergistically used together as argued and proposed

here. 

An apparent weakness of the proposed framework is the high

level of competence, knowledge, and applicable technical support

required to implement it in industry. From our experience, one

critical bottleneck is applying SD in maintenance and manufactur-

ing systems development. This introduces the aggregate perspec-

tive of seeing one’s processes from a systems perspective, which

industrial actors are inexperienced in doing. The other apparent

weakness and limitation with the proposed framework, inherent in

all SD studies, is the difficulty in attaining relevant models due to

its intuitive modeling and testing process ( Sterman, 20 0 0 ). Hence,

the strengths of applying SD as problem structuring method should

be acknowledged, and herein supported by MOO the relevance of

an SD model is unforgivingly examined. We, therefore, believe that

future research needs to focus on improving the proposed frame-

work on the strategy side, to enhance and facilitate the applica-

tion of SD in maintenance development. Moreover, it identifies the

need of future studies to retrieve how the application of the HS-

BOF actually supports and is improving human problem solving

and decision making in practice, which is the core of the behav-

ioral OR field ( Franco & Hämäläinen, 2016 ), and fundamental to

further explore in order to develop this problem-based research.

Besides these, it is believed that the presented work opens avenues

for numerous studies in industrial maintenance management, as

well as, applications of automated innovation as applied to previ-

ous SD + MOO studies ( Bandaru, Aslam, Ng & Deb, 2015 ) could un-

veil and extract further knowledge of presented studies here. How-

ever, our recommendation for industry is to start approaching the

framework using DES + MOO due to its more tangible character and

standardized approach. With the emerging digitalization of indus-

try there will be a natural development of more advanced virtual
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ools. And, support from a maintenance development tool that en-

ompasses the larger system boundary as defined here is consid-

red required in order to maneuver among the increasing complex-

ties and the demand for high utilization. Hence, this work may

erve as a reference for future studies endeavoring to unite the

wo perspectives of maintenance strategy and operations in order

o realize sustainable change in production performance via main-

enance efforts. 
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