
JID:TCS AID:12269 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.261; Prn:25/11/2019; 12:13] P.1 (1-9)

Theoretical Computer Science ••• (••••) •••–•••
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Parameter identification in Markov chain choice models

Arushi Gupta a,∗, Daniel Hsu b

a Princeton University, Princeton, NJ, United States of America
b Columbia University, New York, NY, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Available online xxxx

Keywords:
Discrete choice models
Markov chain choice models
Parameter identification

This work studies the parameter identification problem for the Markov chain choice model 
of Blanchet, Gallego, and Goyal used in assortment planning. In this model, the prod-
uct selected by a customer is determined by a Markov chain over the products, where 
the products in the offered assortment are absorbing states. The underlying parameters of 
the model were previously shown to be identifiable from the choice probabilities for the 
all-products assortment, together with choice probabilities for assortments of all-but-one 
products. Obtaining and estimating choice probabilities for such large assortments is not 
desirable in many settings. The main result of this work is that the parameters may be 
identified from assortments of sizes two and three, regardless of the total number of prod-
ucts. The result is obtained via a simple and efficient parameter recovery algorithm.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

In assortment planning, the seller’s goal is to select a subset of products (called an assortment) to offer to a customer so 
as to maximize the expected revenue. This task can be formulated as an optimization problem given the revenue generated 
from selling each product, along with a probabilistic model of the customer’s preferences for the products. Such a discrete 
choice model must capture the customer’s substitution behavior when, for instance, the offered assortment does not contain 
the customer’s most preferred product.

Our focus in this paper is the Markov chain choice model (MCCM) proposed by Blanchet et al. [2]. This MCCM chooses 
to model the product selected by the customer as a Markov chain over products where the products in the offered assort-
ment are absorbing states. The current state represents the desired product; if that product is not offered, the customer 
transitions to another product according to the Markov chain probabilities, and the process continues until the desired 
product is offered or the customer leaves. MCCM generalizes widely-used discrete choice models such as the multinomial 
logit model [6,8], as well as other generalized attraction models [5]; it also well-approximates other random utility models 
found in the literature such as mixed multinomial logit models [7]. At the same time, the MCCM permits computationally 
efficient unconstrained assortment optimization as well as efficient approximation algorithms in the constrained case [2,4]; 
this stands in contrast to some richer models such as mixed multinomial logit models [9] and the nested logit model [3] for 
which assortment optimization is generally intractable. This combination of expressiveness and computational tractability 
makes MCCM very attractive for use in assortment planning.

A crucial step in this overall enterprise—e.g., before assortment optimization may take place—is the estimation of the 
choice model’s parameters from observational data. Parameter estimation for MCCM is only briefly considered in the original 
work of Blanchet et al. [2]. In that work, it is shown that the parameters can be determined from the choice probabilities 
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for the all-products assortment, together with the assortments comprised of all-but-one product. This is not satisfactory 
because it may be unrealistic or unprofitable to offer assortments of such large cardinality. Therefore, it is desirable to be 
able to determine the parameters from choice probabilities for smaller cardinality assortments. We note that this is indeed 
possible for simpler choice models such as the multinomial logit model (see, e.g., [10]), but these simpler models are limited 
in expressiveness—for example, they cannot express heterogeneous substitution behavior.

In this paper, we show that the MCCM parameters can be identified from the choice probabilities for assortments of sizes 
as small as two and three, independent of the total number of products.1 We also give a simple and efficient algorithm for 
reconstructing the parameters from these choice probabilities.

2. Model and notation

In this section, we describe the Markov chain choice model (MCCM) of Blanchet et al. [2], along with notations used for 
choice probabilities and model parameters.

The set of n products in the system is denoted by N := {1, 2, . . . , n}. The “no purchase” option is denoted by product 0. 
Upon offering an assortment S ⊆ N , the set of possible outcomes is S+ := S ∪ {0}: either some product in S is purchased, 
or no product is purchased.

Underlying the MCCM is a Markov chain with state space N+ . The (true) parameters of the model are the initial state 
probabilities λ = (λi)i∈N+ and the transition probabilities ρ = (ρi, j)(i, j)∈N+×N+ (a row stochastic matrix). The transition 
probabilities satisfy the following properties:

1. ρ0,0 = 1 and ρ0, j = 0 for j ∈N (i.e., the “no purchase” state is absorbing).
2. ρi,i = 0 for i ∈N (i.e., no self-loops in product states).
3. The submatrix ρ̃ := (ρi, j)(i, j)∈N×N is irreducible.

We use ρ i = (ρi, j) j∈N+ to denote the i-th row of ρ .
In MCCM, the customer arrives at a random initial state X1 chosen according to λ. At time t = 1, 2, . . . :

• If Xt = 0, the customer leaves the system without purchasing a product.
• If the product Xt is offered (i.e., Xt ∈ S), the customer purchases Xt and leaves.
• If the product Xt is not offered (i.e., Xt /∈ S), the customer transitions to a new random state Xt+1 chosen according to 

ρ Xt
and the process continues in time step t + 1 as if the customer had initially arrived at Xt+1.

Another way to describe this process is that the Markov chain distribution is temporarily modified so that the states S+
are absorbing, and the customer purchases the product upon reaching such a state (or makes no purchase if the state is 0). 
The irreducibility of ρ̃ ensures that the customer eventually leaves the system (i.e., an absorbing state is reached). Note 
that only the identity of the final (absorbing) state is observed, as it corresponds to either a purchase or non-purchase. 
The (Xt)t=1,2,..., themselves do not correspond to observable customer behavior, and hence the model parameters λ and ρ
cannot be directly estimated.

The choice probabilities are denoted by π( j, S) for S ⊆ N and j ∈ S+: this is the probability that j is the final state in 
the aforementioned process. Blanchet et al. [2] relate the choice probabilities and the parameters λ and ρ as follows:

λ j = π( j,N ) , ρi, j =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = 0 and j = 0 ,

π( j,N \ {i}) − π( j,N )

π(i,N )
if i ∈ N , j ∈ N+, and i �= j ,

0 otherwise .

(1)

The relations in Equation (1) show that the parameters may be identified from choice probabilities for the assortments 
S =N and S =N \ {i} for i ∈N . These choice probabilities may be directly estimated from observations upon offering such 
assortments to customers.

3. Main result

The following theorem establishes identifiability of the MCCM parameters from choice probabilities for assortments of 
sizes as small as two and three.

Theorem 1. There is an efficient algorithm that, for any r ∈ {2, 3, . . . , n −1}, when given as input the choice probabilities (π( j, S)) j∈S+
for all assortments S ⊆N of cardinality r and r + 1 for a Markov chain choice model, returns the parameters λ and ρ of the model.

1 We focus on identifiability because estimation of choice probabilities from observational data is fairly straightforward, especially when the assortments 
have small cardinality. However, this issue is revisited in Section 6 in the context of sample complexity.
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The number of assortments for which the algorithm actually requires choice probabilities is O (n2) when r ≤ n/2, which 
is far fewer than 

(n
r

) + ( n
r+1

)
, the total numbers of assortments of sizes r and r + 1. The details of this bound are shown 

following the proof of Theorem 1. However, to simplify the presentation, we describe our parameter recovery algorithm as 
using choice probabilities for all assortments of sizes r and r + 1.

The main steps of our algorithm, shown as Algorithm 1, involve setting up and then solving systems of linear equations 
that (as we will prove) determine the unknown parameters λ and (ρ i)i∈N . (Note that ρ0 is already known.) The coefficients 
of the linear equations are determined by the given choice probabilities via conditional choice probabilities π( j, S | i) for 
S ⊆N and i, j ∈N+ , defined as follows:

π( j, S | i) := Pr (state j is reached before any state in S+ \ { j} | initial state is i) . (2)

Algorithm 1 Parameter recovery algorithm for Markov chain choice model.
input For some r ∈ {2, 3, . . . , n − 1}, choice probabilities (π( j, S)) j∈S+ for all assortments S ⊆ N of sizes r and r + 1.

output Parameters λ̂ and ρ̂ .
1: for i ∈N do
2: Solve the following system of linear equations for ρ̂ i = (ρ̂i,k)k∈N+ :

∑
k∈N+

π( j, S | k) · ρ̂i,k = π( j, S | i) for all S ∈
(N

r

)
s.t. i /∈ S and j ∈ S+ , (3)

where (Nr )
denotes the family of subsets of N of size r, and π( j, S | k) is defined in Equation (5).

3: end for
4: Solve the following system of linear equations for λ̂ = (λ̂i)i∈N+ :

∑
k∈N+

π( j, S | k) · λ̂k = π( j, S) for all S ∈
(N

r

)
and j ∈ S+ (4)

5: return λ̂ and ρ̂ .

Note that the initial state in the MCCM is not observed, so these conditional probabilities cannot be directly estimated. 
Nevertheless, they can be indirectly estimated via the following relationship between the conditional choice probabilities 
and the (unconditional) choice probabilities.

Lemma 1. For any S ⊆N and i, j ∈ S+ ,

π( j, S | i) =

⎧⎪⎪⎨
⎪⎪⎩

1 if i = j ,
π( j, S) − π( j, S ∪ {i})

π(i, S ∪ {i}) if i ∈ N \ S ,

0 if i ∈ S+ \ { j} .

(5)

Proof. The cases where i = j (⇒ π( j, S | i) = 1) and i ∈ S+ \ { j} (⇒ π( j, S | i) = 0) are clear from the definition in Equa-
tion (2). It remains to handle the case where i ∈ N \ S . Fix such a product i, and observe that

π( j, S) = Pr ( j is reached before S+ \ { j})
= Pr ( j is reached before S+ \ { j} ∧ i is not reached before S+)

+ Pr ( j is reached before S+ \ { j} ∧ i is reached before S+)

= Pr ( j is reached before (S+ ∪ {i}) \ { j})
+ Pr ( j is reached before S+ \ { j} | i is reached before S+)

· Pr (i is reached before S+)

= Pr ( j is reached before (S ∪ {i})+ \ { j})
+ Pr ( j is reached before S+ \ { j} | initial state is i)

· Pr (i is reached before (S ∪ {i})+ \ {i})
= π( j, S ∪ {i}) + π( j, S | i) · π(i, S) .

The penultimate step uses the Markov property and the case condition that i ∈ N \ S . Rearranging the equation gives the 
relation claimed by the lemma in this case. �
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Lemma 1 shows that the conditional choice probabilities for assortments S of size r can be determined from the un-
conditional choice probabilities of assortments of size r and r + 1. The systems of linear equations used in Algorithm 1
(Equations (3) and (4)) are defined in terms of these conditional choice probabilities and hence are ultimately defined in 
terms of the unconditional choice probabilities provided as input to Algorithm 1.

It is clear that the true MCCM parameters λ and ρ satisfy the systems of linear equations in Equations (3) and (4). 
However, what needs to be proved is that they are uniquely determined by these linear equations; this is the main content 
of the proof of Theorem 1.

4. Proof of Theorem 1

In this section, we give the proof of Theorem 1.

4.1. The case without the “no purchase” option

For sake of clarity, we first give the proof in the case where the “no purchase” option is absent. This can be regarded as 
the special case where λ0 = 0 and ρi,0 = 0 for all i ∈ N . So here we just regard λ = (λ j) j∈N and each ρ i = (ρi, j) j∈N as 
probability distributions on N . The general case will easily follow from the same arguments with minor modification.

4.1.1. Proof strategy
We make use of the following result about M-matrices, i.e., the class of matrices A that can be expressed as A = sI − B

for some s > 0 and non-negative matrix B with spectral radius at most s. (Here, I denotes the identity matrix of appropriate 
dimensions.) In particular, the matrix I − ρ is a (singular) M-matrix that is also irreducible.

Lemma 2 (See, e.g., Theorems 6.2.3 & 6.4.16 in [1]). If A ∈ Rp×p is an irreducible M-matrix (possibly singular), then every principal 
submatrix2 of A, other than A itself, is non-singular. If A is also singular, then it has rank p − 1.

For each S ∈ (N
r

)
and j ∈ S , define the vector

h j,S := (π( j, S | k))k∈N .

For each i ∈N , the collection of the vectors {h j,S : S �
 i ∧ j ∈ S} provide the left-hand side coefficients in Equation (3) for ρ̂ i . 
We’ll show that the span of these vectors (in fact, a particular subset of them) has dimension at least n −1. This is sufficient 
to conclude that ρ i is the unique solution to the system of equations in Equation (3) because it has at most n − 1 unknown 
variables, and it is clear that ρ i satisfies the system of equations. (In fact, there are really only n − 2 unknown variables, 
because we can force ρ̂i,i = 0 and ρ̂i,n = 1 − ∑n−1

k=1 ρ̂i,k .) For the same reason, it is also sufficient to conclude that λ is the 
unique solution to the system of equations in Equation (4) (where, in fact, we may use all vectors {h j,S : S ∈ (N

r

) ∧ j ∈ S}).

4.1.2. Rank of linear equations from a single assortment
We begin by characterizing the space spanned by {h j,S : j ∈ S} for a fixed S ∈ (N

r

)
. We claim, by Lemma 1, that the 

vectors in {h j,S : j ∈ S} are linearly independent. Indeed, if this collection of vectors is arranged in a matrix [h j,S : j ∈ S], 
then the submatrix obtained by selecting rows corresponding to j ∈ S is the S × S identity matrix. Thus we have proved

Lemma 3. For any S ∈ (N
r

)
, dim

(
span{h j,S : j ∈ S}) = |S| = r.

Note that in the case r = n − 1, we are done. But when r < n − 1, the linear equations given by the {h j,S : j ∈ S} may not 
uniquely determine the ρ i for i ∈ N \ S . To overcome this, we need to be able to combine linear equations derived from 
multiple assortments. However, for a sum of subspaces V and W ,

dim(V + W ) �= dim(V ) + dim(W )

unless V and W are orthogonal. In our case, the subspaces span{h j,S : j ∈ S} and span{h j,S ′ : j ∈ S ′} for different assortments 
S and S ′ are not necessarily orthogonal (even if S and S ′ are disjoint). So a different argument is needed.

4.1.3. Rank of linear equations from multiple assortments
Our aim is to show that the intersection of subspaces V := span{h j,S : j ∈ S} ∩span{h j,S ′ : j ∈ S ′} for different assortments 

S and S ′ cannot have high dimension. We do this by showing that the intersection is orthogonal to a subspace of high 
dimension.

2 Recall that a principal submatrix of a p × p matrix A is a submatrix obtained by removing from A the rows and columns indexed by some set I ⊆ [p].
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For each i ∈N , let ai denote the i-th row of the matrix A := I − ρ (which is an M-matrix). That is, ai := ei − ρ i , where 
ei is the i-th coordinate basis vector. Recall that if i ∈ N \ S , then ρ i satisfies Equation (3). This fact can be written in our 
new notation as

h

j,S ei − h


j,sρ i = a

i h j,S = 0 , j ∈ S .

In other words,

Lemma 4. For any S ∈ (N
r

)
, span{h j,S : j ∈ S} ⊥ span{ai : i ∈N \ S}.

Now consider two assortments S and S ′ , and the intersection of their respective subspaces. It follows from Lemma 4
that

span{h j,S : j ∈ S} ∩ span{h j,S ′ : j ∈ S ′} ⊥ span{ai : i ∈ N \ (S ∩ S ′)} .

This orthogonality is the key to lower-bounding the dimension of the sum of these subspaces, which we capture in the 
following general lemma.

Lemma 5. Let S be a family of subsets of N , S ′ be a subset of N , and S ′ := S ∪ {S ′}. Define the subspaces

VS := span{h j,S : S ∈ S , j ∈ S} ,

V S ′ := span{h j,S ′ : j ∈ S ′} ,

VS ′ := VS + V S ′ .

Then

dim (VS ′) ≥ dim (VS ) + |S ′| − max
{

1,
∣∣(⋃

S∈S S
) ∩ S ′∣∣} .

Proof. Let S0 := ⋃
S∈S S . Fix any v ∈ VS ∩ V S ′ . Then, by Lemma 4, a


i v = 0 for all i ∈ (N \ S0) ∪ (N \ S ′) = N \ (S0 ∩ S ′). 
In other words,

VS ∩ V S ′ ⊥ W ,

where W := span{ai : i ∈N \ (S0 ∩ S ′)}, and

dim (VS ∩ V S ′) ≤ dim(W ⊥) = n − dim(W ) .

To determine dim(W ), observe that W is the span of rows of certain rows of the M-matrix A . By Lemma 2, the principal 
submatrix of A corresponding to N \ (S0 ∩ S ′) is either non-singular (when S0 ∩ S ′ �= ∅) or is A itself; in either case, it has 
rank n − max{1, |S0 ∩ S ′|}. Hence,

dim(W ) = n − max{1, |S0 ∩ S ′|}
as well. Combining the dimension formula with the last two equation displays gives

dim(VS ′) = dim(VS + V S ′)

= dim(VS ) + dim(V S ′) − dim(VS ′ ∩ V S ′)

≥ dim(VS ) + dim(V S ′) − max{1, |S0 ∩ S ′|} .

The claim now follows from Lemma 3. �
4.1.4. Choice of assortments

We now choose a collection of assortments and argue, via Lemma 3 and Lemma 5, that they define linear equations of 
sufficiently high rank. Specifically, for each i ∈ N , we need a collection S ⊂ (N

r

)
such that each S ∈ S does not contain i, 

and

dim

(
span

⋃
S∈S

{h j,S : j ∈ S}
)

≥ n − 1 . (6)

Lemma 6. Suppose the assortments S1, S2, . . . , ST ∈ (N
r

)
have a pairwise common intersection S∩ = St ∩ St′ for all t �= t′ , and 

|S∩| = r − 1. Then dim
(

span
⋃T

t=1{h j,St : j ∈ St}
)

≥ T + r − 1.
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Proof. Let dτ := dim
(
span

⋃τ
t=1{h j,St : j ∈ St}

)
for τ ∈ {1, 2, . . . , T }. By Lemma 3, we know that d1 = r. Now, assume dτ ≥

τ + r − 1, and use the fact r ≥ 2 and Lemma 5 to conclude that dτ+1 ≥ dτ + r − (r − 1) = dτ + 1 ≥ τ + r. The claim now 
follows by induction. �

Fix any i ∈ N and S∩ ∈ (N \{i}
r−1

)
, and observe that |N \ (S∩ ∪ {i})| = n − r. Consider the collection of size-r assortments 

given by

S := {S∩ ∪ {k} : k ∈ N \ (S∩ ∪ {i})} . (7)

These assortments do not contain i, they have the common intersection S∩ , with |S∩| = r−1, and there are n −r assortments 
in total. So by Lemma 6, the collection S satisfies the dimension bound in Equation (6).

As was already argued in the proof strategy, this suffices to establish the uniqueness of the ρ i and λ as solutions to the 
respective systems of linear equations in Equation (3) and Equation (4).

This concludes the proof of Theorem 1 without the “no purchase” option. �
4.2. The general case with the “no purchase” option

We now consider the general case, where the “no purchase” option is present. The main difference relative to the 
previous subsection is that ρ is no longer irreducible, as the “no purchase” state 0 is absorbing. However, the submatrix 
ρ̃ = (ρi, j)(i, j)∈N×N is irreducible, so I − ρ̃ is an irreducible M-matrix.

The definition of h j,S , for S ⊆N and j ∈ S+ , is now taken to be

h j,S := (π( j, S | k))k∈N+ .

Because the indexing starts at 0, we still define ai to be the i-th row of A = I − ρ , so ai = ei − ρ i . (In particular, a0 is the 
all-zeros vector.)

With these definitions, we have the following analogue of Lemma 3 and Lemma 4:

Lemma 7. For any S ∈ (N
r

)
,

dim(span{h j,S : j ∈ S+}) = |S+| = r + 1 ,

span{h j,S : j ∈ S+} ⊥ span{ai : i ∈ N \ S} .

Here, the key difference is that the dimension is r + 1, rather than just r.
We now establish an analogue of Lemma 5 (which is typographically nearly identical).

Lemma 8. Let S be a family of subsets of N , S ′ be a subset of N , and S ′ := S ∪ {S ′}. Define the subspaces

VS := span{h j,S : S ∈ S , j ∈ S+} ,

V S ′ := span{h j,S ′ : j ∈ S ′+} ,

VS ′ := VS + V S ′ .

Then

dim (VS ′) ≥ dim (VS ) + |S ′| − max
{

1,
∣∣(⋃

S∈S S
) ∩ S ′∣∣} .

Proof. The proof is nearly the same as that of Lemma 5. Define S0 := ⋃
S∈S S and take v ∈ VS ∩ V S ′ . By Lemma 7, 

VS ∩ V S ′ ⊥ W , where W := span{ai : i ∈N \ (S0 ∩ S ′)}, and

dim(VS ∩ V S ′) ≤ dim(W ⊥) = n + 1 − dim(W ) .

We now use the fact that I − ρ̃ , which is a submatrix of A, is an irreducible M-matrix. By Lemma 2, the principal submatrix 
of A corresponding to N \ (S0 ∩ S ′) is either non-singular (when S0 ∩ S ′ �= ∅) or is I − ρ̃; in either case, it has rank 
n − max{1, |S0 ∩ S ′|}. So we have

dim(W ) = n − max{1, |S0 ∩ S ′|} and dim(W ⊥) = 1 + max{1, |S0 ∩ S ′|} .

Finishing the proof as in Lemma 5, we have

dim(VS ′) ≥ dim(VS ) + dim(V S ′) − 1 − max{1, |S0 ∩ S ′|}
≥ dim(VS ) + r − max{1, |S0 ∩ S ′|}

where the second inequality uses Lemma 7 (instead of Lemma 3). �
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The choice of assortments demonstrating the subspace of required dimension is the same as before, except now we show 
that the dimension is at least n. Again, fix some i ∈ N , and choose the collection of n − r assortments S ⊆ (N

r

)
as before 

(described in and directly before Equation (7)). Following the inductive argument in the proof of Lemma 6, but now using 
Lemma 7 and Lemma 8 (instead of Lemma 3 and Lemma 5), we have

dim

(
span

⋃
S∈S

{h j,S : j ∈ S}
)

≥ (r + 1) + (n − r − 1) · (r − max{1, r − 1}) = n .

Since each of the systems of linear equations from Equation (3) and Equation (4) have (at most) n unknown variables, we 
conclude that the ρ i and λ are unique as solutions to their respective systems of linear equations.

This concludes the proof of Theorem 1. �
4.3. Total number of assortments required

We now show that the number of assortments for which we need the choice probabilities is O (n2) for r ≤ n/2. In-
deed, the construction given above based on Lemma 6 can be used to avoid using all assortments of size r (and r + 1) in 
Algorithm 1.

We choose two sets S∩, S ′∩ ∈ ( N
r−1

)
, which shall serve as “common intersection sets” (in the sense used in Section 4.1.4), 

as follows. The first set S∩ ∈ ( N
r−1

)
is chosen arbitrarily; it serves as the common intersection set for all i ∈ N \ S∩ . The 

second set S ′∩ ∈ (N \S∩
r−1

)
is chosen arbitrarily as long as it is disjoint from S∩ (which is possible because r ≤ n/2); it serves 

as the common intersection set for i ∈ S∩ .
For each i ∈N \ S∩ , we need the equations for the assortments S∩ ∪{k} for all k ∈N \ (S∩ ∪{i}). Obtaining the equations 

for one such S∩ ∪ {k} requires choice probabilities for assortments S∩ ∪ {k} and S∩ ∪ {k} ∪ { j} for j ∈ N \ (S∩ ∪ {k}) as per 
Lemma 1. In total, for all i ∈ N \ S∩ , we need choice probabilities for O (n2) assortments. For the remaining i ∈ S∩ , we 
use the same argument for the disjoint common intersection set S ′∩ , and thus require the choice probabilities for at most 
another O (n2) assortments.

5. Sample complexity

Estimating all the purchase probabilities for an assortment of size r involves inferring the parameters of a Multinomial 
random variable, MN(m, π1, ..., πk) where m is the number of customers and πi is the probability for the i-th category. 
Using larger assortments for the algorithm requires estimating as few as n + 1 of these random variables. Using smaller 
assortments could require estimating as many as O (n2) random variables, but these would be binomial or multinomial 
with fewer categories, which could require fewer samples overall. We discuss how many samples would be needed to limit 
the percentage difference of the maximum values between the calculated and actual parameters. We present the following 
lemma which describes how many samples are needed to estimate a multinomial random variable with k categories.

Lemma 9. For a multinomial random variable with category probabilities πi i ∈ {1, ..., k} and observed probability pi , a sample size 
of

n = max
k≥1

{
(1/k)(1 − 1/k)χ2

(1,α/k)

d2

}
(8)

is sufficient to satisfy that

P [∩k
i=1|pi − πi| ≤ di] ≥ 1 − α ∀i = 1, ...,k (9)

if all the di = d.

Lemma 10. Suppose we have an original system Ax = b which is perturbed to (A + �A)x = (b + �b). Then

‖�x‖
‖x‖ ≤ K (A)

(‖�A‖
‖A‖ + ‖�b‖

‖b‖
)

(10)

where K (A) is the condition number of A.

The maximum values for n in Lemma 9 actually occur for small values of k, so the size of the assortments itself per 
se may not require more samples. However, Lemma 9 deals with the case where all the di = d. We are not requiring that 
all parameters be within a percentage of their true values. If this is what we require, then using larger assortments could 
require more samples than using smaller assortments, because the smallest probability pS = min i∈Sπi for a large assortment 
may be smaller than that for a small assortment. There is no sample size that can guarantee that the parameters are within 
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a percentage of their true value for all possible parameters, but if the smallest category probability is ps , then we may 
choose d = c · ps , where c is some small positive constant, .1 for example, to guarantee that all parameters are within 10%
of their true value. This means that when calculating the π( j, |S, i), the numerator in Lemma 1 is guaranteed to be no 
more than �s = c · pS + c · pS∪{i} away from its true value. Since pS∪{i} ≤ pS we can just write �s = 2c · pS , and since the 
denominator is guaranteed to be within 10% of its true value π( j|S, i) is guaranteed to be within

c

1 − c
π( j|s, i) + 1

1 − c
�s (11)

of its true value. Letting the ρi function as x in Lemma 10, we can see that we need only to figure out the norm of �A
and �b to get a bound on the ρi . We pick the ∞ norm and note that at least one of the π( j|S, i) = 1 for any nonempty S . 
Therefore taking the sum across the row,

‖A‖ = max
i∈[n]

(
1 +

∑
π(·|Si, ·)

)
(12)

The smallest value ‖b‖ can take is 1. The largest value ‖�A‖ can take is

max
i∈[n]

(∑
(

c

1 − c
π(·|Si, ·) + 1

1 − c
�s)

)
(13)

and the maximum value that �b can take is
c

1 − c
π(·|·, ·) + 1

1 − c
�s (14)

So the final expression becomes

‖�ρi‖
‖ρi‖ ≤ K (A)

⎛
⎝maxi∈[n]

(∑
( c

1−c π(·|Si, ·) + 2c
1−c · pSi )

)
maxi∈[n]

(
1 + ∑

π(·|Si, ·)
) +

c
1−c π(·|·, ·) + 2c

1−c · pSi

1

⎞
⎠ (15)

Although pS appears in the numerator of the previous equation, a smaller pS requires that the number of samples be 
much larger in Lemma 9.

6. Discussion

Our main result establishes the identifiability of MCCM parameters from choice probabilities for assortments of sizes 
different from n − 1 and n. This is important because real systems often have cardinality constraints on the assortment 
sizes. While such constraints are typically considered in the context of assortment optimization (see, e.g., [4]), it is also 
important in the context of parameter estimation.

One complication of using small size assortments to estimate the MCCM parameters is that the number of different 
assortments required may be as large as O (n2). In contrast, only n + 1 assortments are needed when the sizes are n − 1
and n. On the other hand, the statistical difficulty of estimating choice probabilities for large assortments may be higher 
than the same task for smaller assortments. This work assumed throughout that no noise is present in the inputs, and 
determining how the addition of noise affects the accuracy of the parameter estimation is an interesting question we leave 
to future work.
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