
Energy & Buildings 202 (2019) 109383 

Contents lists available at ScienceDirect 

Energy & Buildings 

journal homepage: www.elsevier.com/locate/enbuild 

A review of the applications of artificial intelligence and big data to 

buildings for energy-efficiency and a comfortable indoor living 

environment 

Muhammad Uzair Mehmood 

a , Daye Chun 

b , Zeeshan 

a , Hyunjoo Han 

c , Gyuyeob Jeon 

c , 
Kuan Chen 

d , ∗

a Department of Nuclear and Energy Engineering, Jeju National University, Jeju 63243, South Korea 
b Waseda University, Tokyo 169-8050, Japan 
c Department of Architectural Engineering, Jeju National University, Jeju 63243, South Korea 
d Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112, USA 

a r t i c l e i n f o 

Article history: 

Received 29 May 2019 

Revised 14 August 2019 

Accepted 23 August 2019 

Available online 24 August 2019 

Keywords: 

Artificial intelligence 

Big data 

Green buildings 

Sustainable architecture 

a b s t r a c t 

After decades of evolution and improvements, Artificial Intelligence (AI) is now taking root in our daily 

lives, and is starting to profoundly influence the fields of architecture and sustainability. The applications 

of AI to sustainable architecture include energy-efficient building design, forecasting and minimizing en- 

ergy consumption, strategizing for mitigating impacts on environment and climate, and enhancements 

in the safety and comfort of the living environment. Due to the significant increases in internet speed 

and accessibility and the drops in computer prices and data storage costs in recent years, Big Data (BD) 

nowadays plays an important supplementary role to AI. Algorithms and computer codes have been devel- 

oped for data mining and analysis. BD rejuvenates AI methods and applications in many areas, including 

sustainable architecture. The present paper starts with an introduction to AI history and techniques. This 

is followed by a discussion on how AI and BD can be used to design and operate energy–efficient com- 

mercial buildings and residential houses, followed by a review of recent applications of AI and BD to 

energy-efficient buildings with an emphasis on the use of machine learning (ML) and large databases. 

Future research topics are suggested at the end of this paper. It is reemphasized in the present paper 

that AI, when combined with BD, can tremendously increase the energy efficiency and cost effectiveness 

of buildings which are designed to provide occupants with a comfortable indoor living environment. 

© 2019 Elsevier B.V. All rights reserved. 
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. AI evolution, classification, and techniques 

.1. The AI evolution 

Minsky and McCarthy described AI as “the ability of a machine

r a program to perform a task, which would require some kind

f intelligence if it was carried out by a human being” [1] . Wang

hought that AI could be defined on the basis of structure, behav-

or, capabilities, function and principles [2] . Nilsson defined AI as

he “activity devoted to making machines intelligent, and intelli-

ence is the quality that enables an entity to function appropri-

tely and with foresight in its environment” [3] . Lacking a precise

nd universally accepted definition might in fact help the advance-

ent of the field of AI. Some of the capabilities of AI systems that

an be associated with human intelligence are problem solving,
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nowledge representation, reasoning, learning, and to some lesser

xtent, social intelligence, and creativity. 

The concept of AI is based on the assumption that the human

hought process can be mechanized. Even before the industrial era,

peculations of AI could be seen in different civilizations. However,

ts first practical application was seen during World War II. Alan

uring, a noted British mathematician and computer scientist, and

is teammates created the Bombe machine to decipher the Enigma

ode, leading to the foundation of ML (Machine Learning). 

In 1956 at Dartmouth College, the term “Artificial Intelligence”

as coined for the first time by American computer scientist John

cCarthy, and it was formally accepted as an academic discipline

4] . During the early years of AI evolution, the programs developed

y AI were quite astonishing. Its applications at that time included

olving algebra word problems, proving theorems in geometry, and

earning to speak English. In the same time period, AI research had

eceived much acclamation and funding from government agen-

ies [5] . It was around that time when the world’s first full-scale

https://doi.org/10.1016/j.enbuild.2019.109383
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Nomenclature 

AEL Allowable Exposure Limit 

AGI Artificial General Intelligence 

AHP Analytic Hierarchy process 

AI Artificial Intelligence 

ANN Artificial Neural Network 

ASHRAE American Society of Heating, Refrigerating and 

Air-Conditioning 

ATES Aquifier Thermal Energy Storage 

BD Big Data 

BIM Building Information Model 

BMS Building Management System 

BREEAM Building Research Establishment Environmental 

Assessment Method 

BTDFs Bidirectional Transmittance Distribution Functions 

CBECS Commercial Building Energy Consumption Survey 

CFS Complex Fenestration System 

CHP Combined Heat and Power 

CRBM Conditional Restricted Boltzmann Machine 

CVA Canonical Variate Analysis 

DL Deep Learning 

DOE Department of Energy 

DPN Deep Belief Network 

EFB Energy Efficient Building 

EIS Energy Information System 

ELM Extreme Learning Machine 

ESB Empire State Building 

FCRBM Factored Conditional Restricted Boltzmann Machine 

FL Fuzzy Logic 

GA Genetic Algorithm 

GHG Greenhouse Gas 

GIS Geographic Information System 

GOFAI Good Old Fashioned Artificial Intelligence 

GP Gaussian Process 

IT Information Technology 

LCOE Levelized Cost of Electricity 

LEED Leadership in Energy and Environmental Design 

LiDAR Light Detection and Ranging 

MAPE Mean Absolute Percentage Error 

MARS Multivariate Adaptive Regression Splines 

ML Machine Learning 

MPC Model Predictive Control 

NN Neural Network 

NREL National Renewable Energy Laboratory 

NSRD National Solar Radiation Database 

PV Photovoltaic 

RBFN Radial Basis Function Network 

RNN Recurrent Neural Network 

SA Simulated Annealing 

SBRS Sustainable Building Rating System 

SVR Support Vector Regression 

WABOT WAseda roBOT 

XCON eXpert CONfigurer 

intelligent robot was made in the WABOT project in Japan [6] .

However, AI is a difficult field and researchers in earlier times

failed to appreciate its complexity. Their optimism raised the ex-

pectations about AI too high, and the expected advancements

failed to materialize. In the 1970s, AI faced several critiques and

financial setbacks, resulting in significant reduction in research in-

terest and funding [5] . This was known as the first AI winter. 

AI research was brought back to life by the adoption of the Ex-

pert Systems during the early 1980s. In the beginning, they were
 huge success. In one case, an expert case called XCON saved 40

illion dollars annually in 1986. However, this system eventually

ecame too expensive to maintain. The main disadvantages of Ex-

ert Systems include the complications in updating the systems

nd their brittleness. This was the start of the second AI winter.

et, after this period, the field of AI didn’t completely disappear.

nstead, it continued to grow under aliases such as computational

ntelligence, cognitive systems, etc. In the last decade, the mod-

rn age of AI has finally arrived in which the ever-improving abil-

ty of fast computation, especially the power of parallel computing,

as given birth to new subfields such as Deep Learning (DL), Ma-

hine Learning (ML), Artificial General Intelligence (AGI), and Big

ata (BD). 

.2. Classification of AI 

AI can be categorized either on the basis of functionality, or

n the basis of their evolution with time. Based on its function-

lity, AI can be split into narrow AI and general AI. Narrow AI can

e seen in many daily practices because of its vast number of ap-

lications which continue to grow every day. Some of these tasks

re organizing calendars-both personal and business, responding to

ustomer queries, carrying out visual inspections of different in-

rastructures, flagging different kinds of inappropriate contents on-

ine, and so on. On the other hand, general AI (or general artificial

ntelligence) is very different and is very close to the type of in-

elligence found in humans. Such a system, after learning and ac-

umulating experience, can perform tasks that require more preci-

ion. Up until now, general AI could only be seen in movies, and

I experts are trying to make this dream a reality soon. 

Another way to categorize AI schemes is based on the revolu-

ion of AI. The earliest progression in AI since its origin is described

s the old fashion of AI, or in other words, Good-Old-Fashioned Ar-

ificial Intelligence (GOFAI). GOFAI was a paradigm that was given

irth by the Dartmouth conference in 1956. Mostly based on hand-

oded symbolic manipulations, GOFAI was very similar to what

odern programming looks like. It is also known as symbolism

or its attempt to describe intelligence in symbolic terms [7] . An-

ther of its common euphemisms is Symbolic AI. The purpose of

ymbolic AI was to produce human-like intelligence in a machine,

hereas most modern research in the field of AI focuses on spe-

ific sub-problems. 

The most successful form of Symbolic AI is the Expert Systems.

n artificial intelligence, an expert system is a computer system

hat matches or surpasses the decision making ability of a human

xpert [8] . Expert Systems were introduced in 1965 [9] , and were

mong the first truly successful forms of AI software [10] .The goal

f these kinds of systems was to make the information required

or the system to work explicitly rather than implicitly. In other

ords, the rules guiding the operation of the Expert Systems were

o be defined in a format that was intuitive and easy to under-

tand. Therefore, it can be edited even by the domain experts and

ot just IT (Information Technology) experts. The main advantages

f this explicit representation were rapid development and ease of

aintenance. 

One of the major disadvantages of the Expert Systems is the

nowledge acquisition problem. Other problems include the dif-

culty of integration, access to large databases, and performance

ssues [11] . Various researchers gave different reasons as to why

OFAI couldn’t stand the test of time. The main argument of

hese critiques stated that the representations used in early GOFAI

eren’t meaningful representations of the real world [12] . Another

rgument stated that the emphasis on formal logics and deductive

easoning ignored other methods of reasoning. 

The modern subcategories in the field of AI include ML (ma-

hine learning) and DL (deep learning). Although the terms of AI,
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L and DL are used interchangeably in the literature, there is a

lear distinction among these three. DL is a subset of ML, which is

n turn a subset (or branch) of AI. One aspect that distinguishes ML

rom traditional knowledge graphs and expert systems is its ability

o learn and improve from provided data on its own. ML can even

reate its own algorithms. Arthur Samuel, one of the pioneers of

L, defined it as “A field of study that gives computers that ability

o learn without being explicitly programmed” [13] . DL is a fur-

her subset of ML, and generally it refers to deep artificial neural

etworks and sometimes deep reinforcement learning. In DL, com-

uters learn those techniques that come naturally to humans. This

s the key technology behind voice recognition, image recognition,

riverless cars, and so on. 

.3. AI techniques 

A variety of AI techniques have been developed and used in

any different areas. These techniques are introduced and briefly

iscussed below in alphabetical order. 

.3.1. AHP 

One popular decision-making scheme is the Analytic Hierar-

hy Process that was introduced by Saaty [14] . The merits of the

cheme include its good mathematical properties, the easiness of

btaining the required input data, and the fact that it is a decision-

aking tool which can solve complex problems. The hierarchical

tructure of the AHP consists of criteria, sub criteria, objectives and

lternatives. 

In the AHP, the complex problems on hand are first broken

own into component parts that are arranged into multiple hier-

rchical levels. In the next step, the decision makers compare each

luster in a pairwise fashion based on their experience and knowl-

dge. Some degree of inconsistency may occur as the comparisons

re performed through personal judgments. 

The biggest advantage of the AHP scheme is its final opera-

ion called the consistency verification. Once the comparisons have

een carried out at all the levels of the hierarchy and proved by

he consistency verification, an overall priority ranking is devel-

ped which is based on each attribute’s priority and its corre-

ponding criterion priority. Fig. 1 shows the structure of a standard

HP scheme. 

.3.2. FL 

Being one of the easiest to understand among the various AI

echniques, the merits of fuzzy logic (FL) are numerous. It is based

n natural language, and the merits include its capability to be

uilt on top of the experience of experts, ability for modeling non-

inear functions, tolerance of imprecise data, and finally, its ca-

ability to blend with conventional control techniques. The three

ain steps of a Fuzzy system are: Fuzzification, Interference and

efuzzificaion [15] . 

.3.3. GA 

Genetic algorithms are techniques based on the concept of sur-

ival of the fittest. The possible solutions to a problem are called

people”, and their evolution in time is observed. The genetic al-

orithm utilizes three principal operators: selection, crossover and

utation [16] . 

A fitness function assesses the capability of each individual to

olve the problem, and this is carried out after every generation

n the reproduction process. The proportion to which any individ-

al is reproduced is directly related to its fitness. In other words,

he more suitable an individual or a solution is, the higher are its

hances to be carried over to the next generation by its offspring.

o find the potential answer to an issue, a GA performs specific

eproduction of people. Following the principle of survival of the
ttest, only the populace with higher chances of survival proceeds

o the next generation. Genetic operators play the role of form-

ng new and better offspring. The algorithm continues up to a spe-

ific number of generations unless an optimal solution to the given

roblem has been found. Fig. 2 shows the structure of a standard

A. 

.3.4. Neural network (NN) 

An NN (or Artificial Neural Network) is a computer system or

lgorithm that is composed of artificial neurons that can be used

o model the human brain and nervous system. The first train-

ble NN called the Perceptron was demonstrated by Frank Rosen-

latt at Cornell in 1957. In an NN, weight factors are often used in

he modeling of the relationship between an input and an output

ector. During training, the error of the model is calculated and

he weights are updated using stochastic gradient descent or other

chemes to minimize the model error [17] . An RNN is an exten-

ion to the multi-layered perceptron NNs [18–21] . It models tem-

oral dependencies in target data through feedback connections

17] . NN techniques are better at modeling multivariable problems

ompared to other models. In a multivariable problem, variables

xhibit complex relationships among themselves. NN techniques

an extract nonlinear relationships from the variables by learning

rom the training data. The most successful application of a NN has

een in the forecasting of electric load in buildings. 

.3.5. Simulated annealing (SA) 

Simulated Annealing (SA) is another AI technique for search or

ptimization. It is a heuristic search method originally developed

y chemists and metallurgists to calculate the most stable state

f a chemical system [22,23] . Unlike most iterative-improvement

ethods, SA allows less favorable solutions to be accepted in the

earch process, thus avoiding the search being trapped in local

inima. Chen and Lin [23] applied both GA and SA for the op-

imization of multiple-module thermoelectric coolers, and found

hat SA required less computational time and effort. 

All the above AI techniques have their strengths and weak-

esses. GA is better at handling dynamic problems when compared

ith AHP or FL. However, fuzzy technique is useful for non-linear

ystems as it is better at dealing with uncertainty and subjectivity.

he AHP, being simple and systematic, can be very useful for de-

ision support systems. SA can avoid the search being trapped in

ocal minima. NNs are commonly used in ML and DL recently. 

. Big data and artificial intelligence 

Big Data (BD) refers to huge amounts of data, both structured

nd unstructured, that can be used to extract useful information.

wing to several reasons such as an exponential increase in global

ata creation, a massive increase in the computing power that is

vailable for data processing, and advancements in the quantita-

ive analysis and mathematical algorithms that are being used in

I and IT, BD has been used to create a synergy with AI in recent

ears that can help realize goals in both business and research [24] .

BD was first characterized by three variables, namely volume,

elocity, and variety, in 2001 [25] . Since then, many more variables

ave been added to the definition of BD [26] . Recently, the charac-

erization involves a total of 8 Vs; volume, velocity, value, variety,

ariability, virality, viscosity, and veracity [27] . 

BD is usually too large or complex to be handled by traditional

ata processing software and algorithms. At present, the amount of

ata being created is huge; 2.5 quintillion bytes of data is created

very day [28] . AI methods such as DL also utilize huge amounts

f data. However, there are key differences between AI and BD.

D does not act on results to make decisions, it only tries to

nd accurate results. AI, on the other hand, is all about decision
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Fig. 1. AHP scheme flowchart [40] . 
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making and learning to make better decisions. BD is primarily

about gaining insight, while the aim of AI is trying to accomplish

tasks previously done by humans but with increased efficiency

and reduced errors. Even with the opportunities and vast amount

of applications in different fields including biology, finance, edu-

cation, and eCommerce, the algorithms initially designed on the

models of computation are no longer valid for BD. Similarly, BD is

sometimes confused with IoT. Both BD and IoT are concerned with

the collection of data. However, there are key differences such as

the sources of the data, the time constraints and what it revolves

around. In the current context, the main focus is on the use of BD

and AI to improve energy efficiency and comfort in buildings. 

The BD markets are structured into three layers: the infrastruc-

ture layer which consists of hardware components, the data orga-

nization and management layer which consists of software compo-

nents, and finally the services layer which deals with the applica-

tions of BD [29] . Fig. 3 shows an overview of the three layers of

BD. 

3. Applications of AI and BD to energy-efficient buildings 

The schematic in Fig. 4 shows how AI and BD can be applied

to the design and operation of energy–efficient buildings (EFBs).

The AI platform may consist of many fast computer processors and

various AI algorithms, computer codes, and simulation packages.

Also included in the AI platform are monitors and software for data

display and visualization, such as EIS. 
After analyzing the relevant data mined from BD and/or re-

eived real-time from the sensors built in the EFB, the AI

latform selects one or more AI techniques and algorithms to op-

rate individual building components to achieve the optimal op-

rating conditions. The BD for EFBs typically includes local and

lobal weather data, building codes and historical data, databases

eveloped by societies, research groups, and commercial compa-

ies (e.g., ASHRAE, LEED, DOE, Google) related to energy research

nd sustainable architecture. 

To take full advantage of AI, the heating/cooling/illumination

ystems of a building should be very energy-efficient and versatile,

nd the functions and properties of the major components of an

FB should be highly adjustable. In recent years, 95%-efficient gas

urnaces have gained popularity, and micro CHP (Combined Heat

nd Power) systems have been commercially available for quite

ome time [30] . Most of today’s new buildings use built-in temper-

ture, light, humidity, and motion-detection sensors to minimize

nergy consumption without compromising the quality of the in-

oor environment. 

The EFB which works best with AI should include a building en-

elope of variable direction of heat flow as well as variable specific

eat and surface absorptivity, windows and skylines whose opac-

ty is adjustable, a solar energy collection and utilization unit for

aximum solar energy harness and optimal usage of the entire

olar spectrum, and generators and heat transfer devices (e.g., heat

xchangers, thermosyphones and thermal diodes) to utilize local
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Fig. 2. Genetic algorithm flowchart [40] . 

Fig. 3. Three layers of big data [29] . 
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ind, geothermal, and other energy sources to reduce building en-

rgy consumption. 

The AI platform can work alone to operate and control the ma-

or components of EFBs using instantaneous and in-situ data mea-

ured by built-in sensors. However, it is more energy-efficient and

ffective to use BD to decide when and how to turn on and adjust

he functions and features of individual building components. For
xample, the glass opacity or the shade and shutters of a smart

indow, or the movement of an awning can be controlled by a

ight sensor which continuously monitors the light incident on the

uilding’s surface. In this case, AI just uses a simple built-in algo-

ithm to check the light intensity and decide if it is necessary to

urn lights on and how to adjust the actuators of the smart win-

ow or the awning. The better way for the AI platform to operate



6 M.U. Mehmood, D. Chun and Zeeshan et al. / Energy & Buildings 202 (2019) 109383 

Fig. 4. Workflow schematic of AI and BD for energy efficient buildings. 
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smart windows and awnings is to use BD to turn on the sensors

only occasionally, or don’t use any sensors at all if the database has

accumulated enough site-specific data to adjust the smart window

and the awning autonomously. 

Another example of the use of AI and BD for EFBs is the “smart

wall”. When Chen, Chun, and co-workers [30–32] first tested the

energy-efficient construction modules they invented, they pro-

posed to use crude weather data and/or sensors mounted on one

module to control the directions of heat flow, specific heats, and

surface absorptivities of all the modules that form the building en-

velope. The direction of heat flow only needs to be alternated a

couple of times a year (when the bi-directional thermal diode in

the smart construction module is switched from winter-heating

to summer-cooling mode, or the reverse). The module’s surface

absorptivity must be changed about twice daily (from highly re-

flective during the daytime to highly absorptive at night for sum-

mer cooling, or from highly reflective at night to highly absorp-

tive during daytime for winter heating). The adjustment of the

specific heat is more complicated, as it depends on the heat in-

put to the wall, the cooling/heating demand, and other factors.

A robust AI technique is needed to determine the optimal ad-

justment of the specific heat of the module. However, when AI

and BD work together and the BD has collected enough site-

specific data, the AI platform can learn the patterns of daily and

annual weather changes, heat transfer to and from building sur-

faces, building occupancy, and heating/cooling demands to adjust

the specific heat without the need to frequently check the heat-

ing/cooling conditions and the demands and the occupancy of the

building. 

The problem of solar heating in the summer can be alleviated

by using a thermodiode system. The bi-directional thermodiodes

developed by Chun, Chen, and co-workers [31–33] can reduce solar

heating in the summer and harness solar energy in the form of

heat during the winter season. 
u
Sustainable buildings can reduce the negative impact on the en-

ironment. For the design of such buildings, various software pack-

ges (e.g., EnergyPlus, DOE-2 and Green Building Studio) have been

eveloped to accurately simulate the building’s energy consump-

ion. However, these simulation tools are only used to validate the

nal design of the building. Sustainable building design will be

evolutionized if AI and BD are used for the exploration of mul-

iple design possibilities rather than the validation of the final de-

ign [34] . 

Heating demand in buildings is often modeled through vari-

us energy simulation packages such as BLAST, DOE2.1, eQUEST,

nd EnergyPlus [35] . These computer codes are typically governed

y partial differential equations that are derived from energy and

ass balance considerations. These codes can help the user under-

tand how different heat and mass transfer processes affect build-

ng heating and cooling loads. The major flaw of these codes is

hat they cannot account for the complex interactions between the

nergy systems in a building, and often the simplifications and as-

umptions used in these models result in a loss of accuracy [36] .

nstead of using these simulation models, statistical models and

L algorithms can be used with much improved accuracy. The

ain advantage of using ML is that ML learns from the behavior

f the system or the observed data. It emphasizes prediction ac-

uracy rather than model accuracy [37] . DL uses multiple layers

f abstraction [38] and thus can model more complex functions.

his is why it has demonstrated improved performance over ML in

any applications [39] . 

. Recent applications of AI and BD to energy efficient 

uildings 

In this section, a brief review of recent applications of AI and

D to energy-efficient buildings is presented, with emphasis on the

se of ML, DL, and BD. 
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.1. Design of EFBs 

Different AI schemes have been studied with the aim of min-

mizing the detrimental effects of buildings on the environment,

educing overall costs and increasing energy efficiency. Ghada pre-

ented a critical review of current AI-based practices that have

een employed to obtain optimal green solutions for different

odels used in green building architecture [40] . It was pointed out

n said paper that the three most commonly used AI techniques are

A, FL, and AHP. 

Kim et al. [41] utilized data mining technology to extract inter-

elationships and patterns of interest from a large database. The

ase study conducted in their paper revealed that data mining-

ased energy modeling could help project teams discover useful

atterns to improve the energy efficiency of building design dur-

ng the design phase. 

Considerable work has been done in the field of Architectural

ntelligence. As the awareness of the drastic impacts of high en-

rgy consumption of buildings increases, research interest on the

onstruction of sustainable buildings also increases. Sustainable ar-

hitecture seeks to mitigate the impacts of construction on the

nvironment, and buildings constructed in this regard are inter-

hangeably termed smart buildings or green buildings. However,

here is a key difference between these two as pointed out by

akari [42] . Green buildings are those that have been rated by a

ustainable Building Rating System (SBRS). Leadership in Energy

nd Environmental Design (LEED) and Building Research Estab-

ishment Environmental Assessment Method (BREEAM) are two of

he world’s most popular rating systems for assessing sustainable

uildings. On the other hand, a smart building might reduce the

mpact on the environment, but it will not be considered a green

uilding unless it has been rated. 

According to the World Business Council for Sustainable Devel-

pment, buildings consume a big portion (around 40 percent) of

he total energy generated by most countries. Despite the intro-

uction of alternative green energy resources, the International En-

rgy Agency predicts that even by 2030, three-fourths of energy

ources will still be carbon dioxide-related. Nowadays, a lot of ef-

orts are being made to reduce the energy consumption in build-

ngs through the use of sustainable building design. 

The Empire State Building (ESB) in New York City will be 90

ears old in 2021. However, not many people know about its

chievement in reducing the energy consumption in recent reno-

ations, and becoming a role model for intelligent buildings. Using

 direct digital control system, numerous different parameters such

s room temperature, indoor air quality, electricity, cooling/heating

onditions, etc. are self-monitored, and minimum energy is wasted.

t the same time, smart telemetry provides the ESB’s tenants with

eal time information to control and optimize the power consump-

ion [43] . 

The recent renovation of ESB had a capital expenditure of 550

illion dollars, but the results proved it to be worth the invest-

ent. Initially, the renovation was expected to reduce the energy

xpenditure by 38 percent and reach a return of 4.4 million dollars

s annual energy savings. Surprisingly, the project surpassed its ex-

ectations with every passing year. In its third consecutive year of

peration, the savings from the innovation project were 16% above

ts original target, and saved a total of 7.5 million dollars [44] . The

sage of AI-enabled technology in the ESB played a great role in

ll its achievements. ML algorithms drive the predictive analytics

or forming more efficient power consumption strategies. This en-

bles on demand maintenance of the building, and tremendously

educes the costs of human-heavy operations. 

Another AI application to the ESB lies in the preventive mea-

ures provided by AI technology. The ESB can collect tremendous

mount of operational data, and recognize any issues before the
rst signs start to appear, and subsequently take preventive mea-

ures. This results not only in financial benefits, but also ensures

fficient problem detection, improves in-building safety, and can

revent causalities from incidents such as electrical fires. Finally,

he ecological benefits from the AI-enabled building infrastructure

ave considerable importance. According to a new study on green

ertified buildings, for every dollar saved on energy expenditures

y smart buildings, 77 cents are saved in health and climate bene-

ts [45] . From this report, one can conclude that AI applications to

he ESB produced a 3.4 million-dollar benefit in health and climate

alues along with the return in energy savings. 

.2. Prediction and reduction of building energy consumption 

Tsanas and Xifara [46] developed a statistical ML framework to

tudy the effect of variables, such as wall area and glazing area, on

he heating and cooling loads of residential buildings. They con-

luded that the use of ML to estimate a building’s heating and

ooling loads gave accurate results as long as the requested query

ore resemblance to the data used to train the model. 

Various NN models [18,37,47–52] have been used to predict

uilding energy consumption in recent years. These AI methods

ould achieve very accurate energy consumption forecasts over a

ne-hour to one-week time horizon [51,53,54] . Chou and Bui used

arious AI techniques to estimate building heating and cooling

oads. The prediction models were constructed using 768 exper-

mental datasets from the literature. Comparison results showed

hat the ensemble approach (SVR + ANN) and SVR were the best

odels for predicting the cooling load and the heating load, re-

pectively, with mean absolute percentage errors below 4%. [55] 

In their study of ML approaches for estimating commercial

uilding energy consumption, Robinson et al. [21] found that gra-

ient boosting regression models performed the best, and could

ake predictions that are on average within a factor of 2 from the

rue energy consumption values. Roy et al. explored many different

L techniques for predicting the heating and cooling loads of resi-

ential buildings. Advanced techniques such as Multivariate Adap-

ive Regression Splines (MARS) and Extreme Learning Machine

ELM) were studied and compared with conventional AI methods

ike linear regression, neural network, Gaussian processes, and Ra-

ial Basis Function Network [56] . 

Deng et al. [57] tested different predictive modeling approaches

or US commercial building energy use based on the Building En-

rgy Consumption Survey (CBECS) 2012 microdata. In this paper

ix regression or ML techniques were applied and compared for

rediction performance. It was found that ML algorithms did not

lways outperform the linear regression. The mixed results sug-

ested careful consideration in applying advanced predictive algo-

ithms to the CBECS dataset. 

Rahman and Smith employed a ML model to predict the fuel

onsumption in commercial buildings [51] . The goal of this study

as to successfully predict fuel consumption in buildings one year

head of time. It was found that Neural Networks and Gaussian

rocess (GP) regression performed better than linear regression

nd ridge regression. The fuel consumption estimates for multiple

limate zones over a one year period were made in this paper. 

Fan et al. [58] used DL to predict short-term building cooling

oads. Deep learning has great potential for developing prediction

odels. Additionally, when used in an unsupervised manner, it can

elp extract meaningful features from a large bulk of raw data. This

tudy investigated both of these aspects. The DL model used in the

tudy showed great performance for predicting cooling loads 24 h

n advance. A review of the use of unsupervised ML techniques for

on-residential building performance control and analysis can be

ound in Miller et al.’s paper [59] . 
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Fig. 5. LCOE values of different technologies without carbon pricing [63] . 
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Yang et al. presented an adaptive ANN which can predict the

unexpected behavior of incoming data and adapt to it accordingly.

Two models, accumulative training and sliding window training,

were tested against simulated and measured data. The sliding win-

dow technique had better performance in the case of real measure-

ments. For simulated data, both techniques showed similar perfor-

mances [53] . 

Gonzalez and Zamarreno used a feedback ANN to predict short

term electric load consumption in buildings. The biggest advantage

of this model lies in its simplicity. It used a minimal amount of

resources and yet its precision was comparable to other methods

used for forecasting [49] . Edwards et al. [76] tested seven different

ML techniques on different data sets, and discussed the advantages,

disadvantages, and technical benefits for each technique when ap-

plied to the prediction of future hourly residential electrical con-

sumption. 

Chae et al. proposed a short-term building energy usage fore-

casting model based on an Artificial Neural Network (ANN) model

with Bayesian regularization algorithm to investigate the effects of

network design parameters, such as time delay, number of hidden

neurons, and training data, on the model capability and generality

[60] . The model was used for day-ahead electricity usage of build-

ings in a 15-minute resolution. 

Dedinec et al. [61] used a deep belief network to predict elec-

tricity power consumption in the Macedonia area over a 24-hour

period. The model showed a significant improvement in MAPE

when compared with the traditional NN model. Also, the model

shows an improvement in the MAPE when compared with the

forecasting data provided by the Macedonian system operator.

Mocanu et al. [62] employed 2 DL models (CRBM and FCRBM)

to estimate the electricity consumption in a residential build-

ing. They presented five different scenarios with varying reso-

lutions, from that of one minute to a weekly resolution. The

FCRBM model showed a significantly higher performance and cut

the prediction error by half when compared to the traditional

ANN. 

Rahman, Srikumar and Smith proposed two deep RNN models

to make medium- to long-term predictions about electricity con-

sumption in commercial and residential buildings [39] . Several AI

techniques were applied to the prediction of hourly electricity con-

sumption as well as the aggregated hourly electricity consump-
ion. Compared to the three-layered MLP model, the RNN models

howed improved performance in predicting electric load profiles.

owever, they did not perform well in forecasting the aggregate

oad profiles over a one-year timespan. The RNN was also used by

ahman and Smith [17] to predict the heating demand in build-

ngs. The deep RNN model again showed improved performance in

redicting the heating loads when compared to the three-layered

LP model. These AI predictions can help the design of a stratified

hermal storage tank by the successful estimation of the perfor-

ance characteristics of a CHP unit. 

Rahman, Srikumar and Smith also applied RNN to predicting

ommercial electricity loads at a high resolution of 10-minute in-

ervals. This RNN model successfully incorporated the sharp dis-

ontinuities observed in the electric profile and the long-term tem-

oral dependencies related to electricity consumption, which are

wo of the biggest challenges for high-resolution predictions. As a

esult, the model showed better performance when compared to

he MLP model and the one-hour model in predicting electricity

onsumption [63] . 

Yildiz et al. conducted a review and analysis of regression and

achine learning models on the electricity load forecasting of

ommercial buildings. Their study indicated that Artificial Neural

etworks with Bayesian Regulation Backpropagation had the best

verall root mean squared and mean absolute percentage error

erformance [64] . 

The evaluation of economic aspects of energy resources holds

ignificant importance as the overall cost of any energy system

an determine the feasibility of its operation under particular cir-

umstances. To compare the economic competitiveness of newly

merging renewable energy technologies with conventional fossil

uel-based energy systems, Tran performed various case studies us-

ng the Monte Carlo approach and incorporated global sensitivity

nd uncertainty analysis into LCOE calculations [65] . The results

roved that the uncertainties in the input data can have a con-

iderable effect on the LCOE values. Due to high uncertainties in

he case of emerging renewable energy technologies, the LCOE of

ossil fuel systems is lower as compared to the former. However,

fter including the carbon pricing for different energy systems, the

enewable energy systems were found to have better economic vi-

bility. Shown in Figs. 5 and 6 are the LCOEs of different elec-

ricity generating technologies including and without including the
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Fig. 6. LCOE values of different technologies with carbon pricing [63] . 
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arbon pricing. This comparison is presented to show the increases

n electricity costs of different technologies when carbon pricing is

ncluded in energy cost calculations. 

One method of reducing energy consumption in food process-

ng facilities is by means of heat recovery. Legorburu presented a

ottom-up modular framework to model the energy consumption

f a cannery [66] . The results of this study showed that by adding

 globally optimized heat recovery system, the total gas consump-

ion could be reduced by 6% annually. With the optimal assump-

ions of electricity and gas costs, the system can be applied for

 payback period of 15 years. The modeling could become more

omplete by adding the use of EnergyPlus. EnergyPlus is a well-

nown simulation software for modeling the energy consumption

n buildings. With its inclusion, the model by Legorburu can be-

ome a more realistic food processing facility model. 

According to the U.S Department of Energy, commercial of-

ce buildings contribute a major portion of total energy consump-

ion. Even with the use of energy efficient materials and advanced

uilding Management Systems (BMS), reliable building operation

s not always guaranteed. Most new buildings consume energy at

evels higher than the specifications, resulting in system failure. In

his regard, Wu [67] presented a new ML approach to produce ac-

urate forecasts for building energy consumption. This model ap-

lies Support Vector Regression (SVR) on the historical energy use

f the building. The data used by this system also includes build-

ng energy data, weather data and power grid data. Fig. 7 shows

he flowchart of the model. To ensure the reliability of ML, an au-

omated online evaluator continuously monitors different external

nd internal conditions of the building, such as electricity load,

eak load, temperature, humidity, and building work and main-

enance schedules. The biggest achievement of this work was the

mprovement in the efficiency and reliability of the building with-

ut investing huge amounts of additional capital. The SVR model

or predicting the energy demand was accurate. In addition, as the

utomated online evaluation works in parallel with ML, it aids in

uning the building’s energy systems and operation schedules. 

One of the main causes of the production of GHG from hu-

an activities can be attributed to over-cooling, over-heating and

ver-lighting in buildings [68] . Project Dasher, a prototype build-

ng site, was considered for addressing these issues [69] . The sen-
or networks in the building were integrated with the IP networks

o monitor the real time information of power consumption. Point

loud data was generated to place the sensor data streams into

heir physical context. Such a scan revealed about 1.3 billion points.

or a more intelligent analysis and visualization of this data, a

uilding Information Model (BIM) was created using Autodesk Re-

it. Unfortunately, software for the automated visualization of the

oint cloud data is still not available. All of the data gathered by

his means, if accessible to the building occupants, can be used

or informed decision making, thus enabling them to participate in

mproving the overall building efficiency. Moreover, implementing

hese kinds of visualization strategies on a city level could con-

ribute to improving the accountability of governing agencies. 

Li presented an intelligent data analysis method for the model-

ng and prediction of daily electricity consumption [70] . Statistical

ethods and an auto-regression model were employed to extract

he features of daily energy consumption. This method can detect

bnormalities in the system by detecting the outlier values based

n Canonical Variate Analysis (CVA). Fig. 8 shows an outline of this

ethod. To verify the prediction of the model, data were captured

rom a company based in Birmingham, U.K for a complete year. It

as concluded that the model was efficient enough in providing

he building operators with information regarding any kind of ab-

ormal energy consumption and correcting the problems. 

Energy dashboards, alternatively termed as an Energy Informa-

ion System (EIS), are a display and visualization tool that uses the

IS data and technology to provide critical information to users

71] . Some of the main features of this system include benchmark-

ng, anomaly detection, base-lining, load shape optimization, and

nergy rate analysis, as well as retrofit and retro commissioning

avings [72] . The application of an EIS is intended towards BD for

igh performance buildings. Real time evaluation of heat pumps

73] , AEL forced air, chillers, and energy recovery ventilation sys-

ems can be accomplished by using energy dashboards. 

EnergyPlus is a flagship simulation software which has been

sed for the assessment of energy consumption in both residen-

ial and commercial buildings. Up to 30 0 0 input parameters that

re representative of various building properties can be handled by

his software. Reference building models are also available. How-

ver, accurate data is not available for most of these parameters.
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Fig. 7. Predictive building energy optimization workflow [65] . 

Fig. 8. Outline of the identification of outliers and modeling of the daily energy 

consumption profiles [67] . 
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There is often a mismatch between the product specifications and

the manufacturer’s supplied data. For this reason, a building energy

model must be tweaked by a building modeling expert which often

results in the consumption of much time and resources. One solu-

tion is a software called Autotune [74,75] , which was developed

to save time by automating the process of tuning building energy

models. To achieve the goal of automation, sensor data along with

the building model are provided to the Autotune software. The ma-

chine learning agents handle these data and give a tuned model

of the building as output [76] . The system in its late development

stage is capable of tuning the models in its various forms as pro-

vided by DOE [77] and can work with the different climate zones

and subzones specified by ASHRAE. This approach proves to be a

great challenge for data storage, transfer and analysis as the data

is generated for a whole year at 15-minute intervals and is consti-

tuted of up to 180 output variables. The bulk of raw data amounts

to 270 Terabytes. This issue is tackled by evolving the system ar-

chitecture and summarizing the statistical data. Moreover, the fi-

nal product is envisioned to be a service rather than a software
n the sense that the template of the building will be provided by

he user as a prototype, and the Autotune system will return the

odel tweaked for the optimized solution to the design problem. 

A further improvement to the Autotune project was recently

ade by New et al. [78] . With the help of some of the fastest

omputing resources in the world, 130,0 0 0 AI algorithms were

ested in parallel to calibrate building energy models to the mea-

ured data. The algorithm surpasses the 30% error requirement

tated in the ASHRAE guidelines for hourly utility data with an

verage error rate of 3.6% for 20,0 0 0 buildings. Robust calibra-

ion algorithms, ensemble approaches, or post-processing tech-

iques can help in further reducing the input side error, which,

n turn, can provide one of the most reliable software models for

uildings. 

The reference model built with the help of BD by the Build-

ng Energy Management System can be used as the MPC for heat

umps. This can be applied to maintaining of an ATES system,

hich is the reason for the rapid growth of sustainable office

uildings in the Netherlands. An ATES system uses a well pump

o extract cold groundwater for cooling, which can be used along

ith a heat pump if required. Thermal energy balance of the sys-

em is necessary for the optimal operation of an ATES. A case

tudy for a building similar to a Dutch office building enabled the

odel to be universally applied to most Dutch office buildings [79] .

he performance of this model is affected by sensor accuracy, the

umber of assumptions made, and the coherence of the dataset

sed. 

.3. Solar energy utilization 

Illumination and lighting in buildings can consume a consider-

ble portion of the electricity used (typically up to 10% of the to-

al electric consumption). Therefore, improvement in the methods

f illumination can lead to improved energy efficiency in buildings.

olar energy is the biggest free resource of energy. Two of its direct

pplications come in the forms of daylighting and solar heating.

olar energy is also the sole energy source for electricity genera-

ion using PV technique or solar-powered heat engines. Chun, Chen

nd co-workers have proposed the use of different wavelengths of

he solar spectrum for sanitization, illumination, electricity gener-

tion, and heating applications, respectively. 

Before using solar energy for any practical application, its po-

ential in the area of application needs to be assessed. Different

tudies that focus on the forecasting of the Global Solar Potential
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Table 1 

Different studies performed for the forecasting of Global Solar Potential. 

Study Year Network type Location of station (s) MAPE max (%) 

Gopinathan et al. [80] 1995 Empirical models Spain 7.97 

Mohandes et al. [81] 1998 MLP Saudi Arabia 12.61 

Togrul et al. [82] 1999 Regression analysis Turkey 9.80 

Mohandes et al. [83] 2000 RBF Saudi Arabia 10.09 

Reddy et al. [84] 2002 MLFF India 10.20 

Reddy et al. [84] 2002 MLFF India 12.50 

Sozen et al. [85] 2004 MLP Turkey 6.73 

Sozen et al. [86] 2005 MLP Turkey 6.78 

Rehman and Mohandes [87] 2008 MLP Saudi Arabia 4.49 

Azadeh et al. [88] 2009 MLP Iran 6.70 

Behrang et al. [89] 2010 MLP Iran 5.21 

Behrang et al. [89] 2010 RBF Iran 5.56 
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ave been performed by researchers [80–89] . The significance of

hese models lie in their convenience, as the parameters used in

hese models such as humidity, air temperature, sunshine hours,

nd wind speed, are generally accessible. Moreover, in the absence

f monitoring stations, such as in the Middle East and Turkey,

he results from these models can be used for designing solar en-

rgy systems. Table 1 shows the comparison between various tech-

iques used in these studies. 

A direct application of solar energy is daylighting. Various well-

esigned daylighting illumination systems were cited in the liter-

ture and are commercially available. For active daylighting, Chun

resented a solar tracking system that is capable of aggressively

arvesting sunlight and can be used for illumination in multiple

ooms of a building [90] . The novelty of the system is the inclusion

f auxiliary illumination by artificial means for the continuous op-

ration of the system in case the sunlight is insufficient. Parans of-

ered a similar lighting system whose efficiency and energy-saving

apabilities have been studied [91] . For passive daylighting, façade

ystems play an important role in providing indoor illumination.

he use of recorded photometric data is still rare in practice be-

ause of its complexity. Jan de Boer studied the modeling of bidi-

ectional transmittance distribution functions (BTDFs) of complex

enestration systems (CFS) [92] . This model was independent of

ny specific lighting simulation software and could be used as a

tandalone tool. Alongside the improvement of façade systems, this

odel also allowed for the detailed evaluation of complex façade

ystems. 

Application of wavelet-based data compression techniques sig-

ificantly reduces the data volume. This method was validated

gainst different numerical and analytical test cases. Additionally, it

an be included in simulation programs in the format of an Appli-

ation Programming Interface (API). Upon validation, this method

as integrated into RADIANCE and SUPERLITE. The viability of

hese systems in any region, from both economic and performance

erspectives, can be assessed with the Global Solar Potential fore-

asting techniques. 

PV systems are currently one of the leading renewable energy

ystems. To ensure the viability of PV systems, irradiance data are

equired. Generally, such data are available at macro scale levels.

or example, photovoltaic companies in the United States rely on

he data provided by the National Renewable Energy Laboratory’s

NREL’s) National Solar Radiation Database (NSRD) [93] . The reso-

ution of this database is about four kilometers. However, in any

rban environment, the shadowing effects of buildings and trees

annot be ignored. Bowles studied an irradiance model to simu-

ate the solar availability at a localized level [94] . The model used

he data from a Geographic Information System (GIS) coupled with

erial Light Detection and Ranging (LiDAR) topography data. The

pace resolution of this modeling work is three meters and can be

urther improved with more accurate LiDAR data. Bowles’s study
ed to a more accurate estimation of the LCOE value of a PV sys-

em. 

.4. New BD for EFB design and operation 

Other large databases which can be used to design and oper-

te EFBs in the near future may include 3D topographic data with

ery high space resolutions, as well as hyperlocal weather data and

etailed landscape images collected by companies such as Google.

oogle Street View allows designers to examine the surroundings

f a potential construction site with 3D virtual reality. This appli-

ation of Street View is very useful for assessing the shadowing of

urroundings, air flow, noise level, and other site-specific informa-

ion important to EFBs. 

Weather Intelligence Plus combines data from national weather

tations, more than 270,0 0 0 personal weather stations, satellite

ata, radar data, and more to provide hyperlocal accuracy into the

urrent and projected weather in a very small geographical area

95] . This database is currently used to schedule smart sprinkler

ystems. Its usage can be easily extended to the scheduling and

ontrol of individual buildings’ temperature, humidity, and illumi-

ation conditions. 

The Global Forest Watch was launched by the World Resources

nstitute. It has been integrated with the Google Earth engine,

hich can provide information about deforestation around the

orld. The collaboration of these two tools can reveal deforesta-

ion hotspots in the world. Google has used network cloud-based

ervers to create the global forest map that processed 650,0 0 0 im-

ges by using 10,0 0 0 computers working together [96] . 

. Summary 

This paper starts with an introduction to AI and BD, followed by

n illustration of how AI and BD can be and have been applied to

nergy–efficient commercial and residential buildings while main-

aining a high-quality indoor environment. The second half of the

aper is a review of recent publications on the application of AI

nd BD to energy-efficient buildings, with emphasis on the use of

L and large databases for improved search as well as optimiza-

ion speed and accuracy. The results presented in this paper clearly

ndicate the increasingly important role AI and BD will play in the

uture for the design and operation of energy-efficient buildings

ith a comfortable indoor living environment. Suggested research

irections in this area may include fast data mining and optimal

eighting of weather data from different sources such as satellite

ata and personal weather stations, more user-friendly interfaces

o suit different users’ preferences and operating conditions and

atterns, and applications of AI and BD to smart homes and build-

ngs with highly adjustable building components. 
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