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A B S T R A C T

Case-Based Reasoning (CBR) is a form of analogical reasoning in which the solution for a (new) query case is
determined using a database of previous known cases with their solutions. Cases similar to the query are re-
trieved from the database, and then their solutions are adapted to the query. In medicine, a case usually cor-
responds to a patient and the problem consists of classifying the patient in a class of diagnostic or therapy.
Compared to “black box” algorithms such as deep learning, the responses of CBR systems can be justified easily
using the similar cases as examples. However, this possibility is often under-exploited and the explanations
provided by most CBR systems are limited to the display of the similar cases.

In this paper, we propose a CBR method that can be both executed automatically as an algorithm and pre-
sented visually in a user interface for providing visual explanations or for visual reasoning. After retrieving
similar cases, a visual interface displays quantitative and qualitative similarities between the query and the
similar cases, so as one can easily classify the query through visual reasoning, in a fully explainable manner. It
combines a quantitative approach (visualized by a scatter plot based on Multidimensional Scaling in polar co-
ordinates, preserving distances involving the query) and a qualitative approach (set visualization using rainbow
boxes). We applied this method to breast cancer management. We showed on three public datasets that our
qualitative method has a classification accuracy comparable to k-Nearest Neighbors algorithms, but is better
explainable. We also tested the proposed interface during a small user study. Finally, we apply the proposed
approach to a real dataset in breast cancer. Medical experts found the visual approach interesting as it explains
why cases are similar through the visualization of shared patient characteristics.

1. Introduction

Case-Based Reasoning (CBR) [1] is a form of analogical reasoning
based on the memory-centered cognitive model. It came from the field
of cognitive science, and is now part of artificial intelligence [2]. In CBR
terminology, a case is a problem situation. CBR reuses old cases, which
solution is known, to produce a solution for a new case, called the query
case. A typical CBR system includes a case database, which is a (p+1)-
dimensional dataset X={x1, x2, …, xi, … } with

  ∈ × …× × …× ×x Yi k p1 where k are the dimension spaces and
Y is the solution space. The query case can be represented as

  ∈ × …× × …×q k p1 . CBR follows a cycle of four phases: retrieve

from the case base the old cases that are the most similar to the query,
reuse the information and knowledge embedded within similar resolved
cases to produce a solution for the query case, revise the solution to
adapt it to the query case, and retain the query case with the chosen
solution in the case database.

CBR has been applied to many domains, including medicine [3]. In
a medical CBR system, a case usually corresponds to a patient and the
problem to solve typically consists of classifying a new patient ac-
cording to various classes. For a diagnostic system targeting a given
disorder, there are commonly two classes: healthy vs diseased. For a
therapeutic system, there are several classes corresponding to the var-
ious categories of possible treatments. The case database contains
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previous patients, for which the diagnosis or the treatment is known.
Many therapeutic decision support systems implement evidence-based
clinical practice guidelines [4]. These systems are therefore knowledge-
based rather than case-based. However, CBR is still an interesting ap-
proach for patients that are not covered by clinical practice guidelines
(they can represent up to 45% of patients [5]), or when guideline's
recommendations cannot be applied, e.g. due to contraindications or
when the patient refuses the recommended therapy. Moreover, CBR and
guideline-based approaches can also be combined together [6].

Many data-driven classification approaches in artificial intelligence
suffer from a lack of explainability; this is particularly true for “black
box” approaches like deep learning, e.g. IBM Watson, which has been
recently applied to breast cancer therapy [7]. However, in medical
systems, black boxes are usually not well-appreciated by physicians
since they prefer to understand how the system produces a re-
commendation [8], and automatic decision-support systems are often
perceived as a threat and a loss of control [9]. Indeed, years ago, ex-
plainability was ranked by physicians as the most desirable feature of a
clinical decision support system [10]. Today, in France, the recent
Villani report [11] on artificial intelligence recommends to “open the
black-box of artificial intelligence”, with a special focus on medicine.

Explainable Artificial Intelligence (XAI) is a field that focuses on
designing intelligent systems that are able to explain their re-
commendations to a human being. Biran et al. [12] distinguish two
approaches: (a) interpretable models, which rely on non-black box
systems such as rule-based ones, and (b) prediction interpretation and
justification, which aim at generating explanations for a black box al-
gorithm. The same authors mention a third approach, visualization. XAI
has been particularly studied in the military domain [13,14]. With re-
gard to XAI, CBR is particularly interesting because the similar cases
can be used as examples for justifying the response of the system. This
can be considered as an interpretable model. However, in terms of
explanations, most CBR systems are limited to the display of the similar
cases.

The presented work is part of the DESIREE (Decision Support and
Information Management System for Breast Cancer) European project,1

aimed at developing web-based services for the management of primary
breast cancer. In this context, we propose a CBR system able to classify
a query case using an automatic algorithm (displayed as “1)” in the
general overview shown in Fig. 1), but also through visual reasoning
(“2)” in Fig. 1). It includes a visual interface displaying quantitative and
qualitative similarities between the query and the similar cases. This
visual approach can be used independently, or for explaining the results
of the automatic algorithm (“3)” in Fig. 1). We combined a quantitative
approach, corresponding to a scatter plot produced using Multi-
dimensional Scaling (MDS) in polar coordinates, and a qualitative ap-
proach, based on rainbow boxes [15], a recent technique for over-
lapping set visualization. We translated the visual reasoning permitted
by the interface into algorithms, in order to formalize it and to evaluate
whether the similarities displayed can be used for classification with a
good accuracy. We applied our method to breast cancer, and we eval-
uated it on three public datasets. We also presented the interface to 11
medical experts for usability and acceptability validation.

Scatter plots have already been widely used for visual classification
and CBR, although rarely in polar coordinates that allow preserving all
distances involving the query. On the contrary, rainbow boxes have
currently been only used for presenting medical knowledge, such as
drug properties [16,17], but their application to CBR and their asso-
ciation with a scatter plot is new. A preliminary version of this work
was presented in a French workshop [18], proposing the general ap-
proach but without detailed methods or experiments.

Since it is easier to formalize a visual approach than to translate an
algorithm visually, we initially developed our method from the visual

side, and here, we will present it in that way.
The rest of the paper is organized as follows. Section 2 presents

some related works on CBR and high-dimensional multivariate data
visualization, and also introduces the optimization algorithm that we
used. Section 3 presents the proposed visual interface. Section 4 de-
scribes its translation into classification algorithms. Section 5 presents
an application to breast cancer, including experimental results on ma-
chine learning datasets. Section 6 presents an application to real data
for therapeutic decision support in breast cancer. Section 7 discusses
the methods and the results. Finally, Section 8 concludes.

2. Related works

2.1. Case-based reasoning

kNN is a well-known algorithm for automatic CBR [19]. It consists
of a “majority vote” between the similar cases: the query case is clas-
sified in the class that is the most frequently observed in the similar
cases. Distance-weighted kNN (WkNN) [20] is a variant, in which the
weight of a similar case is inversely proportional to the distance be-
tween the similar case and the query case. WkNN is known to deliver
better accuracy than kNN, but with a modest improvement (about
1–2% [21]), and often requires higher value of k. In WkNN, the weight
of a similar case i is:

= ⎧
⎨
⎩

=
−

−
w

d d1, if

, otherwisei d d
d d

max min
imax

max min (1)

where di is the distance between the similar case i and the query case,
and dmin and dmax are the minimum and maximum values of di.

It has been shown that explanations based on similar cases are more
convincing than explanations based on rules [22], although this pos-
sibility has not been widely used and many explanation systems are not
visual and rely on a single similar case. Few visual approaches have
been proposed for CBR, and most of them do not target the CBR final
users. They rather focus on helping developers with the design of CBR
systems. For example, CTBV (Case Base Topology Viewer) [23] uses
scatter plots to visualize the topology of a case base and compares the
impact of various similarity measures on CBR, and Zhu et al. [24] used
treemaps for visualizing the result of case clustering. On the contrary,
Massie et al. [25] proposed a visual approach for providing explana-
tions of CBR to final users, using parallel coordinates. However, the
authors demonstrate their system with three similar cases and it may
not scale well with more.

In the literature, most of medical CBR systems were aimed at
helping clinicians to diagnose a given disorder, or a small number of
close disorders [3], and these systems were limited to quantitative as-
pects [26,27].

Fig. 1. General overview of the proposed CBR approach.

1 H2020 PHC-30-2015 #690238.
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2.2. High-dimensional multivariate data visualization

Many techniques exist for visualizing high-dimensional or multi-
variate data; we will focus on the two approaches relevant for the
presented work. First, dimension reduction approaches reduce the
number of dimensions to 2 or 3, at the price of an information loss, and
visualize the results using a scatter plot. The main techniques for di-
mension reduction are Principal Component Analysis (PCA),
Multidimensional Scaling (MDS) and Self-Organizing Map (SOM) [28].
PCA is a statistical method. It generates new dimensions that are linear
combinations of the original ones, and that maximize the variance on
the first new dimensions. An example of PCA-based visualization is
iPCA [29].

MDS [30] performs non-linear dimension reduction. MDS works on
a distance matrix = ∈≤ ≤d d( ) ℝi j i j n, 1 , , where di,j is the distance between
the elements i and j. It minimizes the stress function, which takes into
account the distances in the original distance matrix di,j and the dis-
tances in the generated scatter plot δi,j. Various quality metrics have
been proposed for high-dimensional data visualization [31]. Two major
types of MDS exist: metric MDS tries to preserve distances while non-
metric MDS tries to preserve the ordering between distances but not
their absolute values. Many variants exist, such as relational perspective
map (RPM) [32], which is similar to MDS but optimizes an energy
function instead of a stress function. However, when using scatter plots
in CBR, all points are not equivalent: one represents the query while the
others represent the similar cases. Thus, all distances are not equiva-
lent: since the objective is to classify the query, distances between the
query and similar cases are more important than distances between two
similar cases. Klawonn et al. [26] proposed case-centered MDS for
medical diagnostic, a 3-dimensional MDS approach based on polar
coordinates. It preserves the distances involving one point (in CBR, the
query), to the detriment of the other distances. Rehm et al. [33] also
proposed an MDS approach in polar coordinates in POLARMAP, aimed
at adding new points without high computational costs, but not tar-
geting CBR.

Second, when considering qualitative multivariate data (or quanti-
tative data that has been discretized), set visualization techniques can be
applied: sets of elements having a given value in a given dimension can
be visualized. Many techniques exist for set visualization [34]. Re-
cently, we introduced a new technique, called rainbow boxes [15],
which has been initially applied to the comparison of drug properties
[16]. In rainbow boxes, the elements (e.g. cases) are shown in columns,
and the sets are represented by rectangular boxes placed below column
headers (see example in Fig. 2, on the right). Each box covers the col-
umns corresponding to the elements belonging to the set. The column
order is computed using a heuristic optimization algorithm, which tries
to order the columns so as the elements belonging to similar sets are
contiguous. When it is not possible to have them contiguous for a given
set, holes are present in the set's box. Boxes can be colored according to
various schemes. Finally, boxes are stacked vertically. Two boxes can be
next to each other as long as they do not occupy the same columns. We
proposed a proportional version of rainbow boxes [17], in which the
height of the boxes is an additional visual variable.

In this work, we chose polar MDS for its ability to produce a scatter
plot from a wide range of data, to cope with non-linearity, and to
preserve distances involving the query. Rainbow boxes were chosen for
their ability to display qualitative information, which is lacking in
scatter plot.

2.3. Artificial Feeding Birds (AFB) metaheuristic

Several visualization techniques require to solve optimization pro-
blems, including MDS and rainbow boxes. Nature-inspired metaheur-
istics [35] are simple, efficient and adaptable optimization algorithms.
Here, we chose Artificial Feeding Birds (AFB) [36], a recent meta-
heuristic inspired by the behavior of pigeons.

AFB considers a population of artificial birds (usually, 20 birds). The
position of each bird represents a candidate solution for the optimiza-
tion problem. The algorithm performs several cycles; in each cycle,
each bird performs one move. Four moves are possible: (1) walk to a
random position close to the actual one, (2) fly to a random position,
(3) fly to the best position found by the same bird yet, and (4) fly to join
the position of another random bird. Move #4 is allowed only for large
birds, which represent 25% of the bird population. Moves #3 and #4
are totally independent from the optimization problem. On the con-
trary, moves #1 and #2 depend on the types of optimization problem.
Consequently, AFB can be applied to any optimization problem that is
defined by a triplet of functions (cost, fly, walk), where cost is the cost
function to minimize, fly is a function that returns a totally random
solution and walk is a function that returns a random solution close to
another previous solution.

AFB was chosen because it is very easy to adapt to new problems,
including constrained combinatorial optimization, and we successfully
used it previously for optimizing rainbow boxes [36] but also for
quantitative preference learning [37].

3. Visual interface

3.1. General principles

In this work, we consider a CBR problem defined by a (p+1)-di-
mensional database X and a query case q. For each dimension, the
corresponding values can be real numbers (ℝ), integer numbers (ℕ),
booleans ({True, False}) or a set of nominals ({a, b, c… }). Y is the
solution space, i.e. the set of possible solutions; here we consider a finite
set of classes Y={y1, y2, … } with 2≤ |Y|≤ 10. The visual interface
aims at helping a user to find to which class q belongs. It takes 2
parameters: n, the total number of cases displayed in the interface (the
first one being q, thus n− 1 similar cases are retrieved from X), and m,
the maximum number of qualitative boxes to display in rainbow boxes.

A specific color is associated with each class in Y. The interface aims
at translating the problem “which class y does q belong to?” into a vi-
sual problem: “what is the dominant color?”. Fig. 2 shows the general
organization of the visual interface. The interface is divided in two
parts: scatter plot (left) and rainbow boxes (right).

The scatter plot is a representation in two (arbitrary) dimensions of
the distance matrix between the cases. q is displayed as a white point in
the center, and similar cases are represented by points colored ac-
cording to their class. In addition to colors, shapes (e.g. circle, square,
diamond, etc.) are used to encode the class, for helping color-blind
users. The scatter plot aims at preserving distances, i.e. the closer two
points are, the more similar the two cases they represent. Axes are not
shown because they are meaningless in MDS. Instead, the background
of the scatter plot displays a target centered on q, for facilitating the
appreciation of distances (especially when they are not in the same
direction, e.g. a vertical distance vs a diagonal one).

On the scatter plot, one can determine the number of similar cases
in each class. One can also identify the class to which belong the cases
that are the most similar to q, i.e. the color of the points closest to the

Fig. 2. General organization of the proposed interface for visual case-based
reasoning (“dim” stands for dimension and “val” for value).
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white point. In Fig. 2, there are 3 similar cases belonging to the blue
class vs only 2 for the red and yellow classes, and the most similar cases
belong to the red and blue classes. In addition, one can verify that the
colored points are well-separated (e.g. in Fig. 2, red points are at the top
of the scatter plot, yellow points in the right and blue points in the
bottom left). When the colored points are not well-separated but mixed
together, it may indicate that the attributes in the database or the
current CBR design do not allow classifying the cases correctly.
Therefore, in this situation, the results of the CBR approach must be
interpreted cautiously.

Rainbow boxes display a qualitative comparison on a subset of n′
cases (with n′≤ n), containing q and the similar cases belonging to the
two best candidate classes (in Fig. 2, they are the blue and the red
classes). Each case is displayed as a column, and cases are grouped by
class, with q in the middle. The column header color indicates the class
of similar cases. The column width is proportional to the similarity of
the similar case, e.g. here one of the blue column is smaller because the
corresponding case is less similar to the query (as shown in the scatter
plot). Some (dimension, value) pairs are displayed below in boxes, each
box occupying the columns of the cases for which the (dimension,
value) pair holds. Mutual Information (MI, detailed later in Section 3.5)
is used to select the most interesting (dimension, value) pairs with re-
gard to the class distribution, and also to compute the height of the
boxes: taller boxes correspond to higher MI. Finally, the color of a box is
gray if it does not contain q, and otherwise the color is a mix of the two
colors associated with the two classes, in proportion equivalent to the
ratio of the two classes in the box (each case being weighted by its
similarity), e.g. in Fig. 2, the box “dim #2= val #2a” is 50% blue and
50% red, thus violet.

Column headers allow the quick identification of the two main
candidate classes for q and their weighted ratio over the similar cases.
In Fig. 2, there are 3 similar cases belonging to the blue class, and only 2
belonging to the red one. Colored boxes show the characteristics, i.e.
(dimension, value) pairs, shared between q and the similar cases. Box
color indicates which class they orientate to. Notice how the column
width weights each similar case according to its similarity. In Fig. 2,
there are two tall blue boxes, one small violet box and one small red
box. Blue boxes are taller and more numerous: this argues in favor of
the blue class. The user can adapt or mitigate his choice by taking into
account the pertinence of the dimensions shown in the boxes. Finally,
gray boxes might suggest arguments for not choosing a class, e.g. the tall
gray box labeled “dim #5=val #5″ could be an argument for not
choosing the red class, because all cases belonging to this class have the
given value in dimension #5, and q has not. However, being different
according to a dimension does not necessarily imply that there is no
similarity according to others.

Fig. 3 shows the various steps explaining how rainbow boxes are
built from a plain table. Step 1 is the data table, with cases in columns.
Colors identify classes, and values in bold correspond to those shared by
several cases and retained later in rainbow boxes. In step 2, only the
two best candidate classes are kept, and columns (i.e. cases) have been
reordered by similarity, with the query in the middle. In step 3, boxes
are created for values shared between several cases. Notice how shared
values are much easier to identify at this step, compared to step 1. In
step 4, only the boxes are kept. Rows are removed, and boxes are
stacked at bottom. The final step (corresponding to the one shown in
Fig. 2, right) consists in adding box colors, box heights and column
widths.

To sum up, the visual interface supports the visual classification of
the query case by three means: (1) the scatter plot shows the class as-
sociated with the closest similar cases, (2) the scatter plot and rainbow
boxes headers show the number of similar cases belonging to each class,
and their similarity level, and (3) the boxes indicate how the similar
cases are similar to the query, and toward which class each character-
istic value orientates. (1) and (2) allow a quantitative approach for
classification, while (3) allows a qualitative approach based on specific

(dimension, value) pairs.
The interface is generated in 6 steps, detailed in the following

subsections.

3.2. Selecting similar cases

The n− 1 cases most similar to q are selected from database X,
using a common CBR technique. This is the retrieval phase, which is not
the focus of the current paper. Many methods have been proposed, and
any could be used here. They typically consider a dissimilarity measure
s that quantifies the dissimilarity (or distance) between two cases. The
most similar cases can be found by computing the dissimilarity s(q, Xi)
between q and each case Xi in the case base. A common example of
dissimilarity measure is the Euclidean distance. For nominal dimen-
sions, one can simply consider a dissimilarity of 0 if the values are
equal, and a dissimilarity of 1 if they differ (as we will do in Section 5),
or use a more complex semantic distance, e.g. based on a formal on-
tology (as we will do in Section 6).

We name X′ the set of cases obtained; ′X1 is q and ′X2 to ′Xn are the
cases similar to q. In addition, we build a symmetric distance matrix

= ≤ ≤d d( )i j i j n, 1 , using the same dissimilarity measure, and we compute
similar case weights wi using equation (1).

Algorithm 1. fly and walk functions for optimizing angles.

Function fly():

Fig. 3. The various steps for building rainbow boxes, starting from a data table.
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′ ∈x ℝd

For 1≤ k≤ d:
′=xk random real number between 0 and 2π

Return x′

Function walk(i):
′ ∈x ℝd, ′ =x xk ik for 1≤ k≤ d

j=random integer number between 1 and n, j≠ i
k=random integer number between 1 and d
Δ=|xik− xjk|
If Δ=0: Δ=0.001
r= random real number between −1 and 1

′ = ′ + ×x x r Δk k
If not ≤ ′ <x π0 2k : ′ = ′x x πmod 2k k
Return x′

3.3. Generating the polar MDS scatter plot

As explained in Section 2.2, when using MDS to produce scatter plot
for CBR, polar coordinates are a better choice than Cartesian co-
ordinates, because they allow preserving the distances between the
query and the similar cases. Here, we propose a 2-dimensional ap-
proach for MDS in polar coordinates. q is placed at the origin (0, 0).
Then, for each other case i≥ 2, we need to compute its polar co-
ordinates (li, θi), where li is the distance from the origin and θi is the
angle to the polar axis. Because the origin is also q, li is already avail-
able in the distance matrix: li= d1,i. For angles, we use AFB to find the
values of θi that minimize the stress function:

∑=
−

< <

S d
d δ

d
( )

( )
p

i j2

ij ij
2

ij

where dij is the distance between point i and j in the n-dimensional
distance matrix, and δij is the distance between point i and j in the
resulting 2-dimensional scatter plot, computed as follows:

= − + −δ d θ d θ d θ d θ( cos( ) cos( )) ( sin( ) sin( ))i i j j i i j jij 1, 1,
2

1, 1,
2

i and j start at 2, because index 1 is q, and distances involving q are
fixed. We run AFB using the stress function Sp(d) as the cost function,
and the fly and walk functions given in Algorithm 1. These functions
correspond to the one proposed previously for global non-linear opti-
mization [36], but we modified the walk functions to take into account
the cyclic nature of angles: when the new value is outside the expected
range [0, 2π[, we apply a modulo 2π. We test 3000 candidate solutions
and we keep the best solution found.

Fig. 4 shows 4 scatter plots generated from the same distance ma-
trix, using PCA, metric MDS, non-metric MDS and polar MDS (the focus
being the center white point). In particular, the distance between the
white point and the closest red and green points were equal in the
distance matrix, and they remain equal on the polar MDS scatter plot,
unlike with the three other methods. However, other distances are less
well preserved. For example, we see in the first three scatter plots that
one of the green points is distant from the other ones. In the polar MDS
scatter plot, this information is lost. Consequently, using polar MDS
instead of traditional MDS is a trade-off between favoring the distance
involving one case and not favoring any distance. In CBR, polar MDS is
very interesting because it preserves perfectly the distances between the
query and similar cases, allowing a better accuracy when performing
visually a WkNN. On the contrary, distances between two similar cases
are less interesting in that context, although they can be used to de-
termine whether the similar cases belonging to a given class are close
together or not.

3.4. Retaining the two main candidate classes

Only the two best candidate classes are retained for rainbow boxes,
to limit visual complexity. We perform a majority voting between si-
milar cases, weighted by case weights w .i We arbitrarily name these two

Fig. 4. Scatter plots generated by 4 different methods, for the same dataset. In
the original distance matrix, the distances between the white dot and the closest
red and green dots (identified by pink arrows) are actually equal. Notice that
only polar MDS maintains this equality properly in the scatter plot. (For in-
terpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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classes y1 and y2, and we extract X″= X′ ∩ ({q} ∪ y1 ∪ y2), the subsets of
cases belonging to one of the retained classes (still including q).

3.5. Generating and selecting boxes

First, numeric values are discretized, using the MDLP (Minimum
Description Length Principle) algorithm [38].

A box is defined by a (dimension, value) pair and can be noted Zv,
where Z is the dimension and v the value. It can be formalized as a
subset of the cases in the visualization: ⊆ ″Z Xv . For each boolean di-
mension Z, one box ZTrue is generated for the True value. For each
nominal dimension Z (including discretized integer or real dimensions),
one box Zv is generated for each possible nominal value v.

Many boxes can be generated, if the number of dimension p is high.
To avoid overloading the visualization, we select the most interesting
boxes, according to Mutual Information (MI). We compute per-box MI
(not per-dimension):

∑ ∑ ⎜ ⎟= ⎛
⎝

⎞
⎠∈ ∈

Z Y p z y
p z y

p z p y
MI( ) ( , )log

( , )
( ) ( )v

z Z Z y y y{ , ¯ } { , }v v 1 2

where Z̄v is the subset of cases not belonging to Zv (and excluding q),
i.e. = ″ ∪Z X q Z¯ \({ } )v v .

Probability p(…) are computed over X″ \ {q}, i.e.:

=
″

=
∩

″
p y

y
X q

p Z y
Z y
X q

( )
| |

| \ { }|
and ( , )

| |
| \ { }|v

v
1

1
1

1

Finally, we kept the m boxes with the highest MI (m being a para-
meter of the visualization). Box color CZv is the mean of the two classes
colors Cy1 and Cy2, weighted by the weight wi of the similar cases in-
volved:

= ×
∑ ∣ ∈ ∩

∑ ∣ ∈
+ ×

∑ ∣ ∈ ∩
∑ ∣ ∈
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≤ ≤
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Boxes are arranged vertically according to their colors.

Algorithm 2. AFB fly and walk functions for optimizing rainbow boxes
column order while grouping similar cases by class. q is the query case,
C1 and C2 are the sets of similar cases associated with each of the two
classes.

Function fly():
′x1 =sequence of the elements in C1, in a random order
′x2 =sequence of the elements in C2, in a random order

Return the concatenation of ′x1, q, ′x2

Function walk(i):
xi is the position of the bird i, i.e. a candidate column order
p=position of q in sequence xi

′x1 =elements 1 to p− 1 in sequence xi
′x2 =elements p+1 to |xi| in sequence xi

k=random integer number between 0 and 1

If <
+

k C
C C

| 1|2

| 1 |2 | 2|2
:

′ = ′x x2op( )1 1
Else:

′ = ′x x2op( )2 2
Return the concatenation of ′x1, q, ′x2

Function 2op(L):
i=random integer number between 1 and |L|− 1
j=random integer number between i+1 and |L|
L′=clone of sequence L
Reverse the order of elements between ′Li and ′Lj

Return L′

3.6. Optimizing rainbow boxes

The optimization of rainbow boxes consists of finding the column

order that minimizes the number of holes in the boxes. We proposed the
AFB metaheuristic [36], able to optimize more than 30 columns in a
satisfying time. Here, we add a constraint: similar cases must be
grouped by class and q must be in the middle (as shown in Fig. 2). Since
some boxes may span across the two groups of similar cases, each group
cannot be optimized separately. Therefore, this is a constrained combi-
natorial optimization problem, of complexity � n n( ! !)1 2 , where n1 and
n2 are the numbers of similar cases associated with each of the two
classes.

We solved this problem using the AFB metaheuristic, with new
dedicated fly and walk functions (Algorithm 2). The fly function creates
a random column order, made of three parts: the similar cases asso-
ciated with the first class, the query case, and the similar cases asso-
ciated with the second class. The two parts with similar cases are ran-
domly shuffled.

The walk function is based on the 2-opt local search heuristic [39]. It
consists in opening the sequence at two points, and reconnecting it after
reversing one of the two parts. The walk function includes three steps.
First, it extracts from the column order the two subsequences with si-
milar cases. Second, it determines which one of the two subsequences
will be modified. The choice is performed randomly, with a relative
probability equal to the squared number of cases in each subsequence.
This gives a higher chance to modify the longer subsequence, which has
more possible orders and thus requires more optimization effort. Third,
the chosen subsequence is modified using the 2-opt local search heur-
istic.

The cost function computes the number of holes present in the
rainbow boxes, for the given candidate column order. Each hole has a
cost that is proportional to the height of the holed box. This favors holes
in small boxes, and lets the most important and tallest boxes without
holes. The AFB metaheuristic is run until 3000 candidate solutions have
been tested, and the best solution found is retained.

3.7. Adding interactivity

We add interactivity for displaying additional information on de-
mand and for connecting together the two parts of the visual interface.
Interactivity was added at three levels: (1) when the mouse cursor is
over a point in the scatter plot, the corresponding column in rainbow
boxes is highlighted by fading other columns, (2) when the mouse
cursor is over a column header, the corresponding point in the scatter
plot is highlighted by fading other points, (3) when the mouse cursor is
over a box, all the scatter plot's points associated with the columns
covered by the box are highlighted in a similar way, and a popup label
displays the full box label and the exact value of the box dimension for
q.

4. Automatic algorithms

In this section, we translate the visual reasoning permitted by the
proposed interface into automatic classification algorithms. It provides
a better understanding of the interface, although it does not necessarily
model the way a human user will use the information and it does not
consider the medical knowledge that an expert might use. Finally, it
permits determining the best parameter values, and evaluating whether
the information displayed could be used for accurate classification.

The interface includes two parts. The scatter plot visualizes the
classes the similar cases belong to, and the distances between the si-
milar cases and q. This is very similar to WkNN, so the scatter plot can
be formalized by WkNN.

For rainbow boxes, the visual search of the dominant color can be
formalized by a rainbow boxes-inspired algorithm (RBIA). It computes a
score Sy for each of the two colors (representing the two retained classes
y1 and y2), and then it classifies q in the class that obtains the highest
score. Sy measures the “quantity” of each of the two colors associated
with the classes in the visualization. For each box, Sy must take into
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account the box MI (i.e. box height), the distribution of the cases in the
box between the two classes (i.e. box color), and the weight of similar
cases (i.e. column width). This leads to the formula:

∑ ∑= × ∣ ∈ ∩≤ ≤S Z Y w x Z y(MI( ) { })y
Z

v i n i v2

v

with y∈ {y1, y2}. e-Component #1 gives the full RBIA algorithm.
Fig. 5 shows an example of the computation of Sy with 2 boxes. y1 is

the blue class and y2 the red one. The lower box Av has a total case
weight belonging to class y1 equal to ∑ ∣ ∈ ∩ =≤ ≤w x A y{ } 2.5i n i v2 1 and
0 for class y2. The upper box Bu has a total case weight belonging to
class y1 of 1 and 1 for class y2. The resulting scores are:

= × + × =S A Y B YMI( ) 2.5 MI( ) 1 6y v u1

= × + × =S A Y B YMI( ) 0 MI( ) 1 1y v u2

Since >S Sy y1 2, q is classified in y1 (blue class).

5. Application to breast cancer machine-learning datasets

Breast cancer is one of the most common type of cancer affecting
women in Europe, and it is associated with a high survival rate at 10
years. However, with the development of new therapies and clinical
practice guidelines, the management of the disease is becoming more
and more complex. In particular, clinicians in the multidisciplinary
Breast Units (BUs) have to make several important decisions, including
making a diagnostic and prescribing a treatment.

In this section, we apply the proposed approach to machine-learning
and simulated datasets, using a very simple CBR setting and Euclidean
distance.

5.1. Datasets

We used three public datasets related to breast cancer. The Breast
Cancer Wisconsin (BCW) dataset2 includes 683 cases (after removing 16
cases with missing values), 9 dimensions with integer values ranging
from 0 to 10 (computed from a digitized image of fine needle aspirate of
breast mass) and 2 classes (whether the diagnostic is benign or malig-
nant). The Mammographic Mass (MM) dataset3 includes 830 cases, 2
numeric dimensions (age and Breast Imaging Reporting And Data
System value, BI-RADS), 3 categorical dimensions (shape, margin and
density of the mass) and 2 classes (whether the diagnostic is benign or
malignant). The Breast Cancer (BC) dataset4 includes 286 cases, 4 nu-
meric dimensions (age, tumor size, etc.), 4 categorical dimensions
(breast quadrant, etc.) and 2 classes (whether the cancer is recurrent or
not). Second, to demonstrate our visual approach on therapeutic deci-
sion with more than two classes, we simulated a dataset (SD) with 4050
cases and 75 dimensions (22 boolean, 14 integer and 39 nominal) and 4

classes, corresponding to the four main categories of treatment for
breast cancer: surgery, chemotherapy, radiotherapy and endocrine
therapy.

5.2. Examples

Fig. 6 shows the application of our visual interface to a case of the
BCW dataset (the query case was extracted from the dataset, but its
class was ignored). The “benign” class was associated with yellow, and
the “malignant” one with red. We extracted 7 similar cases (n=8,
counting q) and we selected at most m=11 boxes (however, fewer
boxes are displayed due to the low number of attributes). In Fig. 6, in
both scatter plot and rainbow boxes, we can see that 4 similar cases
were benign, while 3 were malignant. The scatter plot indicates that the
most similar case was malignant (red square is closest to the center of
the target). Rainbow boxes headers can be used to visually sum the
weights of the similar cases, and conclude that the weight of the ma-
lignant cases is higher (this is a visual WkNN). Rainbow boxes show the
common characteristics between q and the similar cases. The most in-
formative (bigger) box is “Bare nuclei≥ 3″, and it includes all, and
only, malignant cases. Thus the box is red. Other boxes are smaller, and
orange/reddish. Some labels are not visible, but can be obtained
through mouse-overing. Here, the visual interface argues strongly in
favor of a malignant lesion. Moreover, the physician can mitigate his
conclusion depending e.g. on the importance he gives to bare nuclei.

Occasionally, the quantitative and qualitative approaches may dis-
agree. In these cases, rainbow boxes provide explanations for the RBIA
algorithm and the scatter plot for the WkNN algorithm. Since our
system is primarily a visual CBR system, we preferred to let the user
have the last word, rather than arbitrarily computing the mean of the
results of the two algorithms, or using a voting system.

The SD dataset is more complex because it has 4 classes. We asso-
ciated a color to each classes of treatment: red for surgery, blue for
radiotherapy, green for chemotherapy and yellow for endocrine
therapy. Fig. 7 shows an example, with n=13 and m=11. The scatter
plot shows that there are 5 similar cases treated by surgery, 4 by
radiotherapy, 2 by endocrine therapy and 1 by chemotherapy. The
closest case was treated by endocrine therapy. In rainbow boxes, only
the two main classes are retained: surgery and endocrine therapy. The
red color is dominant, hence, the visual interface advocates for pre-
scribing surgery. However, the “Nuclear grade=Grade1″ criteria may
be considered by clinicians, orienting toward endocrine therapy.

5.3. Experiments

We measured the accuracy of the automatic algorithms on the three
public datasets, by testing all cases (i.e. leave-one-out validation). Fig. 8
shows the results. We tested three algorithms: kNN, WkNN and RBIA
(detailed in Section 4). For each algorithm, we selected the value of n
(for rainbow boxes) or k (for kNN and WkNN) that yields the best re-
sults. RBIA has a better accuracy on two datasets: for BCW, the accuracy
is 97.8% (for n=8) vs 97.5% (WkNN with k=9, corresponding to
n=10). For BC, the accuracy is 77.3% (n=18) vs 76.6% (kNN, k=5).
On MM, RBIA's accuracy is 80.8% (n=21), vs 82.0% (kNN, k=7).
Consequently, this shows that the information displayed in rainbow
boxes is relevant and allows a good classification, although it is a very
small subset of the information available in case database X or even in
similar cases X′.

For n above 25, the results evolve as follows. For BCW, the accuracy
of the 3 algorithms remains very similar, but the overall results de-
crease slightly with n for all algorithms. For MM, the algorithms con-
verge to the same accuracy of about 80%. For BC, WkNN accuracy
remains high but kNN accuracy decreases, and RBIA accuracy is in-
between.

Fig. 5. Example of the computation of scores Sy.

2 https://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin
+(original).

3 https://www.kaggle.com/overratedgman/mammographic-mass-data-set/
data.

4 https://archive.ics.uci.edu/ml/datasets/breast+cancer.
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5.4. User study

The visual interface was presented to medical experts. In the initial
interface we presented, all similar cases were shown in rainbow boxes
and they were not grouped by class. Experts found this initial interface
too complex. Thus we simplified it by limiting rainbow boxes to two
classes, as described here (see Section 3.4), leading to a second version
of the interface.

This second version was tested with the simulated dataset during a
small online user study. 5 cases were presented, each of them corre-
sponding to a query case and 12 similar patients. The cases were of
increasing difficulty. The first four were associated with a correct an-
swer, while, in the fifth case, scatter plot and rainbow boxes lead to
contradictory conclusions and no correct answer was expected. This
case was added to see how users would react in such a situation.

The study was performed using a dynamic website that recorded
responses and response times, and users were allowed to send personal
comments. The top of the screen displayed the visual interface. The
bottom of the screen allowed entering the answer. For each case, the

user had to indicate the treatment type he would choose on the basis of
the presented data (4 possible values), and his level of confidence in his
decision (5-value Likert scale: Not confident, Rather not confident,
Mildly confident, Rather confident, Confident, coded as a 1–5 value
with 5 being Confident). Statistical analysis was performed using R
software version 3.5.1 [40].

We recruited 11 evaluators: 6 physicians working in breast cancer
units and 5 physicians working in medical informatics. 3 were female.
Mean age was 50.0 years. The mean accuracy of the response was
81.8% (72.7% for case #1, 90.9% for #2, 72.7% for #3 and 90.9% for

#4; accuracy was not measured for case #5 since no right answer was
expected). Notice that “inaccurate” responses may not be regarded as
wrong: as said above, the physician might have mitigated his response
with his medical knowledge, e.g. giving more importance to a box in-
volving a dimension that he considers as very important. The mean
level of confidence was 3.75, with values decreasing with case difficulty
(4.1, 4.0, 3.5, 3.4 and 3.4, respectively). Statistical analysis showed that
question number (associating with case difficulty) had a significant
impact on confidence (p=0.0301, ANalysis Of VAriance). Thus con-
fidence is related to the case difficulty: the visual interface is able to
convey the difficulty of the case well. This is important, because CBR
may not be well-suited to all cases, and the user must be able to de-
termine whether CBR suits well to a given case, or not.

The analysis of comments showed that experts were enthusiastic
with regard to the visual CBR approach. One of them found that it was
“like a game”. Experts found the qualitative approach interesting as it
links system recommendations with patient characteristics in a way that
speaks to them. On the other hand, they have sometimes been puzzled,
particularly when the scatter plot and rainbow boxes lead to different
conclusions (for example if the most similar cases on the scatter plot
does not correspond to the treatment toward which rainbow boxes
orientate). Analysis of the results of case #3 shows that physicians
might give too much importance to the case closest to the query (the
closest case was mentioned during the presentation of the visual in-
terface and possibly we insisted too much on it). Certainly, the visual
interface requires a short training before being used optimally.

In conclusion to the user study, we have shown that, using the
proposed interface, a user was able to perform CBR visually. Moreover,
the interface was able to provide the user a good indication of the
confidence level of his/her choice. However, these preliminary results
must be confirmed in a larger study.

6. Application to real data in breast cancer

The DESIREE project includes several decision-support modules for
breast cancer therapy, based on different strategies: implementation of
clinical practice guidelines [41], machine-learning, and, of course, CBR
[42]. With regard to CBR, breast cancer is known to be particularly
difficult because of the attribute type heterogeneity and the difficulty in
eliciting attribute weights from experts [43]. In this section, we apply
the proposed approach to a real dataset on breast cancer, using a more
sophisticated and knowledge-intensive CBR setting than in previous
section.

Fig. 6. Visualization of a case in the BCW dataset, with n=8 cases and 7 boxes.
Numbers (e.g. “#13”) are case identifiers.

Fig. 7. Screenshot of the visual interface for CBR on the simulated dataset for the therapeutic decision.

Fig. 8. Accuracy obtained for various values of n on three datasets (identified
by colors) and algorithms (identified by line styles). n is the number of cases
considered; thus, for kNN and WkNN, k= n− 1. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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6.1. System architecture and implementation

The clinical platform contains several decision support modules, as
well as other modules (e.g. for medical imaging). Fig. 9 shows the
general CBR system architecture. The CBR module includes three
components: (a) the case base, (b) the CBR engine, in charge of re-
trieving the cases that are the most similar to the query, and (c) the CBR
visual analytics component, in charge of producing the visualization.
The CBR engine was implemented in Java with JColibri [44]. The CBR
visual analytics component was implemented in Python 3. Interoper-
ability between the clinical platform and the CBR module is achieved
using the FHIR (Fast Healthcare Interoperability Resources) standard
[45] from HL7 (Health Level 7). This standard allows the exchange of
health-related messages between medical services, including electronic
patient records. In terms of performances, the generation of the visual
interface takes less than a second.

6.2. Data extraction

Four hospitals are involved in DESIREE, from France and Spain.
Through FHIR, we extracted from the DESIREE Decision Support and
Information Management System (DESIMS) an anonymized dataset
including 315 patients with breast cancer at the initial stage of the
treatment. At this stage, patients are oriented in two “scenarios”: B
(chemotherapy, or occasionally endocrine therapy) or D (surgery). In
DESIMS, data are structured at 3 levels: patient, side (two sides per
patient, i.e. left and right) and lesion (zero, one or several lesions per
side), according to an OWL domain ontology (described in [46,47]).
Data were extracted using the Owlready2 [48,49] ontology-oriented
programming module for Python, and treated as follows. Per-side and
per-lesion dimensions were aggregated by retained only the worst value
available. For example, if a patient has several lesions, the “tumor size”
dimension is actually the size of the largest lesion. Missing data were
fixed by replacing them with the most frequent value (for categorical
and boolean dimensions) or by the mean of the values observed (for
integer and real dimensions). The “number of abortions” dimension was
an exception: since clinicians filled this field only when non-null,
missing values were replaced by 0. The resulting dataset includes 51
dimensions (22 Boolean, 15 integer, 1 real and 13 categorical dimen-
sions) and two classes (118 patients in B/chemotherapy and 197 in D/
surgery).

6.3. CBR setting

Dimensions were initially selected and weighted using the Weka
BestFirst and Ranker algorithms. Then the result was discussed with an
expert (BS) that worked on therapeutic guidelines for breast cancer.
Following her recommendations, a new attribute was added to the se-
lection (Histologic type) and the weights of three attributes were in-
creased. Table 1 shows the 13 selected dimensions and their weights.

We used as dissimilarity measure s the Euclidean distance, con-
sidering all retained dimensions, each being weighted by its weight wj

∑= ×
=

s a b w a b( , ) dist( , )
j

p

j j j
0

2

Here, dist() is a function that computes the distance between two
values of a given dimension. Three dist() functions are used, depending
of the type of the dimension: boolean, numeric (integer or real) or ca-
tegorical. For boolean dimensions, it simply compare the two values.
For numeric dimensions, it computes a classical Euclidean distance. For
categorical dimensions, we proposed a semantic distance (described in
[50,42]), based on the hierarchical placement of concepts in the do-
main ontology. The 3 dist() functions are as follows:
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where super(t) is a function that returns, for a given individual t, the set
of classes it belongs to in the ontology, including superclasses up to the
root class for this dimension. For example, considering the following
simple ontology:

⊑
⊑

⊑

NonInvCarc Carc
InvCarc Carc
InvDuctalCarc InvCarc

we have:

∈ =
∈ =
∈ =
∈ =

t
t
t
t

super( Carc) {Carc}
super( NonInvCarc) {NonInvCarc, Carc}
super( InvCarc) {InvCarc, Carc}
super( InvDuctalCarc) {InvDuctalCarc, InvCarc, Carc}

and we obtain:

∈ ∈ =
∈ ∈ =
∈ ∈ =
∈ ∈ =
∈ ∈ =
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dist ( InvCarc, InvCarc) 0
dist ( InvDuctalCarc, InvCarc) 0.18
dist ( InvDuctalCarc, Carc) 0.42
dist ( InvCarc, NonInvCarc) 0.5
dist ( InvDuctalCarc, NonInvCarc) 0.59

sem 1 2

sem 1 2

sem 1 2

sem 1 2

sem 1 2

Fig. 9. General architecture of the DESIREE CBR system.

Table 1
The dimensions selected and their weights.

Dimension Type Weight

Stage Categorical 0.255598
TNM cM Categorical 0.041492
TNM cN Categorical 0.126464
TNM cT Categorical 0.274324
Ki67 result Integer 0.08387
PR result Integer 0.075758
Suspicion of invasion Boolean 0.059697
Tumor size Real 0.112173
Clinical lymph nodes Boolean 0.079908
Molecular subtype Categorical 0.064898
Histologic typea Categorical 0.2a

ER status Boolean 0.15a

SBR grade Integer 0.15a

TNM is a classification of malignant tumors; T represents the size of the original
tumor, N for nearby (regional) lymph nodes involved and M is for metastasis.
Ki67 is a cellular proliferation marker. PR stands for progesterone receptors. ER
stands for estrogen receptors. SBR is a categorization of the aggressiveness of a
cancer.

a Elements introduced or modified following the expert recommendations.
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6.4. Results

Using WkNN, the best classification accuracy we obtained was
80.3%, for k=18 (i.e. n=17). Fig. 10 shows a screenshot of the pro-
posed interface on the real breast cancer dataset. Here, the horizontal
length covered by green column headers is longer than the one of red
header, thus WkNN recommend the green treatment, i.e. che-
motherapy/endocrine therapy (scenario B). Rainbow boxes provide
arguments in favor of this treatment. The main argument is a high
tumor size. On the contrary, the low “PR result” value is an argument
that a clinician might consider for prescribing surgery.

7. Discussion

We proposed a visual Case-Based Reasoning method for classifying a
new query case in a small number (2–10) of classes. It relies on a visual
interface that translates the CBR problem into a question of “color
dominance” and combines two complementary approaches: a polar-
MDS scatter plot showing quantitative similarities and rainbow boxes
showing qualitative similarities. We also formalized the expected visual
reasoning using algorithms. In particular, rainbow boxes were able to
explain visually why the similar cases are similar to the query case, and
on which dimensions and values the similarity holds. Since boxes show
dimension names and their associated values, they are easily under-
standable for a human user.

We applied the proposed method to breast cancer, and we tested it
on three public datasets for diagnostic decision and one simulated and
one real dataset for therapeutic decision. Domain experts were inter-
ested in this visual approach.

In the visual interface, we proposed an MDS method in polar co-
ordinates that generates a scatter plot centered on the query. It pre-
serves all distances involving the query, and restricts the information
loss on the other distances. It is similar to previously mentioned
Klawonn et al. [26] case-centered MDS, but in two dimensions instead
of three, with a simpler algorithm. To our knowledge, this is the first
CBR polar MDS in two dimensions: while polar MDS is well-suited to
CBR, it has actually been rarely used in this context.

We also proposed a qualitative approach, using rainbow boxes.
Although we used quantitative attribute distances to build rainbow
boxes, they display textual box labels (e.g. “menopause=pre-
menopausal”) in addition to MI. These labels are qualitative by nature.
Consequently, from a visualization point of view, rainbow boxes can be
considered as a qualitative approach, and this is why we described them
as such. On the contrary, the scatter plot displays only quantitative
distances. We also extended rainbow boxes with a new visual variable:
column width.

We used Mutual Information (MI) for selecting and weighting boxes.
MI is commonly used for feature selection [51] and for CBR [52].
However, we used MI at the local neighborhood of the query case, and
not globally. In the literature, local similarity refers initially to “local in
feature-space”, i.e. a similarity restricted to a single attribute [53].
However, recent works focused on the definition of “local similarity in

case-space”, i.e. a similarity restricted to a subset of the case base. Liu
et al. [54] proposed a local use of MI for feature selection. Badra [55]
used co-variations to “express a local coïncidence of values of two
properties” and then use these co-variations as a dissimilarity measure
to perform similarity-based reasoning. Zabkar et al. [56] proposed a
local similarity-based approach for searching for qualitative relations in
categorical domains. Zabkar et al. consider all cases at the beginning
and subdivide them in subsets recursively, building a tree. Thus, ex-
cepted at the root of the tree, the qualitative relations found are local to
a given subset of the cases. Similarly, in this study, we worked at the
local neighborhood of the query case, determined using a global simi-
larity measure, and then we identified local similarities using MI; these
similarities are valid in the neighborhood of the query but might not be
true at the global level.

Our interface relies heavily on color for identifying the various
classes (e.g. treatment types). However, a color-blind-friendly version of
the interface could easily be set up. The scatter plot uses various shapes
in addition to colors. In rainbow boxes, only two classes are compared,
so colors are not required and we could use light and dark gray for
distinguishing the left and right classes.

We proposed a formalization of the two parts of the visual interface
as automatic algorithms. We showed that the quantitative part was si-
milar to a WkNN algorithm. We proposed an algorithm for the quali-
tative part (RBIA) and we showed that the information displayed on the
qualitative part, although very partial since limited to a few (dimen-
sion, value) pairs, allowed a good classification accuracy, comparable
to kNN and WkNN, while being visually explainable. However, RBIA
seems highly dependent on the value of the parameter n, especially for
the BC dataset: while this algorithm produced the highest accuracy, its
accuracy is actually above those of kNN and WkNN for only two values
of n. Consequently, n must be chosen carefully.

In our opinion, the association of an automatic algorithm with a
visual interface is a “win-win” methodology: the visual interface allows
explaining the reasoning process to the user, who can enrich it by
considering his personal knowledge, and the automatic algorithm al-
lows a better formalization of the visual reasoning process. To our
knowledge, this is an original approach.

We described two optimization problems required for generating
the visual interface: optimizing angles in polar MDS and optimizing
column order in rainbow boxes, under constraint. These two problems
are very different: unconstrained global non-linear optimization vs
constrained combinatorial optimization. However, we were able to
solve both problems using the same metaheuristic, AFB. This highlights
the adaptability of AFB.

We achieved a classification accuracy of 80.3% on the real dataset;
this result is encouraging but still has some margin or improvement. In
particular, the case base was limited to 315 patients. We are still col-
lecting real cases, and a larger case base might improve the results. In
particular, we were unable to distinguish the two treatments in scenario
B (chemotherapy and endocrine therapy) because of the very small
number (6) of endocrine therapy in the dataset.

Fig. 10. Screenshot of the visual interface for CBR on the real dataset for initial therapeutic decision in breast cancer.
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8. Conclusion

We proposed a visual and explainable CBR system combining
quantitative and qualitative approaches. This method was tested on
three public datasets, a simulated and a real datasets related to breast
cancer. The first perspective of this work is the clinical validation of the
visual CBR approach, including a more comprehensive user study in
controlled conditions. A second perspective is to improve the CBR
system, for instance by considering covariations [57,55] (i.e. correlated
variations of two variables, such as “recurrence of cancer increases
when the size of the tumor increases”) for identifying qualitative si-
milarities. A third perspective is to develop a similar interface for
analyzing medical datasets, but aimed at knowledge discovery rather
than CBR.
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