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Early detection of skin cancer is very important and can prevent some skin cancers, such as focal cell carcinoma
and melanoma. Although there are several reasons that have bad impacts on the detection precision. Recently,
the utilization of image processing and machine vision in medical applications is increasing. In this paper, a new
image processing based method has been proposed for the early detection of skin cancer. The method utilizes an
optimal Convolutional neural network (CNN) for this purpose. In this paper, improved whale optimization al-
gorithm is utilized for optimizing the CNN. For evaluation of the proposed method, it is compared with some

different methods on two different datasets. Simulation results show that the proposed method has superiority
toward the other compared methods.

1. Introduction

The skin is the broadest organ in the body which protects the body
against the heat, light, and infection. It also helps to control the body
temperature and to store the fat and the water. One of the most im-
portant problems of skin in the body is its infection risk to skin cancer
[11.

Skin cancer starts from the cells - the main components that make
up the skin - the skin cells grow and divide to form new cells. Everyday
skin cells grow old and die and new cells take their place. Sometimes
this systematic process does the wrong thing. New cells are created
when the skin does not need them, and old cells die when they do not
have to. These extra cells form a mass of tissue called a tumor [2,3].

Melanoma is the most malignant and most serious type of skin
cancer and is the reason for most deaths from skin cancer. The under-
lying cause of melanoma is unknown [4]. But several factors, including
genetic factors, ultraviolet radiation, and environmental contact are
involved in causing the disease.

Melanoma originates from skin melanocytes that have undergone
malignant transformation. Melanocytes produce dark pigments on the
skin, hair, eyes, and spots of the body. Therefore, melanoma tumors are
mostly brown or black. But in a few cases, melanomas do not produce
pigment and appear pink, red or purple [5].

Melanoma is the 19" most commonly happening cancer among the
humankind such that about 300,000 new cases have been found in
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2018. On average, 2490 females and 4740 males lost their lives due to
melanoma during 2019 [6]. Fig. 1 illustrates the top 20 countries with
the highest melanoma rates in 2018 [7].

However the chance of healing of this cancer is high, it is still
counted as a major concern of people due to its high prevalence [8].
Sometimes, melanoma spread through the lymphatic system or circu-
latory system and achieve the farthest points of the body [9]. This
cancer has the highest rate of probability among various kinds of skin
cancer [10-14]. Studies have shown that the early detection of mela-
noma helps significantly to reduce the death rate of melanoma cancer
[15]. A significant problem is that the early diagnosis of melanoma,
even by specialists, is a hard-core process. Therefore, using a method
for simplifying the diagnosis can be helpful for the specialists [16-19].

In the recent decade, the application of image processing and ma-
chine vision for different usage of medical imaging is exponentially
increasing [20-22]. Using these techniques increases the diagnosis
process speed and decreases human errors. It can also improve the
quality and the convenience of the melanoma diagnosis by the physi-
cians and radiologists.

For instance, in 2016, Pennisi et al. [23] proposed a melanoma
image segmentation basedon delaunay triangulation.

The method was automated melanoma detection. They analyzed the
method on a publicly available dermoscopic images benchmark. Final
results showed a sensitivity of 93.5 % for the proposed method.

In 2018, Heller et al. [24] proposed a method based on
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Fig. 1. The age-standardised rate of melanoma in 2018 [7].

morphological features for melanoma detection. The method de-
termined a computer-aided diagnosis system for skin cancer detection.

Artificial Neural Network (ANN) is a part of Artificial Intelligence
that can be used in different applications of image processing, like
image segmentation and image classification [21,25-30]. For example,
in 2016, Kanimozhi et al. [31] proposed a method based on artificial
neural networks for skin cancer diagnosis.

The method used Asymmetry, Border, Color, Diameter, (ABCD rule)
for better cancer analysis. Results showed about 97 % accuracy for the
training of neural network. The method is then used for testing the
cancer classification. Final experiments showed the system proper ef-
ficiency.

Deep convolutional neural networks (CNNs) is a new different type
of artificial neural networks which gives strong results for general and
highly variable tasks in different image processing applications. In re-
cent years there are some different applications of deep neural networks
for medical imaging [32]. For example, Esteva et al. [33] proposed a
dermatologist-level classification for melanoma based on deep neural
networks. They used CNN for the classification of melanoma using a
single CNN, by directly training end-to-end from images. The method
efficiency was testified toward 21 board-certified dermatologists on
biopsy-proven clinical images.

Due to the high precision of the CNNs, they have a lot of applica-
tions in different parts of medical imaging such as MR images fusion
[34], lesion classification [35], tumor diagnosis [36], breast cancer
[37]1, and panoptic analysis [38]. For the explained methods based on
CNN, the image was first divided into several small superpixels and
then the operator was applied to each of the superpixels. Based on the
aforementioned literature, it is concluded that the use of CNN models
develops the efficiency of the diagnosis system [39]. One other method
for improving the efficiency of the system is to combine them by op-
timization algorithms [40].

Generally, the applications of using optimization algorithms in
different fields of science and engineering are increasing. A new opti-
mization algorithm for solving these kinds of problems is the whale
optimization algorithm which is introduced by Mirjalili and Lewis in
2016 [41]. The whale optimization algorithm inspires the process of
bubble-net hunting in humpback whales for trapping the prey [42-46].

This study presents a new technique of using an improved whale
optimization algorithm for skin cancer detection. Indeed, the main idea
here is to utilize the improved whale optimization algorithm to enhance
a Convolutional neural network with higher efficiency for the diagnosis
usages.

The next sections of the paper are as follows. In Section 2, the
concept of Convolutional Neural Networks is explained. Section 3 re-
presents an improved whale optimization algorithm. Section 4 is about
how the neural network is optimized by the optimization algorithm.
Section 5 describes the employed datasets for system performance
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analysis. Section 6 includes the algorithm implementation on the case
studies and the paper is concluded in Section 7.

2. Convolutional neural networks

The Convolutional Neural Networks (CNN) is an improved type of
neural network that is developed by Yann LeCun, et al. [47]. CNN can
be adopted for utilizing different mathematical learning methods like
regularization, backpropagation, and gradient descent [13,48]. CNN
contains three principal concepts of layers including Convolutional
layer, pooling layer, and fully connected layer.

Due to the high performance of the artificial neural networks, they
are known as proper solutions of several complex problems in image
processing and machine vision. A drawback feature of these networks is
that the multilayer perceptron models and other similar networks
adopted gradient descent for minimizing the error between the
achieved response from the network and the desired value. Indeed,
sometimes using gradient descent, the solution stuck in the local
minimum and doesn’t give the best global solution.

CNN is very efficient for solving complex problems [49]. In CNN,
the Convolution layer includes a large number of weights which are
sub-sampled by pooling layer to give output from convolution layer and
decrease data ratio of the layer below. Finally the outputs of the pooling
layer are utilized to be injected into the fully connected layers. An
important part of CNN is Convolutional neuron layers that include
different data for different applications such as image classification and
multiple 2D matrices. Since there is no fixed method about determining
the number of inputs and output.

This mechanism can extract the regional characteristics of the ori-
ginal image based on the local features extraction. The main idea be-
hind the learning procedure is to achieve some kernel matrices for
generating better prominent features for the problem (here skin cancer
diagnosis). Here, the backpropagation (BP) approach has been used for
achieving the minimum value of the error for the network. Sliding
window based convolution is utilized here for the network.

In this study, the rectified linear unit (ReLU) is utilized as the ac-
tivation function for the neurons by a function f(x) = max(x, 0) [50].
Max pooling is also adopter for more scale reduction of the network
output such that just the highest values are considered as the sub-
sequent layer of the sliding grid.

BP approach is a gradient descent based algorithm for minimizing
the error of the neural network based on minimizing the cross-entropy
loss as the fitness function [51]. This conception can be described as
follows.
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where, wi represents the connection weight, L is the total number of
layers and K is the layer [ connections.

Fig. 2 shows a block diagram of an ordinary CNN for skin cancer
detection.
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Fig. 2. A simple skin cancer detection using ordinary CNN.

3. Improved whale optimization algorithm based on Lévy flight

In 2016, Mirjalili et al. [41] proposed a new meta-heuristic tech-
nique, called Whale optimization algorithm (WOA) that is inspired by
the hunting process of the whales [41]. It starts by a number of random
candidates solution vectors to achieve find the global optimum of the
problem. In the following, some details of this algorithm have been
explained.

3.1. Improved whale optimization algorithm

The algorithm continues until the termination criteria has been sa-
tisfied. The main concept of WOA is about how the whales can trap the
prey based on bubble-net mechanism with their spiral movements.

The humpback whale creates bubble nets around the prey which
circumvent them into a spiral area. Then it attacks the prey. The
mathematical formulation for bubble-net hunting is given below:

X*(t) — AD p<0.5
Xi+1 = D'ebl %
e’ cos(2zt) + X*(t) p > 0.5 O))
D'p = ICX{*(t) — X; () ()
A=2ar—a (6)
C=2r (2]

where, i represents the current iteration, [ describes a random constant
between -1 and 1, p and r are two random constants between 0 and 1, b
is the logarithmic shape of the spiral motion, D' describes the distance
for the i whale from the prey (the best solution), and a descent from 2
to O linearly over the iteration.

In the above equation, Xj;; is the formulation of the encircling
process and the second term is the model of the bubble-net process. In
WOA, X;;; and D’ model the exploration and the exploitation [41]. In
WOA, for ensuring the global optimum, the absolute of X should be
greater than 1. A principal drawback of the WOA is its premature
convergence [52]. In this part, a method is proposed for improving the
algorithm efficiency.

3.2. Lévy flight mechanism

In this section, we utilized the function Lévy flight (LF) employed in
[52] for developing the presented WOA. This term is adopted for more
relieve the premature convergence drawback that is the main drawback
in the WOA. LF provides a random walk mechanism to proper control of
local search [53]. This mechanism is represented as follows:

LF(t) m~ t=1+9 (8)
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where, t describes the step size, I'(.) is Gamma function, 9 represents
Lévy index, and A/B ~ N(O, o).

In this paper, based on [54], § = 3/2.

The new improved part for updating the solution of WOA is as
follows:

2. = Xir + (XF(6) — AD) X LV (£) p<05
T Xy + (Db cos@rt) + XF() X LV(E) p > 0.5 an

where, X, describes the new position of search agent X; ;.
Then fitter agents are kept to guarantee the best solution as follows:

X, = X1 F(Xig1) > F(Xig1)
i+1 —
Xi+1 0. wW. 12)

The flowchart of the presented WOA is given in Fig. 3.
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Fig. 3. The block diagram of the Improved WOA.
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Table 1
The utilized standard benchmarks that have been utilized for the comparison.
Benchmark Formula Constraints Dimension
Rastrigin A0 =10D + 2| (¢ — 10cos(2xy) [-512, 512] 30-50
Rosenbrock HG) = Z{-:ll (100(x;2 —Xi1) + (g — D) [—2.045, 2.045] 30-50
Ackl —10, 10 30-50
cey f(x) =20 exp(—O.Z %ZiD:lxiz) — exp (% le:l cos(chi)) +20+e L !
Sphere f00 = ZiD=1 x? [-512, 512] 30-50
Table 2 4. Optimized CNN

The optimization results of the different algorithms for validation by con-
sidering 30-dimensions.

Benchmark Improved GA [57] PSO [59] WCO [42] WOA
WOA

fi MD  0.00 70.61 74.24 2.19 2.23
SD 0.00 1.66 8.96 4.35 3.19

f2 MD  7.62 35.41 200.1 13.16 12.93
SD 2.15 27.15 59.00 4.62 4.96

f3 MD  0.00 3.19e-2 8.26 3.14e-3 7.25e-15
SD 0.00 2.14e-2 1.19 1.12e-3 0.00

fa MD  0.00 1.15e-4 8.27e-4 6.19¢-9 0.00
SD 0.00 3.14e-5 5.12e-4 3.28e-9 0.00

3.3. The algorithm validation

To analysis and validating the efficiency of the improved IWO, it is
compared with some different algorithms such as genetic algorithm
(GA) [571, shark smell optimization (SSO) algorithm [38], world cup
optimization algorithm (WCO) [42], the original grasshopper optimi-
zation algorithm (GOA) [58], and particle swarm optimization algo-
rithm (PSO) [59]. Table 1 illustrates the utilized standard benchmarks
that have been utilized for the comparison.

Table 2 illustrates the simulation results of the different algorithms
on the adopted benchmarks. As can be seen, the optimal value for the
proposed method such that the mean deviation (MD) and the standard
deviation (SD) values can win all the algorithms.

This superiority has been made due to adopting logistic mechanism
in the algorithm (Fig. 4).

Initializing the

There are different research works which have been utilized for
optimizing the structure of the CNN. Especially, the utilization of the
optimization algorithms in CNNs showed promising results [55]. In this
study, a new optimized method is proposed for optimizing the structure
of CNN. Fig. 5 shows the architecture of the proposed Convolution
neural network. The size of input images in the input is considered
28 x 28 pixel.

In this problem, the parameter “max” as the size of the sliding
window and the parameter “min” as the minimum value that is ac-
ceptable for the max-pooling minimum (and is considered 2 here) to
decrease the system error. It should be noted that the value of the
sliding window should be less than the input data. Then, a set of so-
lutions have been randomly achieved.

The main purpose of CNN training is to achieve better results for
layer parameters which establish a good relationship between the
layers to guarantee the proper identification. As aforementioned, in
ordinary CNN, the gradient descent algorithm is utilized to optimize the
model parameters including convolution filters and the fully connected
layers weights. Because of the importance of last layer in classification
results, it is important to assign the image into related class which is
done by correct connection of the weights with the previous layers. To
develop the classification accuracy here, it is attempted to optimize the
training of the last weight vector based on the proposed improved
whale optimization algorithm. The number of search agents is set 50,
maximum number of iteration is considered 100, and the last parameter
(vector a) is changed linearly in [0,2]. The fitness function for mini-
mizing CNN is considered as follows:

Load Dataset and

of epoch

> WOA parameters % improved WOA «— Start
Parameters
l l Yes
Find Global best
Evaluats i i i
v?ul:lc tei 0er:ror ) Update algtorlthm values for weights and If iteration< Ni
parameters o no. of WOA
Yes
Benign No i i Update output
sy R CNN iteration< no. P! P!

vector

Fig. 4. The Block diagram of the proposed algorithm.
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Fig. 5. Some samples of benign and malignant skin cancer images from Dermquest and DermIS databases.
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Fig. 6. The performance analysis of the proposed method and the other compared methods with 45 times repetitions.
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i=1 j=1 (13)

where, D;; and Oj; are the desired value and the CNN output value, n,
represents the number of training samples, and n,; describes the number
of output layers.

After determining the parameters of the algorithms, it is applied to
CNN. In this study, half-value precision function is utilized for valida-
tion of the optimized skin cancer system. After parameter initialization
and evaluating the function value, the algorithm parameters have been
updated using the parameters such as bubble net hunting and prey
enriching. The updating process repeats until the termination criteria
have been obtained. The designed system is then analyzed and tested on
two different databases, Dermquest, and DermIS databases by con-
sidering the MSE minimization. Weights and biases are important
parameter of the CNN which have been optimized in this research,
these two features have been selected for optimizing as follows:

by, = {bin, bans ., bin}

1=1,2,..,L

n=1,2,..,A a4
A ={a, @, ...a4} (15)
Wy = {(Win, Wan, o Wi} (16)

where, A describes the total number of agents, [ represents the layer
index, L is the total number of layers, n is the number of the agent, and
Wi, represents the value of the weight in layer i.

Therefore, the total parameters for optimizing are both weights and

biases (i.e. W, = {W, A}).
The reason for using improved WOA instead of BP for Error mini-
mization is that the improved WOA doesn’t need to backward.

5. The dataset

The data sets used in this study are the Dermquest [56] and DermIS
[57] Digital Database. Dermquest database is an online medical atlas
for dermatologist and dermatologists based healthcare professionals.
The images in Dermquest are reviewed and approved by the re-known
international editorial boards. It provides an extensive number of der-
matologists including over 22,000 clinical images.

Another database, DermlIS Digital Database is an image atlas about
different kinds of skin cancers with differential diagnoses that are
launched for medical image processing applications. DermlS is ac-
counted as the largest online information service available on the
Internet. Some samples of the databases are shown in Fig. 5.

6. Implementation results

In this section, the experimental results of the proposed system have
been applied to the databases to analyze the system efficiency. The
software for simulation is Matlab R2016® and the hardware config-
uration is an Intel Core i7 —4790 K processor with 64 GB of RAM, and
two NVIDIA GeForce GTX Titan X GPU cards with scalable link inter-
face (SLI).

In this study, two classes including the background region and the
cancerous region have been considered. A set of 3 X n vector including
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Fig. 7. Some examples of applying the proposed optimized CNN: input images and detected masks.

pixel color features (R, G, and B information) of the image has been
considered. The selected transfer function for the Convolutional neural
network is rectified linear unit (ReLU).

Simulations have been applied to two different benchmarks in-
cluding Dermquest and DermlS for performance analysis of the pro-
posed method. The proposed optimized CNN here is trained and testi-
fied on the dataset. In this study for the proposed optimized CNN
network, 80 % of the dataset has been selected for the training and 20
% have been selected for the testing. 28,000 iterations have been
considered for training the optimized CNN. To make an independent
analysis, the training step is repeated 45 times and the results have been
considered based on mean value of these results. Five performance
indexes have been served for the method analysis.

correctly detected healthy skin cases

Specifity =
pecifity Total healthy skin cases a7
S correctly detected skin cancer cases
Sensitivity =
Total skin cancer cases (18)
correctly detected cases
accuracy =

total cases 19

correctly detected healthy skin cases
detected healthy skin cases (20)

NPV =

correctly detected skin cancer cases
PPV = Y

detected skin cancer cases 21

In this paper, the results of the proposed optimized CNN are com-
pared with some different state of the art methods for illustrating the
system efficiency. These algorithms are including a framework based on
the semi-supervised system [58], a commercial tool [59], and some
deep methods such as AlexNet [60], Ordinary CNN, VGG-16 [61], LIN
[62], Inception-v3 [63], and ResNet [64]. The performance analysis of
the proposed method and the other compared methods are given in
Fig. 6.

Form the figure, it can be concluded that the proposed optimized
method has the highest value of the specificity, accuracy, sensitivity,

NPV, and PPV. Final results illustrate that using the proposed WOA on
CNN gives the best achievements toward the compared methods.

Some examples of applying the proposed optimized CNN are shown
in Fig. 7. As can be seen, using the proposed network for skin cancer
diagnosis not only can segment the lesions in the standard databases
but also can detect the lesion in the images with artifacts like body hair.
Simulation results showed that the performance of the proposed
method is good enough for the skin cancer diagnosis in different en-
vironmental conditions.

7. Conclusions

In the present study, a new optimized technique was proposed for
skin cancer diagnosis from the input images. The method was based on
Convolutional neural network. An improved version of the whale op-
timization algorithm was adopted for optimizing the efficiency result of
CNN. The utilized optimization algorithm is adopted for the optimal
selection of weights and biases in the network to minimize the error of
the network output and the desired output. For performance analysis of
the proposed method, it is tested on two different benchmarks including
Dermquest and DermlIS and the results were compared with 10 different
methods including semi-supervised method, Spot-mole tool, AlexNet,
Ordinary CNN, VGG-16, LIN, Inception-v3, and ResNet. The perfor-
mance indexes here are specificity, accuracy, sensitivity, NPV, and PPV.
Final results showed that using the proposed method gives the best
achievement for the skin cancer diagnosis.
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