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A B S T R A C T

Motivation: Emergency Departments’ (ED) modern triage systems implemented worldwide are solely based upon
medical knowledge and experience. This is a limitation of these systems, since there might be hidden patterns
that can be explored in big volumes of clinical historical data. Intelligent techniques can be applied to these data
to develop clinical decision support systems (CDSS) thereby providing the health professionals with objective
criteria. Therefore, it is of foremost importance to identify what has been hampering the application of such
systems for ED triage.
Objectives: The objective of this paper is to assess how intelligent CDSS for triage have been contributing to the
improvement of quality of care in the ED as well as to identify the challenges they have been facing regarding
implementation.
Methods: We applied a standard scoping review method with the manual search of 6 digital libraries, namely:
ScienceDirect, IEEE Xplore, Google Scholar, Springer, MedlinePlus and Web of Knowledge. Search queries were
created and customized for each digital library in order to acquire the information. The core search consisted of
searching in the papers’ title, abstract and key words for the topics “triage”, “emergency department”/“emer-
gency room” and concepts within the field of intelligent systems.
Results: From the review search, we found that logistic regression was the most frequently used technique for
model design and the area under the receiver operating curve (AUC) the most frequently used performance
measure. Beside triage priority, the most frequently used variables for modelling were patients’ age, gender, vital
signs and chief complaints. The main contributions of the selected papers consisted in the improvement of a
patient's prioritization, prediction of need for critical care, hospital or Intensive Care Unit (ICU) admission, ED
Length of Stay (LOS) and mortality from information available at the triage.
Conclusions: In the papers where CDSS were validated in the ED, the authors found that there was an im-
provement in the health professionals’ decision-making thereby leading to better clinical management and pa-
tients’ outcomes. However, we found that more than half of the studies lacked this implementation phase. We
concluded that for these studies, it is necessary to validate the CDSS and to define key performance measures in
order to demonstrate the extent to which incorporation of CDSS at triage can actually improve care.

1. Introduction

The growing demand for emergency services, combined with the
priority sorting due to patient's acuity, results in long waiting times for
patients. Waiting times have a significant impact on patient mortality,
morbidity with readmission in less than 30 days, number of pre-

Intensive Care Units (ICU) resuscitation, length of stay (LOS), patient
satisfaction and costs [1–7]. The outcome of patients’ medical treat-
ment is time-sensitive, therefore the sooner the treatment is rendered,
the better the outcome [3–7].
The first point where the patient acuity state is evaluated takes place

at the triage stage in the emergency department (ED). Triage systems
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are used by health professionals to assign priority levels to patients,
based on their urgency of treatment. However, there may be critical
patients presenting symptoms not easily recognized as indicators of
criticality. If not identified in due time, these patients have to wait for a
long time for medical observation, which results in an increased risk of
morbidity. Therefore, the need for an efficient triage system to assist the
health professional in taking a timely and correct decision becomes of
vital importance.
Decision-making support systems (DMSS), or simply decision sup-

port systems (DSS), are information systems designed to assist decision-
makers and interactively support all phases of a user's decision-making
process [8]. With the accentuated progress of Artificial Intelligence (AI)
in the 1980s, AI tools were incorporated in DSS to increase the impact
of management support. This led to the emergence of intelligent deci-
sion support systems (i-DSS) as a sub-discipline of DSS research [9]. A
particular technology used within i-DSS research is machine learning,
which allows DSS to obtain new knowledge or to adapt to the user or
changing environment [9]. An i-DSS extends traditional DSS by in-
corporating techniques to supply intelligent behaviours and utilizing
the power of modern computers to support and enhance decision
making [10–12]. The i-DSS may, for example, “respond quickly and
successfully to new data and information without human intervention,
deal with perplexing and complex situations, learn from previous ex-
perience, apply knowledge to understand the environment, recognize
the relative importance of different elements in the decision, in-
corporate the knowledge of domain experts, recommend action, and/or
act on behalf of the human (by a predefined authorization of the de-
cision-maker)” [8].
In the clinical setting, DSS are denominated clinical decision sup-

port systems (CDSS) and provide clinicians, staff and patients with
knowledge, patient-specific information and recommendations. CDSS
are usually used for addressing clinical needs, such as ensuring accurate
diagnoses, screening in a timely manner for preventable diseases,
averting adverse drug events [13] or pain management [14]. However,
CDSS can also potentially improve efficiency, reduce costs and patient
inconvenience. The aim of such systems is not to replace the decision-
makers – clinicians, patients and health organizations – but to provide
relevant knowledge and support in their decision-making [15,16].
With the promotion of the implementation of electronic health re-

cords (EHRs) [17], there has been a slow but increasing adoption of
health information technology worldwide. The adaptation and extra
time required in the initial learning stages by health professionals as
well as implementation costs were barriers to the progression of the full
implementation of the EHR systems. This has led to the adoption of
CDSS technology to improve costs and quality of care [18–21]. CDSS
designed recurring to intelligent techniques are currently being used for
several medical applications [14]. Interpreting clinical data to classify
patients in a timely manner is vital in the ED setting, with impacts on
costs, efficiency and quality of care. Therefore, there is potential for
improvement of ED operations using AI [22]. The implementation of
intelligent CDSS for ED triage however presents challenges which will
be addressed in this paper.
In this paper, we aim to present a scoping review of CDSS designed

with intelligent techniques for ED triage. We assess how these systems
have been assisting clinical decisions that resulted in improved quality
of care at the ED triage. We consider that a CDSS contributed to ED
triage if the results achieved with this system overcame or com-
plemented the ones provided by the triage system implemented at the
time in the ED. We also assess which variables, intelligent techniques
and performance measures were used in the design and evaluation of
the triage CDSS.
Section 2 describes the methodology adopted to achieve the paper's

goals. The research methodology consists of a scoping review method,
with a manual search of specific digital libraries, which contain papers
within the field of intelligent systems, DSS and ED triage. In Section 3,
the search results are presented and the main contributions, limitations

and future work are addressed and discussed in Section 4. Section 5
offers the conclusions of this review.

2. Methods

The research technique used to perform the scoping review was
based on the guidelines proposed by Kitchenham [23,24]. This tech-
nique consisted of a literature review of CDSS which were designed
based on intelligent techniques and that contributed to assisting health
professionals in their decision-making at the ED triage stage.

2.1. Search strategy

The strategy for this review was composed by the following steps:

1) Selection of the data sources for extraction of information.
2) Creation of queries to perform the search in the databases.
3) Collection and summary of the entire gathered information.
4) Outline of the inclusion and exclusion criteria.
5) Data analysis.

2.1.1. Search method
The search method consisted of a manual search performed on 6

digital libraries, namely: ScienceDirect, IEEE Xplore, Google Scholar,
Springer, MedlinePlus (PubMed) and ISI Web of Knowledge, as per-
formed in previous studies [14,25–28].
These specific digital libraries were selected because they were

known to include studies related to intelligent systems in the healthcare
field. It was hypothesized that only after the year of 2004 would we be
likely to find published papers combining the two referred topics. It was
only from this year on that there were governmental incentives to
create EHRs in hospitals [17]. However, the year of publication for the
search period was not constrained.

2.1.2. Search terms
Different search queries (SQ) were created for each digital library

given that each one has specific features for advanced search, such as
the maximum number of input key words. Therefore, the queries had to
be customized for each digital library in order to get the required in-
formation.
The first generic SQ that was created to search each digital library

consisted of searching for the topics “triage”, “Emergency Department”,
“Emergency Room” and concepts within the field of intelligent systems,
namely: “machine learning”, “modeling”, “model”, “classification” and
“predictive”. For ScienceDirect, IEEE Xplore and Pubmed, the terms in
the first generic query were searched in the title, abstract and key words
of the papers. For Web of Knowledge, these terms were searched as
within the“Topic” of the papers, since there is no field tag in this library
for specific search of the abstract. Nonetheless, using the“Topic” field
tag covers all these fields. In the case of Springer library, we decided
that the title should contain the terms “triage” and “Emergency
Department”, since the advanced search presents limitations regarding
field tags. For this library, we identified relevant disciplines, namely
“Engineering”, “Computer Science”, “Statistics” and “Health
Informatics” which potentially would yield the search results meeting
the search criteria (SQ11 to SQ14 in Table 2). For the cases of Scien-
ceDirect (SQ2 to SQ6 in Table 2) and Web of Knowledge (SQ18 and
SQ19 in Table 2), the search was refined by specific Journals related to
healthcare or intelligent systems.
In the cases where the number of search results was higher than

1,000, it was necessary to specify exclusion criteria terms that should
not appear in the title of the papers. The list of terms is presented in
SQ16, SQ18 and SQ19 in Table 2, and includes: “pediatric”, “preg-
nancy”, “mental”, “psychiatry”, “trauma”, “sepsis”, “chest pain”,
“epidemy”, among others.
We considered Google Scholar to be an addition to the search of the
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other libraries [26], and we limited the number of results by imposing
that the title should contain the terms “triage” and “Emergency De-
partment”/“Emergency Room”. The number of search characters in this
digital library is limited, therefore only a few words could be selected to
be excluded from the title. From the total number of terms already
mentioned as exclusion criteria, we assessed for each term, the ones
leading to inferior numbers of search results. In these cases, the title
should not contain the terms “trauma”, “sepsis”, “children”, “pediatric”
and “chest pain”. When applying the query SQ9 in Table 2, the method
for selecting the papers consisted first of reading the title – papers for
which the title contained the terms in exclusion criteria where not se-
lected –, and then reading the abstract to assess if the papers satisfied
the search criteria.
Although the queries were different, due to the limitation of the

advanced search in each digital library, the core search was consistent
through all, where the main search terms were “Triage”, “Emergency
Department”/“Emergency Room” and those related with intelligent
systems.

2.2. Inclusion and exclusion criteria

The inclusion and exclusion (IE) criteria were defined for selecting
the relevant studies and filtering the irrelevant ones, which were ex-
cluded in the search. The IE criteria applied is presented in Fig. 1.
After applying the queries in the digital libraries, a folder for each

one was created on Mendeley. Papers that met the inclusion criteria
were saved in a separate folder for the respective library. At the end of
this process, all selected papers were joined in a separate folder.

2.3. Data analysis

The analysis of the data extracted from each study is presented as
indicated in Table 1.

3. Results

From the literature search, 62 papers were selected when applying
the IE criteria, as presented in Fig. 2. Information regarding the authors,
title, publication date and source of these papers is presented in Table 4.
As we hypothesized, the papers date back to 2005, following the in-
ternational governmental incentives for the existence of EHRs.

3.1. Main findings of the review search

The aim of the majority of the selected papers was to develop

Fig. 1. Inclusion and exclusion (IE) criteria for papers selection.

Table 1
Presentation of collected data in the results section.

Data Presentation

Flow diagram with SQ results from the digital libraries Fig. 2
Objectives of the study Fig. 3
Variables used for the development of the triage models Fig. 5
Intelligent techniques used to develop the triage models Figures 6 and 7
Performance measures used to evaluate the triage models Figs. 8 and 9
Key-words Fig. 4
Main contributions of the selected papers Subsection 4.1
Limitations and future work of the selected papers Subsection 4.2
Triage system implemented in the ED case-study Table 3
Source (journal article or conference paper), reference and

results achieved by outcome
Table 4
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models to assist in the prioritization of patients, according to their
acuity level at the triage, as presented in Fig. 3. Other objectives in-
cluded prediction of hospital admission at discharge from the ED, ICU
admission, ED LOS, mortality and need for critical care, abnormal
medical condition, pain and chief complaints classification, acute
morbidity and infectious diseases, cardiac arrest, ED revisits, discharge
disposition, expected number of resources, scheduling of physicians and

waiting times, from information available at the triage.
The triage system which was implemented in the ED in the majority

of papers (34%) was Emergency severity index (ESI), followed by
Patient Acuity Category Scale (8%) and Manchester Triage System
(MTS) (6%). In the papers, triage priorities were whether used as input
variables e.g. to predict patients’ mortality [29], hospital admission
[30], ED LOS [31], need for critical care [32] or consisted of the CDSS

Fig. 2. Flow diagram of the digital libraries search and final selected papers after applying IE (Inclusion and Exclusion) criteria (search date 19/05/2019).

Fig. 3. Outcomes predicted in the selected papers with correspondent number of papers. ED - Emergency department, LOS - Length of Stay, ICU - Intensive Care Unit.
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output for triage classification [33].
The key words which were present in most of the selected papers

were “triage” and “emergency department”, which are emphasized in
Fig. 4.
The variables most used in the papers for modelling were the ones

presented in Fig. 5. The complete list of variables for each paper is
presented in Table 4. Age (73%) and gender (66%) were used in more
than half of the papers, heart rate in almost half of the papers (45%),
followed by triage priorities (which were not used as input variables in
papers where the objective was to predict the triage priority), chief
complaints and SpO2. Other vital signs, such as blood pressure, tem-
perature and respiratory rate were also used by most papers to develop
the models, as well as the patients’ medical history, the arrival mode
and time. The arrival mode comprised arrival from ambulance, referral,
on foot and outpatient.
In about one third of the papers, different intelligent techniques

were compared for predicting the outcome. The most used technique to
develop the prediction models was logistic regression (LR), in 53% of
the papers, as depicted in Fig. 6. About 40% of the papers selected only
this technique for outcome prediction and in approximately 18% of the
papers this technique was compared against other techniques, as de-
picted in Fig. 7. Classification and regression decision trees algorithms
(CART) were used in 13% of the papers and the random forests clas-
sifier in 8%. Deep artificial neural networks (ANN) and support vector
machines (SVM) were used in about 10% of the papers. Natural lan-
guage processing (NLP) was used in papers where the unstructured free
text was used as input variable to the model [34,35] or as the outcome
[36,37].

3.2. Prediction algorithms

In this subsection we briefly describe the most used machine
learning techniques as well as those which presented higher perfor-
mance compared to the other techniques, as presented in subsection
3.3.

3.2.1. Logistic regression
Logistic regression (LR) as a general statistical model was originally

developed by Joseph Berkson [38]. LR is also designated “logit” model
since it uses a “logit” link function which maps probabilities in the
interval [0,1] to a real number. The logit of px, i.e. the probability of an
event for certain covariate values x, is related to the covariates ac-
cording to (1).

= = + ×p xlogit( ) log(odds )x x 0 1 (1)

When compared to ANN, this model is less prone to over-fitting
[39]. On the other hand, it has the drawback of having difficulties in
handling non-linear problems and interactions between variables [39].
Nonetheless, LR is widely used in health research due to its easy in-
terpretability, having been used in several studies [29–32,34,40–67].

3.2.2. Support vector machines
Support Vector Machines (SVM) [68] also denominated support

vector networks [69] was used in several studies [35,46,57,70–72] and
it creates optimal decision boundaries between data sets by solving a

Fig. 4. Cloud of key-words of the papers selected in the review search.

Fig. 5. Most used variables for the development of the triage models, with
percentage value in the total number of selected papers.

Fig. 6. Most used techniques for the development of the triage models, with
percentage value in the total number of selected papers. CART - Classification
And Regression Trees.
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constrained quadratic optimization problem [73,74]. The disadvantage
of SVM is that the classification result is purely dichotomous, and no
probability of class membership is given. In other words, SVM attempt
to draw a decision boundary that puts as many negative cases as pos-
sible on one side of the boundary and as many positive cases as possible
on the other side. This makes it a non-probabilistic binary linear clas-
sifier. Another disadvantage of this model is that it is very sensitive to
uncertainties [75], and prone to over-fitting in a high dimensional
space [76]. However, it has a good generalization ability, being also
robust for high dimensional data [77].

3.2.3. Naïve Bayes classifier
Naïve Bayes (NB) classifiers [78] are a family of simple “probabil-

istic classifiers” based on applying Bayes’ theorem with strong (naive)
independence assumptions between the features. NB is a conditional
probability model, given an instance to be classified, represented by a
vector x = (x1,..., xn), representing n independent variables, it assigns
instance probabilities p(Ck ∣ x1, .. ., xn) for each k possible classes Ck.
Using Bayes’ theorem, the conditional probability can be decomposed
as depicted in (2).

=p C p C p C
p

x x
x

( ) ( ) ( )
( )k

k k

(2)

Fig. 7. Techniques used in the selected papers. ANN - Artificial neural networks, CART - Classification And Regression Trees, ANFIS - Adaptive Neuro Fuzzy Inference
System, NLP - Natural Language Processing, SVM - Support Vector Machines, GBoost - gradient boosting, XGBoost - Extreme gradient boosting, OWA - ordered
weighted average.
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Using Bayesian probability terminology, (2) can be written as:
posterior probability = (prior probability × likelihood)/ evidence.
This technique was used in the studies [57,71,79] and with appro-

priate pre-processing, it is competitive in the healthcare domain with
other methods as e.g the case of prediction of abnormal diagnosis in
Fig. 8, where it presents higher accuracy compared to ANN.

3.2.4. Fuzzy logic classifier
Fuzzy classifiers use fuzzy sets or fuzzy logic in the course of their

training or operation [80]. Fuzzy logic represents a possibility logic
model that uses reasoning to explain whether an event is about to
happen [81]. This model was introduced by [82,83] and facilitates the
process of vagueness treatment in a DSS by generating fuzzy rules using
vague linguistic terms [84,85] instead of conventional rules to model
decision boundaries in a more flexible way. However, it is difficult to
estimate the membership functions [86].
A Fuzzy Inference System (FIS) uses fuzzy rules and fuzzy reasoning

to perform its functions [87,88]. Mamdani inference system is usually
used in clinical fuzzy systems [89] and its base structure includes four
main components: a fuzzifier, which translates a crisp input into fuzzy
values, i.e. soft labeling where a degree of membership to classes is
generated; an inference engine, where in the case of Mamdani's in-
ference, a fuzzy reasoning mechanism is applied to obtain a fuzzy
output; a knowledge base, which contains a set of fuzzy rules, being the
simplest ones of the type if-then, and a set of membership functions
representing the fuzzy sets of linguistic variables and a defuzzifier,
which translates the fuzzy output into crisp values. The fuzzy classifier
was used in [90,91] and it has the advantage of interpretability com-
pared with other techniques, such as ANN.

3.2.5. Artificial neural networks
Artificial neural networks (ANN) are suited for modelling non-linear

problems, since they have the ability to learn without much in-depth
understanding of the underlying system. The basic ANN consists of
three layers, where the first one is the input layer, the second one the
hidden layer and the third one the output layer, and each layer can have
different numbers of neurons. There may be several inputs and outputs,
as well as hidden layers. The hidden layer is connected in a feedforward
or backpropagation manner to the input and output layers through
different sets of weights. The most efficient and common architecture
used in ANN is the feed forward ANN [92,93].
A deep neural network consists in an ANN with multiple layers

between the input and output layers. Recurrent neural networks (RNN)
[94] were used in [95] and they are a class of ANN where connections
between nodes form a directed graph along a temporal sequence, which
allows it to exhibit temporal dynamic behaviour. Long short-term
memory (LSTM) was used in [96] and consists of an RNN architecture
with feedback connections well suited to model time series data.
Multi-layer perceptron models do not make any assumptions on the

distribution of data. Thus the non-linear form can be represented as in
(3) where y is the output, wi represents the synaptic weights, xi denotes
the covariates and I is the sigmoid activation function of the output.

Weights in the model are assigned randomly at the beginning and then
improved in an iterative training process.

=y x I w x t( ) ( )
i

i i
(3)

ANN are robust to noisy data and have the ability to represent
complex functions [97,98], however the use in clinical settings is lim-
ited because they are unable to explain decisions and lack transparency
of data [97,99,100].
An adaptive neuro-fuzzy inference system (ANFIS) was used in

[33,46] and it is an example of a hybrid intelligent system proposed in
[101]. This system is capable of reasoning and learning in an uncertain
and imprecise environment [102] and consists of a combination of two
or more intelligent technologies, which allows it to overcome single
intelligent technologies. Since the fuzzy system cannot learn or adapt
by itself to the new environment and ANN are ambiguous to the user,
when combining these two methods, the ANN becomes more trans-
parent and the fuzzy system takes on the ability of learning.

3.2.6. Decision tree learning
Decision trees were used in [31,45,46,57,71,79,103,104] and have

a tree-like hierarchy structure where each internal node has exactly two
outgoing edges. The splits are selected using the towing criteria and the
tree obtained is pruned by cost-complexity pruning. Each case follows
appropriate branches until it reaches a terminal leaf node associated
with a particular outcome. This learning algorithm automatically learns
an optimal decision tree structure given a set of data. Classification
trees are characterized by the target variable taking a discrete set of
values while in regression trees the target variable takes continuous
values. Trees formed may be unstable given their inefficiency for
learning rules from incomplete data [105]. Compared with other ma-
chine learning methods, such as ANN, decision trees have the ad-
vantage that they are not black-box models, providing an easy inter-
pretation of the classification system [97,39]. For this reason, decision
trees are widely used in medicine.
Random forest [106] is an ensemble learning method that con-

structs a number of decision trees and it was used in a few studies
[46,57,62,107,108]. For classification tasks, the random forests classi-
fier outputs the class which is voted more times by the individual trees
and for regression tasks it gives the mean prediction of the individual
trees. The principle is that a group of trees – the“weak learners” can
come together to form a “strong learner”. Random forests are able to
correct the overfitting in training, which may be found in decision trees,
by variance reduction [109]. This comes at the expense of some loss of
interpretability, however a higher performance is achieved in the final
model [39]. Moreover, this technique can easily handle outliers and is
robust to inclusion of irrelevant features [109].
Gradient boosting (GBoost) used in [45,62] is a tree based ensemble

technique which creates multiple weakly associated decision trees that
are combined to provide the final prediction. The basic idea of boosting
is to develop a new model in a gradient direction of the residuals to
minimize the loss function generated at each iteration. Several models

Fig. 8. Average performance in test achieved
for each prediction goal, discriminated by
technique, in the papers where the measure of
accuracy was presented. ANN - Artificial neural
networks, CART - Classification And Regression
Trees, ANFIS - Adaptive Neuro Fuzzy Inference
System, PCA - Principal Component Analysis,
SVM - Support Vector Machines.
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are developed and the weights are increased (boosted) if a model in-
correctly classifies the observation. The extreme gradient boosting
(XGBoost) algorithm is an efficient supervised learning algorithm which
is a variant of the original GBoost method [110], having been very
recently developed in [111]. XGBoost applies the second order Taylor
expansion of the objective function, which has two parts, first the
training loss and second the sum of the complexity of each tree, as given
in (4). For a linear model given =y xî j j ij where ŷi is the target
variable, xij's are the input variables and θj's are the coefficients of the
model parameters, XGBoost iteratively applies greedy search to find the
optimal model structure by adding a split to the existing tree structure
at each iteration.

= +
= =

L y y yObj( ) ( , ˆ ) ( )
i

n

i i
k

K

k
1 1 (4)

In (4) L y y( , ˆ )i i represents the loss function and Ω(yk) the regular-
ization term generated by each tree k, where K is the total number of
trees.

3.3. Modeling performance assessment

The most used performance measures were accuracy and AUC,
therefore we present a comparison between the algorithms dis-
criminated by outcome for each performance measure in Figs. 8 and 9 ,
respectively. The outcomes presented in each figure were selected
based on the criteria that in the majority of the studies for the re-
spective outcome, either AUC or accuracy was presented. E.g. for stu-
dies of triage priorities classification only accuracy was assessed, and
for prediction of mortality AUC was consistently assessed. We had the
limitation of some of the studies not presenting any of these measures,
therefore we present the average results considering a total of 41 pa-
pers. The performance results for all the papers is presented in annex, in
Table 4.
For classification of triage priorities, Fuzzy modeling, ANN and

ANFIS presented similar average performance. Fuzzy modeling pre-
sented the highest performance (99% accuracy), which was achieved in
[91]. In the paper, a rule-based reasoning was applied for modeling the
first to fourth decision points of the ESI algorithm and then combined
with the fuzzy logic classifier. The variables used for modeling con-
sisted in patients’ age, gender and vital signs. The developed CDSS was
able to reduce triage misdiagnosis and improve the triage outcomes.
For detection of abnormal medical conditions of patients at the

triage, a combination of principal component analysis (PCA) and SVM
led to an accuracy of 100%, which was achieved in [70]. Adding PCA to
SVM improved accuracy from 89.2% to 100%. The variables used in the
paper were patients’ general appearance, chief complaints, medical
history, vital signs, symptoms and signs, and physical assessment re-
sults. After periodic updates, the developed CDSS was able to improve
the system without the influence of the subjective factor.

For prediction of chief complaints, an accuracy of 0.83 was achieved
in [35] using SVM. In the paper, a system was developed by building an
extended ontology of chief complaints and automatically predicting a
patient's chief complaint, based on their vitals and the nurses’ de-
scription of their state at arrival.
For binary pain intensity classification, an accuracy of 0.72 was

achieved by a CDSS developed in [96] using LSTM recurrent neural
networks. Audio-video recordings with indication of the location of the
body pain, the pain level and a brief description on the type of pain felt
were used. Vital signs and other clinically-related outcomes of on
boarding emergency patients were also used.
In the papers where AUC was assessed, a higher number of tech-

niques was used, as presented in Fig. 9. For the case of hospital ad-
mission, XGBoost presented the highest average performance of 0.89. In
[47] an AUC of 0.92 was achieved with either XGBoost or deep
learning, using the full list of variables: patients’ age, gender, primary
language, ethnicity, employment status, insurance status, marital
status, and religion, the name of the hospital, arrival time, arrival mode,
triage vital signs, ESI level, chief complaint, prior hospital and ED ad-
missions, number of procedures and surgeries listed in the patient's
record, medical history, medications, historical vitals and labs and
number of orders for imaging.
For prediction of resource intensive patients, an average AUC of

0.88 was achieved in [95] using deep learning. Age and vital signs
(structured data) and medical text (unstructured) data, including pa-
tient's chief complaint, past medical history, medication list, and nurse
assessment were used for modeling. As for the need for critical care, the
predictions ranged from 0.73 to 0.92 in [108] using random forests. The
predictions of the CDSS demonstrated equivalent or improved identi-
fication of clinical patient outcomes compared with ESI. The variables
used were age, gender, arrival mode (ambulance or walk-in), vital
signs, chief complaint and relevant medical history.
For prediction of ED LOS using LR, in [65], an AUC of 0.80 was

achieved using as input variables patients’ age, usual accommodation,
triage priority, arrival by ambulance, arrival overnight, imaging, la-
boratory investigations, overcrowding, time to be seen by doctor, ED
visits with admission and access block relating to ED LOS more than 4
h. In [112], the performance for the prediction of this outcome was
approximately equal, with an AUC of 0.79, using age, gender, triage
priority, and final disposition decision from the ED.
For prediction of cardiac arrest, the higher average performance

was 0.91 using LR. In [55], an AUC of 0.92 was achieved using patients’
age, gender, comorbidities, functional status at presentation, mode of
arrival, time of ED visit, triage priority at presentation, type of speci-
alty, vital signs at different times, level of consciousness, need for
supplement oxygen, need for ventilation assistance, use of a vasoactive
agent (norepinephrine, epinephrine, or dopamine), use of an inotropic
agent (dobutamine) and initial laboratory markers in the ED.
The acute morbidity prediction AUC was 0.82 in [57] using random

Fig. 9. Average performance in test achieved for each prediction goal, discriminated by technique, in the papers where the measure of Area Under the ROC Curve
(AUC) was presented. LR - logistic regression, ANN - Artificial neural networks, GBoost - gradient boosting, XGBoost - Extreme gradient boosting, SVM - Support
Vector Machines, NB - Naïve Bayes, GA - Genetic Algorithm, FDA - Flexible Discriminant Analysis.
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forests and patients’ age, gender, comorbidities, triage priority, chief
complaints, vital signs, Glasgow Coma Scale score, medical history,
physical examination and an electrocardiogram (ECG). In the paper, the
results outperformed physicians’ intuitive judgments.
Higher average mortality prediction performance was 0.86, either

for the prediction of this outcome alone using LR, or for the combina-
tion with ICU admission using deep learning or with ICU admission and
emergent surgery using LR and a genetic algorithm. The highest per-
formance for mortality prediction was found in [44] with an AUC of
0.92 using LR and the variables patients’ age, gender, time of admis-
sion, reason for admission, vital signs, Glasgow coma score, body per-
ipheral perfusion and the presence of a threatened airway and in-
formation regarding interventions that had occurred before the time of
ED arrival.
The outcomes of discharge disposition among medium acuity pa-

tients, mortality and acute morbidity, using LR, and acute infectious
diseases, using Naïve Bayes, presented a lower average AUC of 0.73-
0.74, compared to the other studies.

4. Discussion

4.1. Main contributions of the selected papers

The main contributions included the reduction of mortality rate,
through the prediction of mortality [29,32,43,44,50,58,62–64,67,72],
cardiac arrest [55,72], heart failure [56], acute morbidity and presence
of acute infectious disease [57], development of acute renal failure,
non-elective intubation, vasopressor requirement [60], as well as pre-
diction of patients who should be admitted to the ICU [32,43,62] with
the need for emergent surgery or catheterization [53]. Another im-
portant contribution consisted of the identification in due course of
time of patients with significantly increased odds of hospital admission
[30,34,37,41,42,45–49,54,59,62,113,114], leading to reduction of
morbidity and mortality rate, improvement of patient pathways, pre-
vention of readmissions and reduced costs for both the hospital and
patients. Identification of high-risk patients [32], with significantly
increased odds of hospital admission, could lead to improvement of
resource allocation [40,42,54,108], potentially reducing ED over-
crowding [42] and morbidity rate, which may be associated with delays
in patients evaluation and treatment [40].
Other contributions included prediction of ED revisits [51,114],

increased ED LOS [31,65,67,112,115], medium acuity patients’ dis-
charge disposition [61], improvement of ED bed management, average
time to bed and rapid patients’ discharge [30], the detection of overt-
riage and undertriage, performance of patients’ retriage – thereby
preventing adverse outcomes while waiting, reduction of unnecessary
ED admissions, reduction of patients’ waiting times [116,117] and
improvement of resource allocation potentially reducing ED over-
crowding. The reduction of the workload of triage health professionals
was also an important contribution, as well as the improvement of
scheduling of emergency physicians [104], or expected quantity of re-
sources for critical patients [95], which resulted in an improvement of
the overall quality of service for patients.

4.2. Limitations and future work

This subsection is structured according to the different topics pre-
sented by the authors of the selected papers when addressing limita-
tions and future work.

4.2.1. Availability of data
Some authors [40,79,103,118,119] highlighted the importance of

working with larger clinical datasets in order to apply intelligent
techniques and extract knowledge. In [118], the authors asserted that a
larger data set should be used to build a more accurate model. Re-
garding the variables used to develop the models, in addition to vital

signs parameters, the authors in [103] acknowledged that complaints of
patients should be considered in order to understand general principles
of triage abnormal diagnosis. In [40], the authors stressed that variables
such as time to surgery for surgical conditions or time to antibiotics for
infections could have been included in the study and yielded better
performance. In [42], only routine ED data collected at the time of
triage were used for developing the model. The authors stated that
there could be other important factors missed in the model, like the
presenting symptoms, the vital signs, and functional or socio-economic
status of patients. This fact may have limited the discrimination and
validation power of the model. The authors stored the information on
the patients’ presenting symptoms and vital signs in electronic case
notes in the format of free text. As future work, the authors offered a
plan to extract this information into a structured data using text mining
tools and to compare the model developed from the symptoms and vital
signs to the model developed in the study. In [30], the authors argued
that predictive models that incorporated more information that would
become available as the healthcare process in the ED was progressing
(clinical tests, preliminary clinical records, etc) would be likely to
produce even better predictions and should be addressed in future re-
search.

4.2.2. Geography
In [41], the authors recognized that the main limitation of the study

was that, although it used data from different units, the hospitals were
all in the same geographic region. This meant that they shared similar
working practices, data recording methods, tertiary referral services
and patient demographics. Ultimately, they concluded that, because it
was an observational study, it was possible that there were unmeasured
systematic biases particular to the region, therefore, no guarantee that
the score's accuracy would hold elsewhere. Another limitation of the
study was that, although the National Early Warning Score (NEWS) and
the MTS are widely used in the UK, their inclusion would limit the
score's use internationally. In [30], the authors suggested that, although
the dataset was ample and represented a varied case mix, external va-
lidation, both in their country and in others, it would be desirable in
order to assess wider applicability. In [32], it was concluded that the
work was limited in that it was collected from one study site, which
could constrain the generalizability of its results. In [119], it was sug-
gested as future work the expansion of the study to include more hos-
pitals, nurses, methods, or a more extensive or expansive scenario set.

4.2.3. Subjectivity of the system
Another limitation that was highlighted consisted of the subjectivity

of the triage DSS, since these are reliant on the operator. In [30], the
authors observed that with adequate training of the triage health pro-
fessional, interoperator concordance was shown to be high in the case
of MTS. In [79], the authors assessed the severity rankings of only two
health professionals, bearing in mind the fact that they found the out-
comes when learning from the consensus to be better than when
learning from one health professional. Therefore, they recommended
assessing a higher number of health professionals in future research and
focus on the consensus classification of those health professionals. They
asserted that this approach would enable the comparison between the
classifiers’ predictions from a majority of health professionals, which
would lead to a much more robust measure. In [108], the authors stated
that retrospective data are always subject to potential error in data
entry. In their study, this was mitigated through data verification and
processing that included chart review by a team of health professionals
of their case study ED.

4.2.4. Methodologies and modelling techniques
Regarding methodologies and modelling techniques, some authors

provided recommendations for future research. In [79], it was re-
commended that further studies should be performed using their pro-
posed methodology. In [29], the authors found that further research
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would be required to identify an association of their DSS with access
block (to inpatient beds) and patient mortality and also its possible use
to predict the access block (to inpatient beds). In [120], the authors
suggested that in the future their DSS should be compared to the rates
of undertriage and overtriage. In [119], the authors suggested that their
method could be implemented by itself and employed under peak or
particularly stressful times if desired, or combined with a DSS for
greater impact. In [41], it was highlighted that further work was
needed to show that the DSS significantly outperformed triage nurses’
predictions in a direct comparison, and to demonstrate the extent to
which incorporation of the DSS into clinical practice actually improved
care or use of resources.

4.2.5. Validation
For all the selected papers, real data from hospitals ED were used for

model design. Half of the studies lacked the validation phase of their
CDSS. In [108], it was described as a limitation that the study per-
formed did not validate the tool's performance prospectively. In [44],
the main limitations presented were related to the single-centre design
and the lack of an external validation sample. The authors suggested
that this reduced the generalizability of the model and created risk of
overfitting. In the study bootstrapping was used for internal validation.
In other papers [30,33,41,42], the authors performed an external va-
lidation where a dataset was used for model design and a smaller da-
taset was used for the validation phase, with a random data division. In
e.g. [79], [107], [31] and [70], cross validation was performed. In [29],
both internal and external validation were performed, first in a tertiary
referral hospital and second in an urban community hospital.

5. Conclusions

In this paper, we presented a scoping review of ED triage decision
support systems using machine learning. The main objectives of the
papers selected from the review search consisted of the development of
models for prioritization of patients or the prediction of hospital ad-
mission, ICU admission, ED LOS, mortality and need for critical care,
abnormal medical condition, pain and chief complaints classification,
acute morbidity and infectious diseases, cardiac arrest, ED revisits,
discharge disposition, expected number of resources, scheduling of
physicians and waiting times, from information available at the triage.
We concluded that the majority of the studies selected logistic re-

gression as the modeling technique. When assessing the prediction
models’ performance, we found that the best Area Under the ROC Curve
(AUC) results for emergency department length of stay, cardiac arrest
and mortality prediction using this modeling technique were 0.80, 0.91
and 0.92, respectively. Deep neural networks also demonstrated high
performance for prediction of resource intensive patients and hospital
admission with an AUC of 0.88 and 0.92, respectively. Extreme gradient
boosting presented equal performance for hospital admission. For
classification of triage priorities, a rule-based reasoning combined with
a fuzzy logic classifier yielded an accuracy of 0.99 and the prediction of
abnormal diagnosis yielded and accuracy of 1 using principal compo-
nent analysis with support vector machines. The variables included in
these studies were patients’ age, gender, vital signs, chief complaints,
medical history, comorbidities, medication list, number of orders for
imaging, laboratory variables, nurses assessment of patients’ general
physical appearance, emergency department arrival mode and time,
time for medical observation and prior hospital and emergency de-
partment admissions. The triage priority level was also used as input

variable in some of the studies.
We assessed how these systems have been assisting clinical deci-

sions that resulted in improved quality of care at the ED triage. We
found that the main contributions consisted of the identification in due
course of time of patients with significantly increased odds of ICU or
hospital admission and increased LOS, leading to reduction of mor-
bidity and mortality rate, improvement of patient pathways, prevention
of readmissions and reduced costs for both the hospital and patients. In
the papers where the CDSS was validated in the ED, the authors found
that there was an improvement of the health professionals’ decision-
making, which was more consistent and reliable. Some authors re-
cognized that the main limitation was the lack of validation of the CDSS
developed in a hospital. Furthermore, the CDSS should be designed to
be flexible, so it can be implemented in any geography. Another lim-
itation that was highlighted consisted in the subjectivity of the triage
CDSS, since these are reliant on the operator. Thus, we stress that it is of
foremost importance to assess the receptivity of health professionals to
the use of the CDSS and that they receive adequate training.
We found that the majority of papers used real data in the design of

the triage models. In these papers, the use of a set of variables for the
development of the models was successful. However, the amount of
information required by the triage models may be hampering the im-
plementation of these systems. We stress that triage must be performed
in about three minutes. This means that, aside from variables acquired
and registered in the system at the ED admission, the triage models
should include variables which are possible to acquire within this three
minutes range (e.g. vital signs and chief complaints). As future work,
some authors highlighted the importance of working with large clinical
datasets in order to extract knowledge. It was also suggested that the
studies should be multicenter, including more hospitals, nurses or
methods. Furthermore, it was recommended to assess a higher number
of health professionals when assessing the adoption of the decision
support system. This approach enables the comparison between the
classifiers’ predictions from a majority of health professionals, leading
to a more robust performance measure. It was also suggested that it is
necessary to prove that the CDSS outperforms the health professionals’
triage predictions, and to demonstrate the extent to which incorpora-
tion of the CDSS into clinical practice actually improves care or use of
resources. Thus, we recommend that key performance measures of
triage models are well defined such that decision makers are in a po-
sition to assess if an investment in such a system is viable.
In this scoping review we promoted an awareness of the relevance

of intelligent CDSS in a complex and dynamic management environ-
ment, such as the hospital ED. This may help to create a bridge between
intelligent CDSS and academicians and health professionals.
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Annexes

Table 2

Table 2
Results from the search queries (SQ) for each digital library (search date 19/05/2019).

Source Query Results

ScienceDirect SQ1: Title, abstract or key-words: (triage) AND (”Emergency Department” OR “Emergency Room”) AND (“machine learning” OR modeling OR
model OR classification OR predictive)

505

SQ2: SQ1 refined by research and review articles and Publication Title “Annals of Emergency Medicine” 66
SQ3: SQ1 refined by research and review articles and Publication Title “The American Journal of Emergency Medicine” 69
SQ4: SQ1 refined by research and review articles and Publication Title “International Journal of Production Economics” 1
SQ5: SQ1 refined by research and review articles and Publication Title “Expert System with Applications” 5
SQ6: SQ1 refined by research and review articles and Publication Title “International Journal of Medical Informatics” 7

IEEE Xplore SQ7: ((“Document Title”: triage) OR (“Abstract”: triage) OR (“Author Keywords”: triage)) AND ((“Document Title”: “Emergency Department”)
OR (“Abstract”: “Emergency Department”) OR (“Author Keywords”:“Emergency Department”) OR (“Abstract”:“Emergency Room”) OR
(“Document Title”:“Emergency Room”) OR (“Author Keywords”:“Emergency Room”)) AND ((“Document Title”:“machine learning”) OR
(“Abstract”:“machine learning”) OR (“Author Keywords”:“machine learning”) OR (“Document Title”:modeling) OR (“Abstract”:modeling) OR
(“Author Keywords”:modeling) OR (“Document Title”:model) OR (“Abstract”:model) OR (“Author Keywords”:model) OR (“Document
Title”:classification) OR (“Abstract”:classification) OR (“Author Keywords”:classification) OR (“Document Title”:predictive) OR
(“Abstract”:predictive) OR (“Author Keywords”:predictive)) with Full text &metadata

26

Google Scholar SQ8:(intitle:triage) AND (intitle:“Emergency Department” OR intitle:“Emergency Room”) AND (“machine learning” OR modeling OR model OR
classification OR predictive)

541

SQ9: SQ8 -intitle:trauma -intitle:sepsis -intitle:children -intitle:pediatric -intitle:“chest pain” 451

Springer SQ10: Where title contains: “triage” “emergency department” 285
SQ11: SQ10 within Discipline: Engineering 8
SQ12: SQ10 within Discipline: Computer Science 12
SQ13: SQ10 within Discipline: Statistics 2
SQ14: SQ10 within Discipline: Medicine &Public Health and Subdiscipline: Health Informatics 25

PubMed SQ15: triage[tw] AND (“Emergency Department” [tw] OR “Emergency Room” [tw]) AND (“machine learning” [tw] OR modeling [tw] OR model
[tw] OR classification [tw] OR predictive [tw])

1,295

SQ16: SQ15 NOT (pediatric[Title] OR childhood[Title] OR paediatric[Title] OR child[Title] OR children[Title] OR pregnancy[Title] OR
maternity[Title] OR mental[Title] OR depression[Title] OR dementia[Title] OR delirium[Title] OR suicide[Title] OR psychosocial[Title] OR
psychiatry[Title] OR psychiatric[Title] OR resuscitation[Title] OR resuscitate[Title] OR dental[Title] OR dentist[Title] OR cancer[Title] OR
sepsis[Title] OR influenza[Title] OR syncope[Title] OR stroke[Title] OR ischemic[Title] OR ischemia[Title] OR ischaemia[Title] OR thrombosis
[Title] OR gastrointestinal[Title] OR HIV[Title] OR “abdominal pain”[Title] OR diabetic[Title] OR asthma[Title] OR cell[Title] OR pneumonia
[Title] OR trauma[Title] OR traumatic[Title] OR chest[Title] OR myocardial[Title] OR chronic[Title] OR COPD[Title] OR pulmonary[Title] OR
appendicitis[Title] OR poison[Title] OR poisoned[Title] OR hepatitis[Title] OR tomography[Title] OR ultrasound[Title] OR biomarkers[Title]
OR bacteria[Title] OR bacterial[Title] OR virus[Title] OR overdose[Title] OR alcohol[Title] OR violence[Title] OR drug[Title] OR telehealth
[Title] OR telephone[Title] OR catastrophe[Title] or epidemic[Title] OR epidemics[Title] OR epidemy[Title]) Filters activated: Free full text,
English.

209

Web of Knowledge SQ17: TS=(triage) AND (TS=(“Emergency Department”) OR TS=(“Emergency Departments”)) AND (TS=(“machine learning”) OR
TS=(modeling) OR TS=(model) OR TS=(classification) OR TS=(predictive)))

1,207

SQ18: SQ17 NOT (TI=pediatric OR TI= childhood OR TI= paediatric OR TI= child OR TI= children OR TI= pregnancy OR TI= maternity OR
TI= mental OR TI= depression OR TI= dementia OR TI= delirium OR TI= suicide OR TI= psychosocial OR TI= psychiatry OR TI=
psychiatric OR TI= resuscitation OR TI= resuscitate OR TI= dental OR TI= dentist OR TI= cancer OR TI= sepsis OR TI= influenza OR TI=
syncope OR TI= stroke OR TI= ischemic OR TI= ischemia OR TI= ischaemia OR TI= thrombosis OR TI= gastrointestinal OR TI= HIV OR
TI= ”abdominal pain” OR TI= diabetic OR TI= asthma OR TI= cell OR TI= pneumonia OR TI= trauma OR TI= traumatic OR TI= chest OR
TI= myocardial OR TI= chronic OR TI= COPD OR TI= pulmonary OR TI= appendicitis OR TI= poison OR TI= poisoned OR TI= hepatitis
OR TI= tomography OR TI= ultrasound OR TI= biomarkers OR TI= bacteria OR TI= bacterial OR TI= virus OR TI= overdose OR TI=
alcohol OR TI= violence OR TI= drug OR TI= telehealth OR TI= telephone OR TI= catastrophe OR TI= epidemic OR TI= epidemics OR TI=
epidemy) Refined by: LANGUAGE: (English) AND DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER) AND WEB OF SCIENCE
CATEGORIES: (ENGINEERING BIOMEDICAL OR HEALTH CARE SCIENCES SERVICES OR ENGINEERING MANUFACTURING OR MEDICAL
INFORMATICS OR MULTIDISCIPLINARY SCIENCES OR COMPUTER SCIENCE INFORMATION SYSTEMS OR COMPUTER SCIENCE
INTERDISCIPLINARY APPLICATIONS OR OPERATIONS RESEARCH MANAGEMENT SCIENCE OR COMPUTER SCIENCE ARTIFICIAL
INTELLIGENCE OR ENGINEERING ELECTRICAL ELECTRONIC OR COMPUTER SCIENCE THEORY METHODS OR GERONTOLOGY OR
MANAGEMENT OR ENGINEERING INDUSTRIAL)

147

SQ19:SQ17 NOT (TI=pediatric OR TI= childhood OR TI= paediatric OR TI= child OR TI= children OR TI= pregnancy OR TI= maternity OR
TI= mental OR TI= depression OR TI= dementia OR TI= delirium OR TI= suicide OR TI= psychosocial OR TI= psychiatry OR TI=
psychiatric OR TI= resuscitation OR TI= resuscitate OR TI= dental OR TI= dentist OR TI= cancer OR TI= sepsis OR TI= influenza OR TI=
syncope OR TI= stroke OR TI= ischemic OR TI= ischemia OR TI= ischaemia OR TI= thrombosis OR TI= gastrointestinal OR TI= HIV OR
TI= ”abdominal pain” OR TI= diabetic OR TI= asthma OR TI= cell OR TI= pneumonia OR TI= trauma OR TI= traumatic OR TI= chest OR
TI= myocardial OR TI= chronic OR TI= COPD OR TI= pulmonary OR TI= appendicitis OR TI= poison OR TI= poisoned OR TI= hepatitis
OR TI= tomography OR TI= ultrasound OR TI= biomarkers OR TI= bacteria OR TI= bacterial OR TI= virus OR TI= overdose OR TI=
alcohol OR TI= violence OR TI= drug OR TI= telehealth OR TI= telephone OR TI= catastrophe OR TI= epidemic OR TI= epidemics OR TI=
epidemy) Refined by: LANGUAGE: (English) AND DOCUMENT TYPES: (ARTICLE OR PROCEEDINGS PAPER) AND WEB OF SCIENCE
CATEGORIES: (EMERGENCY MEDICINE OR MEDICINE GENERAL INTERNAL) AND SOURCE TITLES: (ACADEMIC EMERGENCY MEDICINE OR
AMERICAN JOURNAL OF EMERGENCY MEDICINE OR ANNALS OF EMERGENCY MEDICINE OR EUROPEAN JOURNAL OF EMERGENCY
MEDICINE OR EMERGENCY MEDICINE JOURNAL OR JOURNAL OF EVALUATION IN CLINICAL PRACTICE OR EMERGENCY MEDICINE
AUSTRALASIA OR SCANDINAVIAN JOURNAL OF TRAUMA RESUSCITATION EMERGENCY MEDICINE OR WESTERN JOURNAL OF
EMERGENCY MEDICINE OR CANADIAN JOURNAL OF EMERGENCY MEDICINE OR MEDICINE OR ANNALS OF INTERNAL MEDICINE)

183
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Table 3

Table 3
Sum up of the main findings of the papers selected in the review search.

Topic Description

Main objectives • To prioritize the patients, according to their acuity level, at the triage [33,66,70,79,90,91,103,107,108,118–124] and: predict abnormal diagnosis
[103]; predict the need for critical care, an emergency procedure and inpatient hospitalization [108]; update patients’ priority after their initial
classification (retriage) [122] and to identify predictors of under- and over-triage [52];
• To predict exact number of resources and to identify resource intensive patients [95];
• To predict hospital admission with information available at the triage [30,34,37,40–42,45–49,54,59,62,108,113,114] and for a group of higher-risk
patients, identified from among all those in a middle acuity triage category [40];
• To predict mortality with information available at the triage [29,32,43,44,50,53,56–58,62–64,67,72], ICU admission [32,43,53,62], acute morbidity
and presence of acute infectious diseases [57], emergent surgery or catheterization [53];
• To predict ED LOS [31,65,67,112,115] from information available at the ED triage;
• To predict medium acuity patients’ discharge disposition [61];
• To predict patients’ medical condition [71] or predictors of in-hospital adverse outcomes in ED patients with abnormal vital signs [60] from
information available at the ED triage;
• To predict patients’ waiting time for medical observation [117,116];
• To improve scheduling of emergency physicians [104];
• To predict [35] or classify [36] patients’ chief complaints;
• To predict in-hospital cardiac-arrest with information available at the triage [55,63,72];
• To predict patients’ revisits to the ED [51,114];
• To classify pain level during triage [96].

Intelligent techniques • Random forests [46,57,62,107,108];
• Logistic regression (LR) [29–32,34,40–67] and general linear model [67];
• Q-Lasso [62,116] and moving average [116];
• Artificial neural networks (ANN) [30,33,34,37,57,66,71,113], deep learning [47,62,96], deep learning word attention model [95];
• Natural language processing (NLP) [34,35], computerized text-parsing algorithm for classification of free-text chief complaints/ coded chief
complaint algorithm [36,37];
• Fuzzy classifier [90,91], fuzzy cognitive map structure [120,122–124];
• Aggregation methods, namely Borda-Kendall, aggregation through the estimation of utility intervals, aggregation using ordered weighted averaging
(OWA) operator weights and a weight-determining model for rank aggregation [119];
• Adaptive neuro-fuzzy inference system (ANFIS) [33,46];
• Support Vector Machine (SVM) [35,46,57,70–72];
• Principal Component Analysis (PCA) and SVM for comparison with SVM and Back-propagation Neural Networks (BPNN). Support Vector Regression
(SVR) and a Genetic Algorithm (GA) [70];
• LR and GA [53];
• Quantile regression [115,117];
• The Naïve Bayes (NB) algorithm [57,71,79];
• Decision trees for classification and regression (CART) algorithm [31,45,46,57,71,79,103,104];
• Linear, nonlinear and flexible discriminant analysis, partial least squares discriminant analysis, nearest shrunken centroids, K-nearest neighbors, J48
algorithm, PART rule [57];
• Multi-Group Discriminant Analysis [66];
• Gradient boosting (GBoost) [45,62] and extreme gradient boosting algorithm (XGBoost) [46,47];
• Clustering analysis: Ward's method [103], self-organizing-map [121], K-means [103,121,31], Fuzzy C-means and Fuzzy Subtractive algorithms
[118].

Performance measures • AUC [29,30,34,37,41,42,44–49,53–57,59–62,65,72,95,108,113];
• Specificity [32,37,45,60,62,71,72,79,107,113];
• Sensitivity [31,32,35,37,45,47,60,62,71,72,79,107,113];
• Accuracy (ACC) [33,35,45–47,66,70,71,91,95,96,104,107,118,120];
• Positive predictive value (PPV) [31,35,46,47,62,71,79];
• Negative predictive value (NPV) [47,62,72];
• F-score [31,35];
• Out-of-bag (OOB) error [107];
• Degrees of preference [125] and optimism levels [126] used in [119];
• Median difference between percentiles [115,117];
• Mean square error (MSE) [118], root MSE (RMSE) [33,116,118], %RMSE [33], absolute percentage error (APE) and mean APE (MAPE) [70];
• Importance weights for factor concepts (symptoms, medical history and vital signs) in each of the priority levels [124];
• Entropy change [79];
• Cohen's kappa (κ) used in [45] and in [103] to select best number of clusters and with expert decision, through graphical visualization of clusters
gradient shades of color [121];
• Correlation laws from decision trees established based on confidence and support proportion [103];
• Hosmer-Lemeshow test [29,30] and Pearson's chi-squared (χ2) test [30,41,42,52,112,114];
• Odds ratio (OR) [40,43,50,51,54,56,58,63,64,67,112,113].

Triage systems • Emergency Severity Index (ESI) [32,34,35,37,46,47,49,52,53,57,61,62,95,108,113,115,119,120,122,124];
• Manchester triage sytem (MTS) [30,41,45,50];
• Australasian triage scale (ATS) [29,59];
• Canadian triage and acuity scale (CTAS) [40,56,114];
• Taiwan Triage and Acuity Scale (TTAS) which consists in a modification of CTAS adapted to EDs in Taiwan [54,96];
• Objective primary triage scale (OPTS) [33,107,118];
• Patient acuity category scale (PACS) [42,48,63,72,117];
• Simple Triage And Rapid Treatment (START) [71];
• A 3 level triage scale (immediate, urgent and standard, with target waiting times 0, 60 and 120 min, respectively) [90];
• French triage scale [51,112];
• Four-level Taiwan triage system [70,103,121];
• Rapid Emergency Triage and Treatment System-Adult (RETTS-A) in Sweden [58];

(continued on next page)
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Table 4

Table 4
Results by outcome according to the objectives of the papers selected in the review search. Where omitted, the performance values indicated were obtained in the test
set.

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

Predict in-hospital cardiac arrest W. Srivilaithon et al. [55] (2019;
Emergency Medicine Australasia)

Age, gender, comorbidities, functional status
at presentation, mode of arrival, time of ED
visit, triage level at presentation, type of
specialty, physiological parameters at
different times (respiratory rate, oxygen
saturation, temperature, blood pressure, and
heart rate), level of consciousness, need for
supplement oxygen, need for ventilation
assistance, use of a vasoactive agent
(norepinephrine, epinephrine, or dopamine),
use of an inotropic agent (dobutamine) and
initial laboratory markers in the ED.

LR using all predictors AUC 0.91 (95% CI
0.89-0.93) higher than NEWS alone model
AUC 0.78 (95% CI 0.74-0.81).

Predict in-hospital cardiac arrest and
mortality

M. Ong et al. [72] (2019; Critical Care) Age, gender, medical history including
ischemic heart disease, diabetes mellitus and
chronic renal failure, heart rate, blood
pressure, respiratory rate, oxygen saturation
(SpO2), Glasgow Coma Scale (GCS), etiology,
and medication history.

Prediction of cardiac arrest SVM AUC: 0.781,
compared with 0.680 for MEWS (difference in
AUC: 0.101, 95% CI: 0.006 to 0.197). A cutoff
machine learning score ≥ 60 predicted
cardiac arrest with a sensitivity of 84.1%,
specificity of 72.3% and NPV of 98.8%.
Prediction of in-hospital mortality SVM AUC:
0.741, compared with 0.693 for MEWS
(difference in AUC: 0.048, 95% CI: -0.023 to
0.119). A cutoff MEWS ≥ 3 predicted
mortality with a sensitivity of 74.4%,
specificity of 54.2% and NPV of 97.8%.

Predict mortality, acute morbidity and
presence of acute infectious
disease

M. Jenny et al. [57] (2015; Academic
Emergency Medicine)

Age, gender, comorbidities, priority levels,
chief complaints, vital signs, Glasgow Coma
Scale score, medical history, physical
examination and an electrocardiogram (ECG).
In addition, we obtained a measure of the
physician's first overall impression of each
patient, the Gestalt-like impression of “how ill
the patient looks”.

Machine learning models (random forests,
LR, ANN, SVM, NB, CART): predictability of
the target outcomes ranged between AUC of
0.71 and 0.82. These results outperformed
physicians’ intuitive judgements (AUC =
0.67 for mortality, 0.65 for morbidity, and
0.60 for infectious disease).

Predict heart failure mortality

(continued on next page)

Table 3 (continued)

Topic Description

• Adaptive Process Triage (ADAPT) in Sweden [64];
• No formal triage system, however, at the time there was an informal agreement regarding the semantics that determine a 5 level triage scale [79];
• Hillerøød Acute Process Triage (HAPT) system [43].

Main contributions • Comparison of different intelligent techniques for patients’ triage classification [30,33,40,45–47,70,71,79,103,107,118,119,121];
• Healthcare analysis of each patient, based on a health history report with ED admission information and triage results, and storage of patient's record in
a database [90];
• Fast-track admission and outbound transfer planning [30,42], early warning system for the nursing personnel [30];
• Improvement of the prediction of LOS in the ED from triage information [31,65,67,112,115];
• Improved ED bed management [41], average TTB and rapid patients’ discharge [30];
• Reduction of mortality rate, through the prediction of mortality from information available at the point of ED triage [29,32,43,44,50,58,62–64,67,72],
cardiac arrest [55,72], heart failure [56], acute morbidity [57,60] and prediction of ICU admission [32,43,53,62];
• Performance of patients’ retriage, thereby preventing adverse outcomes while waiting [122];
• Improved patient flow, decision support and control for demographics when comparing performance over time or between ED from different hospitals.
Accurate estimate of the probability of hospital admission from triage information, which may improve patient pathways, prevent re-admissions and
reduce costs [41,45–49];
• Reduction of unnecessary ED admissions for the elderly population [120];
• Improved pain level assessment to enhance the effectiveness of triage [96];
• Triage anomaly (overtriage and undertriage) detection [103,70,120,52];
• Reduction of operative costs and medical expenses for both the hospital and patients [121];
• Reduction of human error [107] and improvement of service quality for patients [121];
• Improvement of the prediction for the need of hospitalization and critical care [108];
• Prediction of individual patients’ waiting time [117,116];
• The indication that the best time frame to evaluate the revisits rate after an ED visit is 30 days and the suggestion to use unscheduled revisits to the ED
as an indicator of quality [51,114];
• Improvement of scheduling of emergency physicians [104] and expected number of resources for critical patients [95];
• Identification of high-risk patients [32], with significantly increased odds of hospital admission, leading to improvement of resource allocation
[40,42,54], potentially reducing ED overcrowding [42] and morbidity rate, which may be associated with delays in patients evaluation and treatment
[40].
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Table 4 (continued)

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

D. Lee et al. [56] (2012; Annals of
Internal Medicine)

Age, gender, transport to ED by emergency
medical services, origin from nursing home or
long-term care facility, initial vital signs
(systolic blood pressure, heart rate,
respiratory rate, and oxygen saturation),
symptoms and comorbidities, laboratory
results, atrial fibrillation, electrocardiogram,
and pre-ED medications obtained by medical
staff and recorded in the patient's chart and
priority level.

LR AUC: 0.805 for the derivation data set
(bootstrap-corrected, 0.811) and 0.826 for
validation data set.

Predict adverse outcomes
(development of acute renal
failure, non-elective intubation,
vasopressor requirement, or
mortality)

D. Henning et al. [60] (2015; Western
Journal of Emergency Medicine)

Age, gender, vital signs, past medical history,
length of stay, laboratory values.

LR AUC, sensitivity and specificity: 0.74, 0.70
and 0.63, respectively.

Predict critical outcomes (mortality,
ICU admission, emergent surgery
or catheterization)

S. Barnes et al. [53] (2018; Journal of
Healthcare Engineering)

Age, gender, arrival mode of the patient, vital
signs (heart rate, respiratory rate,
temperature, blood pressure, and oxygen
saturation) and the chief complaints.

LR using GA flattened approach AUC: a large
urban Academic medical center (ACAD) -
0.8431, a medium-sized community hospital
(COMM) - 0.8361, international hospitals in
Brazil (BRAZIL) - 0.8261, the United Arab
Emirates (UAE) - 0.8820, and the nationally
representative National Hospital Ambulatory
Medical Care Survey (NHAMCS) - 0.8429. LR
using GA hierarchical approach AUC: ACAD -
0.8433,COMM - 0.8364, BRAZIL - 0.8260,
UAE - 0.8819, NHAMCS - 0.8436.

Predict mortality M. Ljunggren et al. [58] (2016;
Scandinavian journal of trauma,
resuscitation and emergency medicine)

Age, gender, time, date, admittance to in-
hospital care and, if so, to which clinic, were
recorded during the ED visit. Presenting
symptoms, SpO2 (%), respiratory rate, heart
rate, systolic blood pressure, diastolic blood
pressure, temperature and level of
consciousness according to the AVPU scale,
the triage priority level, comorbidities. Data
regarding the presence of a threatened airway,
oxygen use, and whether the heart was regular
or irregular was incorporated in the vital sign
triage prioritisation assessment.

LR highest OR: unresponsive vs alert patients
(OR 31.0, CI 16.9 to 56.8), patients with more
than 80 years old with less than 50 years old
(OR 35.9, CI 10.7 to 120.2) and patients with
respiratory rates < 8/min to 8 to 25/min
(OR 18.1, CI 2.1 to 155.5).

M. Coslovsky et al. [44] (2015;
Intensive Care Medicine Journal)

Age, gender, time of admission, cause of
admission, respiratory rate, oxygen saturation,
systolic and diastolic blood pressure, heart
rate, Glasgow coma score, body temperature
and peripheral perfusion and the presence of a
threatened airway and information regarding
interventions that had occurred before the
time of ED arrival.

LR: AUC 0.92 (95% CI, 0.916-0.927).

D. J. Teubner et al. [29] (2015;
Emergency Medicine Australasia)

Age at presentation, gender, ATS level,
transport to the ED by ambulance, referral to
the ED by a physician and triage complaint
category - a total of 108 variables were
assessed as predictors of inpatient mortality.

LR: AUC for the train set was 0.859 (95% CI
0.856-0.865), for the internal validation set
was 0.848 (95% CI 0.840-0.856) and for the
external validation set was 0.837 (95% CI
0.823-0.851);

T. Djärv et al. [64] (2015; European
Journal of Emergency Medicine)

Age, gender, and disease burden (number of
medications and chronic diseases), mode of
arrival to the ED and triage priority.

LR: patients with decreased general condition
at the ED were admitted for in-hospital care,
and they had a four-fold risk of suffering an
in-hospital death [OR 4.74 (95% CI 3.88-
5.78)] compared with patients presenting
with other presenting complaints.

W. Hong et al. [63] (2013; European
Journal of Emergency Medicine)

Heart rate, systolic blood pressure, diastolic
blood pressure, respiratory rate, oxygen
saturation, and the Glasgow Coma Scale.

Vital signs with age LR sensitivity: cardiac
arrest 11.54%, death 22.73%, ICU 12.50%
Vital signs with age LR specificity: cardiac
arrest 99.28%, death 97.22%, ICU 93.80%.

P. Plunkett et al. [50] (2011; European
Journal of Emergency Medicine)

Gender, major disease by priority level,
Charlson's comorbidity index, ICU admission,
blood transfusion, troponin elevation, door-to-
team and team to- ward time.

After adjustment for all outcome predictors,
including comorbidity and illness severity,
the results for both independent predictors of
death within 30 days were: door-to-team
times OR: of 1.13 (95% CI 1.07-1.18) and
team-to-ward times OR: 1.07 (95% CI 1.02-
1.13).

(continued on next page)
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Table 4 (continued)

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

Predict mortality, ICU admission and
hospital admission

Y. Raita et al. [62] (2019; Critical
Care)

Age, gender, triage vital signs, chief
complaints and comorbidities.

For critical care outcome prediction, AUC:
deep ANN 0.86 [95%CI 0.85-0.87] vs LR
reference model 0.74 [95%CI 0.72-0.75]. For
the hospitalization outcome prediction, AUC:
deep ANN 0.82 [95%CI 0.82-0.83] vs LR
reference model 0.69 [95%CI 0.68-0.69].

Predict mortality and ICU admission M. LaMantia et al. [32] (2013; Western
Journal of Emergency Medicine)

Age, gender, ESI score, chief complaint and
vital signs. Vital signs consisted of systolic BP,
heart rate, respiratory rate, temperature and
oxygen saturation.

LR: sensitivity and specificity of 73% (95% CI
66-81) and 50% (95% CI 48-52), respectively
(positive likelihood ratio 1.47 (95% CI 1.30-
1.60) and negative likelihood ratio 0.54 (95%
CI 0.30-0.60).

C. Barfod et al. [43] (2012;
Scandinavian Journal of Trauma,
Resuscitation and Emergency
Medicine)

Age, gender, time of the day for contact
(morning, evening, night), weekday (week-
end versus week-day), vital signs (SpO2,
respiratory rate, systolic BP, heart rate), chief
complaint and GCS.

The vital signs, the chief complaint and triage
priority were all significantly associated with
ICU admission and in-hospital mortality, the
odds increasing with the urgency of the triage
priority.

Predict mortality and ED LOS Y. Ro et al. [67] (2015; Emergency
Medicine Australasia)

Age, gender, vital signs, mental status, method
of transportation, reason for visiting the ED
(medical illness or trauma), priority level and
number of all occupant patients in the ED at
the time for every h/min when each patient
visited the ED.

LR adjusted OR (95% CI) for the triage-based
resource allocation and clinical treatment
(TRACT) protocol on ED mortality: 0.69
(0.54-0.88) for total patients, 0.42 (0.30-
0.59) for ESI 1, 1.04 (0.66-1.65) for ESI 2 and
1.45 (0.76-2.75) for ESI 3 group. LR adjusted
OR (95% CI) for the TRACT protocol ED LOS:
-88.1 (-96.9 ∼ -79.2) min for all patients,
-44.9 (-72.0 ∼ -17.9) min for ESI level 2 and
-104.3 (-114.7 ∼ -94.0) min for ESI level 3.

Predict expected number of resources D. Gligorijevic et al. [95] (2018;
Proceedings of the 2018 SIAM
International Conference on Data
Mining)

Age, hearth rate, blood pressure, temperature
(structured data) and medical text
(unstructured) data, including patient's chief
complaint, past medical history, medication
list, and nurse assessment.

Deep learning word attention model AUC:
0.88 in identifying resource intensive patients
(binary classification); Deep learning word
attention model ACC: 44% for predicting
exact category of number of resources (multi-
class classification task).

Predict patients’ waiting times E. Ang et al. [116] (2015;
Manufacturing &Service Operations
Management)

The number of patients waiting in the ED to
start treatment, the number of providers in the
ED, the rate at which a provider treats low-
acuity patients and the total processing rate
for low-acuity patients.

In the triage room, Q-Lasso achieved a 30%
lower MSE in predicting the residual time
from triage to treatment than would have
occurred with another method – the two-
hour-window rolling average. Q-Lasso MSE:
998.6 minutes with a standard error of 24.0
minutes vs moving average MSE: 1,429.4
minutes with a standard error of 35.9
minutes.

Y. Sun et al. [117] (2012; Annals of
Emergency Medicine)

Patient queue sizes, flow rates and patient
priority level.

Quantile regression in retrospective
validation: median absolute prediction error
was 11.9 minutes for patient acuity priority 2
(interquantile range (IQR) 5.9 to 22.1
minutes) and 15.7 minutes for priority 3 (IQR
7.5 to 30.1 minutes); In prospective
validation: median absolute prediction error
was 9.2 minutes for patient acuity priority 2
and 12.9 minutes (IQR 6.5 to 22.5 minutes)
for priority 3.

Predict ED revisits L. Pereira et al. [51] (2015; PloS one) Age, gender, triage priority, care pathways,
diagnostic categories based on International
Classification of Diseases, Ninth Revision
(ICD-9) codes, final disposition, the time of
arrival and departure from the ED Observation
Unit (OU) as well as the departure date for
hospitalized patients.

LR indicated that the ED final disposition
decision (transfer; medical and surgical wards
(MSW); non-admission) was a significant 30-
day predictor of revisit to the ED (OR: 1.52
(95% CI 1.42-1.56); 2.32 (2.12-2.38);
p< 0.0001]; and that care pathways were
significant 90-day predictors
(ED→OU→MSW; ED→OU→transfer; ED
transfer; ED→MSW; ED→OU→non-admitted;
ED non-admitted) (OR 1.11 (95% CI 1.08-
1.12); 1.23 (1.19-1.24); 1.35 (1.31-1.36);
1.50 (1.44-1.51); 1.66 (1.64-1.67);
p< 0.001).

Predict hospital admission and ED
revisits

A.Hendin et al. [114] (2018; Canadian
Journal of Emergency Medicine)

Age, gender, tests and services involved in ED,
and disposition. Return ED visit and hospital
admission rates at 14 days were tracked.

Older patients were significantly more likely
than younger controls to be admitted on
index visit (5.0% vs 0.3% admit rate, p =
0.016). They had a trend towards increased
re-presentation rates within 14 days (13.7%
vs 8.7% control, p = 0.11) and were more
likely to be admitted on re-presentation

(continued on next page)
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Table 4 (continued)

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

(4.0% vs 0.7%, p = 0.045). In sub-group
analysis, very elderly patients (85 years and
up, n = 79) were more likely to be admitted
(8.9%, p = 0.003).

Predict medium acuity patients’
discharge disposition

J. Riordan et al. [61] (2017; The
Journal of emergency medicine)

Age, gender, ED disposition, arrival mode,
temperature, systolic and diastolic blood
pressure, heart rate, respiratory rate, oxygen
saturation, and pain level.

LR AUC: 0.73.

Improve scheduling of emergency
physicians

C. Yang et al. [104] (2009; Expert
Systems with Applications)

Date of diagnosis, triage priority, department,
number of nurses and physicians and their
daily shifts, day of the week and national
holiday or not.

Decision tree ACC of shift anticipation
improved from 22% to 50%.

Predict hospital admission O. Araz et al. [46] (2019; OPENAIRE) Age, gender, arrival mode, triage priority, day
of visit, flu season, shift, and Influenza-Like-
Illness case indicator (using ICD-9 codes).

XGBoost: AUC ranged from 0.83 to 0.86.

B. Graham et al. [45] (2018; IEEE
Access)

Hospital site, date and time of attendance,
age, gender, arrival mode, care group, MTS
priority and whether the patient had a
previous admission to the hospital within the
last week, month, or year.

GBoost: ACC 80.31%, AUC 0.86; DT: ACC
80.06%, AUC 0.82; LR: ACC 79.94%, AUC
0.85.

C. Parker et al. [48] (2018; The
American journal of emergency
medicine)

Age, gender, ethnicity, proximity of patient's
home postal code to the study site, day of
week, shift time of presentation, mode of
arrival, triage category, fever status and
number of ED visits within the previous year.

LR: AUC 0.82 (95% CI 0.82-0.83).

W. Hong et al. [47] (2018; PloS one) Age, gender, primary language, ethnicity,
employment status, insurance status, marital
status, and religion. Name of the hospital,
arrival time, arrival mode, triage vital signs
(systolic and diastolic blood pressure, heart
rate, respiratory rate, oxygen saturation,
presence of oxygen device and temperature),
and ESI level. Chief complaint, prior hospital
and ED admissions, number of procedures and
surgeries listed in the patient's record, medical
history (ICD-9 codes), medications, historical
vitals and labs and number of orders for
imaging.

Using triage information in train: LR: AUC
0.87 (95% CI 0.86-0.87); XGBoost: AUC 0.87
(95% CI 0.87-0.88); Deep ANN: AUC 0.87
(95% CI 0.87-0.88). Using patient history in
train: LR: AUC 0.86 (95% CI 0.86-0.87);
XGBoost: AUC 0.87 (95% CI 0.87-0.87); Deep
ANN: AUC 0.87 (95% CI 0.87-0.88). Using the
full set of variables in train: LR: AUC 0.91
(95% CI 0.91-0.91); XGBoost: AUC 0.92 (95%
CI 0.92-0.93); Deep ANN: AUC 0.92 (95% CI
0.92-0.92).

X. Zhang et al. [34] (2017; Methods of
information in medicine)

Unstructured variables: three reasons for visit
and cause of injury. Structured information:
age, gender, race, ethnicity, type of residence,
source of payment, whether or not arriving via
ambulance, arrival day and time, initial vital
signs: body temperature, heart rate,
respiratory rate, blood pressure, heart
oximetry, whether or not the patient arrived
on oxygen. Triage variables: priority level,
pain scale (0-10), whether or not the patient
had used the ED within the past 72 hours, the
episode of care (initial vs. follow-up visit to
the ED) and comorbidities and injury.

Models including only structured variables:
LR AUC 0.824(95% CI 0.818-0.830), ANN
AUC 0.823 (95% CI 0.817-0.829). Models
including only free-text information: LR AUC
of 0.742 (95% CI 0.731-0.753), ANN 0.753
(95% CI 0.742-0.764). Models with both
structured variables and free text variables:
LR AUC 0.846 (95% CI 0.839-0.853), ANN
AUC 0.844 (95% CI 0.836-0.852).

C. Ng et al. [54] (2016; Medicine) Age, gender, primary and secondary
diagnoses, clinical parameters including blood
pressure, heart rate, body temperature, and
chief complaint category in TTAS

LR AUC: 0.70;

A. Zlotnik et al. [30] (2016; CIN:
Computers, Informatics, Nursing)

Repeated visits, age, gender, patient insurance
status and main residence, patient visit
sources, broad visit causes, ambulance
arrivals, MTS score and MTS chief complaints,
which were combined in five groups of
increasing risk of admission.

LR: AUC 0.86 (95% CI, 0.8508-0.8583); ANN:
AUC 0.86 (95% CI, 0.8540-0.8610).

N. Handly et al. [37] (2015; European
Journal of Emergency Medicine)

Age, gender, race, time, and day of arrival,
initial priority level, chief complaint and
whether the patient was admitted to the
hospital or not on each ED visit.

ANN AUC in the validation cohort for the
derived models with and without the coded
chief complaint algorithm: 0.840 (95% CI:
0.838-0.842) and 0.860 (95% CI: 0.858-
0.862), respectively.

LR: AUC 0.88 (95% CI 0.8752-0.8796).

(continued on next page)
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Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

A. Cameron et al. [41] (2014;
Emergency Medicine Journal)

Age, gender, means of transportation to the
ED, the time of the day and of the week of
attendance, the referral source, the MTS
category, the NEWS, if the patient lived alone
or not and previous admissions.

S. Kim et al. [59] (2014; Emergency
Medicine Australasia)

Age, gender, day of the week, time of the day,
triage priority, whether the patient arrived by
ambulance or not, and whether the patient
was referred by a local medical officer.

LR AUC: Model 0 – characteristics of each
patient excluding any laboratory test results
0.797 (95% CI 0.795, 0.800) Model 1 - triage
nurses’ prediction 0.749 (95% CI 0.746,
0.751) Model 2 – Model 0 + Model 1 0.817
(95% CI 0.815, 0.819) Model 3 – Model 2 +
presence/absence of laboratory test 0.835
(95% CI 0.833, 0.837) Model 4 – Model 3 +
laboratory test results 0. 768 (95% CI 0.764,
0.772);

N. Handly et al. [113] (2013; Annals of
Emergency Medicine)

Age, gender, race, time and day of arrival,
priority level, chief complaint and admission/
discharge data on each visit.

ANN AUC in the validation cohort for the
prediction model without coded chief
complaint data: 0.840 95%CI (0.838-0.842).
ANN AUC in the validation cohort for the
prediction model with coded chief complaint
data: 0.860 95%CI (0.858-0.862).

Y. Sun et al. [42] (2011; Academic
Emergency Medicine)

Age, gender, ethnic group, ED visit or hospital
admission in the preceding 3 months, arrival
mode, patient priority, and coexisting chronic
diseases.

LR: AUC 0.85 (95% CI 0.847-0.851).

M. LaMantia et al. [49] (2010;
Academic emergency medicine)

Age, triage priority, heart rate, diastolic blood
pressure, and chief complaint.

LR: AUC 0.73;

Predict abnormal medical condition of
patients

D. Olivia et al. [71] (2018;
International Conference on
Applications and Techniques in
Information Security)

Body temperature, blood pressure (diastolic
and systolic), blood oxygen level, respiration
rate, and heart rate.

ANN: ACC 0.60, Sensitivity 0.87, Specificity
0.18, PPV 0.61; NB: ACC 0.82, Sensitivity
0.84, Specificity 0.80, PPV 0.86; DT, SVM:
ACC 0.84, Sensitivity 0.87, Specificity 0.81,
PPV 0.87.

Classify pain level F. Tsai et al. [96] (2017; Seventh
International Conference on Affective
Computing and Intelligent Interaction
(ACII))

Audio-video recordings with indication of the
location of the body pain, the pain level and a
brief description on the type of pain felt.
Physiological (heart rate, systolic and diastolic
blood pressure) vital sign data, and other
clinically-related outcomes of onboarding
emergency patients.

LSTM: ACC 72.3% and 54.2% in binary and
three-class pain intensity classification,
respectively.

Predict the need for critical care and of
high-risk patients

S. Levin et al. [108] (2017; Annals of
Emergency Medicine)

Age, gender, arrival mode (ambulance or
walk-in), vital signs (temperature, heart rate,
respiratory rate, systolic blood pressure, and
oxygen saturation), primary chief complaint,
and relevant medical history.

Random forest model: AUC ranged from 0.73
to 0.92.

J. P. Ruger et al. [40] (2007; The
American Journal of Emergency
Medicine)

Age and gender, primary complaint variables
and a diagnosis related group (DRG) severity
index. Other variables included medical
diagnosis (DRG diagnosis), day and time of the
week, month of the year, arrival mode, and
payment method.

In the LR analysis, acuity C patients of 65
years or older were 2.5 times more likely to
be admitted than those younger than 65 years
old (p-value < 0.05).

Predict chief complaints Y. Jernite et al. [35] (2013; NIPS 2013
Workshop on Machine Learning for
Clinical Data Analysis and Healthcare)

Chief complaints, vital signs and the nurses’
description of the patients’ state at arrival.

Multiclass SVM for the best-10 ACC: 0.825.
The best-10 ACC measured how often the list
of 10 most likely predicted labels actually
contained all of the true chief complaints.

A.Thompson et al. [36] (2006;
Academic emergency medicine)

Age, gender, admission rate, frequency of
patients presenting with coded chief
complaints, percentage of free-text complaints
not categorizable by the proposed
computerized text-parsing algorithm for
classification of free-text chief complaints.

In the derivation sample, the text-parsing
algorithm classified 87.5% of 45,329 ED visits
with non null free-text chief complaints into 1
of 194 coded chief complaints. The text-
parsing algorithm successfully classified
87.3% of the free-text chief complaints in a
validation sample.

Prioritize patients M. Soufi et al. [91] (2018;
International journal of medical
informatics);

Age, gender and vital signs (heart rate, SPO2,
respiratory rate).

A combination of the Rule-Based Reasoning
(RBR) and Fuzzy Logic Classifier (FLC) ACC:
99.44%.

V. Georgopoulos and C. Stylios [123]
(2017; 2017 International Conference
on Intelligent Informatics and
Biomedical Sciences (ICIIBMS))

Variables used in [122]. The Fuzzy Cognitive Map indicated that
patients with a fever and infections could
adversely progress over time, which meant
their priority should be upgraded. Therefore,

(continued on next page)
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Objectives Author Independent Results by outcome
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the Fuzzy Cognitive Map was designed to
make sure that patients would not wait for
hours not receiving the necessary care.

J. Hinson et al. [52] (2018;
International Journal of Emergency
Medicine)

Age, gender, temperature, heart rate,
respiratory rate, systolic pressure, oxygen
saturation, patient-reported pain score, chief
complaint category, and arrival time.

Under-triaged patients to ESI level 3 had a
significantly increased prevalence of
admission and critical outcomes as compared
to those appropriately triaged to ESI level 3
χ2= 502.06, df=1, p value <0.001 and
χ2=184.91, df=1, p value < 0.001,
respectively). Similarly, patients who were
under-triaged to ESI levels (4 or 5) on arrival
had a significantly increased prevalence of
admission and critical outcomes as compared
to patients appropriately triaged to the same
ESI levels (χ2=1033.60, df=1, p value
< 0.001 and χ2=343.05, df=1, p value
< 0.001, respectively). Over-triaged patients
to ESI level 3 had a significantly lower
prevalence of admission and critical
outcomes as compared to those appropriately
triaged to ESI level 3 (χ2=1184.90 df=1, p
value < 0.001 and χ2=213.04, df=1, p
value < 0.001, respectively). Similarly,
patients who were over-triaged to high-acuity
ESI levels (1 or 2) had a significantly lower
prevalence of admission and critical
outcomes as compared to patients
appropriately triaged to the same ESI levels
(χ2=588.49, df=1, p value< 0.001 and
χ2=126.57, df=1, p value < 0.001,
respectively).

E. S. S. Velarde et al. [90] (2015; World
Congress on Medical Physics and
Biomedical Engineering)

General appearance, blood pressure, heart
rate, respiratory rate, temperature and
Glasgow Coma Scale.

The triage software was able to timely
prioritize patients from the output given by
the rules of a fuzzy controller.

D. Azeez et al. [107] (2015;
Technology and Health Care)

Chief complaints, patient medical history and
vital signs. Vital signs were heart rate, blood
pressure, temperature, respiratory rate,
oxygen saturation. One of the input features of
the model was a free-text space for chief
complaint.

Random forest: sensitivity and specificity of
0.98 and 0.89, respectively.

V. C. Georgopoulos and C. D. Stylios
[122] (2015; Simulation and Modeling
Methodologies, Technologies and
Applications Conference)

Life threatening, limb threatening, patient
chief complaint, vital signs, medical history,
expected number of resources, patient age,
required timely intervention, weakness,
additional symptoms, severe pain or distress,
patient referred to the ED from outside,
behavioral or psychiatric issue, patient
medications, hospital or ED discharge inferior
to 3 days, patient immune-compromised,
alcohol or illicit drug use, no recent change
mental state, patient can walk or sit and pre-
existing communication/cognitive deficits.

In a case example, the Fuzzy Cognitive Map
system assisted the health professional in the
prioritization of patients in the ESI levels 3-5.

E. B. Fields et al. [119] (2013; Expert
Systems with Applications)

Vital signs, age, gender, temperature, heart
rate, respiration rate, systolic and diastolic
blood pressure.

The study recommended the method that
estimates utility intervals as the most suitable
preference aggregation method for
prioritization.

D. Azeez et al. [33] (2013;
SpringerPlus)

Age, gender, airway and breathing,
tachychycardia, bradycardia, sever pallor,
cold peripheries, tachypnoea, cannot complete
in full sentence, one sided limb weakness,
slurring of speech, facial asymmetry, sever
chest pain, perfuse sweating, altered mental
status, sever intractable pain, psychiatric
patient irritable, chief complaint, heart rate,
respiration rate.

ANN: RMSE, %RMSE and ACC were 0.14, 5.7
and 99%, respectively, for the train set.
RMSE, %RMSE and ACC were 0.18, 7.16 and
96.7%, respectively, for the test set. ANFIS:
RMSE, %RMSE and ACC were 0.85, 32 and
96%, respectively, for the train set. RMSE, %
RMSE and ACC were 1.30, 49.84 and 94%,
respectively, for the test set.

V. C. Georgopoulos and C. D. Stylios
[120] (2013; Fuzziness and Medicine:
Philosophical Reflections and

All the variables which were used in [122],
except for the variable of pre-existing
communication/cognitive deficits.

In a case example, the Fuzzy Cognitive Map
system assisted the health professional in the
prioritization of elderly patients.

(continued on next page)
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Table 4 (continued)

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

Application Systems in Health Care -
Book chapter)

W-T. Lin et al. [66] (2013; Proceedings
of World Academy of Science,
Engineering and Technology)

Chief complaint, medical history, general
appearances, vital signs, symptoms and signs
and the results of a physical assessment.

ANN ACC: 95.1%

S.-T. Wang [70] (2013; Journal of
Medical Systems)

Chief complaints, medical history, general
appearance, vital signs, symptoms and signs,
and physical assessment results. The vital
signs consisted of 6 parameters, including
breathing, temperature, heart rate, diastolic
pressure, systolic pressure and SpO2.

For the anomaly detection, the ACC was: PCA
with SVM: 100 %; SVM: 89.2 %; BPNN: 96.71
%. To predict triage priority, the MAPE was:
SVR: 3.78 %; BPNN: 5.99 %.

D. Zmiri et al. [79] (2012; Journal of
Evaluation in Clinical Practice)

Age, gender, vital signs (e.g. temperature,
heart rate, blood pressure, respiration rate,
oxygen saturation and glucose), chief
complaints, previous diagnoses known at the
time of arrival to the ED, and a letter of
referral to the ED.

DT and NB: mean ACC 52.94± 5.89%, which
was significant (p-value<0.05) when
compared to the mean ACC of a random
classifier (34.60± 2.40%). Allowing for
classification deviations of one severity grade
led to mean ACC of 85.42± 1.42%.

D. Aziz et al. [118] (2012;
International Conference on Intelligent
and Advanced Systems (ICIAS))

Primary triage attributes from OPTS: airway
and breathing, tachycardia, bradycardia,
severe pallor, cold peripheries, tachypnoea,
cannot complete full sentences, one sided limb
weakness, slurring of speech, facial
asymmetry, severe chest pain, altered mental
status, polytrauma, severe intractable pain,
psychiatric patient irritable and profuse
sweating.

ANFIS: ACC 98.4%. The fuzzy C-means
method produced fewer rules and needed less
processing time to reach the RMSE of 0.127
compared to the fuzzy subtractive clustering
method.

V. Georgopoulos and C. Stylios [124]
(2012; IFAC Proceedings Volumes)

Patient chief complaints, vital signs, medical
history, expected number of resources, age,
required timely intervention, additional
symptoms other than chief complaint, severe
pain or distress, patient referred to ED from
outside, behavioral or psychiatric issue, no
additional symptoms to chief complaint,
absence of medical history, patient
medications, hospital or ED discharge less
than 3 days, patient immune-compromised,
alcohol or illicit drug use.

Results in [120,122].

W.-T. Lin et al. [121] (2011; Expert
Systems with Applications)

Age, gender, patient type (first visit and
revisit), insurance status, period (AM, PM and
night), hospital admission, arrival mode,
subject (internal, surgery, obstetrics and
gynecology, pediatrics, dentistry and
psychosomatic medicine), overstay length and
expenses.

By two-stage cluster analysis (Ward's method
and K-means), it was concluded that the
cohort of elderly patients with longer ED LOS,
higher consumption of medical expenses were
in the group with higher risk of consumption
of resources, and the majority were patients
of most urgent triage priorities 1 and 2.

W.-T. Lin et al. [103] (2010; Expert
Systems with Applications)

Vital signs: respiration rate, diastolic pressure,
systolic pressure, SaO2, heart rate and
temperature. Decision parameters: nursing
personnel triage, physicians’ triage and
decision time interval.

By two-stage cluster analysis (Ward's method
and K-means) and DT, it was found that heart
rate and temperature were important factors
to detect abnormal patients. It was also found
that abnormal diagnosis was most likely in
diseases of pneumonia and cirrhosis.

Predict ED LOS M. Street et al. [65] (2018; European
Journal of Emergency Medicine)

Age, usual accommodation, triage category,
arrival by ambulance, arrival overnight,
imaging, laboratory investigations,
overcrowding, time to be seen by doctor, ED
visits with admission and access block relating
to ED LOS more than 4 h.

LR AUC in the validation set: 0.80, (Hosmer-
Lemeshow p-value 0.36 and prediction MSE
0.18).

A. Azari et al. [31] (2015; IEEE
International Conference on
Bioinformatics and Biomedicine
(BIBM))

Patient's acuity level, the chief complaint,
temperature, respiration rate, heart rate,
oxygenation rate, mean arterial blood
pressure rate, the department in the ED, and if
a speciality team is called.

The sensitivity was very high for the majority
class of non admitted patients (96%).
However, the increased sensitivity for the
majority class was at the cost of much lower
sensitivity for the minority class of admitted
patients (26%).

(continued on next page)
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Table 4 (continued)

Objectives Author Independent Results by outcome
(Year; Source) Variables (Algorithm: performance)

E. Casalino et al. [112] (2014;
Emergency Medicine Journal)

Age, gender, triage acuity level, and final
disposition decisions from ED and Observation
Unit (OU).

LR for ED - LOS AUC: 0.791 (95% CI 0.788 to
0.794); LR for ED-OU LOS AUC: 0.812 (95%
CI 0.81 to 0.814);

R. Ding et al. [115] (2009;
International Conference on
Management and Service Science)

Age, gender, mode of arrival, arrival day and
time, insurance status, acuity level and chief
complaint.

Patients at the 90th percentile waited 7 times
longer (98 minutes), took 2.5 times longer to
be treated (487 minutes) and boarded 7 times
longer (1,122 minutes) compared to patients
at the median.

M. Fernandes, et al. Artificial Intelligence In Medicine 102 (2020) 101762

20

http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0005
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0005
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0005
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0010
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0010
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0010
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0015
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0015
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0015
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0020
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0020
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0020
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0020
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0025
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0025
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0025
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0030
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0030
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0030
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0035
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0035
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0035
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0040
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0040
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0040
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0045
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0045
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0050
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0050
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0055
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0055
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0060
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0060
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0060
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0065
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0065
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0065
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0065
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0070
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0070
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0070
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0075
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0075
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0080
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0080
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0085
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0085
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0090
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0090
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0090
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0095
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0095
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0095
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0100
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0100
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0105
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0105
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0105
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0110
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0110
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0110
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0115
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0115
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0115
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0120
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0120
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0120
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0125
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0125
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0125
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0130
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0130
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0130
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0135
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0135
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0135
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0140
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0140
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0140
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0140
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0145
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0145
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0145
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0145
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0150
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0150
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0150
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0150
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0155
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0155
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0155
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0160
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0160
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0160
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0160
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0165
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0165
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0165
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0170
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0170
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0170
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0175
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0175
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0175
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0180
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0180
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0180
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0185
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0185
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0185
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0190
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0195
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0195
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0195
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0200
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0200
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0200
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0205
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0205
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0210
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0210
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0210
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0215
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0215
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0215
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0215
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0215
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0220
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0220


department. Intensive care medicine 2015;41(6):1029–36.
[45] Graham B, Bond R, Quinn M, Mulvenna M. Using data mining to predict hospital

admissions from the emergency department. IEEE Access 2018;6:10458–69.
[46] Ramírez Nafarrate A. Predictive analytics for hospital admissions from the emer-

gency department using triage information. OPENAIRE. 2019.
[47] Hong WS, Haimovich AD, Taylor RA. Predicting hospital admission at emergency

department triage using machine learning. PloS one 2018;13(7):e0201016.
[48] Parker CA, Liu N, Wu SX, Shen Y, Lam SSW, Ong MEH. Predicting hospital ad-

mission at the emergency department triage: A novel prediction model. The
American journal of emergency medicine 2018.

[49] LaMantia MA, Platts-Mills TF, Biese K, Khandelwal C, Forbach C, Cairns CB, Busby-
Whitehead J, Kizer JS. Predicting hospital admission and returns to the emergency
department for elderly patients. Academic emergency medicine 2010;17(3):252–9.

[50] Plunkett PK, Byrne DG, Breslin T, Bennett K, Silke B. Increasing wait times predict
increasing mortality for emergency medical admissions. European Journal of
Emergency Medicine 2011;18(4):192–6.

[51] Pereira L, Choquet C, Perozziello A, Wargon M, Juillien G, Colosi L, Hellmann R,
Ranaivoson M, Casalino E. Unscheduled-return-visits after an emergency depart-
ment (ED) attendance and clinical link between both visits in patients aged 75
years and over: a prospective observational study. PloS one 2015;10(4):e0123803.

[52] Hinson JS, Martinez DA, Schmitz PS, Toerper M, Radu D, Scheulen J, de Ramirez
SAS, Levin S. Accuracy of emergency department triage using the emergency se-
verity index and independent predictors of under-triage and over-triage in Brazil: a
retrospective cohort analysis. International journal of emergency medicine
2018;11(1):3.

[53] Barnes S, Saria S, Levin S. An evolutionary computation approach for optimizing
multilevel data to predict patient outcomes. Journal of healthcare engineering
2018;2018.

[54] Ng C-J, Liao P-J, Chang Y-C, Kuan J-T, Chen J-C, Hsu K-H. Predictive factors for
hospitalization of nonurgent patients in the emergency department. Medicine
2016;95(26).

[55] Srivilaithon W, Amnuaypattanapon K, Limjindaporn C, Imsuwan I, Daorattanachai
K, Dasanadeba I, Siripakarn Y. Predictors of in-hospital cardiac arrest within 24 h
after emergency department triage: A case-control study in urban Thailand.
Emergency Medicine Australasia; 2019.

[56] Lee DS, Stitt A, Austin PC, Stukel TA, Schull MJ, Chong A, Newton GE, Lee JS, Tu
JV. Prediction of heart failure mortality in emergent care: a cohort study. Annals of
internal medicine 2012;156(11):767–75.

[57] Jenny MA, Hertwig R, Ackermann S, Messmer AS, Karakoumis J, Nickel CH,
Bingisser R. Are mortality and acute morbidity in patients presenting with non-
specific complaints predictable using routine variables? Academic Emergency
Medicine 2015;22(10):1155–63.

[58] Ljunggren M, Castrén M, Nordberg M, Kurland L. The association between vital
signs and mortality in a retrospective cohort study of an unselected emergency
department population. Scandinavian journal of trauma, resuscitation and emer-
gency medicine 2016;24(1):21.

[59] Kim SW, Li JY, Hakendorf P, Teubner DJ, Ben-Tovim DI, Thompson CH. Predicting
admission of patients by their presentation to the emergency department.
Emergency Medicine Australasia 2014;26(4):361–7.

[60] Henning DJ, Oedorf K, Day DE, Redfield CS, Huguenel CJ, Roberts JC, Sanchez LD,
Wolfe RE, Shapiro NI. Derivation and validation of predictive factors for clinical
deterioration after admission in emergency department patients presenting with
abnormal vital signs without shock. Western Journal of Emergency Medicine
2015;16(7):1059.

[61] Riordan JP, Dell WL, Patrie JT. Can patient variables measured on arrival to the
emergency department predict disposition in medium-acuity patients? The Journal
of emergency medicine 2017;52(5):769–79.

[62] Raita Y, Goto T, Faridi MK, Brown DF, Camargo CA, Hasegawa K. Emergency
department triage prediction of clinical outcomes using machine learning models.
Critical Care 2019;23(1):64.

[63] Hong W, Earnest A, Sultana P, Koh Z, Shahidah N, Ong MEH. How accurate are
vital signs in predicting clinical outcomes in critically ill emergency department
patients. European Journal of Emergency Medicine 2013;20(1):27–32.

[64] Dj&rdquo;arv T, Castrén M, Mårtenson L, Kurland L. Decreased general condition
in the emergency department: high in-hospital mortality and a broad range of
discharge diagnoses. European Journal of Emergency Medicine 2015;22(4):241–6.

[65] Street M, Mohebbi M, Berry D, Cross A, Considine J. Influences on emergency
department length of stay for older people. European Journal of Emergency
Medicine 2018;25(4):242–9.

[66] Lin W-T, Jou Y-T, Wu Y-C, Hsiao Y-D. Data mining applied to the predictive model
of triage system in emergency department. Proceedings of World Academy of
Science, Engineering and Technology 2013:1789. no. 78, Citeseer.

[67] Ro YS, Shin SD, Song KJ, Cha WC, Cho JS. Triage-based resource allocation and
clinical treatment protocol on outcome and length of stay in the emergency de-
partment. Emergency Medicine Australasia 2015;27(4):328–35.

[68] Vapnik V. The nature of statistical learning theory. Springer science & business
media; 2013.

[69] Cortes C, Vapnik V. Support-vector networks. Machine learning
1995;20(3):273–97.

[70] Wang S-T. Construct an optimal triage prediction model: A case study of the
emergency department of a teaching hospital in Taiwan. Journal of Medical
Systems 2013;37(5):9968.

[71] Olivia D, Nayak A, Balachandra M. Machine learning based electronic triage for
emergency department. International Conference on Applications and Techniques
in Information Security 2018:215–21.

[72] Ong MEH, Ng CHL, Goh K, Liu N, Koh ZX, Shahidah N, Zhang TT, Fook-Chong S,

Lin Z. Prediction of cardiac arrest in critically ill patients presenting to the
emergency department using a machine learning score incorporating heart rate
variability compared with the modified early warning score. Critical Care
2012;16(3):R108.

[73] Cristianini N, Shawe-Taylor J, et al. An introduction to support vector machines
and other kernel-based learning methods. Cambridge university press; 2000.

[74] Sch&ldquo;olkopf B, Smola AJ, Bach F, et al. Learning with kernels: support vector
machines, regularization, optimization, and beyond. MIT press; 2002.

[75] Jinglin Y, Li H-X, Yong H. A probabilistic SVM based decision system for pain
diagnosis. Expert Systems with Applications 2011;38(8):9346–51.

[76] Tan KC, Teoh EJ, Yu Q, Goh K. A hybrid evolutionary algorithm for attribute
selection in data mining. Expert Systems with Applications 2009;36(4):8616–30.

[77] Kotsiantis SB, Zaharakis ID, Pintelas PE. Machine learning: a review of classifi-
cation and combining techniques. Artificial Intelligence Review
2006;26(3):159–90.

[78] Maron ME. Automatic indexing: an experimental inquiry. Journal of the ACM
(JACM) 1961;8(3):404–17.

[79] Zmiri D, Shahar Y, Taieb-Maimon M. Classification of patients by severity grades
during triage in the emergency department using data mining methods. Journal of
Evaluation in Clinical Practice 2012;18(2):378–88.

[80] Kuncheva LI. Fuzzy classifiers. Scholarpedia 2008;3(1):2925.
[81] Zadeh LA. Fuzzy sets. Information and control 1965;8(3):338–53.
[82] Fathi-Torbaghan M, Meyer D. Medusa: a fuzzy expert system for medical diagnosis

of acute abdominal pain. Methods of information in medicine 1994;33(05):522–9.
[83] Binaghi E, Gallo I, Ghiselli C, Levrini L, Biondi K. An integrated fuzzy logic and

web-based framework for active protocol support. International Journal of Medical
Informatics 2008;77(4):256–71.

[84] Zwick R, Wallsten TS. Combining stochastic uncertainty and linguistic inexactness:
theory and experimental evaluation of four fuzzy probability models. International
Journal of Man-Machine Studies 1989;30(1):69–111.

[85] Yaguinuma CA, Santos MT, Camargo HA, Nogueira TM. A meta-ontology approach
for representing vague linguistic terms and fuzzy rules for classification in ontol-
ogies. 2010 14th IEEE International Enterprise Distributed Object Computing
Conference Workshops 2010:263–71.

[86] Dombi J. Membership function as an evaluation. Fuzzy sets and systems
1990;35(1):1–21.

[87] Abbasi M, Kashiyarndi S. Clinical decision support systems: A discussion on dif-
ferent methodologies used in health care. Marlaedalen University Sweden; 2006.

[88] Nilashi M, Ibrahim O, Ahani A. Accuracy improvement for predicting parkinson's
disease progression. Scientific reports 2016;6:34181.

[89] Cherifi H, Zain JM, El-Qawasmeh E. Digital Information and Communication
Technology and Its Applications: International Conference, DICTAP 2011, Dijon,
France, June 21-23, 2011. Proceedings, Vol. 166 2011.

[90] Velarde ESS, Sotelo-de Ávila AA, Rico-Asención IO, Alemán NR, González R-S,
Ramírez-Sotelo MG, Cabrera-Llanos AI. Fuzzy-state machine for Triage priority
classifier in emergency room. World Congress on Medical Physics and Biomedical
Engineering, June 7-12, 2015. Springer; 2015. p. 1488–91.

[91] Soufi MD, Samad-Soltani T, Vahdati SS, Rezaei-Hachesu P. Decision support
system for triage management: A hybrid approach using rule-based reasoning and
fuzzy logic. International journal of medical informatics 2018;114:35–44.

[92] Andriulli A, Grossi E, Buscema M, Festa V, Intraligi N, Dominici P, Cerutti R, Perri
F, Group NLS, et al. Contribution of artificial neural networks to the classification
and treatment of patients with uninvestigated dyspepsia. Digestive and liver dis-
ease 2003;35(4):222–31.

[93] Das A, Ben-Menachem T, Cooper GS, Chak A, Sivak Jr. MV, Gonet JA, Wong RC.
Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an
artificial neural network: internal and external validation of a predictive model.
The Lancet 2003;362(9392):1261–6.

[94] Hochreiter S, Schmidhuber J. Long short-term memory. Neural computation
1997;9(8):1735–80.

[95] Gligorijevic D, Stojanovic J, Satz W, Stojkovic I, Schreyer K, Del Portal D,
Obradovic Z. Deep attention model for triage of emergency department patients.
Proceedings of the 2018 SIAM International Conference on Data Mining
2018:297–305.

[96] Tsai F-S, Weng Y-M, Ng C-J, Lee C-C. Embedding stacked bottleneck vocal features
in a LSTM architecture for automatic pain level classification during emergency
triage. 2017 Seventh International Conference on Affective Computing and
Intelligent Interaction (ACII) 2017:313–8.

[97] Lorena AC, Jacintho LF, Siqueira MF, De Giovanni R, Lohmann LG, De Carvalho
AC, Yamamoto M. Comparing machine learning classifiers in potential distribution
modelling. Expert Systems with Applications 2011;38(5):5268–75.

[98] Meyfroidt G, G&rdquo;uiza F, Ramon J, Bruynooghe M. Machine learning tech-
niques to examine large patient databases. Best Practice & Research Clinical
Anaesthesiology 2009;23(1):127–43.

[99] Kennedy R, Harrison R, Burton A, Fraser H, Hamer W, MacArthur D, McAllum R,
Steedman D. An artificial neural network system for diagnosis of acute myocardial
infarction (AMI) in the accident and emergency department: evaluation and
comparison with serum myoglobin measurements. Computer Methods and
Programs in Biomedicine 1997;52(2):93–103.

[100] Kononenko I. Machine learning for medical diagnosis: history, state of the art and
perspective. Artificial Intelligence in medicine 2001;23(1):89–109.

[101] Jang J-S. Self-learning fuzzy controllers based on temporal backpropagation. IEEE
Transactions on neural networks 1992;3(5):714–23.

[102] Bodyanskiy Y, Dolotov A. Hybrid systems of computational intelligence evolved
from self-learning spiking neural network. Methods and Instruments of Artificial
Intelligence 2010;17.

M. Fernandes, et al. Artificial Intelligence In Medicine 102 (2020) 101762

21

http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0220
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0225
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0225
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0230
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0230
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0235
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0235
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0240
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0240
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0240
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0245
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0245
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0245
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0250
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0250
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0250
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0255
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0255
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0255
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0255
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0260
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0260
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0260
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0260
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0260
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0265
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0265
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0265
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0270
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0270
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0270
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0275
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0275
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0275
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0275
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0280
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0280
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0280
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0285
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0285
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0285
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0285
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0290
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0290
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0290
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0290
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0295
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0295
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0295
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0300
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0300
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0300
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0300
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0300
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0305
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0305
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0305
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0310
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0310
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0310
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0315
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0315
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0315
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0320
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0320
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0320
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0325
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0325
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0325
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0330
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0330
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0330
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0335
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0335
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0335
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0340
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0340
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0345
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0345
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0350
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0350
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0350
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0355
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0355
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0355
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0360
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0360
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0360
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0360
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0360
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0365
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0365
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0370
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0370
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0375
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0375
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0380
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0380
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0385
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0385
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0385
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0390
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0390
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0395
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0395
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0395
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0400
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0405
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0410
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0410
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0415
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0415
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0415
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0420
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0420
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0420
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0425
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0425
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0425
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0425
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0430
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0430
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0435
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0435
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0440
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0440
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0445
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0445
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0445
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0450
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0450
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0450
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0450
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0455
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0455
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0455
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0460
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0460
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0460
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0460
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0465
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0465
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0465
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0465
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0470
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0470
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0475
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0475
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0475
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0475
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0480
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0480
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0480
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0480
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0485
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0485
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0485
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0490
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0490
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0490
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0495
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0495
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0495
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0495
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0495
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0500
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0500
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0505
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0505
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0510
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0510
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0510


[103] Lin W-T, Wang S-T, Chiang T-C, Shi Y-X, Chen W-Y, Chen H-M. Abnormal diag-
nosis of Emergency Department triage explored with data mining technology: An
Emergency Department at a Medical center in Taiwan taken as an example. Expert
Systems with Applications 2010;37(4):2733–41.

[104] Yang C-C, Lin W, Chen H, Shi Y. Improving scheduling of emergency physicians
using data mining analysis. Expert Systems with Applications
2009;36(2):3378–87.

[105] Li H, Wang M, Zhou X, Zhao J. An interval set model for learning rules from
incomplete information table. International Journal of Approximate Reasoning
2012;53(1):24–37.

[106] Breiman L. Random forests. Machine learning 2001;45(1):5–32.
[107] Azeez D, Gan K, Ali M, Ismail M. Secondary triage classification using an ensemble

random forest technique. Technology and Health Care 2015;23(4):419–28.
[108] Levin S, Toerper M, Hamrock E, Hinson JS, Barnes S, Gardner H, Dugas A, Linton

B, Kirsch T, Kelen G. Machine-learning-based electronic triage more accurately
differentiates patients with respect to clinical outcomes compared with the
emergency severity index. Annals of Emergency Medicine 2017.

[109] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data
mining, inference, and prediction. springer series in statistics. 2009.

[110] Friedman JH. Greedy function approximation: a gradient boosting machine.
Annals of statistics 2001:1189–232.

[111] Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Proceedings of the
22nd ACM SIGKDD international conference on knowledge discovery and data
mining 2016:785–94.

[112] Casalino E, Wargon M, Peroziello A, Choquet C, Leroy C, Beaune S, Pereira L,
Bernard J, Buzzi J-C. Predictive factors for longer length of stay in an emergency
department: a prospective multicentre study evaluating the impact of age, patient's
clinical acuity and complexity, and care pathways. Emerg Med J
2014;31(5):361–8.

[113] Handly N, Thompson D, Venkat A. Derivation and validation of a hospital ad-
mission prediction model adding coded chief complaint to demographic, emer-
gency department operational and patient acuity data available at emergency
department triage using neural net methodology. Annals of Emergency Medicine
2013;62(4):S138.

[114] Hendin A, Eagles D, Myers V, Stiell IG. Characteristics and outcomes of older
emergency department patients assigned a low acuity triage score. Canadian
Journal of Emergency Medicine 2018;20(5):762–9.

[115] Ding R, McCarthy ML, Lee J, Desmond JS, Zeger SL, Aronsky D. Predicting
emergency department length of stay using quantile regression. 2009 International
Conference on Management and Service Science 2009:1–4.

[116] Ang E, Kwasnick S, Bayati M, Plambeck EL, Aratow M. Accurate emergency de-
partment wait time prediction. Manufacturing & Service Operations Management
2015;18(1):141–56.

[117] Sun Y, Teow KL, Heng BH, Ooi CK, Tay SY. Real-time prediction of waiting time in
the emergency department, using quantile regression. Annals of emergency
medicine 2012;60(3):299–308.

[118] Aziz D, Ali MM, Gan K, Saiboon I. Initialization of adaptive neuro-fuzzy inference
system using fuzzy clustering in predicting primary triage category. Intelligent and
Advanced Systems (ICIAS), 2012 4th International Conference on, Vol. 1
2012:170–4.

[119] Fields EB, Okudan GE, Ashour OM. Rank aggregation methods comparison: A case
for triage prioritization. Expert Systems with Applications 2013;40(4):1305–11.

[120] Georgopoulos VC, Stylios CD. Fuzzy cognitive map decision support system for
successful triage to reduce unnecessary emergency room admissions for the el-
derly. Fuzziness and Medicine: Philosophical Reflections and Application Systems
in Health Care 2013:415–36.

[121] Lin W, Wu Y, Zheng J, Chen M. Analysis by data mining in the emergency med-
icine triage database at a Taiwanese regional hospital. Expert Systems with
Applications 2011;38(9):11078–84.

[122] Georgopoulos VC, Stylios CD. Supervisory Fuzzy Cognitive Map Structure for
Triage Assessment and Decision Support in the Emergency Department.
Simulation and Modeling Methodologies, Technologies and Applications
2015:255–69.

[123] Georgopoulos VC, Stylios CD. Fuzzy cognitive maps for decision making in triage
of non-critical elderly patients. 2017 International Conference on Intelligent
Informatics and Biomedical Sciences (ICIIBMS) 2017:225–8.

[124] Georgopoulos VC, Stylios CD. Introducing fuzzy cognitive maps for developing
decision support system for triage at emergency room admissions for the elderly.
IFAC Proceedings Volumes 2012;45(18):484–9.

[125] Wang Y-M, Parkan C. A minimax disparity approach for obtaining OWA operator
weights. Information Sciences 2005;175(1):20–9.

[126] Wang Y-M, Luo Y, Hua Z. Aggregating preference rankings using OWA operator
weights. Information Sciences 2007;177(16):3356–63.

M. Fernandes, et al. Artificial Intelligence In Medicine 102 (2020) 101762

22

http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0515
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0515
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0515
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0515
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0520
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0520
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0520
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0525
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0525
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0525
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0530
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0535
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0535
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0540
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0540
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0540
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0540
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0545
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0545
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0550
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0550
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0555
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0555
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0555
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0560
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0560
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0560
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0560
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0560
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0565
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0565
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0565
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0565
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0565
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0570
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0570
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0570
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0575
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0575
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0575
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0580
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0580
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0580
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0585
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0585
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0585
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0590
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0590
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0590
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0590
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0595
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0595
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0600
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0600
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0600
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0600
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0605
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0605
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0605
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0610
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0610
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0610
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0610
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0615
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0615
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0615
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0620
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0620
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0620
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0625
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0625
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0630
http://refhub.elsevier.com/S0933-3657(19)30126-5/sbref0630

	Clinical Decision Support Systems for Triage in the Emergency Department using Intelligent Systems: a Review
	Introduction
	Methods
	Search strategy
	Search method
	Search terms

	Inclusion and exclusion criteria
	Data analysis

	Results
	Main findings of the review search
	Prediction algorithms
	Logistic regression
	Support vector machines
	Naïve Bayes classifier
	Fuzzy logic classifier
	Artificial neural networks
	Decision tree learning

	Modeling performance assessment

	Discussion
	Main contributions of the selected papers
	Limitations and future work
	Availability of data
	Geography
	Subjectivity of the system
	Methodologies and modelling techniques
	Validation


	Conclusions
	Conflicts of interest statement
	Acknowledgements
	Annexes
	References




