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a b s t r a c t

This paper presents an Exchange Market Algorithm (stocktickerEMA) method for solving the Economic
Emission Dispatch (EED) problem including wind farms in the power systems. The stocktickerEMA
algorithm is a powerful and useful method for finding the optimal value of an optimization problem
with high accuracy. In recent years, because of the emission of harmful gases from fossil fuels and
global warming issues, the penetration level of cleaner energies such as the wind and solar energy
has been increased in order to produce the desired electrical energy. Therefore, it is vital to consider
the wind turbines and wind farms in the EED optimization problem. Due to the probabilistic nature
of wind speed in wind turbines, the generated power by wind turbines and wind farms has uncertain
nature. Hence, the Weibull probability distribution function is used to model the wind power in the
EED problem. The proposed method is tested on the IEEE 40-units test system. The analysis shows that,
compared to other algorithms the EMA method has faster convergence and better ability in finding
the optimal solution for the EED problem.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Economic dispatch (ED) problem is very important for the
economical operation of power systems. The purpose of the ED
problem is to determine the optimal output values for the gener-
ation units to fulfill the load demand and other constraints of a
power system, as well as minimizing the cost of electrical energy
produced [1]. In the recent years the diffusion of harmful gases
such as sulfur oxides (SOX ) and nitrogen oxides (NOX ), which
pollutes the atmosphere and exacerbates the global warming
situation, has become a critical issue. The main source of these
greenhouse gases are the thermal units. One way to limit the
emission of these gasses is to impose stricter policies on the
thermal units. To apply the new regulations and tax issues for ex-
cessive generated greenhouse gases, a combination of economic
dispatch and constraints on emission has been introduced which
is known as Economic Emission Dispatch (EED) problem. In the
EED optimization problem, in addition to minimizing the cost
of energy, minimization of the amount of emission has been
considered as well [2]. EED is an optimization problem with the
following two main goals [3]:

(1) Minimizing the fuel cost of thermal units.
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(2) Minimizing the emission of harmful gases into the air.
As mentioned above, the objective function of the EED prob-

lem has two main parts where the emission criteria is added to
the fuel cost of the thermal unit. In order to integrate the emission
part to the ED problem, different methods are introduced, for
example, Dhillon et al. [4] and Kulkarni et al. [5] presented a
method in which a penalty factor coefficient is multiplied to the
emission part of the objective function. This technique allows
both components to become commensurately involved in the
optimization. Zou et al. [6] implemented a new global particle
swarm optimization (NGPSO) algorithm to find the minimum cost
of economic emission problem. The authors normalized each ob-
jective of the problem according to their candidate solutions and
then the problem is transformed into a single objective problem.

Numerous methods are proposed in the literature to solve the
EED optimization problem. Dosoglu et al. [7], solved the issue of
EED in term of thermal generators, used a symbiotic organisms
search (SOS) algorithm in order to minimize operating costs and
emission levels and satisfy the load demand and all equality–
inequality constraints. Devi et al. [8] and Hamedi et al. [9] solved
the EED problem by the combination of evolutionary and intel-
ligent algorithms. Aydin et al. [10] optimized the EED problem
with the bee colony method. System security constraints are
taken into account in [11] to solve the EED problem in which the
multi-population ant colony has been applied.
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Abdelaziz et al. [12], implemented flower pollination algo-
rithm (FPA) to solve the EED problem. A more realistic approach
has been put forth by Naderi et al. [13] tackling EED with a hybrid
optimization method. Singh et al. [14] utilized a novel method –
adaptive predator–prey optimization (APPO) – for solving thermal
power load dispatch in a multiobjective form considering the
emission. Increase in the penetration level of wind farms in
power systems, has attracted a great attention to solving the EED
problem including wind farms [15].

Qu et al. [16] proposed a summation based multi-objective
differential evolution (SMODE) algorithm to find the optimum
point of the economic emission dispatch problem with stochas-
tic wind power. The Weibull probability distribution function is
used to model the stochastic nature of the wind power and the
uncertainty is preserved as the system constraints with stochastic
variables. The algorithm is combined with the advantage of fea-
sible solution constraint handling technique. The author in [17]
presented a dynamic economic emission dispatch (DEED) model
in order to consider the uncertainty of wind energy alongside the
effect of energy storage systems and demand-side management
on cost and emission. Jadha et al. [18] solved the EED optimiza-
tion problem taking into account both thermal power plants and
wind farms by craziness-based differential evolution algorithm
and some characteristics of thermal plants such as valve point
effect and generated power limitations. Hu et al. [19] handled
DEED problem by defining bi-level programming in which the
leader level deals with minimizing fuel cost and emission simul-
taneously and minimization of output power deduction periods
are assigned to the follower level. Linear programming and intel-
ligence base algorithm are used in this paper. Jadhav et al. [20]
stimulated the effects of wind power in EED problem and used
the Gbest guided artificial bee colony algorithm for simulation.
Liu et al. [21] solved the EED problem including the environmen-
tal constraints and different wind farms. The objective function
is optimized by stochastic methods. Zhan et al. [22] analyzed the
EED problem considering high penetration of wind farms in the
test power system and the results show that the EED problem
has probabilistic nature when the wind farms are added into the
power system. Wang et al. [23] and Hetzer et al. [24] compared
the power systems consisting of wind farms with the conven-
tional power systems and the characteristics of wind farms are
discussed in these papers. Shaw et al. [25] solved the EED prob-
lem along with wind farms by hybrid based PSO methods. Jiang
et al. [26] proposed a gravitational acceleration enhanced particle
swarm optimization algorithm (GAEPSO) to find the optimum
fuel cost, emission level in wind–thermal economic emission
dispatch (WTEED) problem. Roy et al. [27] presented a chemical
reaction optimization algorithm, based on the chemical molecu-
lar reaction to optimize economic dispatch problem in presence
of wind turbine. Ghasemi et al. [28] focused on modeling the
wind-based energy production in economic dispatch problem
introducing an online meta-heuristic learning method. Kheshti
and Ding in [29] introduced a revolutionized PSO method namely
double weighted PSO (DWPSO) to solve an EED problem with
penetration of wind energy sources. Furthermore, a secure EED
problem has been discussed in [30] solved by a novel parallel
hurricane optimization algorithm.

Ghorbani et al. [31] presented a new meta-heuristic algorithm
called Exchange Market Algorithm (EMA). The EMA algorithm
which is introduced in 2014 is based on the stock exchange trad-
ing method in the stock market. The EMA intelligent algorithm
has some advantages such as faster convergence and yielding
better optimal values over other algorithms like PSO, Bee colony
and Ant colony. Ghorbani et al. [32] solved the economic dispatch
problem by EMA method and the results show that the EMA
method is able to find the best and convex response for this
problem successfully.

In this paper, the solution to EED problem with the EMA
method including wind farms is considered. It is obvious that the
wind speed bares a stochastic nature. As a result, the generated
power by wind turbines and wind farms add uncertainty to power
system studies. Therefore, in this paper, the EED optimization
problem has probabilistic nature, too. The main contribution of
this work is the fast convergence and superiority of EMA com-
pared to other algorithms in finding the optimum solution of the
economic emission dispatch including wind power penetration
problem.

2. Characterization of wind energy

In the EED problem with wind energy, the optimization pro-
cess constitutes dispatching the generation power between fossil
fuel power plants and wind farms in addition to satisfying the
system constraints. As a result of the random nature of wind
speed, the generated power by a wind turbine is variable in
different wind speeds, which are expressed as follows [26]:

w = 0 for v < vi and v > vo (1)

w = wr
(v − vi)
(vr − vi)

for vi ≤ v ≤ vr (2)

w = wr for vr ≤ v ≤ vo (3)

where v is the current wind speed in (m/s), vi, vo and vr are cut-in,
cut-out and rated wind speed, respectively, w is the output power
of turbine (MW) and wr is the rated power of the turbine.

Eqs. (1), (2), and (3) illustrate that: (1) the power produced
by a wind turbine is set to zero if the wind velocity is out of the
turbine’s speed limits; (2) at the range of cut-in wind speed and
rated wind speed a linear formulation can be defined between
output power and wind speed; (3) power output is equal to rated
power output between rated wind speed and cut-out wind speed.

In order to use wind turbine in economic dispatch problem
and due to a stochastic characteristic of wind energy, the Weibull
probability and cumulative distribution functions are used for
modeling the wind speed which are expressed as follows [26]:

FV (v) = 1 − exp
[
−

(v

c

)k
]

, [v ≥ 0] (4)

fV (v) =
k
c

(v

c

)k−1
exp

[
−

(v

c

)k
]

(5)

Eq. (4) is the cumulative distribution function (CDF) and Eq. (5) is
the probability distribution function (PDF) where v is wind speed
in (m/s), k is shape factor at a given location (dimensionless) and
c is scale factor at a given location (m/s).

By using Eqs. (1), (3), and (4), the probability of scenario w = 0
and w = wr are expressed as follows [26]:

Pr{w = 0} = FV (vi)+(1−FV (vo)) = 1−exp(−(
vi

c
)k)+exp(−(

vo

c
)k)

(6)

Pr{w = wr} = FV (vo) − FV (vr ) = exp(−(
vr

c
)k) − exp(−(

vo

c
)k) (7)

where vi, vo and vr are cut-in, cut-out and rated wind speed,
respectively and FV is the cumulative distribution function. Pa-
rameter k is the shape factor at a given location.
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In order to modify the two random variables of wind speed
and wind turbine output power in continues span two ratios are
used as following [26]:

ρ =
w
wr

This ratio presents wind power output to rated wind

power ratio; and
l =

(vr−vi)
vi

This ratio presents a linear range of wind speed to
cut-in wind speed ratio.

The Weibull PDF of the wind turbine power output random
variable in the continuous range takes from [26]:

fw(w) =
klvi

wrc
(
(1 + ρl)vi

c
)k−1 exp(−(

(1 + ρl)vi

c
)k) 0 < w < wr

(8)

3. Problem formulation

This section provides the formulation of the EED problem
delineating the objective function and the constraints enforced
by the power system such as transmission losses, power balance
and limitations on power generated by thermal and wind source
power plants.

3.1. Objective function

The objective function implemented in this paper is as fol-
low [27]:
Minimize

FCtotal = (
Nw∑
j=1

Cov,j(Wov)) + (
Nw∑
j=1

Cun,j(Wun)) + (
Nw∑
j=1

Cdir,j(Wj))

+ (
Nt∑
i=1

Cth,i(Pg,i)) + (
Nt∑
i=1

Cemi,i(Pg,i)) (9)

where Nt and Nw are the number of thermal units and number
of wind turbines, respectively; Cov,j, Cun,j and Cdir,j are the overes-
timation, underestimation and direct costs of jth wind turbine,
respectively; Cth,i and Cemi,i are the fuel and emission costs of
thermal units, respectively.

In Eq. (9), the first part shows the overestimation penalty
cost. It means that the operator purchases the additional power
when the scheduled wind power is more than the actual power
and pays the overestimation penalty cost function, which is as
follows [26]:

Cov,j (Wov) = cov,j × [wj × [1 − exp(−(
vi,j

cj
)kj ) + exp(−(

vo,j

cj
)kj )]

+(
wr,jvi,j

(vr,j − vi,j)
+ wj)

×[exp(−(
vi,j

cj
)kj ) − exp(−(

v1,j

cj
)kj )] + (

wr,jcj
(vr,j − vi,j)

)

×{Γ [1 + 1/kj, (v1,j/cj)kj ] − Γ [1 + 1/kj, (vi,j/cj)kj ]}]

(10)

where v1,j = vi,j + (vr,j − vi,j)wj/wr,j; wj, wr,j and cov,j are
the output power, rated output power and the overestimation
coefficient of jth wind-powered generator, respectively; Γ (.) is
the incomplete gamma function, which is supported by Matlab
software.

In Eq. (9), the second part shows the underestimation penalty
cost. It means that the operator must be paid the generator’s
cost when the scheduled power is less than the actual wind

power. Underestimation penalty cost function is expressed as
follows [26]:

Cun,j (Wun) = cun,j × [(wr,j − wj) × [exp(−(
vr,j

cj
)kj )

− exp(−(
vo,j

cj
)kj )] + (

wr,jvi,j

(vr,j − vi,j)
+ wj)

×[exp(−(
vr,j

cj
)kj ) − exp(−(

v1,j

cj
)kj )] + (

wr,jcj
(vr,j − vi,j)

)

×{Γ [1 + 1/kj, (v1,j/cj)kj ] − Γ [1 + 1/kj, (vr,j/cj)kj ]}]

(11)

In Eq. (9), the third part shows the direct cost of wind power
which is known as non-utility operator and it is not consid-
ered when the operator owns the wind farm. If wind energy
conversion systems have owners, based on the special contrac-
tual agreements, the wind generation will have a cost which is
expressed as follows [24]:

Cdir,j(wj) = diwj (12)

where di is the direct cost coefficient for the jth wind generator.
In Eq. (9), the fourth part shows the cost function of thermal

units which is expressed as follows [26]:

FC =

Nt∑
i=1

Cth,i(Pg,i) =

Nt∑
i=1

(aiP2
g,i + biPg,i + ci) (13)

With considering valve-point effect at thermal units, the cost
function can be expressed as follows [32]:

FC =

Nt∑
i=1

Cth,i(Pg,i) =

Nt∑
i=1

(aiP2
g,i + biPg,i + ci

+
⏐⏐di sin(ei × (Pmin

g,i − Pg,i))
⏐⏐) (14)

where Pg,i are output power of ith thermal unit and ai, bi, ci are
the coefficients related to the ith unit and di, ei are the coefficients
of generator i reflecting valve-point loading.

In Eq. (9), the last part shows the total carbon emissions
of thermal units. The total emission cost for six-unit system is
expressed as follows [27]:

EC =

Nt∑
i=1

Cemi,i(Pg,i) =

Nt∑
i=1

efi(fi + giPg,i + hiP2
g,i)Ctax (15)

The total emission cost for a 40 unit system is expressed as
follows [26]:

EC =

Nt∑
i=1

(10−2
× (αi + βiPg,i + γiP2

g,i) + ζi exp(λiPg,i)) (16)

where αi, βi, γi, ζi and λi are the pollution coefficients of the ith
thermal unit.

3.2. System constraints

In this paper, system constraints are considered as equality
and inequality constraints.

3.2.1. Equality constraints
The power balance, which is considered in the constraints,

shows that the sum of the generated power by thermal and wind
power plants should be equal to the transmission losses plus load
demand of the power system. The power balance equation is as
follows:
Nw∑
j=1

wj +

Nt∑
i=1

Pg,i = Pdemand + Plosses (17)
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In Eq. (17), Plosses is expressed as follows:

Plosses =

Nt∑
i=1

Nt∑
j=1

Pg,iBijPg,j +

Nt∑
i=1

Bi0Pg,j + B00 (18)

In Eq. (18), Bij, Bi0 and B00 are elements of matrix B.

3.2.2. Non equality constraints
The non-equality constraints indicate the minimum and max-

imum of generated power by thermal and wind power plants as
follows:

Pmin
g,i ≤ Pg,i ≤ Pmax

g,i i = 1, 2, . . . ,Nt (19)

0 ≤ wj ≤ wr,j j = 1, 2, . . . ,Nw (20)

In Eq. (20), the wr,j is the rated power of the jth wind turbine and
the minimum generated power by a wind turbine is zero.

4. Exchange market algorithm (EMA)

The Exchange Market Algorithm (EMA) is based on the per-
formance of shareholders in the stock market. In each running of
this algorithm for solving the optimization problem, two different
forms of the market are considered, which are called balanced
and unbalanced conditions of the market. In a balanced condition,
the oscillation of the market is not considerable and shareholders
use elite member’s experiences to gain more profit (searching
around optimum point). In the unbalanced mode, the market
faces different oscillations and members take risks to achieve
more profit (finding out the unknown points). At the end of each
market condition, the traders in the stock market are divided into
three groups based on their finance which are called group one,
two and three. Because of having two explorer and absorptive
operators in each market condition, the EMA algorithm has faster
Convergence than other algorithms. When the market condition
is in a balanced position the EMA algorithm uses the absorptive
operators and when the market condition is in an unbalanced
position this algorithm uses the explorer operators to find the
optimal value.

4.1. The operation of EMA algorithm in the balanced market

This section introduces the performance of shareholders in
the different mentioned groups in the balanced market condition.
Because of having the maximum finance and rank market, the
members of the first group, do not have any tendency to change
their amounts of shares. The members in the first group are 10
to 30% of the population in the market. Since the members in the
second group have the lower finance and rank market than the
members of the first group and bear the least risk, they change
in their amounts of shares. The members in the second group
are 20 to 50% of the population in the market. In this group,
the shareholders change their amounts of shares based on the
difference between the shares of the members in the first group.
Changing in the shares of the second group members is expressed
as follows [31]:

popgroup(2)j = r × popgroup(1)1,i + (1 − r) × popgroup(1)2,i

i = 1, 2, . . . , ni and j = 1, 2, . . . , nj (21)

where ni is the nth person of the first group and nj is the nth
person of the second group. Parameters r, popgroup(1)1,i and popgroup(1)2,i
are the random number within [0 1] and the members of the first
group and popgroup(2)j is the jth member of the second group.

Fig. 1. Flowchart of EMA method.

In addition, the members in the third group have the lowest
finance and rank market than other groups and like the second
group they change their amounts of shares based on the differ-
ence between the shares of the members in the first group to
achieve the maximum profit but they are faced with higher risks
than the second group members. The members in the third group
are 20 to 50% of the population in the market. Change in the
shares of the third group members is expressed as follows [31]:

Sk = 2 × r1 ×

(
popgroup(1)i,1 − popgroup(3)k

)
+ 2 × r2 ×

(
popgroup(1)i,2 − popgroup(3)k

)
(22)

popgroup(3),newk = popgroup(3)k + 0.8 × Sk k = 1, 2, . . . , nk (23)



M.T. Hagh, S.M.S. Kalajahi and N. Ghorbani / Applied Soft Computing Journal 88 (2020) 106044 5

Table 1
Data for 40 thermal units test system with valve-point effect.
Unit Pi,min (MW) Pi,max (MW) ai ($/MW2) bi ($/MW) ci ($) di ($) ei (1/MW)

1 36 114 94.705 6.73 0.0069 100 0.084
2 36 114 94.705 6.73 0.0069 100 0.084
3 60 120 309.54 7.07 0.02028 100 0.084
4 80 190 369.03 8.18 0.00942 150 0.063
5 47 97 148.89 5.35 0.0114 120 0.077
6 68 140 222.33 8.05 0.01142 100 0.084
7 110 300 287.71 8.03 0.00357 200 0.042
8 135 300 391.98 6.99 0.00492 200 0.042
9 135 300 455.76 6.6 0.00573 200 0.042
10 130 300 722.82 12.9 0.00605 200 0.042
11 94 375 635.2 12.9 0.00515 200 0.042
12 94 375 654.69 12.8 0.00569 200 0.042
13 125 500 913.4 12.5 0.00421 300 0.035
14 125 500 1760.4 8.84 0.00752 300 0.035
15 125 500 1728.3 9.15 0.00708 300 0.035
16 125 500 1728.3 9.15 0.00708 300 0.035
17 220 500 647.85 7.97 0.00313 300 0.035
18 220 500 649.69 7.95 0.00313 300 0.035
19 242 550 647.83 7.97 0.00313 300 0.035
20 242 550 647.81 7.97 0.00313 300 0.035
21 254 550 785.96 6.63 0.00298 300 0.035
22 254 550 785.96 6.63 0.00298 300 0.035
23 254 550 794.53 6.66 0.00284 300 0.035
24 254 550 794.53 6.66 0.00284 300 0.035
25 254 550 801.32 7.1 0.00277 300 0.035
26 254 550 801.32 7.1 0.00277 300 0.035
27 10 150 1055.1 3.33 0.52124 120 0.077
28 10 150 1055.1 3.33 0.52124 120 0.077
29 10 150 1055.1 3.33 0.52124 120 0.077
30 47 97 148.89 5.35 0.0114 120 0.077
31 60 190 222.92 6.43 0.0016 150 0.063
32 60 190 222.92 6.43 0.0016 150 0.063
33 60 190 222.92 6.43 0.0016 150 0.063
34 90 200 107.87 8.95 0.0001 200 0.042
35 90 200 116.58 8.62 0.0001 200 0.042
36 90 200 116.58 8.62 0.0001 200 0.042
37 25 110 307.45 5.88 0.0161 80 0.098
38 25 110 307.45 5.88 0.0161 80 0.098
39 25 110 307.45 5.88 0.0161 80 0.098
40 242 550 647.83 7.97 0.00313 300 0.035

Table 2
Parameters of EMA for numerical testing.

Number of pop 100

Risk values g1[max,min] [1 ∗ 10∧
− 1, 5 ∗ 10∧

− 10]
g2[max,min] [5 ∗ 10∧

− 5, 1 ∗ 10∧
− 5]

Balanced mode
Group 1 24%
Group 2 24%
Group 3 52%

Unbalanced mode
Group 1 20%
Group 2 60%
Group 3 20%

where r1 and r2 are random numbers, nk is the nth member of
the third group, popgroup(3)k is the kth member and Sk is the share
variation of the kth member of the third group.

4.2. The operation of EMA algorithm in the unbalanced market

In this section, the performance of the members in the dif-
ferent mentioned groups in the unbalanced market condition is
considered. The members of the first group like the first group
in the balanced market have not any tendency to change their
amounts of shares and they try to keep their rank in the stock
market. In the market process, sometimes the shares of the sec-
ond group members rise and sometimes the shares drop but at
the end the total shares of the members in the second group are
constant. At first, the shares of the members in the second group

rise by the following equation [31]:

∆nt1 = nt1 − δ + (2 × r × µ × η1) (24)

µ =

(
tpop
npop

)
(25)

nt1 =

n∑
y=1

⏐⏐sty⏐⏐ y = 1, 2, 3, . . . , n (26)

η1 = nt1 × g1 (27)

gk
1 = g1,max −

g1,max − g1,min

itermax
× k (28)

where ∆nt1 is the number of shares should be added randomly to
some shares, nt1 is total shares of the tth member. Factors sty and
δ are the shares of the tth member and information of exchange
market, respectively. Parameter r is a random number between
0 and 1, tpop is the number of the tth member and npop is the last
member’s number in the market, µ is a constant number, η1 is
the risk level, g1 is the common market risk. Factors k, itermax are
number of program iteration and maximum number of iteration,
respectively. Parameter g1,max and g1,min indicate the maximum
and minimum values of risk in the market, respectively.

In order to sustain the number of shares constant in this
condition, each person randomly must sell some of his shares.
The following equations show this statement [31]:

∆nt2 = nt2 − δ (29)
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Table 3
Results of using different algorithms for economic dispatch problem with valve point effect on 40
units test system.
Output EMA PSO [12] BBO [33] FPA [12]

Thermal 1 (MW) 108.332 113.116 110.0465 72.4810
Thermal 2 (MW) 112.903 113.010 111.5915 103.0314
Thermal 3 (MW) 110.4308 119.702 97.6007 83.2726
Thermal 4 (MW) 157.698 81.647 179.7095 182.3106
Thermal 5 (MW) 96.4871 95.062 88.3060 76.1669
Thermal 6 (MW) 139.4160 139.209 139.9992 126.1346
Thermal 7 (MW) 290.0277 299.127 259.6313 258.8452
Thermal 8 (MW) 299.0464 287.491 284.7366 297.1636
Thermal 9 (MW) 275.3247 292.316 284.7801 290.8899
Thermal 10 (MW) 130.0000 279.273 130.2484 274.8232
Thermal 11 (MW) 94.00000 169.766 168.8461 356.9806
Thermal 12 (MW) 155.12014 94.344 168.8461 124.4054
Thermal 13 (MW) 125.00000 214.871 214.7038 493.3764
Thermal 14 (MW) 321.23775 304.790 304.5894 344.9029
Thermal 15 (MW) 297.39311 304.563 394.2761 372.3864
Thermal 16 (MW) 481.93555 304.302 394.2409 345.4624
Thermal 17 (MW) 493.87094 489.173 489.2919 422.6378
Thermal 18 (MW) 489.92728 491.336 489.4188 434.4065
Thermal 19 (MW) 511.47443 510.880 511.2997 461.3107
Thermal 20 (MW) 513.00495 511.474 511.3073 434.3828
Thermal 21 (MW) 523.62103 524.814 523.4170 545.2846
Thermal 22 (MW) 525.12629 524.775 523.2795 490.3572
Thermal 23 (MW) 549.41438 525.563 523.3793 506.0639
Thermal 24 (MW) 526.94583 522.712 523.3225 467.3109
Thermal 25 (MW) 543.65718 503.211 523.3661 488.1203
Thermal 26 (MW) 524.61198 524.199 523.4362 486.9019
Thermal 27 (MW) 10.7388 10.082 10.0531 16.8002
Thermal 28 (MW) 10.4742 10.663 10.0113 39.3475
Thermal 29 (MW) 10.8417 10.418 10.0030 23.6359
Thermal 30 (MW) 93.85314 94.244 88.4775 86.3295
Thermal 31 (MW) 179.3785 189.377 189.9983 165.9924
Thermal 32 (MW) 188.87791 189.796 189.9881 174.5707
Thermal 33 (MW) 189.41675 189.813 189.9663 184.0570
Thermal 34 (MW) 162.42366 199.797 164.8054 193.6668
Thermal 35 (MW) 198.03820 199.284 165.1267 191.6152
Thermal 36 (MW) 189.50969 198.165 165.7695 196.1763
Thermal 37 (MW) 109.62129 109.291 109.9059 90.0101
Thermal 38 (MW) 109.28931 109.087 109.9971 37.5421
Thermal 39 (MW) 109.16065 109.909 109.9695 89.4239
Thermal 40 (MW) 543.71235 512.348 511.2794 471.4405
TC($)*10∧5 1.208453 1.22323 1.21426 1.21074

Table 4
Statistical comparison between EMA and different algorithms.
Algorithms Best cost ($) Mean cost ($) Worst cost ($) Time (s)

NPSO-LSR [12] 121664.43 122209.31 122981.59 16.81
DE [12] 121416.29 121422.72 121431.47 NA
CDEMD [12] 121423.4 121526.73 121696.98 44.3
HMAPSO [12] 121586.9 121586.9 121586.9 NA
FAPSO-NM [12] 121418.3 121418.8 121419.8 40
EMA 120845.3 121422.13 121512.4 5.1

where ∆nt2 and nt2 are the share amount that should be de-
creased randomly and total share amount of the tth member,
respectively.

Unlike the second group, in the third group, the total shares
of the members can be changed at the end and the risk is higher
than group two. The change in the shares of the third group
members is expressed by the following equation [31]:

∆nt3 = (4 × rs × µ × η2) (30)

rs = (0.5 − rand) (31)

η2 = nt1 × g2 (32)

gk
2 = g2,max −

g2,max − g2,min

itermax
× k (33)

where ∆nt3 is the amount of share which changes in the shares
of the members in group three. Parameter rs is a random number

between −0.5 and 0.5 and η2 is the risk of each member and g2
is the market variable risk.

5. Application of the EMAmethod for solving the optimization
problem

The EMA method follows the following steps to solve the
problem and finds the best optimal values. Fig. 1, illustrates the
flowchart of the proposed algorithm to find the optimum point
of Wind/Environment/Economic Dispatch (WEED) problem:

(1) Assuming the first values.
(2) Calculating the shareholder’s cost and giving the rank

market for them.
(3) Changes in the shares of the second group members in the

balanced market condition.
(4) Changes in the shares of the third group members in the

balanced market condition.
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Table 5
Emission coefficients of 40 units test system.
Unit αi βi γi ζi λi

1 60 −2.22 0.048 1.31 0.0569
2 60 −2.22 0.048 1.31 0.0569
3 100 −2.36 0.0762 1.31 0.0569
4 120 −3.14 0.054 0.9142 0.0454
5 50 −1.89 0.085 0.9936 0.0406
6 80 −3.08 0.0854 1.31 0.0569
7 100 −3.06 0.0242 0.655 0.02846
8 130 −2.32 0.031 0.655 0.02846
9 150 −2.11 0.0335 0.655 0.02846
10 280 −4.34 0.425 0.655 0.02846
11 220 −4.34 0.0322 0.655 0.02846
12 225 −4.28 0.0338 0.655 0.02846
13 300 −4.18 0.0296 0.5035 0.02075
14 520 −3.34 0.0512 0.5035 0.02075
15 510 −3.55 0.0496 0.5035 0.02075
16 510 −3.55 0.0496 0.5035 0.02075
17 220 −2.68 0.0151 0.5035 0.02075
18 222 −2.66 0.0151 0.5035 0.02075
19 220 −2.68 0.0151 0.5035 0.02075
20 220 −2.68 0.0151 0.5035 0.02075
21 290 −2.22 0.0145 0.5035 0.02075
22 285 −2.22 0.0145 0.5035 0.02075
23 295 −2.26 0.0138 0.5035 0.02075
24 295 −2.26 0.0138 0.5035 0.02075
25 310 −2.42 0.0132 0.5035 0.02075
26 310 −2.42 0.0132 0.5035 0.02075
27 360 −1.11 1.842 0.9936 0.0406
28 360 −1.11 1.842 0.9936 0.0406
29 360 −1.11 1.842 0.9936 0.0406
30 50 −1.89 0.085 0.9936 0.0406
31 80 −2.08 0.0121 0.9142 0.0454
32 80 −2.08 0.0121 0.9142 0.0454
33 80 −2.08 0.0121 0.9142 0.0454
34 150 −2.06 0.0542 0.655 0.02846
35 130 −2.32 0.041 0.655 0.02846
36 150 −2.11 0.0435 0.655 0.02846
37 100 −1.98 0.095 1.42 0.0677
38 100 −1.98 0.095 1.42 0.0677
39 100 −1.98 0.095 1.42 0.0677
40 220 −2.68 0.0151 0.5035 0.02075

(5) Analyzing the shareholders again and giving the rank mar-
ket based on their finance.

(6) Trading in the shares of the second group members in the
unbalanced market.

(7) Trading in the shares of the third group members in the
unbalanced market.

(8) Returning to step two until the completion of the program
is achieved.

6. Numerical results

To determine the efficiency of the EMA method, a test system
with 40 thermal units is used in three cases of study. Table 1
shows the parameters of the test system [32]. In the first case, the
economic dispatch problem solved for 40 thermal units test sys-
tem and the minimum cost of power system operation obtained.
In the second case, emission cost added to the fitness function
(operation cost of thermal units) and the economic emission
dispatch problem solved for this case. In the third case, wind
farms penetration considered and the objective function which is
introduced in Section 3, minimized. The parameters of the EMA
method are mentioned in Table 2 and three cases results are
considered as follows:

Case 1: economic dispatch (ED) problem without contemplating
emission and wind turbine

In this part, to evaluate the superiority of the EMA method,
this method is used to solve the ED problem by considering valve-
point effect. In this case, the total load demand is 10500 MW.

Fig. 2. Frequency of each answer for 100 consecutive runs of EMA.

Fig. 3. Convergence characteristic of EMA for third case.

The results of the optimization are shown in Table 3. As seen in
Table 3, the best answer to the ED problem is 120845 $ which is
obtained by the EMA algorithm. The core goal of using different
methods in economic dispatch is to optimize the cost function
leading to the minimum cost which is achieved by EMA. The total
cost (TC) of EMA is 1478 $, 581 $ and 229 $ less than PSO, BBO and
FPA heuristic methods, respectively. Therefore, utilizing the EMA
method yields a better solution for optimizing the cost function.
Fig. 2 shows the frequency of each answer in the 100 consecutive
runs of the EMA algorithm. In Table 4, the best, worst and mean of
the presented data are compared with the other algorithms. The
results shows the superiority of the EMA algorithm in finding the
best solution.

Case 2: economic emission dispatch problem (EED)
In this case, the problem is solved by considering the emis-

sion’s objective function. Emission coefficient of 40 units test
system are included in Table 5 and the system’s load demand is
10500 MW. The results are shown in Table 6 and indicate that
EMA is able to find the optimum point of the combined economic
emission problem. Total cost (TC) and emission cost (EC) of EMA
is less than GSA, MODE, PDE and FPA, which is an indication of
the strength of EMA in finding global minima of the objective
function.

Case 3: economic emission dispatch with wind turbine
This case represents a multi-objective function considering

wind turbine, emission and fuel costs of thermal units. The emis-
sion cost coefficient of the system is 1.8655 ($/ton) and two wind
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Table 6
Results of second case (economic emission dispatch).
Outputs EMA MODE [12] PDE [12] GSA [34] FPA [12]

Thermal 1 (MW) 113.987 113.5295 112.1549 113.9989 43.405
Thermal 2 (MW) 113.795 114 113.9431 113.9896 113.95
Thermal 3 (MW) 119.687 120 120 119.9995 105.86
Thermal 4 (MW) 163.980 179.8015 180.2647 179.7857 169.65
Thermal 5 (MW) 96.987 96.7716 97 97 96.659
Thermal 6 (MW) 128.354 139.276 140 139.0128 139.02
Thermal 7 (MW) 296.582 300 299.8829 299.9885 273.28
Thermal 8 (MW) 279.141 298.9193 300 300 285.17
Thermal 9 (MW) 292.277 290.7737 289.8915 296.2025 241.96
Thermal 10 (MW) 130.003 130.9025 130.5725 130.3850 131.26
Thermal 11 (MW) 253.529 244.7349 244.1003 245.4775 312.13
Thermal 12 (MW) 224.444 317.8218 318.284 318.2101 362.58
Thermal 13 (MW) 419.527 395.3846 394.7833 394.6257 346.24
Thermal 14 (MW) 419.0212 394.4692 394.2187 395.2016 306.06
Thermal 15 (MW) 424.179 305.8104 305.9616 306.0014 358.78
Thermal 16 (MW) 420.0415 394.8229 394.1321 395.1005 260.68
Thermal 17 (MW) 484.9416 487.9872 489.304 489.2569 415.19
Thermal 18 (MW) 478.645 489.1751 489.6419 488.7598 423.94
Thermal 19 (MW) 455.747 500.5265 499.9835 499.2320 549.12
Thermal 20 (MW) 415.1129 457.0072 455.416 455.2821 496.7
Thermal 21 (MW) 446.878 434.6068 435.2845 433.4520 539.17
Thermal 22 (MW) 451.4312 434.531 433.7311 433.8125 546.46
Thermal 23 (MW) 424.7311 444.6732 446.2496 445.5136 540.06
Thermal 24 (MW) 429.5494 452.0332 451.8828 452.0547 514.5
Thermal 25 (MW) 464.30627 492.7831 493.2259 492.8864 453.46
Thermal 26 (MW) 444.3183 436.3347 434.7492 433.3695 517.31
Thermal 27 (MW) 10.4061 10 11.8064 10.0026 14.881
Thermal 28 (MW) 10.1509 10.3901 10.7536 10.0246 18.79
Thermal 29 (MW) 10.0715 12.3149 10.3053 10.0125 26.611
Thermal 30 (MW) 96.9925 96.905 97 96.9125 59.581
Thermal 31 (MW) 188.0112 189.7727 190 189.9689 183.48
Thermal 32 (MW) 189.9040 174.2324 175.3065 175 183.39
Thermal 33 (MW) 189.8771 190 190 189.0181 189.02
Thermal 34 (MW) 199.994 199.6506 200 200 198.73
Thermal 35 (MW) 199.998 199.8662 200 200 198.77
Thermal 36 (MW) 199.961 200 200 199.9978 182.23
Thermal 37 (MW) 109.827 110 109.9412 109.9969 39.673
Thermal 38 (MW) 109.742 109.9454 109.8823 109.0126 81.596
Thermal 39 (MW) 109.813 108.1786 108.9686 109.4560 42.96
Thermal 40(MW) 484.045 422.0628 421.3778 421.9987 537.17
TC($) ∗10∧5 1.23112 1.2579 1.2573 1.2578 1.23170
EC (ton) ∗10∧5 2.0496 2.1119 2.1177 2.1093 2.0846

turbines are added to the 40 units test system. The parameters
of wind turbines are shown in Table 7. These parameters are
adopted from [26] in order to compare our result with [26]. The
results of the EMA implementation are presented in Table 8. The
results achieved in this case is another indicator of the domi-
nance of the EMA method over other heuristic methods including
PSO and GEAPSO. The value of TC which is reached using EMA
method has the least value in comparison with PSO and GEAPSO.
To determine the quickness of the algorithm, the convergence
characteristic of the EMA algorithm has been displayed in Fig. 3.

Results of case 1, case 2 and case 3 illustrate that EMA has
the superiority compared to studied algorithms in finding the
minimum value of cost functions which is the main contribution
of the paper. However, there are some limitations to this work
such as simplicity of the wind power curve which can be assumed
as a polynomial or exponential power curve which is closer to
reality.

7. Conclusion

This paper presented the solution for the economic emission
dispatch problem including wind farms. Economic emission dis-
patch problem including wind energy is a nonlinear problem
which is difficult to solve with mathematical solutions and for a
large number of generation units, therefore using Meta-heuristic
methods become popular for solving WEED problem. In this pa-
per, the exchange market algorithm (EMA) has been implemented

for solving WEED problem. The EMA algorithm is based on human
intelligence and proved to be a powerful and useful method for
finding the optimal value with high accuracy especially for non-
linear problems with myriad variables. Due to two absorptive and
explorer operators in each market conditions, EMA avoids getting
stuck in the local minima. In order to determine the superiority of
the EMA, the proposed method is tested on 40 thermal units test
system with two wind turbine. The results have shown that the
EMA method is effective in minimizing the problem and presents
better simulation results than other algorithms in the literature.
The EMA presents a faster convergence, it takes less than 200
iterations to find the best answer of WEED problem. In terms
of improvements the future works, the WEED problem can be
examined for a system with higher penetration of wind turbines
and the modeling of the wind power curves can be replaced by a
more realistic nonlinear form. Moreover, the stochastic nature of
demand can be studied for further validating the work.
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Table 7
Parameters of wind turbines.

k C wmin (MW) wmax (MW) Cov,j Cun,j vo (m/s) vi (m/s) vr (m/s) d

W1 2.2 15 10 100 310 100 45 5 15 120
W2 2.2 15 10 100 310 100 45 5 15 150

Table 8
Results of implementation of EMA with wind turbines.
Outputs (MW) EMA PSO [26] GAEPSO [26] Outputs (MW) EMA PSO [26] GAEPSO [26]

Thermal 1 113.9978 114.0000 110.3346 Thermal 24 436.2640 538.0536 436.6102
Thermal 2 114 106.2356 108.0659 Thermal 25 436.3564 545.0089 343.2251
Thermal 3 119.9878 118.2564 122.2268 Thermal 26 436.2608 426.2278 407.8362
Thermal 4 168.0691 182.6634 183.5638 Thermal 27 25.4306 121.2238 100.2835
Thermal 5 96.9998 97.0000 97.0000 Thermal 28 25.2202 126.0343 104.2249
Thermal 6 123.5121 102.1987 121.2663 Thermal 29 25.6125 106.2268 124.9365
Thermal 7 298.6488 134.0531 289.3386 Thermal 30 96.9989 96.0892 67.0836
Thermal 8 295.3222 292.2256 291.0248 Thermal 31 171.2491 172.0086 126.2364
Thermal 9 294.9185 290.1165 268.1832 Thermal 32 171.2214 181.6147 175.2238
Thermal 10 130 133.8941 185.0362 Thermal 33 171.2614 170.1243 168.0834
Thermal 11 297.3430 101.2368 226.5547 Thermal 34 199.9997 191.3843 152.7525
Thermal 12 296.5167 154.7289 300.0362 Thermal 35 199.9974 189.5371 160.3315
Thermal 13 431.0401 308.2166 362.8566 Thermal 36 200 172.0034 176.6257
Thermal 14 420.4353 368.3325 422.0695 Thermal 37 100.14834 97.6206 93.0638
Thermal 15 421.0584 371.2215 452.1836 Thermal 38 100.03489 94.4833 86.1743
Thermal 16 421.1593 381.2681 411.6642 Thermal 39 99.8474 86.0853 104.2263
Thermal 17 437.1676 416.2678 456.0281 Thermal 40 434.6385 462.2264 489.0264
Thermal 18 437.1425 482.9655 426.3377 Wind 1 40.487141 46.0468 53.6275
Thermal 19 435.6283 506.2201 468.9534 Wind 2 31.9771 80.0468 76.0742
Thermal 20 436.129 516.2468 501.5378 Fuel cost($) 144356 142068 146035
Thermal 21 436.1449 502.7719 424.2835 EC(ton) ∗10∧5 1.72595 1.78432 1.72268
Thermal 22 435.6814 435.4741 456.7872 TC($) ∗10∧5 4.66332 4.74934 4.67402
Thermal 23 436.0896 482.1264 369.0365
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