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a b s t r a c t 

We present the implementation of a short-term forecasting system of price movements in exchange mar- 

kets using market depth data and a systematic procedure to enable a fully automated trading system. 

Three types of Deep Learning (DL) Neural Network (NN) methodologies are trained and tested: Deep NN 

Classifier (DNNC), Long Short-Term Memory (LSTM) and Convolutional NN (CNN). Although the LSTM is 

more suitable for multivariate time series analysis from a theoretical point of view, test results indicate 

that the CNN has on average the best predictive power in the case study under analysis, which is the UK 

to Win Horse Racing market during pre-live stage in the world’s most relevant betting exchange. Implica- 

tions from the generalized use of automated trading systems in betting exchange markets are discussed. 

© 2019 Elsevier B.V. All rights reserved. 
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1. Introduction 

The increasing amount of data reveals that the Big Data era is

here to stay and constitutes a new form of strategic behavior and

business interaction. Data is currently considered one of the most

valuable intangible assets in the world. The domain of data analyti-

cal techniques is a key step not only to facilitate the transformation

and growth of firms but also to boost the level of digital literacy.

Goodfellow et al. (2016) recognize that the use of Deep Learning

(DL) constitutes an enabler of disruptive change for businesses due

to its power of association, regression, classification and clustering.

Machine learning incorporates a vast array of algorithmic imple-

mentations, which not all of them can be classified as DL. Indeed,

the later only corresponds to a subset of the former field of re-

search. 

Historically emerging from cognitive and information theo-

ries, DL aims at imitating the learning process of human neu-

rons and creates complex interconnected neuronal structures sim-
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lar to human synapses. Hence, DL consists of the application of

ulti-neuron, multi-layer Neural Networks (NN) to perform learn-

ng tasks such as regression, classification, clustering or encod-

ng/decoding. The ability for a NN to be used in a wide variety of

ata and learn indiscriminately implies that the DL approach can

e applied to a considerable number of case studies rather than

equiring the development of a structure for each new analysis.

arian (2014) recognizes the relevance of DL NN architectures for

he economics field. Proficiency with data mining, data visualiza-

ion tools and artificial intelligence rank as one of the most im-

ortant skills in determining business success, thus, any effort to

ducate stakeholders is clearly advised. 

This study presents a framework for short-term forecasting of

rice movements in exchange markets and, therefore, the main

ore relies on time series forecasting. It is focused on modeling

redictors of future values of a time series based on past obser-

ations. The relationship between past and future observations in

he domain of financial markets is stochastic or non-deterministic,

hich implies that the conditional probability distribution of a ma-

rix of inputs (X) as a function of past observations is generically

iven by: 

 (X t+ d | X t , X t−1 , . . . ) = f (X t , X t−1 , . . . ) 

L NN models have built-in properties that make them suitable for

ultivariate time series analysis. Firstly, in their basis, they are ro-

ust to noise in input data and can support learning and prediction

https://doi.org/10.1016/j.infoecopol.2019.05.002
http://www.ScienceDirect.com
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1 The unit of measure of a price change is designated by tick. 
n the presence of missing values ( Dixon et al., 2015 ). Secondly,

hey do not make strong assumptions about the mapping function

nd learn either linear or non-linear relationships ( Dorffner, 1996 ).

his implies that they add the capability to learn non-linear re-

ationships with arbitrarily defined, though fixed, number of in-

uts and outputs ( Huck, 2009; 2010 ). This is extremely impor-

ant because most real-life events are characterized by complex

elationships. Thirdly, they have generalization power due to the

ecognition of unobserved relationships in data after learning from

 set of inputs. Fourthly, they are not excessively rigid on the

reatment of input data (e.g., forcing the persistence of a certain

istribution). Fifthly, they deal better with heteroskedasticity due

o their ability to learn hidden relationships in data without the

mposition of additional constraints. Finally, in the case of re-

urrent neural networks (RNNs), they learn temporal dependence

rom context. The study of Hochreiter and Schmidhuber (1997) is

he seminal contribution responsible for the introduction of Long

hort-Term Memory (LSTM), which is a particular type of RNN

hat has played a key role in recent DL advances due to its learn-

ng ability in long run dependencies. From a theoretical point of

iew, the LSTM learns adequately long-term dependencies between

ime steps of sequence data and, therefore, it is frequently consid-

red the benchmarking DL NN model for multivariate time series

nalysis ( Fischer and Krauss, 2018 ). 

The DL approach contemplates a meaningful set of application

elds ( Hatcher and Yu, 2018 ). Financial exchange markets have

nly recently been subject to the ability of DL NN models to learn

tochastic data. In general, researchers intend to implement pre-

ictive mechanisms through DL NN architectures in order to rec-

gnize trends and detect anomalous behavior. Ding et al. (2015)

nalyze stock exchange market price predictions through the im-

lementation of a deep NN to learn event embedding and a Con-

olutional NN (CNN) for short-, medium- and long-term analysis.

heir model improves accuracy and profit relatively to baseline

N methods, especially for firms with a lower number of avail-

ble news. Heaton et al. (2016) consider a DL auto-encoding tech-

ique that is based on the principal component analysis (PCA)

or high-dimensionality data reduction, which allows feature ex-

raction. This way, they define a smart index (i.e. a fit approx-

mation of a subset of stocks to a single index). Korczak and

emes (2017) show that, compared to simple NN multilayer per-

eptron (MLP), a CNN in the H2O algorithmic trading framework

ignificantly increases the average rate of return per transaction

n the FOREX exchange market. Hu et al. (2018) consider a Hy-

rid Attention Network (HAN) to predict stock exchange market

rends based on the report of news. Their natural language pro-

essing (NLP) framework internalizes attention to values of tem-

oral news vectors and uses LSTM for sequential modeling predic-

ion. Their training mechanism increases accuracy and outperforms

ompeting methods in simulation. Zhao et al. (2017) ensembles dif-

erent models extracted with a cross validation process (i.e. divi-

ion of the training dataset into multiple subsets) to forecast the

est Texas Intermediate crude oil spot price using stacked auto-

ncoders (SAE). Fischer and Krauss (2018) consider LSTM networks

or predicting price movements for the constituent stocks of the

&P 500. In their case study, LSTM networks have a better pre-

ictive power than memory-free classification networks. They also

eveal returns close to zero after 2009 due to the low exposure of

he trained model to systemic risks. 

The main objective of this study is to implement a short-term

rice movement forecast system in betting exchange markets (i.e.

lassify changes in odds). This type of exchange shares common

rounds with financial exchange markets, namely in terms of raw

ata format and framework interaction, as clarified in Section 2 .

e developed agents that execute trades of bets on the United

ingdom (UK) to Win Horse Racing market of the Betfair betting
xchange. The period of actuation is the 10 min time window be-

ore the start of a race. During this period, the odds (i.e. prices) of

ets are subject to speculation. Our agents try to establish a profit

y buying and selling bets at different prices before the beginning

f a race. Three types of DL NN architectures are trained, tested

nd compared against each other to find the one that discloses the

est price movement prediction: Deep NN Classifier (DNNC), LSTM

nd CNN. 

Two main results are provided. First, after exposing the imple-

entation procedure of the three distinct DL NN architectures, we

onclude that the CNN ensures the highest level of accuracy. This

mplies that, although the LSTM is more suitable for multivariate

ime series analysis from a theoretical point of view, the CNN out-

erforms the LSTM. Therefore, in our case study, the use of models

ith memory cells (e.g., LSTM) can be negligible since the time

eries under analysis change context periodically (i.e. each 10 min

re-race event constitutes a different context). Second, validation

esults show that all DL NN models ensure a positive, though low,

rofit and loss (PL) at the end of a simulation conducted during

0 days. 

The remaining of the article is organized as follows.

ection 2 presents the case study. Section 3 provides an overview

f the different DL NN architectures considered in this study.

ection 4 describes the methodology. Section 5 exposes the

esults. Conclusions are summarized in Section 6 . 

. Case study 

Our goal is to accurately estimate changes in odds to buy and

ell bets and try to guarantee a profit. We focus on the Betfair bet-

ing exchange, which is the largest of its kind in the world, with

he majority of customers based in the UK ( Brown and Yang, 2017 ).

e act on the pre-race market, particularly in the last 10 min of

rading prior to the start of a race. In the majority of modeling

roblems, unexpected external factors can override assumptions in

hich the predictive system relies on. However, under this time

eriod, the market under analysis corresponds to a closed loop sys-

em where only internal market data have the ability to induce

rice fluctuations, so that the predictive power is exclusively de-

endent on market data itself. As such, this study is exclusively

oncerned with purely speculative markets. 

.1. Raw data collection 

Raw data reveal that the 10 min time window before the start

f a race is when the market becomes more active. Fig. 1 exposes

he average value of trading volume, liquidity (i.e. sum of amounts

aiting to be matched at the bid and ask price) and volatility

i.e. number of ticks 1 variation in absolute value per minute) for

he complete sample of observed races, considering all runners in-

olved in a given race. From the 10th minute before each race

tarts until the effective start of each race, the average trading vol-

me increases about 4.2 times, the average liquidity increases ap-

roximately 3.4 times and the average volatility increases about 1.6

imes. Hence, from a dynamic point of view, we observe that all

ariables increase as we approach the beginning of a race. 

Raw data were collected directly from Betfair servers in real

ime at a twice per second rate from the 1st September 2014 to

he 29th August 2016. For the sake of brevity, summary statistics

ith respect to volume, liquidity and volatility at the race level on

 per minute basis during the 10 min time window before the start

f each race are provided in Table A.1 of the Appendix. Globally, we

ecorded a personalized database related to the UK to Win Horse
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Fig. 1. Average trading volume, average liquidity at the bid and ask price, and average number of ticks variation in absolute value per minute. 

Table 1 

Snapshot in time of market depth, raw data frame information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. New information added to the raw dataset and re-training iteration. 
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Racing market characterized by 15 to 30 daily races with 3 to 25

competing horses per race. 

The methodology employed in this study is only applied to

exchanges that provide market depth data, also known as level

II market data 2 To illustrate the format of a market depth view,

Table 1 presents a frame of information stopped in time exempli-

fying a ladder view. The Price column describes the possible prices.

The buy and sell amounts are listed in the Bid and Ask columns.

The Buy and Sell columns represent orders of an agent that are

waiting to be matched. When the buy (i.e. back) and sell (i.e.

lay) orders reach the same price level, there is a matched amount

transaction. The total amount transacted at each price is listed in

the Volume column. The yellow cell shows the last matched price.

All these information are referred throughout the manuscript as

raw data frame (RDF) and reflect that we have collected data at

the horse level with respect to the complete market depth of back

and lay amounts, total matched volume at every different prices,

and last matched price. 

The set of data for the train and test processes is constructed

from the present to the past until the necessary data to train the

DL NN models is reached, as observed in Fig. 2 . In addition, it

also represents the time window defined to re-process data and

maintain the DL NN models up to date. In our framework, DL

NN models are updated with the new information added every

month. 
2 Level II market data provides the additional information needed to trade based 

on changes that occur in the bid and ask sides. Traders observe the amounts that 

are being bid against the amounts that are being ask at different prices since this 

indicates which side is more eager or more powerful, thereby allowing to predict 

the short-term direction of the price. It is important to emphasize that the historical 

data that Betfair provides (in files) do not record market depth. For this reason, 

there is the need to develop a customized capture and store process through the 

Betfair API in real time as performed in this study. 

P  

t

P  

C  

t  

a  

b  

b  
.2. Characteristics of trading at Betfair 

Bettors can bet on (i.e. back) or bet against (i.e. lay) a given

orse, and can also submit both market and limit orders. In the

ontext of this study, a market should be interpreted as a platform

n which people and entities trade fungible items of value at prices

hat reflect supply and demand such that the conceptual model

onsists of a representation of multiple interactions among sev-

ral participants. Prices are quoted in the form of odds. The pric-

ng ladder ranges from 1.01 to 10 0 0. At this stage, it is important

o understand how trade works. The goal of an agent is to secure

rofit by completing a trade. To complete a trade, two opposing

ets need to be placed. Once they are both matched, the trade is

losed and a profit or a loss is locked. One of the bets corresponds

o a winning bet, while the other corresponds to a losing bet. The

rofit of a back bet is calculated using Eq. (1) and the liability (i.e.

mount in case of a loss) of a back bet is the amount of the bet

tself. 

rofit Back Bet = Amount × ( Price − 1) (1)

he liability of a lay bet is given by Eq. (2) and the profit is the

mount of the bet itself. Basically, the lay bet is the mirror of the

ack bet. 

iability Lay Bet = Amount × ( Price − 1) (2)

L is given by Eq. (3) and it corresponds to the profit obtained with

he winning bet minus the loss obtained with the losing bet: 

 L = Profit of winning bet − Liability of losing bet (3)

onsider the example of a trade where it is unnecessary to know

he end result of an event to secure a given PL: back of £2@2.12

nd lay of £2@2.10. For a bet to be matched, it must become the

est offer in the market and it has to be purchased with a counter

et. When the runner is a winner, the profit (back bet) − loss (lay
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et) is: 

 × (2 . 12 − 1) − 2 × (2 . 10 − 1) = 2 . 24 − 2 . 20 = £0 . 04 

hen the runner is a loser, the profit (lay bet) − loss (back bet)

s: 

 − 2 = £0 

ote that if we have this kind of back/lay bet combination with

he same amount at different prices there will be profit (when the

ack price is higher than the lay price) or loss (when the back

rice is lower than the lay price) as long as the runner in ques-

ion wins the event. Otherwise, if any other runner wins the event

nd the combination of back/lay bets have the same amount, then

he PL will be null. To ensure a given PL amount whatever the fi-

al outcome, this has to be distributed across all runners, a process

esignated by greening or hedging . The amount to close the trade

ust be then recalculated. If a back order is open on the market,

he amount to close the position with the corresponding lay order

s calculated using Eq. (4) : 

lose Amount Lay = 

Price Open in Back 

Price Lay to Close 

× Amount Open in Back (4) 

f a lay order is open on the market, the amount to close the posi-

ion with the corresponded back is calculated using Eq. (5) . 

lose Amount Back = 

Price Open in Lay 

Price Back to Close 

× Amount Open in Lay (5) 

Finally, it is relevant to emphasize that Betfair does not charge

ransaction fees but rather profit fees (i.e. fees applied to the total

rofit obtained by the bettor) at the end of an event. Therefore,

n the context of this study, the spread or transaction cost per bet

xecuted is null, which clearly favors high frequency trading. As

oon as a given bettor reaches some consistent level of earnings,

e/she becomes also subject to premium charges over profits with

 weekly incidence. 

. Applied deep learning architectures 

DL is based on NNs. A NN is a class of algorithms composed

y MP-Units (i.e. neurons) firstly introduced by Mcculloch and

itts (1943) , as clarified in Fig. 3 . 

The computation of a single neuron C is given by: 

(X, θ ) = φ

( 

N ∑ 

n =1 

(w n · x n ) 

) 

(6) 

he parameter θ represents the set of weights { w 1 , . . . , w n } and the

ector X represents the set of inputs. The function φ represents the

ctivation function, w n the weight on connection n , and x n the in-

ut value n in the neuron. Traditionally, activation functions were

aken to be smoothed-out step functions (e.g., sigmoid). A NN is

omposed by several layers with multiple neurons. The goal of a

N is to create a mapping function 

ˆ f that approximates the final
Fig. 3. Single perceptron, unit or neuron architecture. 

d  

(

 

n  
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t

c

s

t

utput to the real target f by minimizing an error function J . In DL,

he backbone process to find the ideal θ is called backpropagation

 Rumelhart et al., 1985 ). The goal of backpropagation is to itera-

ively compute the gradient descent, that is, the partial derivatives

f the error function J ( θ i ) with respect to all weights w (being the

et of all w on iteration i: θ i ) and propagates the error from the

utput layer to the input layer correcting the weights with an op-

imizer rule. The efficient adaptive moment estimation optimizer

Adam) is adopted since it is currently considered the best prac-

ice ( Kingma and Ba, 2014 ). At the output layer, this study deals

ith a time series classification problem. This means that we have

 number of output classes N and the model will assign a proba-

ility for each class n (i.e. strong up, weak up, neutral, weak down,

nd strong down). The error function J considered in this study is

he categorical cross entropy (i.e. logarithmic loss): 

( f, ˆ f ) = −
N ∑ 

n =1 

f n ln ( ̂  f n ) (7) 

t allows to optimize the learning process penalizing wrong

uesses by encapsulating the difference between the network out-

ut probabilities and the true class n , with n = { 1 , . . . , N} and N

he total number of classes to predict. 

The term deep in NNs emerges from the deepness in the num-

er of intermediate layers between the input layer and the output

ayer. Thus, a NN is deep if there are several hidden layers. Deep-

ess may cause the vanishing gradient problem whenever using

ackpropagation in the training process. This is because, at each

earning iteration, each weight receives an update proportional to

he gradient of the error function. The vanishing gradient prob-

em occurs when the error signal that passes backwards starts ap-

roaching zero. Formally, this occurs when the derivative φ′ of the

ctivation function φ is close to zero, especially for saturated neu-

ons. 3 By iteratively throwing the error signal backwards, it be-

omes weaker and, hence, vanishes. Contrary to classical activation

unctions (e.g., ArcTan, sigmoid), the relatively new Rectified Linear

nit (ReLU) activation function: 

= max (0 , x ) (8) 

olves this concern ( Arora et al., 2016 ). ReLU not only alleviates

aturation issues by mitigating the vanishing gradient problem, but

lso forms highly sparse DL NNs, given that the derivative φ′ takes

onstant value 0 for x < 0, while taking value 1 for any positive

alue of the input, thereby inducing a more efficient training and

eliable test results. Since we work with a time series classifica-

ion problem, the output layer with N neurons uses the softmax

ctivation function: 

out (x m 

) = 

exp (x m 

) 
N ∑ 

n =1 

exp (x n ) 

(9) 

here m is a specific output neuron of a class. This activation func-

ion ensures that such a purpose is met since it allows to rep-

esent a probability distribution over the different possible pre-

icted classes such that the sum of all probabilities is equal to 1

 LeCun et al., 2015 ). 

A systematic problem in NNs with multiple layers and many

eurons is overfitting since the network overly memorizes details

f the training set such that it ends up performing poorly on
3 A saturated neuron is a neuron in which nodes have outputs close to the ex- 

reme values of an activation function. Saturation leads to a situation where a 

hange in one input-to-hidden weights during training is unlikely to change the 

um-of-products such that, after activation, the node output will remain at the ex- 

reme values ( LeCun et al., 2012 ). 
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Fig. 4. Illustration of DNNC architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. LSTM hidden state mechanism on the left: i, f and o correspond to the input, 

forget and output gates, respectively. c and ˜ c denote memory cell and memory cell 

update value, respectively. Illustration of LSTM recursive loop on the right. 
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the test set. Regularization refers to methods used to avoid over-

fitting. An important method is the dropout, which was applied

to intermediate layers since it allows to ignore a random subset

of neurons during each training update in order to avoid over-

dependence (see Table 3 in Section 4.3.1 ). Let us explain in detail

the three DL NN architectures considered in this study. 

3.1. Deep Neural Network Classifier 

A DNNC is a type of Feed-Forward Neural Network (FFNN) that

contains intermediate fully connected layers. In a FFNN, the layers

are ordered and each unit of a layer connects to the units of previ-

ous layers. As clarified in Fig. 4 , the DNNC employed in this study

is constituted by an input layer, three intermediate layers using

ReLU activation function, and an output layer using softmax acti-

vation function. The DNNC should be interpreted as a mere bench-

mark relative to the alternative DL NN architectures. 

3.2. Long Short-Term Memory 

RNNs and, in particular, LSTMs are state-of-the-art approaches

for time series forecasting. Their efficiency can be explained by re-

current connections that allow the network to access the history of

previous time series values. This means that a RNN is characterized

by connections that have loops, adding feedback and memory to

the network over sequences which allows to learn and generalize

across sequences of inputs rather than through individual patterns.

LSTM is capable of learning order dependence in sequence predic-

tion problems and solving seamlessly problem settings composed

by multiple time series input variables ( Bengio et al., 1994 ). 

LSTMs contain cycles that recursively feed the network activa-

tions from a previous time step as inputs to the network in order

to influence predictions at the current time step. This mechanism

allows to exploit a dynamically changing environmental window

over the input sequence history ( Sak et al., 2014 ). Moreover, LSTMs

add a cell state to the basic RNN that runs straight down the entire

recursive chain, with only some minor linear interactions in order

to control the information that needs to be remembered. LSTMs

also have the ability to remove or add information to the cell state

by means of structures called gates. The hidden state of a LSTM is

composed by memory cell, input gate, output gate, and forget gate.

The memory cell stores a value or state, for either long or short

time periods. This is achieved by using an activation function for

the memory cell (e.g., sigmoid). The input gate controls the extent

to which a new value flows into the cell. The forget gate controls

the extent to which a value remains in the cell. The output gate

controls the extent to which the value in the cell is used to com-

pute the output activation of the unit. Gates have in and out con-
ections. The respective weights, which need to be learned during

raining, are used to orient the operation of the gates. The under-

ying mechanism is illustrated in Fig. 5 . 

The LSTM network employed in this study is constituted by

wo intermediate layers, a LSTM and a dense. For classification, we

onsider the output layer with a softmax activation function (see

able 3 in Section 4.3.1 ). 

.3. Convolutional Neural Network 

CNNs have gained popularity due to their success in classifica-

ion problems. CNNs, which are traditionally applied to image clas-

ification, use an ad hoc architecture inspired by biological data

aken from physiological experiments done on the visual cortex

 Zeiler and Fergus, 2014 ). 

Convolutional layers are comprised of filters (i.e. kernels or

eight matrices), which are the neurons of the layer, that have

eights and provide an output. The input and output of each layer

re designated by feature maps. Hence, a feature map is the out-

ut of a filter applied to the previous layer. An output is obtained

y sliding a filter over the input and at each point computing the

roduct between the receptive field area of the input and the filter.

he distance of ‘pixels’ traveled by the filter is called stride. Each

osition of the filter results in the activation of the neuron such

hat this structure allows the model to learn filters that are able

o recognize specific patterns in input data. Pooling layers down-

ample the previously generated feature maps. They follow a se-

uence of one or more convolutional layers in order to consolidate

he features learned and expressed in the generated feature map

 LeCun et al., 2012 ). As such, they may be considered a technique

o compress or generalize feature representations and generally re-

uce overfitting in the training set. By normally taking the average

r maximum of the input area, pooling layers mechanically create

eature maps (i.e. not being subject to learning). 

After passing through a sequence of convolutional and pooling

ayers, the resulting feature maps are flatten (i.e. the multidimen-

ional information is flatten into one dimension) and fully con-

ected layers are used, just as in a DNNC, to finalize the classi-

cation process. These fully connected layers are then used to cre-

te final non-linear combinations of features, thereby allowing to

ake classifications. CNNs are suitable to our case study given that

ultivariate time series analysis can be seen as a bi-dimensional

nput likewise an image classification problem. In image recog-

ition, CNNs preserve the spatial relationship between pixels to

earn internal feature representations. Instead of using correlations

etween pixels, CNNs in the context of time series learn pat-

erns considering correlations between indicators and time seg-

ents (see the input of the CNN in Fig. 6 ). Hence, the application

f CNNs to time series forecasting means to learn filters that rep-

esent certain patterns in the time series and use these to forecast

uture values. Despite the imminent advantage in their use, the
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Fig. 6. Illustration of CNN architecture. 
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pplication of CNNs in exchange markets is still scarce. Fig. 6 il-

ustrates the three types of layers (i.e. building blocks) usually ob-

erved in CNNs: convolutional layers, pooling layers and fully con-

ected layers. 

We consider two convolutional layers, one average polling layer,

wo dense layers and an output layer. In the first convolutional

ayer, a 2 × 5 filter size is considered for a 5 × 7 bi-dimensional

nput size. The second convolutional layer considers a 3 × 3 fil-

er size. The pooling layer is used as a simple temporal down-

ampling where each unit takes the average value in a 1 × 2 area

ize. The parameterization considered is systematized in Table 3 . 

. Methodology 

In order to classify price movements, we must identify the type

f market dynamics, define the input indicators and output classes,

nd parameterize the DL NN models. 

.1. Categories: data partition 

The goal of implementing a rule-based decision tree is to cate-

orize the different market dynamics faced by the system. Table 2
Table 2 

Rule-based decision tree. 

Race length Favorite Day period Runners

(1) (2) (3) (4) 

Short Yes Early Few 

Long No Late Medium

Many 
ystematizes the decision tree implemented in this study, which

as advised by experts. Accordingly, the market under analysis is

ategorized based on: 

1. Races with short or long length; 

2. Races with clear favorites; 

3. Early or last races of the day; 

4. Races with low, intermediate or high number of runners; 

5. Pre-live moment: far or near the start of a race; 

6. Trading runner has low, medium or high odds; 

7. Trading runner has low, medium or high volume transacted. 

With regard to the first rule, traders face a higher (lower) risk

n short (long) races if deciding to close a position after the be-

inning of a race, respectively. The second rule is justified by the

act that the price variation on a clear favorite has implications on

he variation of price in all other runners. Models within this cat-

gory (i.e. with this property) incorporate the price evolution of

he clear favorite in their input indicators. The third rule is justi-

ed by a higher number of recreational bets in the last races of

he day since these occur after the end of daily work journeys,

hich affects the market dynamics. The fourth rule is justified by
 Time proximity Price Volume 

(5) (6) (7) 

Far High High 

 Medium Medium Medium 

Near Low Low 
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Table 3 

Parameterization of each DL NN architecture. 

DNNC LSTM CNN 

Input (35) Input (7,5) Input (7,5) 

Layer Size Dropout Layer Size Dropout Layer Size Dropout 

Dense 100 0.4 LSTM 100 0.4 Conv2D 20 [2,5] null 

Dense 50 0.2 Dense 100 0.3 AVGPool [1,2] null 

Dense 20 0.1 Output Dense 5 null Conv2D 40 [3,3] null 

Output Dense 5 null Dense 400 0.5 

Dense 140 0.8 

Output Dense 5 null 

Fig. 7. Market evolution in a 3 RDFs time segment. 
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4 A time segment is a sequence constituted by a number of RDFs. 
the distribution of the total volume transacted across the number

of runners, which also affects the market dynamics. In addition,

in races with many runners the price movement of a particular

runner has low impact on others compared to races with a low

number of runners. In our case study, few defines races with 5 or

fewer horses, medium defines races with 6 to 10 horses, and high

defines races with 11 or more horses. The fifth rule has already

been explained and highlighted in Fig. 1 . Both average trading vol-

ume and average liquidity increase from the 10th minute before

the race starts until the minute before the start of a race, which

clearly affects the market dynamics. The sixth rule defines cate-

gories based on whether odds are low, medium or high in the run-

ner under analysis. Different range odds reflect different dynam-

ics. In this study, low corresponds to odds between 1.01 and 3.50,

medium corresponds to odds between 3.55 and 6.00, and high cor-

responds to odds between 6.20 and 12.00. We neglected runners

whose odds are above 12.00. Finally, the seventh rule is concerned

with the volume matched in the runner under analysis. 

The combination of the properties listed in Table 2 generates a

total of 648 different categories (i.e. tree leaves), which are indexed

to simplify data treatment. However, only 240 categories satisfy

the minimum amount of data required to train the DL NN mod-

els. These correspond to the most frequent market states. 

4.2. Feature engineering 

4.2.1. Definition of inputs and outputs 

Five indicators are selected as inputs of the DL NN models,

namely: 

1. Integral of the price change of the runner in trade; 

2. Integral of the price change of the competitor runner; 

3. Liquidity variation in the ask side; 

4. Liquidity variation in the bid side; 

5. Volume variation and direction; 

The first indicator is measured by the sum of the number of

ticks variation. The second indicator is given by similar unit mea-

sure, although with the proviso that the competitor horse is as-

sumed to be the one whose odd is closest to the price of the run-

ner in trade. However, if there is a clear favorite, then it is con-
idered the competitor of runner in trade since this corresponds to

he runner with most influence on its price. The third (fourth) in-

icator is measured by the variation of lay (back) amounts waiting

o be matched, respectively. 

Finally, the fifth indicator is the volume variation and direction,

hich is representative of the amount of money that has been

atched during a time segment. If limit orders on the ask side

re absorbed, then the volume variation is positive, while being

egative otherwise. In order to provide a higher clarity on how

ach indicator evolves over time, consider the following discrete

ime market dynamics for a 3 RDFs time segment 4 exemplified

n Fig. 7 . 

One can observe that the last matched price is 4.6 in frame 3

i.e. at time t − 2 ). Suppose that runner x is gaining favoritism such

hat there is a tendency in the market to pull the odd down. As

ong as back market orders enter the market, the price falls. The

ast matched price becomes 4.5 in frame 2 (i.e. at time t − 1 ) and

hen 4.4 in frame 1 (i.e. at time t ). As shown in Fig. 8 , this market

ynamics has a direct impact on each selected indicator. 

From time t − 2 to time t , we observe that: 

1. The odd ranged 2 ticks down in 2 time steps, hence, the inte-

gral of ticks is equal to −6 in the runner in trade; 

2. Mutatis mutandis, the graphical representation of the ladder as-

sociated with the competitor runner is omitted given that the

intuition is qualitatively similar to that of indicator 1; 

3. The variation of back amounts is equal to +190 ; 

4. The variation of lay amounts is equal to −20 due to the inclu-

sion of the back amount of 10 canceled out at 4.3; 

5. The volume variation is given by the £8 from time t − 2 to time

t − 1 plus the £2 from time t − 1 to time t . The volume direc-

tion is negative because the last matched price decreased. 

This simple illustration allows to observe how the 3 RDFs time

egment is compressed into a single value for each indicator. 

In our case study, these 5 indicators were used, each one com-

osed by 7 compressed time segments and, thus, the total num-

er of inputs used to train and test the DL NN models is equal to
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Fig. 8. Impact of the market dynamics on each selected indicator. Note: At frame 1 in Fig. 7 the lay amount of 10 at 4.3 disappears not due to the matching process, but 

because it was canceled out given that the volume information did not change. 

Fig. 9. Time series sampling for a given indicator. 

Fig. 10. Example of one input variable histogram re-scaling with truncated tails at 10% level to find min–max values for input normalization. 
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5 (i.e. 5 × 7). Moreover, the size of the time segments follows a

on-linear process as clarified in Fig. 9 and Table A.2 . Near present

ime segments have smaller sizes compared to past time segments

n order to provide a higher precision of information to the DL NN

odels. 5 

The output or target corresponds to the price variation between

ime t and time t + n RDFs ahead, with n = 90 . As explained in

ubsection 4.2.2 , this variation is converted into classes meaning

hat the case study deals with a classification problem. 
5 In our specific problem, a non-linear time segmentation process means that 

ore relevance is given to the nearest past through the application of an expo- 

ential factor (see Table A.2 in the Appendix). 

c  

r  

o  

a

.2.2. Frequency distribution histograms 

The input values of the DL NN models are normalized and

utliers can substantially affect the ability of DL NN models to

earn properly. One of the characteristics of learning algorithms

s that they tend to smooth out noise. This is good in the sense

hat it allows an effective modeling of noisy systems. However,

eboeck (1994) claims that, if most data are concentrated in a very

mall portion of the input range, then inputs may have little effect

n the resulting model. To solve this problem, outliers are trun-

ated based on the application of frequency analysis and histogram

e-scaling. Fig. 10 illustrates an example of the automatic process

f truncation of outliers. This operation is systematically applied to

ll inputs for each category. 



46 R. Gonçalves, V.M. Ribeiro and F.L. Pereira et al. / Information Economics and Policy 47 (2019) 38–51 

Fig. 11. Histogram for the qualitative classification of the output: strong down (red), weak down (orange), neutral (grey), weak up (light blue) and strong up (dark blue), 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 12. Sample example of 5 indicators with 7 time segments that corresponds to a strong up class. 
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As clarified in Fig. 11 , similar technique is used at the out-

put level to transform the regression problem into a classification

problem. An egalitarian distribution in the number of examples

per qualitative class is defined. The output categories considered

in this study are given as follows. When the numerical solution

falls into the first qualitative class, a strong down price change

is established. When the numerical solution falls into the second

qualitative class, a weak down price change is considered.

When the numerical solution falls into the third qualitative
lass, there is a neutral price change. When the numeri-

al solution falls into the fourth qualitative class, we have a

eak up price change. Finally, a strong up price change oc-

urs when the numerical solution falls into the fifth qualitative

lass. 

In summary, raw data are transformed to ensure that DL NN

odels receive 5 normalized time series indicators with 7 com-

ressed time segments in order to perform classification on this

nput as clarified in Fig. 12 . 
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Fig. 13. Learning and test results in a particular category. 
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.3. Modeling 

The transformed dataset, ready to feed the DL NN models, is

plit into two subsets for the purpose of learning: training and

esting. In this study, 80–20% partition of data between train and

est sets is considered for each category. The training set is used

o adjust the weights of the DL NN models to allow the recogni-

ion of patterns. The test set confirms the actual predictive power

f each trained DL NN model, which means that models are tested

hrough a certain measure of performance (e.g., accuracy) to un-

erstand whether they can generalize to new data. 

.3.1. Training process 

The training process consists of the periodic treatment of all DL

N models for each of the 240 available categories. The maximum

raining degree is defined by the number of iterations, which is set

t 400 epochs. However, we define an Early Stopping (ES) mecha-

ism, which essentially aims at maximizing the level of accuracy in

he test set. If the accuracy does not improve (i.e. either remains

onstant or decreases) in the last 12 epochs, then the ES mecha-

ism automatically stops the training. This test is applied in every

raining epoch. Common properties are applied to all DL NN mod-

ls in every categories in the training phase (i.e. crossentropy error

unction is considered and softmax activation function is applied

o the output layer). Finally, we set a batch size of 64. For each DL

N architecture, a grid search is applied to find the optimal value

f some hyperparameters, namely layers used, size (i.e. number of

eurons in the dense layers under DNNC, number of units under

STM, filters and respective sizes under CNN), and dropout level in

he different layers. Table 3 compiles the parameterization consid-

red for each DL NN architecture. 

A final caveat is worth explaining. With a DNNC, inputs are flat-

en, introduced into the first fully connected dense layer, and their

hape is one-dimensional with 35 features. With the LSTM and

NN as well, inputs have a bi-dimensional shape characterized by

 time segments × 5 indicators. Finally, for each category, the his-

orical training process is stored. 
.3.2. Testing process 

Performance evaluation of the trained DL NN models is devel-

ped through the observation of accuracy and loss metrics. 

Fig. 13 shows an example of the test results in one of the 240

ategories. Accuracy and loss are displayed for each DL NN model.

lthough both are usually presented at the train set level (rep-

esented by blue color) and at the test set level (represented by

range color), more attention should be given to the latter repre-

entation. At this point, it is important to know how to interpret

he above subplots. Three main conclusions should be emphasized

ith respect to the test results. First, the DNNC has the lowest

evel of accuracy. In addition, it corresponds to the DL NN archi-

ecture that takes more time to learn based on the number of pro-

essed epochs, thereby confirming that its adoption is ill-advised

n relation to the remaining alternatives. Second, the LSTM is the

rst DL NN model reaching the ES rule. This is visible by the fact

hat it has the lowest number of processed epochs. As previously

entioned, the ES rule maximizes the level of accuracy in the test

et. If, instead, loss minimization was considered, the LSTM would

each the ES rule earlier, thereby suggesting that this DL NN archi-

ecture may suffer from some degree of overfitting. Third, the CNN

rovides the highest level of accuracy, even though it requires a

uperior number of epochs to reach the steady-state compared to

he LSTM. This result is consistent regardless whether accuracy is

aximized or loss is minimized. 

.4. Validation with models in production 

Depending on the class of price movement predicted by the DL

N models, different trading mechanisms can be activated. In addi-

ion, the parameterization (e.g. stop-loss and target) of the trading

echanisms depends on the category in which the runner belongs

o. 

.4.1. Definition of the trading mechanisms 

The betting strategy consists of trading simultaneously in var-

ous horses for which there is a valid model (see Table 2 ). Based
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Table 4 

Example of trading mechanism parameters for a particular category. 

Class Mean of the ticks variation Target Stop-loss 

Strong Up 6.44794 6 4 

Weak Up 3.51428 4 3 

Weak Down −3.19424 3 2 

Strong Down −6.33173 6 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Test results. 
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6 See https://grid.fe.up.pt/ for details on the grid. Source codes are freely available 

online and can be consulted in this GitHub link: https://github.com/rjpg . 
on the predictions of the DL NN models, a trading mechanism is

activated by horse. 

The trading mechanisms considered in this study are the swing

and trailing stop. Gonçalves et al. (2013) provides the formal treat-

ment and the Java implementation of both trading mechanisms.

We take as a given that, when the DL NN models predict ei-

ther a weak (strong) up or a weak (strong) down price move-

ment, the swing (trailing stop) trading mechanism is activated,

respectively. 

Swing is similar to scalping the market tick by tick, but with

the difference that it can involve more than one tick variation. A

back or lay bet is placed at the current odd and a counter bet is

placed several ticks offset. The stop-loss is normally defined as a

percentage of this offset. Consequently, the swing trading mecha-

nism consists of an algorithm implemented to close a position at

the target odd x + d given some bet placed at the current odd x ,

where d represents the gap between the current and target odds

measured in ticks, with d ∈ Z . If the odd varies in the opposite

direction to the target odd, a stop-loss is activated at the odd x − s,

where s represents the gap between the current and stop-loss odds

measured in ticks, with s ∈ Z . By using a stop-loss, an agent fixes

the value based on the maximum loss he/she is willing to incur. If

the odd drops below this value, the stop-loss turns into a market

order and will be triggered. Once the current odd falls below the

stop-loss odd, the position is closed which prevents any further

losses. 

The difference between the swing trading mechanism and the

trailing stop mechanism is at the level of the stop-loss behavior.

While a stop-loss under the swing trading mechanism has a fixed

value, a stop-loss under the trailing stop trading mechanism au-

tomatically shadows the price movement in the predicted direc-

tion, thus, following the price action only when it moves in the

predicted direction. Consequently, the stop-loss under the trailing

stop trading mechanism self-adjusts. Eventually, the odd will move

in the reverse direction and reaches the updated stop-loss odd. In

our implementation the trailing stop is also parameterized with a

target odd offset, which is larger than the one used in swing. This

way if a large movement occurs we do not have to wait for the

turn of the market to close in the updated stop price. 

We also introduced the parameterization of times at the level

of trading mechanisms. In short, if both trading mechanisms do

not reach the target odd within one minute (defined for this case

study), the position is closed at the market odd. Moreover, in

case of any trading mechanism being executed near the start of a

race, all positions are closed through the forceclose() method 5 s

before the effective start of the race. The choice of target and

stop-loss odds in each category depends on the de-normalization

of the output based on the histogram previously presented in

Fig. 11 . 

The main idea is that this process allows to adjust the parame-

terization of the trading mechanisms (target and stop-loss) accord-

ing to each category. The target odd corresponds to the average of

the maximum tick variation for all examples of the collected data

falling at a given class during the predicting time (see Fig. 9 ). The

stop-loss is defined as 80% of the target odd for swings and 60%

of the target odd for trailing stop. Table 4 presents an example of
he definition of target and stop-loss odds for each class of a given

ategory. 

.4.2. Experiment 

After collecting data, training and testing DL NN models, a sim-

lation of 30 days is conducted. Hence, validation is related to ex-

erimentation. The validation set is composed by data collected 30

ays in advance relatively to the period of training and testing. The

imulation uses trading orders of £3.00. This amount is unable to

nfluence the market trend if used in real interaction with the mar-

et. Trading mechanisms are executed after 60 votes retrieved from

he models into a FIFO buffer. Each vote is generated at a 2 frames

er second (FPS/global RDF update) rate. If winning votes fall into

he strong up or strong down qualitative class, a trailing stop is ex-

cuted. If winning votes fall into the weak up or weak down qual-

tative class, then a swing is executed. 

Finally, modeling is developed in Python 3.5. The DL NN archi-

ectures are trained and tested with Keras on top of TensorFlow.

he training process is based on distributed computing and exe-

uted in the Avalanche FEUP cluster. Each DL NN training process is

llocated to 4 cores. Training the total number of categories takes

pproximately 4 processing days. The DL NN models are validated

n a simulator developed in Java ( Gonçalves et al., 2013 ). 6 To pro-

ide a better intuition, Table 5 presents the log results of one trad-

ng execution. 

. Results 

Let us clarify the test results. Fig. 14 exposes the accuracy by

L NN model in all valid 240 categories. 

We conclude that, on average, the CNN performs better

han the alternative DL NN models since it holds the highest

ean ( ̃  A CNN = 0 . 54 , ˜ A LST M 

= 0 . 52 and 

˜ A DNNC = 0 . 49 ). Nevertheless,

ig. 14 shows that there are categories in which the LSTM out-

erforms the CNN. Indeed, the LSTM has the greatest level of

tandard deviation in accuracy ( σLST M 

= 0 . 0729 , σCNN = 0 . 0725 and

DNNC = 0 . 0618 ). The large range observed in all DL NN models is

xplained by the disparity of the training dataset size among the

arious categories. 

Let us now clarify the validation results. For this purpose, we

gnore all categories by each DL NN model whose accuracy is lower

han 50%. Fig. 15 exposes the cumulative PL obtained with each DL

https://grid.fe.up.pt/
https://github.com/rjpg
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Table 5 

Example of one trading execution log given the category parameters and the model prediction. 

Runner category LongLenght/nofavorite/endingDay/mediumRunners/nearFromBegining/midleOdd/mediumLiquidity (id:41) 

Model predicted probabilities [0.14, 0.21, 0.17, 0.22, 0.26 ] (1 vote) 

Predicted class 5 th class: Strong Up (most voted after 60 votes) 

Bets/trade direction Up: Lay (open) - > Back (close) 

Trading mechanism Trailing Stop (strong movement predicted) 

Parameters (in ticks) Stop-loss: 4, Target: 6 

Parameters (in odds) Entry odd: 4.6, Target odd: 5.2, Stop odd: 4.2 

Time parameters 20 frames to open, 80 frames to close 

Open amount stake £3.00 (Lay) 

Potential PL Profit: £0.35, Loss: −£0 . 28 

Trade final state CLOSED 

Moved ticks 6 

Close amount stake £2.65 (Back) 

Effective PL £0.35 

Effective close odd 5.2 

Fig. 15. Validation results. 

Table 6 

Global trading simulation results. 

LSTM CNN DNNC 

Trades 912 1057 1112 

Greens 383 455 467 

Reaches target 146 145 140 

Closes ]null; target[ 237 310 327 

Reds 374 423 461 

Reaches stop-loss 236 254 258 

Breaks stop-loss 63 80 83 

Closes ]null; stop-loss[ 75 89 120 

Null 155 179 184 

Positive ticks 1057 1200 1221 

Negative ticks 1036 1171 1217 
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7 Note that the stop-loss corresponds to 80% or 60% of the target depending on 

the instantiated trading mechanism (see Section 4.4.1 ). 
8 Intuitively, one could say that the capture of strong movement patterns would 

be more easily detected by the DL NN models. However, we have tried to execute 

trades only on strong movement predictions (i.e. trailing stops) based on the CNN 

and found that both strong and weak predictions contribute with a positive, though 

marginal, profit. 
N model. All reveal a positive PL at the end of the 30th day of

imulation. In particular, the DNNC, LSTM and CNN ensure £0.26,

0.51 and £1.35, respectively. 

There are four ways to complete a trade, which justify the vali-

ation results. First, the trade does not end up being executed be-

ause we have an open waiting time of 20 frames and the open

et is not corresponded during this time since we trade at the

est price with a limit order (i.e. the position is not open with

 market order). Second, after the position is open, everything oc-

urs nicely and the position is closed at the target. Third, the mar-

et goes against the prediction and the position is closed at the

top-loss. Fourth, we have a close waiting time of 80 frames to

lose the position by reaching either the target or the stop-loss. If

his time expires, then the position is closed at the current market

rice which may imply either a profit or a loss. Table 6 summarizes

he number of executed trades, greens, reds, positive and negative

icks for each DL NN model. The number of trades is the number

f times one trading mechanism is instantiated. This value is not
qual across the DL NN models given that no trading mechanism

s instantiated when the predicted class is the neutral. Greens is

he number of times the trading mechanism closes in profit. Reds

s the number of times the trading mechanism had to close in loss.

he sum of greens and reds is not equal to the number of trades

ecause sometimes the trading mechanism can close the trade on

he same entry price without making a profit or a loss. This can

appen when the trading mechanism reaches the timeout expo-

ure. For these cases the result is null. Also, when the opening bet

s not matched during the opening time, the result is null. Positive

icks is the number of total ticks that result in profitable trades.

egative ticks is the total number of ticks that result in loss. These

re the main values to get conclusions about how well-succeeded

 trading policy is. 

The number of greens is higher than the number of reds, how-

ver, the total number of ticks in profit (i.e. positive ticks minus

egative ticks) is closer to zero. This is because many times prices

each the complete offset ticks for the stop-loss but do not reach

he total offset ticks for the target until the waiting time expires,

hus, closing at the current market price. 7 Besides that, when the

arket goes abruptly against the prediction and breaks with the

top-loss, the trading mechanisms try to close the position by fol-

owing the abrupt price movement, which promotes the persis-

ence of a loss. When the price movement is abrupt and goes in

he predicted direction, the limit order is waiting to close and ends

p being matched at the target. As such, abrupt price movements

an break with the stop-loss, but never generate a profit beyond

he target. 

A random based policy does not result in a near zero profit,

ut it results in a permanent loss. Indeed, if we set the agent

o execute the trading mechanisms in the opposite predicted di-

ection, losses will be even bigger. This suggest that the DL NN

odels are struggling to ensure a positive PL in the production

hase. This justifies the necessity to improve the resilience of the

L NN models that, despite having a good learning capacity in

he modeling phase, only ensure a restrictive PL in the production

hase. 8 

Table 7 exposes the Pearson’s correlation coefficients. There is

 positive and statistically significant correlation between the cu-

ulative PL obtained with the DNNC and the cumulative PL ob-

ained with the LSTM. However, the opposite result is applied to
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Table 7 

Pairwise correlations of the validation results. 

DNNC LSTM CNN 

DNNC 1 

LSTM 0.53700 ∗∗∗ 1 

CNN −0 . 44904 ∗∗∗ −0 . 55301 ∗∗∗ 1 

Note: Symbol ∗∗∗ denotes statistical significance at 

the 0.01 level. 
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the cumulative PL obtained with the CNN when paired with the

cumulative PL of the alternative DL NN models, which reinforces

the distinctive character of the CNN. 

From a technical point of view, we would expect a higher cu-

mulative PL at the last day of the experiment given the level of

accuracy observed in the modeling phase. This suggests the need

for a future refinement in the parameters of the trading mech-

anisms, namely at the stop-loss level since this seems to be hit

before reaching the prediction suggested by the DL NN models.

This can also be mitigated in the feature engineering stage by con-

sidering as output the forecast time integral of the ticks varia-

tion rather than simply considering the ticks variation, thus, fol-

lowing similar treatment to the one given to indicators 1 and 2

(see Fig. 8 ). Ensembling the CNN and LSTM models may be ad-

vised since these correspond to distinct DL NN architectures as

confirmed in Table 7 and, therefore, their combination may im-

prove test results and ensure a better generalization to new data

( Zhou et al., 2002 ). From an economic point of view, the low profit

suggests that a regulatory intervention to ban bots is unlikely. As

such, the proliferation of automatic trading systems suggests that

the regulation in betting exchange markets is likely to be predom-

inantly focused on the quality of service. 

6. Conclusions 

A short-term forecasting system of price changes applied to ex-

change markets using market depth data and a systematic proce-

dure to enable a fully automated trading system is implemented in

this study. DNNC, CNN and LSTM models are trained and tested to

understand which one has the best predictive power. Although the

LSTM is more suitable for multivariate time series analysis from a

theoretical point of view, results indicate that the CNN holds, on

average, the highest level of accuracy and, consequently, general-

izes better to new data. Future research avenues include the need

to provide an analysis focused on specific niches by grouping prop-

erties of the rule-based decision tree (e.g., short versus long race

categories). Finally, continuous effort s seem mandatory to analyze

domains where the combination of regulation and artificial intel-

ligence may ensure social welfare gains (e.g., determination of the

socially optimal fee structure). 
ppendix 

able A.1 

ummary statistics. 

Mean Std Dev Min Max 

Volume 

1st min 520,865 275,541 14,242 4,858,654 

2nd min 423,930 247,598 10,783 4,713,870 

3rd min 347,772 223,834 8390 4,569,493 

4th min 285,066 201,834 7014 4,237,354 

5th min 236,840 183,575 5818 3,944,767 

6th min 200,076 168,577 4514 3,779,854 

7th min 172,516 156,206 2524 3,554,934 

8th min 150,905 145,219 1898 3,481,841 

9th min 134,880 137,576 1647 3,450,423 

10th min 122,693 131,643 1503 3,420,282 

Liquidity 

1st min 6974 12,301 531 451,241 

2nd min 5967 13,151 682 468,516 

3rd min 4975 12,832 526 454,538 

4th min 4205 12,544 393 453,012 

5th min 3652 12,143 329 428,307 

6th min 3105 11,137 285 399,753 

7th min 2774 10,808 245 359,948 

8th min 2451 9825 212 331,043 

9th min 2224 9540 191 323,377 

10th min 2029 8935 171 292,921 

Volatility + 

1st min 1052 1443 77 29,899 

2nd min 1100 1593 0 31,323 

3rd min 1107 1357 22 37,893 

4th min 1067 1524 0 29,442 

5th min 984 1412 20 33,069 

6th min 868 1437 29 49,078 

7th min 796 1191 4 30,815 

8th min 729 1162 7 27,630 

9th min 650 961 2 29,686 

10th min 642 1326 1 38,439 

ote: Total number of observations (i.e. races): 14,421. Each line represents the x

inute before the start of a race, x = {1st,…, 10th}. Units of measure are clarified

n Fig. 1 . + Ticks variation in absolute value per minute. 

able A.2 

onlinear process for time segmentation. 

y = x factor with factor = 3 / 2 # Segment Past frame 

Time 

segment 

size 

1 �⇒ 0 14 

2 �⇒ 14 27 

3 �⇒ 41 34 

4 �⇒ 75 41 

5 �⇒ 116 46 

6 �⇒ 162 52 

7 �⇒ 214 56 

ote: In this example, we consider a total of 270 RDF scaled with exponential factor

f 3/2. Segment 1 represents nearest past, while the time segment 7 represents

arthest past in the 270 RDF, about 2.5 min, time window. 



R. Gonçalves, V.M. Ribeiro and F.L. Pereira et al. / Information Economics and Policy 47 (2019) 38–51 51 

R

A  

B  

B  

D  

D  

D  

 

D  

F  

G  

 

G  

H  

H  

H  

H  

 

 

H  

H  

K  

K  

 

L
L  

M  

R  

 

S  

 

V  

Z  

Z  

Z  
eferences 

rora, R., Basu, A., Mianjy, P., Mukherjee, A., 2016. Understanding deep neural net-

works with rectified linear units. arXiv: 1611.01491 . 

engio, Y. , Simard, P. , Frasconi, P. , 1994. Learning long-term dependencies with gra-
dient descent is difficult. IEEE Trans. Neural Netw. 5 (2), 157–166 . 

rown, A. , Yang, F. , 2017. The role of speculative trade in market efficiency: evidence
from a betting exchange. Rev. Finance 21 (2), 583–603 . 

eboeck, G. , 1994. Trading on the edge: neural, genetic, and fuzzy systems for
chaotic financial markets, 39. John Wiley & Sons . 

ing, X. , Zhang, Y. , Liu, T. , Duan, J. , 2015. Deep learning for event-driven stock pre-

diction.. In: IJCAI, pp. 2327–2333 . 
ixon, M. , Klabjan, D. , Bang, J.H. , 2015. Implementing deep neural networks for

financial market prediction on the intel xeon phi. In: Proceedings of the 8th
Workshop on High Performance Computational Finance. ACM, p. 6 . 

orffner, G. , 1996. Neural networks for time series processing. Neural Network
World. Citeseer . 

ischer, T. , Krauss, C. , 2018. Deep learning with long short-term memory networks
for financial market predictions. Eur. J. Oper. Res. 270 (2), 654–669 . 

onçalves, R. , Rocha, A.P. , Pereira, F.L. , 2013. High level architecture for trading

agents in betting exchange markets. In: Advances in Information Systems and
Technologies. Springer, pp. 497–510 . 

oodfellow, I. , Bengio, Y. , Courville, A. , Bengio, Y. , 2016. Deep Learning, 1. MIT Cam-
bridge Press . 

atcher, W.G. , Yu, W. , 2018. A survey of deep learning: platforms, applications and
emerging research trends. IEEE Access 6, 24411–24432 . 

eaton, J., Polson, N., Witte, J. H., 2016. Deep learning in finance. arXiv: 1602.06561 .

ochreiter, S. , Schmidhuber, J. , 1997. Long short-term memory. Neural Comput. 9
(8), 1735–1780 . 

u, Z. , Liu, W. , Bian, J. , Liu, X. , Liu, T.-Y. , 2018. Listening to chaotic whispers: a deep
learning framework for news-oriented stock trend prediction. In: Proceedings

of the Eleventh ACM International Conference on Web Search and Data Mining.
ACM, pp. 261–269 . 
uck, N. , 2009. Pairs selection and outranking: an application to the s&p 100 index.
Eur. J. Oper. Res. 196 (2), 819–825 . 

uck, N. , 2010. Pairs trading and outranking: the multi-step-ahead forecasting case.
Eur. J. Oper. Res. 207 (3), 1702–1716 . 

ingma, D.P., Ba, J., 2014. Adam: a method for stochastic optimization. CoRR abs/
1412.6980 . 

orczak, J. , Hemes, M. , 2017. Deep learning for financial time series forecasting in
a-trader system. In: Computer Science and Information Systems (FedCSIS), 2017

Federated Conference on. IEEE, pp. 905–912 . 

eCun, Y. , Bengio, Y. , Hinton, G. , 2015. Deep learning. Nature 521 (7553), 436 . 
eCun, Y.A. , Bottou, L. , Orr, G.B. , Müller, K.-R. , 2012. Efficient backprop. In: Neural

Networks: Tricks of the Trade. Springer, pp. 9–48 . 
cculloch, W. , Pitts, W. , 1943. A logical calculus of ideas immanent in nervous ac-

tivity. Bull. Math. Biophys. 5, 127–147 . 
umelhart, D. , Hinton, G. , Williams, R. , 1985. Learning Internal Representations by

Error Propagation. ICS report. Institute for Cognitive Science, University of Cali-

fornia, San Diego . 
ak, H., Senior, A., Beaufays, F., 2014. Long short-term memory based recurrent neu-

ral network architectures for large vocabulary speech recognition. arXiv: 1402.
1128 . 

arian, H.R. , 2014. Big data: new tricks for econometrics. J. Econ. Perspect. 28 (2),
3–28 . 

eiler, M.D. , Fergus, R. , 2014. Visualizing and understanding convolutional networks.

In: European Conference on Computer Vision. Springer, pp. 818–833 . 
hao, Y. , Li, J. , Yu, L. , 2017. A deep learning ensemble approach for crude oil price

forecasting. Energy Econ. 66, 9–16 . 
hou, Z.-H. , Wu, J. , Tang, W. , 2002. Ensembling neural networks: many could be

better than all. Artif. Intell. 137 (1–2), 239–263 . 

http://arxiv.org/abs/1611.01491
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0001
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0001
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0001
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0001
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0002
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0002
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0002
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0003
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0003
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0004
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0004
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0004
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0004
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0004
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0005
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0005
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0005
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0005
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0006
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0006
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0007
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0007
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0007
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0008
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0008
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0008
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0008
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0009
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0009
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0009
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0009
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0009
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0010
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0010
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0010
http://arxiv.org/abs/1602.06561
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0011
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0011
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0011
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0012
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0013
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0013
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0014
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0014
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0016
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0016
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0016
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0017
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0017
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0017
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0017
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0018
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0018
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0018
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0018
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0018
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0019
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0019
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0019
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0020
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0020
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0020
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0020
http://arxiv.org/abs/1402.1128
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0021
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0021
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0022
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0022
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0022
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0023
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0023
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0023
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0023
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0024
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0024
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0024
http://refhub.elsevier.com/S0167-6245(18)30070-2/sbref0024

	Deep learning in exchange markets
	\numberline {1}Introduction
	\numberline {2}Case study
	\numberline {2.1}Raw data collection
	\numberline {2.2}Characteristics of trading at Betfair

	\numberline {3}Applied deep learning architectures
	\numberline {3.1}Deep Neural Network Classifier
	\numberline {3.2}Long Short-Term Memory
	\numberline {3.3}Convolutional Neural Network

	\numberline {4}Methodology
	\numberline {4.1}Categories: data partition
	\numberline {4.2}Feature engineering
	\numberline {4.2.1}Definition of inputs and outputs
	\numberline {4.2.2}Frequency distribution histograms

	\numberline {4.3}Modeling
	\numberline {4.3.1}Training process
	\numberline {4.3.2}Testing process

	\numberline {4.4}Validation with models in production
	\numberline {4.4.1}Definition of the trading mechanisms
	\numberline {4.4.2}Experiment


	\numberline {5}Results
	\numberline {6}Conclusions
	Appendix
	References


