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A B S T R A C T

Undoubtedly, high demands for food from the world-wide growing population are impacting the environment
and putting many pressures on agricultural productivity. Agriculture 4.0, as the fourth evolution in the farming
technology, puts forward four essential requirements: increasing productivity, allocating resources reasonably,
adapting to climate change, and avoiding food waste. As advanced information systems and Internet technol-
ogies are adopted in Agriculture 4.0, enormous farming data, such as meteorological information, soil condi-
tions, marketing demands, and land uses, can be collected, analyzed, and processed for assisting farmers in
making appropriate decisions and obtaining higher profits. Therefore, agricultural decision support systems for
Agriculture 4.0 has become a very attractive topic for the research community. The objective of this paper aims
at exploring the upcoming challenges of employing agricultural decision support systems in Agriculture 4.0.
Future researchers may improve the decision support systems by overcoming these detected challenges. In this
paper, the systematic literature review technique is used to survey thirteen representative decision support
systems, including their applications for agricultural mission planning, water resources management, climate
change adaptation, and food waste control. Each decision support system is analyzed under a systematic manner.
A comprehensive evaluation is conducted from the aspects of interoperability, scalability, accessibility, usability,
etc. Based on the evaluation result, upcoming challenges are detected and summarized, suggesting the devel-
opment trends and demonstrating potential improvements for future research.

1. Introduction

Human beings have cultivated lands and breed animals to obtain
food for their survival since ancient times. This practice, known as
agriculture, has evolved following a long-term and progressive process
(Tekinerdogan, 2018), going from Agriculture 1.0 to 4.0, as shown in
Fig. 1.

In Fig. 1, Agriculture 1.0 refers to the traditional agricultural era,
mainly replying on the manpower and animal forces. In this stage,
though simple tools like sickles and shovels were used in agricultural
activities, humans still cannot get rid of heavy manual labor, so pro-
ductivity remained at a low level. Until the 19th century, steam engines
were improved and widely used to provide new powers in all walks of
life and industries, including agriculture. It came to the era of Agri-
culture 2.0 when various agricultural machineries were operated by
farmers manually and plenty of chemicals were used. Obviously,
Agriculture 2.0 significantly increased the efficiency and productivity
of farm works. Nevertheless, this substantial improvement brought too
harmful consequences: field chemical contaminations, destruction of
the ecological environment, excessive consumption of powers, and

waste of natural resources. In the 20th century, Agriculture 3.0
emerged from the rapid development of computing and electronics.
Computer programs and robotic techniques allowed agricultural ma-
chineries to perform operations efficiently and intelligently. Before the
problems left in Agriculture 2.0 went too far, strategies were adjusted in
Agriculture 3.0. The reasonable work distribution to agricultural ma-
chineries reduced the use of chemicals, improved the precision of irri-
gation and so on. Nowadays, the evolution of agriculture steps into
Agriculture 4.0, thanks to the employment of current technologies like
Internet of Things, Big Data, Artificial Intelligence, Cloud Computing,
Remote Sensing, etc. The applications of these technologies can im-
prove the efficiency of agricultural activities significantly. For instance,
Ferrandez-Pastor et al. (2016) took advantages of Internet of Things
and developed a low-cost sensor and actuator network platform. This
platform aims at optimizing the production efficiency, increasing
quality, minimizing environmental impacts, and reducing the use of
resources like energy and water. Wolfert et al. (2017) conducted a
survey on applying Big Data to smart farming. They have pointed out
that Big Data is now used to provide farmers with predictive insights in
farming operations and real-time operational decisions. Liakos et al.
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(2018) explored the current state of machine learning techniques in
agriculture. They have drawn a conclusion that real-time artificial in-
telligence enables computer programs to generate rich recommenda-
tions and insights for supporting farmers to make proper decisions.
Lopez-Riquelme et al. (2017) developed a precision agriculture appli-
cation on the basis of FIWARE cloud. This application is able to reduce
the amount of water for irrigation tasks. Thus, their work demonstrates
that using FIWARE cloud services in the agronomic context is highly
beneficial. Bonfante et al. (2019) proposed LCIS DSS, an irrigation
support system for improving the efficiency of water use in precision
agriculture based on three different methodologies: IRRISAT® (remote
sensing), W-Mod (simulation modelling), and W-Tens (situ soil sensor).
Through their case study in maize, they determined that the first two
approaches might represent the best solution in regards to irrigation
water use efficiency. In the stage of Agriculture 4.0, it is worth men-
tioning that data from all fields are gathered and processed, providing a
clear view for farmers.

Stakeholders and farmers may encounter difficulties in making
proper decisions about agricultural management with the explosive
amount of information (e.g. environmental, crop-related, and economic
data) (Taechatanasat and Armstrong, 2014). Because it is challenging
for them to transfer these data into practical knowledge. Thus, plat-
forms like decision support systems (DSSs) are needed in order to assist
them in making evidence-based and precise decisions.

Regarding the definition of a DSS, researchers have described this
term from various viewpoints. In 1980, Jones (1980) described this
term “decision support system” as “a computer-based support system
for decision makers who deal with semi-structured problems to improve
the quality of decisions”. Sheng and Zhang (2009) defined it as “a
human-computer system which is able to collect, process, and provide
information based on computers”. Yazdani et al. (2017) considered it as
“a specific class of computerized information system, enabling to
manage decision-making activities”. Terribile et al. (2015) explained it
as a smart system that provides operational answers and supports de-
cision-making to specific demands and problems based on collected
data. Thus, considering the above definitions, an agricultural decision
support system (ADSS) can be defined as a human-computer system
which utilizes data from various sources, aiming at providing farmers
with a list of advice for supporting their decision-making under dif-
ferent circumstances. One of the most representative characteristics of
an ADSS is that it does not give direct instructions or commands to
farmers. Because farmers are in the position of taking the final

decisions.
An ADSS is not only able to provide a list of options for on-going

activities, but also may help decision makers to achieve better perfor-
mances in future tasks (Alenljung, 2008). Some successful examples
have illustrated how Agriculture 4.0 can benefit from ADSSs. For in-
stance, the Watson Decision Platform for Agriculture was released by
IBM Watson and The Weather Company, combining agriculture with
IBM’s advanced capabilities in Artificial Intelligence, Internet of Things,
and Cloud Computing (Watson Decision Platform for Agriculture,
https://www.ibm.com/downloads/cas/ONVXEB2A). On the one hand,
this platform provides a suite of solutions that spans the farm-to-fork
ecosystem and it is able to analyze any factors which have potential
effects on crops. Farmers can obtain crop pictures by deploying Un-
manned Aerial Vehicles (UAVs). Then, these pictures are uploaded to
IBM Cloud for further analyses based on computer vision algorithms.
The analytic results keep farmers updated with health conditions of
crops. Thus, the working efficiency and accuracy of detecting crop
diseases are greatly improved. On the other hand, owners of large-scale
farms can use Watson Decision Platform to estimate the price trending
in trading markets. Under this circumstance, the time for irrigation,
pollination, phenology, fertilization, harvesting, and selling can be
precisely controlled in order to achieve the maximum profits. It is worth
noting that the inputs to Watson Decision Platform concerns various
sources, such as weather data (provided by the Weather Company), soil
data (moisture at multiple depths, nutrient content, fertility, and type),
equipment data (gathered from sensors in devices), workflow data
(planting and harvesting dates, fertilizer and pesticide application rates,
and harvest outputs), and high definition visual imagery (collected by
satellites, drones, and fixed-wing aircraft). IBM is not the only company
who contributes to Agriculture 4.0, another company named Prospera
(Digital Farming System, http://prospera.ag/) takes advantages of
Computer Vision, Artificial Intelligence, and Cloud Computing for de-
veloping a digital farming system that helps farmers to analyze data
collected from their fields. This system is capable of suggesting the best
time for irrigation, fertilization, pollination, and harvesting by mon-
itoring the growth rates of crops. Farmers can also be notified when
crops are infected by any diseases. According to the statistics from
Prospera, the yield production is estimated with 95% accuracy and
productivity is increased as much as 30%. The limitation of this digital
farming system is that it only concerns the scenarios of greenhouses and
large-scale row crops. As a consequence, it is more interesting that
Prospera can enrich the functionality of the system for providing

Fig. 1. A general framework of an ADSS for pest management.
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farmers with adequate suites of solutions. Moreover, Bazzani (2005)
developed DSIRR, a decision support system for irrigation. DSIRR is
more than a normative platform to generate the optimal irrigation plan,
but an ADSS for exploring the trade-off among conflict objectives and
offering farmers compromising solutions. It considers four categories of
data sources, including economic (farm income, profit, and gross do-
mestic product), social (public support subsidy and farm employment),
water (seasonality, consumption, marginal value, and irrigation tech-
nology), and environmental indicators (soil cover, nitrogen, pesticide,
and energy). Based on these indicators, a linear model is used to assess
the trade-off among economic-social-environmental objectives. With a
user-friendly graphical interface, farmers can directly control and
monitor irrigation processes. Though the water usage is significantly
reduced and farmers can irrigate farming fields more efficiently, DSIRR
requires further developments such as employing modular approaches,
permitting to integrate new modules focusing on specific aspects of
interest. Judging from above successful examples, it is concluded that
ADSSs are accelerating the development paces of Agriculture 4.0 from
various perspectives.

Though ADSSs are quite helpful in farm management, the un-
welcome fact is that the use of ADSSs has been limited due to some
critical issues in Fig. 2 (Tyrychtr and Vostrovsky, 2017).

In Fig. 2, following issues have been pointed out.

• Farmers seldom have experiences or knowledge of using ADSSs. The
typical graphical interface of ADSSs is sometimes not user-friendly
and it may be confusing for farmers to perform desired operations.

• ADSS developers may ignore the requirement analyses from the end
users, leading to the fact that inputs and outputs of ADSSs may not
fit farmers’ needs and decision-making styles.

• The functionalities of current ADSSs are limited and task-specific.
An ADSS may only focus on a single perspective. As a consequence,
farmers have to use several ADSSs to manage agricultural activities.

• When generating the advice, current ADSSs may miss some funda-
mental factors, such as climate change, soil spatial variability, crop
disease, etc. The lack of these considerations may result in imprecise
outputs from ADSSs.

However, the above detected issues are not complete enough. To the
best of our knowledge, most of current surveys mainly focus on com-
paring framework differences of ADSSs and analyzing their perfor-
mances on specific agricultural tasks or they just explored the current
state of ADSSs within a small range (e.g. a country) (Tyrychtr and
Vostrovsky, 2017; Hayman, 2004; Nguyen et al., 2007). The critical
issues and upcoming challenges of employing ADSSs in Agriculture 4.0
have not been fully investigated. For understanding how ADSSs could

be better applied to the domain of agriculture, the requirements of
Agriculture 4.0 have to be analyzed beforehand.

In 2013, the German government firstly proposed Industry 4.0, known
as the fourth industrial evolution (Anderl, 2015). Two years later, Agri-
culture 4.0 was defined and quickly attracted wide attentions from
worldwide researchers (Agriculture 4.0: The future of farming tech-
nology, https://www.worldgovernmentsummit.org/api/publications).
Four main requirements are put forward and listed as follows.

• 1. Increasing productivity: The population growth and shortage of
food will consequently boost the demand for agricultural produc-
tions. Meanwhile, people’s diet has been changing as well, mainly
reflected in demanding for high-value animal protein. Furthermore,
with the development of urbanization, infrastructures and buildings
would take place of farmlands (Yuan et al., 2018).

• 2. Allocating resources reasonably: Natural resources are incredibly
stressed nowadays. Firstly, unused lands for cultivation are rare and
25% of farmlands are marked as highly degraded due to deforesta-
tion, overcutting vegetation, inadequate fallow periods, etc. (Udias
et al., 2018). Secondly, water resources are overused in an un-
reasonable way (Dong et al., 2018). Frequent water transfers from
rivers and lakes are causing serious environmental problems.
Thirdly, agricultural machineries are not efficiently deployed due to
improper work distributions. A large amount of energy resources is
consequently wasted. (Fountas et al., 2015).

• 3. Adapting to climate change: Climate change has been greatly af-
fecting the environment. One of the main factors which leads to
climate change is manmade emissions of Greenhouse Gases (GHGs).
The side effects of climate change result in frequent occurrences of
droughts, floods, and extreme weather conditions (Czimber and
Galos, 2016). Additionally, agricultural productions are especially
vulnerable and sensitive to the impacts of climate change (Kmoch
et al., 2018). Lack of efforts in adapting to climate change will cause
an increase in uncertainty about food quality, accessibility, and
utilization.

• 4. Avoiding food waste: Food waste comes from each stage of the
agricultural life cycle, including producing, delivering, marketing,
etc. Firstly, due to the overuse of chemicals, lack of pest manage-
ment, and ignorance of climate change adaptations, agricultural
products may become contaminated and unqualified (van Evert
et al., 2017), leading to food waste and damage to farmlands. Sec-
ondly, the world shares a globalized supply and marketing system
(Borodin et al., 2016). However, the food delivery is a time-sensitive
process. Inappropriate decision-making of deliveries may cause food
waste. Thirdly, wasted food is harmful to the environment. Re-
cycling and processing wasted food will consume more resources
than producing new ones (Pourmoayed et al., 2016).

Based on the above four requirements, thirteen ADSSs are selected
from current literatures. The objective of this paper is to review these
ADSSs for Agriculture 4.0 and detect upcoming challenges by means of
a systematic literature review technique, consisting of the following five
steps.

• 1. Defining a question:What does Agriculture 4.0 require from ADSSs
employments? (presented in Section 1)

• 2. Search for literature: Thirteen representative ADSSs are chosen
from current literatures and projects according to the requirement of
Agriculture 4.0. (presented in Section 2)

• 3. Extracting information from selected works: Each ADSS is in-
troduced and analyzed respectively under a systematic manner.
(presented in Section 2)

• 4. Assessing the quality of selected works: An evaluation between se-
lected thirteen ADSSs is conducted from the aspects of interoper-
ability, scalability, accessibility, usability, etc. (presented in Section
3)Fig. 2. Some critical issues of employing ADSSs.
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• 5. Drawing a conclusion: Seven upcoming challenges are detected
according to evaluation results. (presented in Section 4)

2. Literature review on selected ADSSs

The selected ADSSs have covered the agricultural applications in: (i)
mission planning; (ii) water resources management; (iii) climate change
adaptation; and (iv) food waste control. Each ADSS is explored from the
systematic view by following the general framework (Fig. 3).

In Fig. 3, agricultural data should be collected in the first place and
treated as inputs to the decision-making tools (modules). Advice about
managing agricultural activities is generated according to the compu-
tational results. Farmers can then choose the most appropriate option
and adopt it to solve the problems. It is worth mentioning that con-
straints should be taken into account for guaranteeing the quality of
provided advice.

2.1. ADSSs for mission planning

Current researches on ADSSs for mission planning mainly focus on
two aspects: task allocation and path planning. On the one hand,
agricultural tasks should be allocated to the most appropriate machi-
neries for execution, and on the other hand, proper path planning can
quickly and precisely guide agricultural machineries to the nearest
destinations and then execute tasks. Generally, effective planning ap-
proaches can greatly increase the productivity because agricultural
tasks are completed within the minimum time.

Four ADSSs for mission planning are reviewed in this manuscript.
The first two (AgriSupport II system and Multi-robot sense-act system)
are related to task allocation and the latter two (ADSS for route plan-
ning in soil-sensitive fields and On-board decision-making approach)
are in regards to path planning.

2.1.1. AgriSupport II system
The AgriSupport II system aims at adopting the latest advances in

decision support systems to fulfil the needs of agricultural production
processes (Recio et al., 2003). The overall objective of this system is to
provide farmers with sufficient agricultural decision-making sugges-
tions like farm operation scheduling, detailed operation cost, resources
usage, and profitability analysis. Two main issues are mentioned in
their requirement analyses. The first issue is in regards to the

complexity of agricultural problems. When planning an agricultural
mission, several factors has to been taken into account: number of in-
volved agricultural machineries, capability of these machineries,
number of tasks, etc. The second issue addresses the time window of
agricultural activities. Normally, an agricultural year lasts from 8 to
12months. Certain activities should be performed at a specific time,
such as when to seed, fertilize, and harvest. A delay of one or more days
for mission executions may lead to unexpected economic losses.

The decision-making process in AgriSupport II system is computed
by a farm planning model algorithm. This algorithm is designed to
identify which work units are suitable for performing what tasks. For
providing this plan, following attributes are considered as inputs to the
planning model.

• Mode: It is defined as a possible plan for performing agricultural
tasks.

• Technical path: It is defined as a sequence of operations to be per-
formed. A mode is composed of several technical paths and their
relationships of precedence.

• Resource: A technical path requires certain resources like machi-
neries and human labors. For using resources, the technical path has
to pay costs, which will be included in the estimated cost of per-
forming operations.

• Precedence: It is defined as the priority of each operation in the
technical paths. Those operations with a higher precedence will be
executed in the first place.

• Time window: It is defined as the starting and completion time of
modes.

After obtaining above inputs, the farm planning model algorithm
computes the cost of all feasible modes and compares them with each
other in order to find out the one with the lowest cost, as the optimal
plan for distributing agricultural tasks to work units. This algorithm
adopts the CPLEX optimizer as the decision-making tool.

The AgriSupport II system was tested in a farm in Spain where
different combinations of crops were proposed and experimented with.
Twenty-five case studies were considered in the experiments.
Experimental results suggest that AgriSupport II system is able to pro-
vide farmers with sufficient advice about distributing agricultural
works. By adopting those provided advice, farmers can perform agri-
cultural operations with the minimum investments and achieve the

Fig. 3. A general framework of agricultural decision support systems.

Z. Zhai, et al. Computers and Electronics in Agriculture 170 (2020) 105256

4



greatest working efficiency. Consequently, agricultural productivity
will increase, which fulfils the requirement of Agriculture 4.0.

2.1.2. Multi-robot sense-act system
Conesa-Munoz et al. (2016) proposed a multi-robot sense-act

system, aiming at performing tasks automatically by using aerial and
ground vehicles. The main objective of this system is to improve crop
performances and maintain environmental quality by using vehicles to
perform agricultural tasks in large outdoor areas autonomously. In their
proposal, aerial units are responsible for gathering environmental data
while ground units are considered as mission executors in farmlands.
All the vehicles are controlled by a Mission Manager, connected to a
Base Station computer. Within the Mission Manager, two planners are
designed for commanding aerial and ground units respectively.

In regards to the aerial planner, its inputs require command signals
from the Mission Manager, locations of obstacles in farmlands, and
survey areas. Then, the aerial planner splits fields into small grids ac-
cording to orientation, overlapping requirements, and image resolution.
A Harmony Search Algorithm (Nabaei et al., 2018) is used to generate
the optimal plan for aerial units to cover the whole area. In terms of the
ground planner, it distributes task sequences to ground vehicles by a
meta-heuristic optimization method. Its required inputs are operation
areas and commands received from the Mission Manager. It is worth
noting that turning radius and battery capacity are both considered in
this planner. The output of the ground planner is the best trajectory for
each ground vehicle to cover operation areas.

The multi-robot sense-act system was tested over 20 times in a farm
in Spain. The experimental result shows that this system is able to
generate the optimal work distribution for a site-specific herbicide
treatment mission. Both aerial and ground units can work co-
operatively. Notifications were sent to farmers when vehicles had un-
expected failures.

Overall, this system contributes to assigning agricultural tasks to the
most appropriate work units. Farmers can obtain decision supports on
agricultural work distributions. Meanwhile, farmers can supervise the
entire process and manage the workflow through the multi-robot sense-
act system. Unexpected failures like internal errors of vehicles, valves
delay, and work collisions are informed to the farmers. As a con-
sequence, immediate requests on mission re-planning can be proposed.
Lastly, thanks to images taken by aerial units and data collected by
ground units, farmers can know exactly how many herbicides are
needed from crops. Thus, a precise spraying can be performed by re-
ducing the amount of herbicide usages. In general, the multi-robot
sense-act system is a good fit for Agriculture 4.0.

2.1.3. ADSS for route planning in soil-sensitive fields
Bochtis et al. (2012) presented an ADSS to help farmers to deploy

agricultural vehicles in soil-sensitive fields properly. The objective of
their work is to optimize travel paths for minimizing damages to soil-
sensitive fields from large-scale vehicles. On the one hand, route opti-
mizations can reduce energy consumptions of vehicles and improve the
working efficiency. On the other hand, it is essential to consider me-
chanical impacts of vehicles on the soil structure, especially the risk of
soil stresses and compactions (Keller et al., 2007). The shorter path a
heavy vehicle travels in the field, the less damage will this vehicle
cause.

In their proposal, the system treats the soil boundary, driving di-
rection, and potential risk indicator measurements as input data. The B-
patterns optimization algorithm is employed as the decision supporting
tool in the system. It takes four steps to generate the optimal plan.
Initially, all tracks are sequentially sorted based on the derived relative
risk map. A threshold is assigned to each track, as an indicator of dis-
tinctions between low and high risks. After the sequential permutation
of tracks is generated, the number of routes is estimated. A single route
is composed of sequential work operations, including filling resources,
forwarding to target locations, performing operations, and returning to

the facility unit. Afterwards, tracks are assigned with a route according
to the sequential permutation. The last step is to measure the risk factor
of each route by comparing values of normalized risk indicators and
vehicles loads. Finally, the output from this ADSS is the optimal route
plan.

For verifying the effectiveness of this ADSS, a case study is con-
ducted in a field in Denmark. It used Electromagnetic Induction (EMI)
as the risk indicator measurements and GreenStar 3 as the navigation
component for tractors. The experimental result demonstrates that
those tractors with heavy loads are dispatched to the areas with low risk
indicator values. As a consequence, damaging impacts on soil stresses
and compactions are significantly reduced. Conclusively, the proposed
ADSS for route planning can provide farmers with the optimal plan of
work distributions. Meanwhile, soil-sensitive fields can be protected
from damages caused by tractors with heavy loads. More crops can be
grown and agricultural productivity will increase. Thus, this proposal
fulfils the requirement of Agriculture 4.0 closely.

2.1.4. On-board decision-making approach
With the development of advanced robotics, Unmanned Aerial

Vehicles (UAVs) have been widely used in a board range of applica-
tions, especially in the aspect of agriculture. Alsalam et al. (2017)
proposed an on-board decision-making approach for UAVs to perform
agricultural operations autonomously. The objective of this work is to
detect exact locations of diseased crops and then perform corresponding
operations like spraying herbicides precisely. With the precise use of
herbicides, toxic damages to the fields can be greatly reduced. Mean-
while, deploying UAVs to perform spraying missions can improve the
working efficiency, which obviously helps farmers to increase agri-
cultural productivity. The proposed approach is on the basis of the
Observation, Orientation, Decision, and Action (OODA) loop shown in
Fig. 4.

In Fig. 4, for collecting data, this approach takes measurements from
ultrasonic sensors, images taken by cameras, and received commands as
inputs during the observation step. After obtaining these inputs, UAVs
start the mission and march to the target locations. During the step of
mission execution, the on-board computer determines whether UAVs
are following the correct path or not. If a UAV is flying higher than the
appointed height, the decision-making component will command this
vehicle to adjust its altitude. Meanwhile, the decision-making compo-
nent is responsible for checking past waypoints in order to monitor the
mission status. The action step includes operations like taking images,
approaching to waypoints, and spraying herbicides. After the assigned
mission is completed, UAVs are required to return back to the home
station and convert to the observation mode.

The on-board decision-making approach was verified through sev-
eral flight missions. The experimental result shows that UAVs can hover
over target locations upon arrivals. The proposed approach can cor-
rectly guide UAVs to reach each waypoint. Target locations are ob-
tained based on obtained images by running an Object-Based Image
Analysis (OBIA) algorithm (Peña et al., 2013). Thus, UAVs are able to

Fig. 4. The OODA loop in the proposed on-board decision-making approach.
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hover over targets and perform precise spraying operations. Con-
clusively, the proposed approach can provide farmers with decision
supports on route guidance of UAVs. Also, it enables UAVs to perform
precise spraying operations autonomously, which greatly improves the
working efficiency of agricultural operations and reduces toxic damages
from excessive chemical usages. From this perspective, the proposed
decision-making approach is closely related to the requirement of
Agriculture 4.0.

2.1.5. Summary of ADSSs for mission planning
Through the review result from Section 2.1.1–2.1.4, the differences

between ADSSs are concluded in Table 1.
In Table 1, these four ADSSs are designed to serve the aspect of

mission planning in Agriculture 4.0, providing farmers with guidance
about agricultural operations like chemical treatment and scheduling of
agricultural machineries. It is noted that all ADSSs collect environ-
mental and crop-related data as inputs to their decision supporting tools
(models). However, only AgriSupport II system concerns the economic
data. The optimization algorithm is a favourable approach for gen-
erating the solutions. Unfortunately, all ADSSs under this category lack
consideration of mid-term and long-term planning.

2.2. ADSSs for water resources management

Current researches of ADSSs for water resources management are
generally concerning the irrigation systems. An irrigation system should
provide farmers with effective decision supports on controlling the
amount of water applied to crops and maintaining landscapes (Alarcon
et al., 2016; de Wit and Crookes, 2013). It aims at ensuring wettability
of soil fields and basic water needs from crop growths with the
minimum water usages.

Three ADSSs from literatures are reviewed in the next sub-sections
to summarize contributions from current works.

2.2.1. Smart irrigation decision support system (SIDSS)
The smart irrigation decision support system (SIDSS) was proposed

by Navarro-Hellin et al. (2016). Traditionally, irrigation activities are
planned by an agronomist according to resources like collected me-
teorological data, crop characteristics, and soil measurements. The
objective of the proposed SIDSS is to generate irrigation plans in a more
efficient and accurate way with the same resources. With the help of
SIDSS, irrigation activities can achieve better performances with the
minimum water usages.

In their proposal, SIDSS is composed of three components: a col-
lection device, a weather station, and a decision-making component.
The framework of SIDSS is presented in Fig. 5. In regards to the inputs
to SIDSS, the first two components collect sensing data (volumetric
water content depth, soil water potential, and soil temperature) and
meteorological information (rainfall, wind speed, temperature, relative
humidity, global radiation, dew point, and vapor-pressure deficit). The
decision-making component is in charge of generating decision sup-
ports based on reasoning results. The reasoning process adopts two
machine learning techniques: Partial Least Squares Regression (PLSR)
(Mehmood et al., 2012) and Adaptive Neuro Fuzzy Inference Systems
(ANFIS) (Svalina et al., 2013). PLSR is used to deduct unnecessary
variables when soil measurements and meteorological data appear re-
dundant. ANFIS is employed to minimizing estimated errors under a
given threshold. The output of SIDSS presents the optimal irrigation
plan, indicating the amount of water usages and the time for irrigation
activities.

The smart irrigation decision support system was testified and
evaluated in lemon tree plantations in south-east Spain, where water
resources are very limited. The experimental result demonstrates that
SIDSS is able to provide farmers with an irrigation report, which is
better than the decisions made by an agronomist. The irrigation report
indicates the precise amount of water usages and the time for irrigationTa
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activities. Conclusively, SIDSS meets the requirement of Agriculture 4.0
by allocating natural resources reasonably.

2.2.2. Fuzzy decision support system (FDSS)
Giusti and Marsili-Libelli (2015) proposed a fuzzy decision support

system (FDSS) and it is an improvement over an existing irrigation web
service based on IRRINET model (Giannerinii and Genovesi, 2011). As a
fundamental platform in agriculture planning, FDSS is developed to
assist farmers in scheduling daily irrigation activities by combining a
predictive model of soil moisture and an inference system. The objec-
tive of FDSS is to improve irrigation performances and reduce un-
necessary water usages.

In their proposal, FDSS consists of two parts: a predictive model and
an irrigation decision maker. The former component takes meteor-
ological information, water resources availability, and crop character-
istics as inputs. It is worth noting that water balances are considered as
well. The predictive model generates the variable of soil moisture,
which is compared with a pre-defined threshold later. If soil moisture is
lower than the threshold, the irrigation decision maker is trigged to
plan the next irrigation activity. The decision maker component con-
siders three inputs: daily variation of Growing Degree Days (GDD),
cumulative rain forecast, and crop evapotranspiration. The inference
method used in this component is the Fuzzy C-Means algorithm.
According to the decision rule set, the generated inference result sug-
gests the amount of water to irrigate.

The proposed FDSS was tested on three crops: corn, kiwi, and po-
tato. Comparing with the previous research work (IRRINET), the ex-
perimental result demonstrates that the performance of FDSS is much
better, saving up to 13.55, 18.3, and 72.95 water units for irrigating
three crops respectively. Therefore, FDSS is able to provide farmers
with effective irrigation advice and help them to allocate water re-
sources more reasonably. From this point of view, FDSS definitely fulfils
the requirement of Agriculture 4.0.

2.2.3. MRGCD DSS
Due to a decrease of annual rainfall and misuse of water resources,

western United States is suffering from serious drought years and has
difficulties on irrigating crops. In order to reduce water consumptions

in irrigated agriculture and improve the irrigation performance, a de-
cision support system for Middle Rio Grande Conservancy District
(MRGCD DSS) is presented by Oad et al. (2009). The objective of
MRGCD DSS is to analyse water demands in service areas and schedule
available water resources to fulfil these demands precisely and effi-
ciently.

There are three components in MRGCD DSS: a water demand
module, a scheduling module, and a water supply module. Firstly, the
water demand module calculates the water shortage capacity by the ET
Toolbox, according to input variables like irrigated areas, crop types,
soil types etc. The Integrated Decision Support Consumptive Use
(IDSCU) model is adopted to calculate the amount of water which
equals to the water shortage capacity. Secondly, the water supply
module presents the layout of conveyance network, including connec-
tions between canals, laterals, and service areas. The flow capacity and
conveyance losses are computed in this module. Thirdly, the scheduling
module generates water delivery plans for fulfilling demands from
crops. As the output from MRGCD DSS, the delivery plan includes the
number of laterals, irrigation time, irrigation frequency, and the
amount of water.

MRGCD DSS was verified in a farmland with 28 lateral canals. The
irrigation duration, irrigation interval, and flow rates were considered
as evaluation criteria. Though certain discrepancies do exist between
experiments and real practices, MRGCD DSS achieves better perfor-
mances in most laterals. Conclusively, MRGCD DSS is able to provide
sufficient decision supports for farmers on planning irrigation activities.
Besides helping farmers to save water resources, it also reduces river
diversions. Therefore, MRGCD DSS fulfils the requirement of
Agriculture 4.0.

2.2.4. Summary of ADSSs for water resources management
Table 2 presents the differences between the selected ADSSs for

water resources management.
In Table 2, SIDSS, FDSS, and MRGCD DSS provides scheduling plans

of irrigation. It is concluded that environmental and crop-related data
are essential. Predictive models (PLSR, ANFIS, and IDSCU model) and
decision rules (Fuzzy C-Means algorithm) are used to generate the op-
tions. The supporting period is limited within a short term.

Fig. 5. The framework of SIDSS.
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2.3. ADSSs for climate change adaptation

Recently, researchers have been aware of the significance of climate
change adaptation in agricultural decision support systems (Rickards
and Howden, 2012; El-Sharkawy, 2014; Weller et al., 2016). To sum-
marize current contributions, three research works are reviewed in the
following sub-sections.

2.3.1. OCCASION
In order to maintain agricultural sustainability under climate

change, Schutze and Schmitz (2010) proposed a planning system,
named OCCASION, for optimizing climate change adaptation strategies
in irrigated agriculture. The objective of this system is to provide
farmers with estimated water demands for irrigation according to as-
sessments of climatic variability.

In their proposal, a methodology, named Stochastic Crop-Water
Production Function (SCWPF), is presented, enabling to quantify im-
pacts of climate change on irrigation activities. The first step of SCWPF
is to create climatic data by using LARS-WG stochastic weather gen-
erators (Semenov et al., 1998). After synthesizing climate scenarios,
SCWPF adopts the One-Dimensional Soil-Vegetation-Atmosphere
Transfer (SVAT) model (Mo et al., 2005) to simulate crop productions,
crop yields, water and nitrogen conditions. The second step of SCWPF is
to construct a complete Crop-Water Production Function (CWPF) by the
Global Evolutional Technique for Optimal Irrigation Scheduling (GET-
OPTIS). Variables from the weather generators and the SVAT model are
treated as inputs to GET-OPTIS. The output of GET-OPTIS is the po-
tential CWPFs which represent the potential optimal plan for irrigating
the maximum crop yield with the minimum water volumes. In the third
step, statistical characteristics of all potential CWPFs is computed in a
non-parametrical way for the purpose of identifying the global optimal
irrigation scheduling plan.

The proposed planning tool was tested and evaluated in a field in
France. A basic scenario without rainfall and a complex scenario with
variability of rainfall are considered. According to evaluation results,
OCCASION has achieved the following contributions: (1) farmers can
obtain adequate information about weather and soil fields. (2) this
planning system allows farmers to assess the potential impacts of cli-
matic variability on farmlands. (3) OCCASION assists farmers in ad-
justing irrigation scheduling plans, taking climate change into account.
Conclusively, OCCASION fulfils the requirement of Agriculture 4.0.

2.3.2. LandCaRe DSS
LandCaRe DSS, as an interactive decision support system, was pre-

sented by Wenkel et al. (2013). The objective of this research is to
support farmers and stakeholders on adapting farm management to
climate change as follows:

• Providing both historical and predictive climate data for end users
under a clear visualization.

• Providing multi-scenario and multi-model simulations for analyzing
uncertainty.

• Providing potential strategies for climate change adaptation.
• Providing end users with assessments of climate change over agri-

cultural activities.

In the proposed LandCaRe DSS, three components are closely

linked: climate, ecology, and socio-economy. The climate component is
used to analyze long-term and seasonal climate data (Franke and
Kostner, 2007), estimating temperature trends, rainfall, precipitation,
Ellenberg index, Huglin index, Schwarzel index, etc. The effects of cli-
mate change are then considered as inputs to the ecology component.
Within this ecology component, various models are designed, including
VEGPER (calculating the length of vegetation periods), ONTO (calcu-
lating crop developments in different stages), SVAT-CN (calculating
nitrogen and Soil-Vegetation-Atmosphere-Transfer), EROSION (calcu-
lating regional water balance), GLPROD (calculating grassland pro-
ductivity and forage quality), etc. In regards to the socio-economy
component, it has two models: PECG and RAUMIS. The former model is
used to evaluate costs and benefits by applying different climate change
adaptation strategies, while the latter one assesses the impacts of cli-
mate change over future agricultural activities.

LandCaRe DSS takes the following steps to provide end users with
decision supports. Firstly, agricultural problems and scenario simula-
tions are extracted from users’ definitions, including climate, soil, land
use, and so on. Based on the input data, a model is selected to assess the
impacts of climate change over agricultural activities. The output from
the employed model is presented by maps, diagrams, tables, and sta-
tistics.

The proposed LandCaRe DSS was tested in two contrasting regions
in Germany. The experimental result shows that this system is able to
predict future meteorological information and the length of vegetation
periods. Meanwhile, LandCaRe DSS is also capable of analyzing water
demands for irrigation activities. Conclusively, successful demonstra-
tions imply that LandCaRe DSS can provide stakeholders and farmers
with sufficient decision supports on agricultural activities under climate
change. Thus, the proposed ADSS fulfils the requirement of Agriculture
4.0 by adapting to climate change.

2.3.3. GIS-based DSS
For quantifying potential impacts of climate change in Semi-Arid

Tropical (SAT) regions, Kadiyala et al. (2015) presented an agricultural
decision support system by integrating a Decision Support System for
Agrotechnology Transfer (DSSAT) crop simulation model and a Geo-
graphical Information System (GIS) component. The objective of GIS-
based DSS is to assist farmers in making proper agronomic decisions
under climate change to increase the productivity of ground nuts.

The proposed system consists of four major components: a GIS
component, a DSSAT crop simulation model, a query system, and a
spatial output generating system. Firstly, the GIS component receives
spatial information about position, soil, and weather. Then, these data
are considered as inputs to the crop simulation model (DSSAT). Crop
growths and yield can be simulated through the DSSAT model (Jones
et al., 2003). Based on the spatial information and crop data, the pro-
posed ADSS can provide the following functionalities.

• Prediction on future climate characteristics: This functionality mainly
concerns the predicting future rainfall and temperature.

• Observation on base yields: This functionality performs productivity
analyses for the selected yields.

• Assessment of climate change over crop yields: This functionality con-
siders how climate change may influence the crop yields.

Four adaptation strategies were tested by the proposed ADSS.

Table 2
Summary of ADSSs for water resources management.

DSS name Data source Tool Decision support Supporting period

SIDSS Environmental and crop-related data PLSR and ANFIS Irrigation reports Short-term and mid-term
FDSS Environmental and crop-related data Fuzzy C-Means algorithm Advice on scheduling irrigation Short-term
MRGCD DSS Environmental and crop-related data IDSCU model Advice on scheduling irrigation Short-term
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Firstly, 10% longer life cycle cultivar was simulated. By applying cli-
mate change adaptation, groundnut productivity increased by 6.8% and
2.1% in southern regions and highland regions respectively. Secondly,
the proposed ADSS took drought tolerance into account. The simulation
result showed significant improvements in all test fields. Thirdly, heat
tolerance was considered in simulations and the result demonstrated
positive responses. Fourthly, adaptation strategy supplemental irriga-
tion was tested. All regions can benefit from precision irrigation advice
and base yields increased by 23.6%, 21.9%, 19.3% and 16.1% respec-
tively. Conclusively, the proposed ADSS is able to predict future climate
characteristics and monitor conditions of groundnut fields. Famers can
obtain proper decision supports on performing agricultural activities
under climate change. Therefore, it fulfils the requirement of
Agriculture 4.0 by considering climate change adaptation.

2.3.4. Summary of ADSSs for climate change adaptation
Table 3 summarizes the research work of ADSSs for climate change

adaptation.
In Table 3, LandCaRe DSS concerns the widest range of data sources

when adapting to climate change, while economic data are not involved
in OCCASION and GIS-based DSS. It seems that these three ADSSs fa-
vour model-based approaches and various models are adopted for as-
sessing the impacts of climate change.

2.4. ADSSs for food waste control

Optimizing the supply chain is widely acknowledged as one of the
most effective approaches for avoiding food waste. On the one hand,
the optimized supply chain enables to deliver agricultural products to
the nearest destinations within the minimum time (Hamprecht et al.,
2005). On the other hand, consumers, as the end of supply chains, can
reflect needs of markets. Responses from consumers are essential be-
cause they can provide adequate information, assisting farmers in ad-
justing plans of agricultural activities (Muller et al., 2009). In this
section, three proposals are reviewed for analyzing current ADSSs for
food waste control.

2.4.1. MOLP-based beef supply chain
The globalization of supply chains enables cross-border deliveries

for agricultural products. Due to increased distances between partners,
ADSSs can be used to determine suppliers, distribution channels,
transportation modes, inventories at each warehouse, and so on
(Cordeau et al., 2006; Harris et al., 2011). Soysal et al. (2014) applied a
Multi-Objective Linear Programming model to a beef supply chain in
order to demonstrate how farmers can benefit from a well-organized
logistics network. The economic and environmental objective functions
are considered in the proposed beef supply chain. The objective of this
ADSS is to minimize the total transportation costs and the total amount
of released greenhouse gas emissions.

In the proposed supply chain, following advice have to be offered
during the transportation processes:

• Inventory amounts of beef in each warehouse.
• Number of tracks used during transportation.
• Type of tracks used during transportation.
• Routes for each track.

In order to provide these decision supports and achieve both eco-
nomic and environmental objectives, the supply chain is mathemati-
cally formulated as a multi-objective linear programming model (Ji
et al., 2018). The required inputs to the economic objective function are
warehouse costs for storing beef and transportation costs for export
departures and import arrivals. The input to the environmental objec-
tive function is the total amount of CO2 emissions released during the
transportation. Meanwhile, several constraints are defined, such as a
balanced beef inventory in all warehouses, the capability of meeting
market demands, the minimum travel paths, etc. The MOLP model is
computed by the ILOG-OPL development studio and CPLEX 12.2 opti-
mization solver. The computed Pareto frontier represents the optimal
distribution strategy, as the output of the MOLP model. The optimiza-
tion solver employs the Ɛ-constraint method (Dehghan et al., 2014),
meaning that the economic objective function is selected for optimi-
zation, while the environmental objective function is treated as an
additional constraint.

The proposed supply chain was implemented and tested in Brazil.
The idea is to export beef from Brazil to Europe. The experimental re-
sult shows that the MOLP model is able to generate the optimal dis-
tribution strategy within a reasonable time. The distribution strategy
indicates the number of tracks, type of tracks, and route for each track.
By following this strategy, the minimum total transportation cost and
the minimum amount of released CO2 emissions are achieved at the
same time. Furthermore, the optimized logistics network not only en-
ables a quick delivery with the minimum cost, but also ensures the food
quality and safety for consumers, avoiding food waste during the
transportation. Therefore, the proposed supply chain fulfils the re-
quirement of Agriculture 4.0.

2.4.2. Quality sustainability decision support system (QSDSS)
Increased demands for food quality and safety have been challen-

ging the global supply chain seriously. Logistics managers prefer to use
decision support systems to optimize delivery strategy for ensuring the
food quality and safety. Ting et al. (2013) presented a quality sustain-
ability decision support system (QSDSS) based on the association rule
mining and the Dempster’s rule of combination. The main objective of
QSDSS is to discover the association measures between logistics flows
and provide logistics managers with decision supports for red wine
deliveries, including transportation modes, types of delivered goods,
delivery routes, etc.

The workflow of the proposed QSDSS is presented in Fig. 6. Firstly,
the knowledge base contains pre-processed logistics flow data. These
data are then extracted by the association rule mining component in
order to detect interesting association rules based on support and
confidence measures (Le and Lo, 2015). The Apriori algorithm (Li et al.,
2016) is used in the association rule mining component for identifying
the potential associations and assigning a weight to each association.
Logistics managers are allowed to input a new delivery request with
information about product types, quantities, and transportation modes.
After receiving the new case, the Dempster’s rule of combination
component can aggregate related associations between cases and gen-
erate the most appropriate logistics route on the basis of assigned
weights. The output of QSDSS is the route with the highest weight, as
the optimal delivery strategy.

The proposed QSDSS was verified and tested through a red wine

Table 3
Summary of ADSSs for climate change adaptation.

DSS name Data source Tool Decision support Supporting period

OCCASION Environmental and crop-related data CWPF and GET-OPTIS Assessments of climate change Short-term
LandCaRe DSS Environmental, crop-related, and economic

data
VEGPER, ONTO, SVAT-CN,
etc.

Advice on farm management under climate
change

Short-term, mid-term, and long-
term

GIS-based DSS Environmental and crop-related data DSSAT model Advice on increasing productivity under
climate change

Short-term
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industry in Collazoni. A set of potential associations was successfully
extracted from the knowledge base, 145 rules in total. Meanwhile, a
complete logistics route is aggregated based on the most interesting
rules. Four members are selected to evaluate QSDSS, including senior
managers, project consultants, and logistics coordinators. The experi-
mental result shows that QSDSS is able to improve the delivery per-
formance in the following aspects.

• Securing quality level. After adopting QSDSS, the product return rate
from consumers shows a decrease by 60%.

• Reducing logistics costs. QSDSS enables to reduce costs of re-shipping
and continual shipping by 45%.

• Improving satisfaction of consumers. Due to quality assurance, the
number of damaged red wine decreases from 2134 to 530, avoiding
returns from consumers.

• Enhancing logistics visibility. Hidden information (interesting asso-
ciations) is mined by QSDSS and displayed to the logistics managers
through a user-friendly interface, providing them with real-time
decision supports.

Conclusively, by employing QSDSS, food quality and safety can be
greatly assured. Therefore, QSDSS fulfils the requirement of Agriculture
4.0 in the aspect of avoiding food waste.

2.4.3. Decision support system for e-grocery deliveries
Unnecessary costs and food waste are usually resulted from in-

appropriate delivery options and unreasonable inventory distributions.
For avoiding food losses in e-grocery deliveries, Fikar (2018) proposed
a decision support system on the basis of agent-based simulations and
dynamic routing procedures. The overall objective of this system is to
optimize the inventory distributions and generate the optimal delivery
strategy for logistics managers.

It is assumed that e-grocery providers are fully aware of the in-
ventory distributions and quality of products at all times, while con-
sumers prefer to receive those products with longer shelf lives. The
proposed DSS for e-grocery deliveries are expected to provide logistics
managers with following decision supports.

• Selections of supply points.
• Products from selected supply points.
• Selections of delivery vehicles.
• Scheduling of routes for delivery vehicles.
• Scheduling of delivery time.

In their proposal, each component of e-grocery deliveries is treated
as an agent with specific behaviors. For example, supply points are
treated as location agents, while delivered items are regarded as pro-
duct agents. With all the agents, an agent-based simulation is formed
and used to randomly generate demands from consumers and un-
certainty in food decay. The required inputs to the proposed DSS are the
number of supply points, number of delivery vehicles, quantities and
the quality of delivered items, etc. An optimization component is used
to schedule pick-up and delivery options. The scheduling plan is com-
puted by a heuristic optimization algorithm (Tarantilis and Kiranoudis,
2001), aiming at minimizing delivery distances and maximizing food
quality. After responding to all the requests from consumers, a relocate
operator is used to evaluate current pick-up options and delivery stra-
tegies. The output of the proposed DSS is a complete delivery plan,
displayed through a graphical interface. This delivery plan demon-
strates delivery routes, delivery time, inventory distributions, etc. Ad-
ditionally, the quality of delivered products and remaining items, as
well as the amount of wasted food are all presented through the in-
terface.

The proposed DSS was tested in Austria with 255 local stores, 24
vehicles, and one depot. The experimental result shows that more than
one thousand items are successfully delivered or picked up by con-
sumers. By employing the optimal delivery plan, food waste is sig-
nificantly reduced and food quality is assured during the whole process.
From this perspective, the proposed DSS for e-grocery deliveries fulfils
the requirement of Agriculture 4.0.

2.4.4. Summary of ADSSs for food waste control
Table 4 demonstrates the analytic result from Section 2.4.1–2.4.3.
In Table 4, the selected ADSSs are in regards to controlling food

waste from the point of view of optimizing the supply chain. As a
consequence, the category of economic data is the main factor con-
sidered in the research work. Similar to ADSSs for mission planning,
ADSSs for food waste control generate the delivery plans by employing
the optimization algorithms. Unfortunately, none of these works pay
attention to the long-term planning.

3. Evaluation and upcoming challenges

After presenting the thirteen ADSSs, we evaluate each one of them
from eight aspects, including their accessibility, scalability, interoper-
ability, etc. According to the evaluation result, future trends and up-
coming challenges are summarized when developing new ADSSs. It is
promising that future ADSSs can better serve Agriculture 4.0 by over-
coming detected challenges.

3.1. Evaluation of selected ADSSs

Table 5 and 6 presents the evaluation criteria and scores: (i) if the
aspect is fully considered and described with technical details, it
achieves three stars (best); (ii) if the aspect is partially mentioned, but

Fig. 6. The workflow of QSDSS.

Table 4
Summary of ADSSs for food waste control.

DSS name Data source Tool Decision support Supporting period

MOLP-based beef supply chain Economic data MOLP and Ɛ-constraint method Delivery plans of transporting beef Short-term
QSDSS Economic data Apriori algorithm and Dempster’s rule of combination Delivery plans of transporting wine Short-term
DSS for e-grocery deliveries Economic data Heuristic optimization algorithm Delivery plans of e-grocery Short-term and mid-term
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without further explanations, it achieves two stars (medium); and (iii) if
the aspect is not addressed at all, it achieves one star (worst). The as-
pects with more stars indicate that they had been thoughtfully con-
sidered in the selected ADSSs, while, those with fewer stars drew less
attention and are possible to raise potential challenges in the future.
Lastly, Table 7 displays the overall remarks achieved by each ADSS. The
remark is measured through achieved stars divided by total 24 stars.

The evaluation criteria are selected from the Software Quality
Requirements and Evaluation (SQuaRE) standard, including accessi-
bility, interoperability, scalability, and functionality completeness
(ISO/IEC 25010:2011, BSI Standards Publication, https://www.iso.org/
standard/35733.html).

In Table 7, it is concluded that the average remark of all thirteen
ADSSs achieves 16.31 stars (67.95%), which means current ADSSs
cannot serve Agriculture 4.0 perfectly and they still have room for
improvement. The best one among selected ADSSs is OCCASION, which
achieves 20 stars out of 24, because this ADSS covers most of the
evaluation criteria. While the MOLP-based beef supply chain achieves
12 stars out of 24 and it takes the last position due to its inadequate
consideration on accessibility, uncertainty, re-planning, etc. For further
explanation, evaluation details are given in the following sub-sections.

3.1.1. Accessibility
This aspect mainly refers to the graphical user interface (GUI) of an

ADSS (Shirogane et al., 2008). A GUI is necessary because it provides
operators with the possibility of establishing new missions, monitoring
mission status, checking available information, etc. Meanwhile, it
should visualize the generate decision supports for users.

In Table 5, we note that seven of selected ADSSs provide GUIs for
operators (stakeholders and farmers), including AgriSupport II system,
multi-robot sense-act system, ADSS for route planning in soil-sensitive

fields, etc. Some good examples of GUIs are presented in Fig. 7.
In Fig. 7, the GUI of AgriSupport II system enables to enter data and

present generated decision supports for agricultural activities. More-
over, operators can perform machinery analysis, task programming,
and economic analysis. They can also obtain recommendations (a list of
feasible options for operations) through this GUI. The GUI of the multi-
robot sense-act system displays data generated by the Mission Manager
component, such as plans, execution states, alarms, and so on, guiding
operators through different workflow steps.

Generally, the graphical visualization can hide complexity of ADSSs,
enabling farmers to manage agricultural activities more easily and ef-
ficiently. Thus, as an essential component, a GUI can improve the ac-
cessibility of ADSSs. However, nearly half of the selected ADSSs have
not addressed this issue. Furthermore, the GUIs provided by current
ADSSs sometimes display the computation processes and require com-
plex text inputs, leading to noises and confusions for farmers.

3.1.2. Scalability
This aspect addresses the capability of ADSSs to process the growing

amount of missions (Chu et al., 2016). Meanwhile, the scalability in-
dicates the extendibility of an ADSS. For example, extra components
can be added into an ADSS for enriching its functionality.

According to Table 5, it is satisfied that all thirteen ADSSs have
concerned the aspect of scalability (achieving all 39 stars). For example,
QSDSS is composed of several components. It is possible to add new
components in its architecture. Meanwhile, operators can define new
cases when the number of red wine orders increases, which means
QSDSS can deal with the growing amount of missions. LandCaRe also
pays attention to this aspect. It employs multiple decision support
models to generate strategies for agricultural activities. It is promising
to introduce more models for enriching its functionalities.

Table 5
Evaluation results of selected ADSSs (I).

ADSS name Accessibility Scalability Interoperability Uncertainty and dynamic factors

AgriSupport II system ★★★ ★★★ ★★★ ★★
Multi-robot sense-act system ★★★ ★★★ ★★★ ★★
ADSS for route planning in soil-sensitive fields ★★★ ★★★ ★★★ ★
On-board decision-making approach ★★ ★★★ ★★★ ★★
SIDSS ★ ★★★ ★★★ ★★★
FDSS ★ ★★★ ★★★ ★★
MRGCD DSS ★★★ ★★★ ★★★ ★★
OCCASION ★ ★★★ ★★★ ★★★
LandCaRe DSS ★★★ ★★★ ★★★ ★★★
GIS-based DSS ★ ★★★ ★★★ ★★
MOLP-based beef supply chain ★ ★★★ ★★★ ★
QSDSS ★ ★★★ ★★★ ★
DSS for e-grocery deliveries ★★★ ★★★ ★★★ ★★★
Total Stars of evaluation criteria 26/39 39/39 39/39 27/39

Table 6
Evaluation results of selected ADSSs (II).

ADSS name Re-planning Expert knowledge Prediction and forecast Analysis on historical information

AgriSupport II system ★ ★★ ★ ★
Multi-robot sense-act system ★ ★★ ★ ★
ADSS for route planning in soil-sensitive fields ★ ★ ★★ ★★
On-board decision-making approach ★★ ★ ★ ★
SIDSS ★ ★★★ ★★★ ★
FDSS ★ ★ ★★★ ★
MRGCD DSS ★ ★★ ★★ ★★★
OCCASION ★★★ ★ ★★★ ★★★
LandCaRe DSS ★ ★★ ★★★ ★
GIS-based DSS ★ ★ ★★★ ★
MOLP-based beef supply chain ★ ★ ★ ★
QSDSS ★ ★★ ★ ★
DSS for e-grocery deliveries ★ ★ ★ ★★
Total stars of evaluation criteria 16/39 20/39 25/39 19/39
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Conclusively, current research works have achieved great con-
tributions to the aspect of scalability.

3.1.3. Interoperability
On the one hand, interoperability emphasizes on integrating func-

tions and knowledge from heterogeneous components in a single ADSS,
on the other hand, it represents that an ADSS can work with other
external components or systems (Teixeira et al., 2018). For instance, an
ADSS for climate change adaptation can link with an external weather
station to obtain the meteorological information.

According to Table 5, all selected ADSSs have taken interoperability
into account (achieving all 39 stars). For instance, components of
QSDSS can work with each other cooperatively. After pre-processing,
data formats of product types, quantity, delivery routes, and transpor-
tation modes are unified. Thus, heterogeneous components can share a
common understanding for the collected information. Another example
can refer to SIDSS. This proposed decision support system can work
with an external weather station for collecting the meteorological in-
formation. Sensing data from collection devices can also be transmitted
to the decision support component in SIDSS.

Overall, the developers of ADSSs have made great efforts on the
aspect of interoperability.

3.1.4. Uncertainty and dynamic factors
Uncertainty and dynamic factors may cause unexpected results.

Thus, ADSSs should consider these changes during runtime (Verbeke,
2005).

In Table 5, it is glad to see that more than half of selected ADSSs
have addressed the issue of uncertainty and dynamic factors (achieving
27 stars out of 39), especially for those ADSSs for climate change
adaptation (achieving 8 stars out of 9). For instance, SIDSS considers
soil temperature, soil water potential, rainfall, wind speed, tempera-
ture, humidity, and global radiation when generating the decision
supports. These dynamic variables absolutely have tremendous impacts
on irrigation activities. Adequate rainfall will surely reduce the amount
of water usages and the frequency of irrigation activities.

For those ADSSs which have not concerned uncertainty and dy-
namic factors, such as the MOLP-based beef supply chain, it is sug-
gested that authors should pay attention to this issue. Because un-
certainty like meteorological conditions may cause a delay during
international deliveries.

Conclusively, uncertainty and dynamic factors should not be ig-
nored in ADSSs and further improvements on this issue are expected in
the future.

3.1.5. Re-planning
Unexpected failures may occur when performing agricultural ac-

tivities. Therefore, integrating re-planning mechanisms (Zhou et al.,
2018) into ADSSs seems to be a promising approach. The re-planning
mechanism is supposed to enhance the robustness of decision supports
by adjusting current strategies or generating new ones.

Unfortunately, in Table 6, the aspect of re-planning draws the least
attention among all criteria (19 stars out of 39). Only two ADSSs have
concerned this aspect: multi-robot sense-act system and OCCASION. In
the former ADSS, authors mentioned that robot teams can re-plan the
overall tasks in case of failure of one unit. Because an unexpected
failure may stop the entire work until the machine is repaired. This
feature of fault tolerance can greatly enhance the robustness of this
ADSS. While in the latter ADSS, OCCASION focuses on scheduling ir-
rigation activities under climate change. As the environment is dyna-
mically changing with times, a re-planning process is a necessity to
adjust current adaptation strategies.

It is disappointing that the rest of ADSSs has not covered the aspect
of re-planning. Therefore, this is a serious challenge for future ADSSs.

3.1.6. Expert knowledge
Knowledge from experienced experts is highly valuable for ADSSs

when generating the feasible decision supports (Poch et al., 2004).
Moreover, experts can adjust inappropriate strategies.

In Table 6, we detect that six of selected ADSSs have employed the
expert knowledge (achieving 20 stars out of 39). For example, QSDSS is
on the basis of the Dempster’s rule of combination. The decision rule set

Table 7
Overall remarks of selected ADSSs.

ADSS name Overall remark ADSS name Overall remark

AgriSupport II system 16/24 (66.67%) OCCASION 20/24 (83.33%)
Multi-robot sense-act system 16/24 (66.67%) LandCaRe DSS 19/24 (79.17%)
ADSS for route planning in soil-sensitive fields 16/24 (66.67%) GIS-based DSS 16/24 (66.67%)
On-board decision-making approach 15/24 (62.50%) MOLP-based beef supply chain 12/24 (50.00%)
SIDSS 18/24 (75.00%) QSDSS 13/24 (54.17%)
FDSS 15/24 (62.50%) DSS for e-grocery deliveries 17/24 (70.83%)
MRGCD DSS 19/24 (79.17%)

Fig. 7. Examples of presented GUIs: (a) AgriSupport II system; (b) Multi-robot sense-act system.
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is pre-defined by experienced users or domain experts. Similarly, the
supply network module of MRGCD DSS takes opinions of experienced
users as additional constraints. Under this circumstance, the generated
decision supports will better fit users’ needs and their decision-making
styles.

Due to the limitations of computation time and complexity of
agricultural problems, an ADSS may provide users with inaccurate
decision supports, sometimes even wrong advice. Therefore, it is worth
considering to adopt knowledge from experienced users and domain
experts. However, current ADSSs remain to be improved in this aspect.

3.1.7. Prediction and forecast
Predictions of productivity, market fluctuations, and costs (Patel

et al., 2018) may enable ADSSs to generate more accurate decision
supports, while forecasts of meteorological information (Pham and
Kamei, 2012) are especially helpful when planning agricultural activ-
ities.

In Table 6, seven of selected ADSSs support the function of pre-
diction and forecast, such as SIDSS, FDSS, OCCASION, and so on. For
example, a predictive model of soil moisture is designed in FDSS. This
model concerns input variables of growing degree days, crop evapo-
transpiration, and rainfall. The output is in regards to the prediction of
soil moisture, which can help the irrigation decision maker component
to generate more accurate advice. For OCCASION, the impacts of the
predicted climate variability on the maize growth and irrigation are
considered during experiments.

However, current contributions to the prediction and forecast in
ADSSs are not enough. Thus, future improvements on this aspect re-
mains to be achieved.

3.1.8. Analysis on historical information
Historical data and strategies contain valuable information which

can improve the quality of future decision supports (Poczeta et al.,
2018). For example, considering historical strategies as a training set,
machine learning techniques can be adopted for learning successful
experiences from the training set.

In Table 6, around one third of selected ADSSs have performed
analysis on historical information. For example, DSS for e-grocery de-
liveries takes consumer’s historical pick-up preferences into account
when generating the optimal delivery plan. MRGCD DSS concerns his-
torical environmental data for comparing with current situations.

However, ignorance of analyzing historical information indeed
worries us. Because historical information not only includes successful
experiences, but also failure cases. Current agricultural activities can be
performed by referring to the solutions for past cases, which had been
successfully dealt with before. Thus, it is suggested that future ADSSs
can cover historical information.

3.2. Upcoming challenges

According to the summary of thirteen ADSSs in Table 1–4 and the
evaluation result in Table 5–7, several upcoming challenges are de-
tected. These challenges demonstrate the potential improvements and
developing trends of ADSSs for researchers in the future. By overcoming
the detected challenges, future ADSSs can better serve Agriculture 4.0.

• Simplifying GUIs to enhance accessibility of ADSSs: Though more than
half of selected ADSSs have provided farmers with GUIs for visua-
lizing gathered data, establishing agricultural missions, and mon-
itoring the status of on-going missions, it is reported that farmers
sometimes have difficulties on performing desired operations
through provided GUIs. Undoubtedly, most of farmers are not fa-
miliar with computer knowledge and optimization algorithms.
Meanwhile, farmers prefer not to spend too much time in learning
how to use decision support systems. When designing an ADSS, it is
suggested that the GUIs should be as simple as possible (Rose et al.,

2016). Simplified and user-friendly GUIs enable farmers to get
started with ADSSs more quickly. Data visualizations like showing
results in formats of map, table, list, line chart, pie chart, and flow
chart are especially welcomed. Operations like dragging, clicking,
and drawing on portable devices are also acceptable for farmers.
Unnecessary text inputs and displays of computation processes
should be avoided in GUIs because such information may cause
tremendous confusions from farmers’ point of view. After all,
farmers care more about obtaining decision supports on how to
perform agricultural activities in the most efficient way, not how the
strategies and solutions are computed.

• Enriching decision supports for the whole life cycle of Agriculture 4.0: In
Agriculture 4.0, an ADSS is supposed to provide farmers with ade-
quate advice during the whole life cycle. According to the duration
of agricultural activities, short-term, mid-term, and long-term
planning is defined (Francis et al., 2008). A short-term planning
covers tactical day-to-day decision-making activities, such as as-
signing agricultural tasks to the most appropriate machineries,
generating the optimal travel paths for each machinery, scheduling
daily and weekly irrigation activities, etc. A mid-term planning
should offer seasonal decision supports for farmers. For instance,
fertilization is usually performed by farmers based on their own
observations and experiences in the past, leading to imprecise che-
mical usages and causing seriously damages to soil fields and crops.
However, with the help of mid-term planning, ADSSs can provide
farmers with detailed advice about the perfect time to fertilize, the
amount of chemical applications, and position of crops. Regarding
the long-term planning, it generally refers to the yearly decision-
making activities. For example, agricultural machineries surely
suffer from equipment losses. After serving for several months, old
and damaged components have to be replaced by new ones. By
monitoring the status of each machinery, ADSSs can notify farmers
about which machineries are non-operational anymore and what
components should be bought for replacement. Unfortunately, cur-
rent ADSSs mainly focus on short-term planning, lacking con-
siderations on mid-term and long-term planning. Therefore, it is
urgent to integrate more functionalities of ADSSs and enrich deci-
sion supports throughout the whole life cycle of Agriculture 4.0.

• Adapting to uncertainty and dynamic factors: Uncertainty and dynamic
factors do exist in agriculture, but the fact is that few ADSSs take
them into account. Generally, uncertainty and dynamic factors come
from the following aspects. Firstly, meteorological conditions have
great influences on crop growths. For example, rising temperature
may shorten the growth circle of crops. Consequently, fertilization,
weeding, and harvesting periods should change correspondingly as
well (Asseng et al., 2004). ADSSs have to take uncertainty and dy-
namic factors of climate change into account for providing farmers
with accurate decision supports. Secondly, conditions of farmlands
are dynamically changing as well, especially soil moisture and re-
maining nutrition in the fields (Banger et al., 2017). A low value of
soil moisture requires farmers to perform irrigation activities more
frequently, while a high value of nutrition remaining in the fields
requires farmers to fertilize less amount of manures. Monitoring on
environmental changes is vital because decision supports are gen-
erated based on these dynamic data. Thirdly, farmers have to handle
uncertainty and dynamic factors of economic effects from markets
(Lin et al., 2013). The price of an agricultural product may be af-
fected by several factors like total production, logistics, inventory in
local warehouses, consumers’ demands, etc. Little changes in a
single factor may lead to a chain reaction. Thus, it is suggested that
ADSSs should pay attention to uncertainty and dynamic factors.

• Considering re-planning components: Re-planning is a challenging
topic for ADSSs. On the one hand, unexpected failures and issues
may arise from time to time, such as mechanical failures of an
agricultural machinery and sudden changes in weather. These fail-
ures and issues may lead to the impossibility of following original
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strategies to complete assigned missions (Evers et al., 2014).
Therefore, ADSSs should adjust current strategies or generating a
new solution for providing further decision supports for farmers to
continue agricultural missions. On the other hand, when an agri-
cultural mission is being executed, ADSSs detect a better strategy for
carrying on the rest of the mission (Zhou et al., 2018). Consequently,
ADSSs should inform farmers of the latest suggestions. By adopting
the newly generated strategy, farmers can complete the rest of the
mission more efficiently and smoothly.

• Adopting knowledge from experienced experts: Some researchers intend
to develop ADSSs which resolve agricultural problems autono-
mously without any human interventions. Unfortunately, current
ADSSs have not reached such intelligent level yet. Due to the lim-
itation of computation time and complexity of agricultural pro-
blems, ADSSs may provide farmers with inaccurate decision sup-
ports, sometimes even wrong suggestions. Therefore, agricultural
knowledge from experienced experts is needed for the purpose of
validating the feasibility of generated strategies and correcting the
mistakes in provided decision supports (Kamali et al., 2017). An
interactive interface should be designed in ADSSs, allowing experts
to express their knowledge and opinions. By checking generated
strategies before executing, ADSSs are able to lower the possibility
of making mistakes.

• Enabling prediction and forecast: Though predictions and forecasts are
especially helpful for farmers to get prepared in advance, few ADSSs
take this issue into consideration. Generally, the following four
types of predictions and forecasts are recommended. Firstly, crop
growths depend on multiple factors like weather, soil, irrigation,
and fertilization. An early estimation on agricultural production is
helpful for farmers to detect whether certain operations should be
performed to improve product quality (Chlingaryan et al., 2018).
Secondly, forecasts of climate change enable farmers to adjust crop
management and avoid unnecessary climatic risks (Han et al.,
2017). Thirdly, by detecting potential symptoms and early signs,
ADSSs are able to warn farmers about possible occurrences of pests
and diseases, helping them to take certain precautions to avoid
further losses (Chougule et al., 2016). Fourthly, by analyzing market
fluctuations, ADSSs can predict consumers’ demands and the price
trend of agricultural products. As a consequence, farmers will then
produce more market-oriented products in order to gain higher
profits (MacFarlane, 1996).

• Performing analysis on historical information: Strategies of historical
missions usually contain valuable information, including not only
successful experiences, but also failure cases. However, current
ADSSs seldom analyze historical information. A historical mission
strategy is applicable under the circumstance of a corresponding
historical data set. It is promising to compare the real-time data set
with historical ones to generate feasible strategies for current mis-
sions within a shorter computation time by using intelligent algo-
rithms like machine learning, deep learning, bio-inspired algorithms
(Ali et al., 2018). Because similar patterns between historical and
current data sets may be recognized and matched. Successful ex-
periences in past cases can be used as references in performing
current agricultural activities. Meanwhile, ADSSs can abandon
useless strategies by judging from failures in past cases. Further-
more, by learning from historical data sets, regular patterns can be
drawn and used to predict future circumstances (Ghorbani et al.,
2019). Conclusively, the efficiency of decision-making and quality
of generated decision supports can be significantly improved by
performing analysis on historical information.

4. Conclusions

This paper has presented a comprehensive survey of current agri-
cultural decision support systems for Agriculture 4.0. Due to the cap-
ability of processing a large amount of agricultural data and handling

complex environment, an ADSS is very helpful for assisting farmers in
performing various agricultural activities.

Based on the requirement of Agriculture 4.0, thirteen ADSSs are
selected from current literatures and projects. These ADSSs are sur-
veyed through their data sources, planning tools, generated decision
supports, solved problems, and supporting periods. Eight aspects (ac-
cessibility, scalability, interoperability, etc.) are selected from the
SQuaRE standard and treated as criteria for evaluating these ADSSs and
detecting their shortcomings. Based on the evaluation results, it is de-
tected that the selected thirteen ADSSs only achieved an average re-
mark at 16.31 stars (full remark at 24 stars). Therefore, the following
challenges are summarized: (i) simplifying graphical user interfaces to
improve accessibility and usability; (ii) enriching functionalities to
provide more adequate decision supports during the whole life cycle of
Agriculture 4.0; (iii) adapting to uncertainty and dynamic factors to
provide accurate decision supports; iv) considering re-planning me-
chanisms to strengthen the robustness of ADSSs; (v) adopting knowl-
edge from experienced experts in case of adjusting inappropriate de-
cision supports; (vi) enabling prediction and forecast to prepare farmers
for future decision-making activities; and (vii) performing analysis on
historical information to enhance the quality of decision supports.

Conclusively, these challenges demonstrate future development
trends of employing ADSSs in Agriculture 4.0 and potential improve-
ments of ADSSs for researchers. It is promising to see that future ADSSs
can better serve Agriculture 4.0 by overcoming these challenges.
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