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Highlights 
 Using a nationwide prospective stroke registry to evaluate several machine learning 

approaches for prediction of stroke outcomes. 

 Over two hundred clinical variables are screened to identify important features that predicts 

stroke outcome. 

 The follow-up data is important which can further improve the predictive models’ 

performance. 

 Error analysis shows that most prediction errors come from more severe stroke patients. 
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Abstract 

Introduction 

Being able to predict functional outcomes after a stroke is highly desirable for clinicians. This 

allows clinicians to set reasonable goals with patients and relatives, and to reach shared after-

care decisions for recovery or rehabilitation. The aim of this study was to apply various machine 

learning (ML) methods for 90-day stroke outcome predictions, using a nationwide disease 

registry. 

Methods 

This study used the Taiwan Stroke Registry (TSR) which has prospectively collected data from 

stroke patients since 2006. Three known ML models (support vector machine, random forest, 

and artificial neural network), and a hybrid artificial neural network were implemented and 

evaluated by 10-time repeated hold-out with 10-fold cross-validation.  

Results 

ML techniques present over 0.94 AUC in both ischemic and hemorrhagic stroke using 

preadmission and inpatient data. By adding follow-up data, the prediction ability improved to 

0.97 AUC. We screened 206 clinical variables to identify 17 important features from the 

ischemic stroke dataset and 22 features from the hemorrhagic stroke dataset without losing much 

performance. Error analysis revealed that most prediction errors come from more severe stroke 

patients. 

Conclusion  

The study showed that ML techniques trained from large, cross-reginal registry datasets were 

able to predict functional outcome after stroke with high accuracy. The follow-up data is 

important which can further improve the predictive models’ performance. With similar 

performances among different ML techniques, the algorithm’s characteristics and performance 

on severe stroke patients will be the primary focus when we further develop inference models 

and artificial intelligence tools for potential medical. 

 

Keywords: stroke outcome; machine learning; ischemic stroke; hemorrhagic stroke 
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1. Introduction 

Stroke is the second leading cause of mortality in the world and the leading adult 

disability in developed countries [1, 2]. Many stroke survivors are left with various neurological 

deficits resulting in impaired quality of life of variable extent that has been a significant burden 

on patients, caregivers, and society [3]. More precise prediction of functional outcomes after a 

stroke may help clinicians in developing an appropriate long-term management plan. For 

example, plans based on better prediction of the extent of recovery with appropriate 

rehabilitative measures with patients’ domestic condition taken into consideration for reaching 

shared decisions with patients and family members [4-6]. Much effort has been devoted to 

determining predictors of functional outcome after stroke [6-8]. Several medical communities 

have created scores that can predict the patient’s functional outcome using data readily available 

at admission [9-11]. These scores use statistical analysis to identify the most relevant covariates 

from a set of pre-selected factors by domain experts. Recently, machine learning has become 

ubiquitous for solving complex problems in many scientific domains, especially in medical 

diagnosis or prognosis prediction [12, 13]. 

With Institutional Review Board approval, the Taiwan Stroke Registry (TSR) program 

began in August 2006 and prospectively collected stroke patients treatment information from 64 

major hospitals in Taiwan [14].
 
The TSR database was the first national stroke database to assess 

the quality of stroke care. The data were systematically collected according to predetermined 

registry protocols. To ensure data reliability, the participating hospital neurologists and nurses, 

responsible for completion of registration materials were trained with TSR’s standard operating 

procedure. The TSR mainly collects preadmission data, and inpatient elements including clinical 

care during hospitalization, in-hospital complications, stroke risk factors, laboratory results of 

blood tests, electrocardiography, computed tomography (CT) and magnetic resonance imaging 

(MRI) findings, medications during admission and discharge status. In addition, the TSR also 

collects follow-up information such as stroke outcome, patient’s location and vascular events 

during one-year period (30, 90, 180 and 360 days respectively).  

This study aims to evaluate the performance of supervised machine learning models 

using clinical features including 30 days follow-up data that can predicts 90-day stroke outcome 

which is known to be highly correlated to the future recovery and wellbeing of stroke patients. 

Our approach considers the problems of data preprocessing, feature selection, and prediction in 
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stroke and its subtype datasets. Prognostic training models were selected via stratified 10-fold 

cross validation and were assessed with holdout data ten times. To conduct this study, ethical 

clearance was approved from the Joint Institutional Review Board (JIRB) of CMUH102-REC l-

086(CR-5) at China Medical University of Taiwan. 

2. Materials and Methods   

2.1 Data Source and Preprocessing 

 This study used the TSR records of stroke patients who had been documented in the TSR 

database between 2006 and 2018. The registry required each participating hospital to 

differentiate the stroke types using CT and/or MRI. All patients had signed informed consent 

documents and the identity of patients were scrambled to protect privacy.  

We performed a series of extract-transform-load process to get 58,493 stroke patient 

records form the TSR. Figure 1 lists four data exclusion criteria applied for this study: (1) 

patients who died before discharge, (2) patients who has no 30-day follow-up information, (3) 

patients who is other type of stroke (not ischemic/heorragic brain stroke) and (4) patients who 

has illogical or contradicted assessments. This study used the 90-day modified Rankin Scale 

(mRS; 0 (no symptoms) - 6 (death)) as the measure of patient’s outcome since it shows better 

clinimetric properties for assessing the impact of stroke treatments.  

During data quality assurance, we found there are mismatches between discharge mRS 

and the patients’ discharge Barthel index (BI; 100 (independent) – 0 (dependent)) total score. 

The mRS and Barthel index both are behavior assessment, and they showed a significant 

negative correlation and distribution overlapped [15, 16] that can be a reference for assessment 

validation. As Figure 2 shows, a patient with an mRS score zero (no symptoms) but has a BI 

total score of less than 20 (totally dependent) at the time of discharge. To eliminate the 

observations with illogical assessments, we applied an assessment validation during the data 

preprocessing flow to ensure data validity. The assessment validation consists of two processes, 

one is the clinical-logic validation, and the second is a non-linear regression method. In the 

clinical-logic validation, we formulated a set of logic rules based on the assessment principles 

and medical knowledge to validate the data. In non-linear regression, we applied the locally 

weighted scatterplot smoothing (LOWESS) algorithm [17] to remove illogical assessments. 

After the LOWESS process, we calculated the trimmed average standard deviation using the 
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standard deviation of discharge mRS values per BAR bin.  The observations that fall outside one 

standard deviation of the trimmed average were considered as an outlier. After the validation 

process, we indicated 10,542 observations with invalidated assessments. After the application of 

the exclusion criteria, the whole dataset was separated into an ischemic stroke dataset with 

35,798 cases, and a hemorrhagic stroke dataset with 4,495 cases. We further dichotomized the 

patient’s 90-day outcome into good outcome (mRS≤2) and poor outcome (mRS ≥3) [18-20] 

(Figure 1). Two feature sets were created from the TSR, one contains preadmission and inpatient 

data (clinical feature set with 203 features), and the other set additionally contains follow-up 

information (whole feature set with 206 features). 

 
Figure1. Flowchart of patient recruitment. mRS indicates modified Rankin Scale. 
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Figure 2. Bubble plot of discharged mRS degree and discharged Barthel index total score. The 

size of bubble indicates the size of population. 

 

2.2 Machine Learning Models 

In order to develop a prognostic model for the 90-day mRS outcome, this study assessed 

various supervised machine learning algorithms in terms of their ability to predict outcomes. 

High-performance machine learning algorithms such as support vector machine (SVM) [21], 

random forest (RF) [22], and artificial neural network (ANN) [23] were explored for comparison. 

We also design a hybrid artificial neural network (HANN) which parallelly combined dot 

product layers and fully connected layers to identify the pattern of various types of clinical data. 

To implement these machine learning algorithms for this study, we used the libraries of scikit-

learn 0.19.2 [24] and Keras neural networks API [25]. The details of machine learning models 

can be found in appendix B. 

2.3 Cross Validation 
We designed a 10-time repeated hold-out with 10-fold cross-validation to assess the 

predictive capabilities of machine learning models. Figure 3 illustrates the details of the cross-

validation process. For each stroke type, we used 70% of the data for model training and 30% of 
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the data for testing. In order to avoid training bias caused by the imbalance dataset, we applied 

down-sampling and shuffling on two stroke type training datasets, but the distribution of the 

testing dataset remained the same as the original dataset. In order to reduce the selection bias, the 

hold-out method was repeated 10 times. In each hold-out round, the training data were used for 

feature selection and best model selection with 10-fold cross-validation. The model with the 

highest accuracy was selected as the best model for further evaluation. Each prognostic model 

was tested by ischemic and hemorrhagic stroke hold-out datasets by 10 times with different 

feature sets. The performance measurements included accuracy:
     

                
, precision: 

  

     
, 

recall: 
  

     
, F1-score:

                  

                
 and receiver operating curve (ROC), where TP, TN, FP 

and FN denotes true positives, true negative, false positives and false negatives, respectively. 

Through this repeating process, we can achieve robust feature selection, and fairly estimate the 

performance of the machine learning models.  

 

Figure 3. Flow chart of 10-time repeated hold-out with 10-fold cross-validation. 

2.4 Feature Selection 
Selection of relevant input features for outcome prediction is a common task in most 

machine learning modeling studies. The main idea is trying to identify the smallest possible set 

of input features that can still achieve good predictive performance. Furthermore, reducing the 

feature dimension can decrease the chance of overfitting, as well as eliminating uninformative 
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features, to let the classifier focus on informative variables. This study applied extremely 

randomized trees (extra-trees) algorithm [26] to perform the feature selection task on a whole 

feature set. In the extra-tree’s algorithm, both feature and cut-point are randomly chosen while 

splitting a tree node at each iteration; therefore, the sequence of feature importance list can 

change. It is better to repeat the extra forest feature selection to get a robust selected feature list. 

At each hold-out round in our cross-validation, the feature’s importance was calculated by 

extra-trees algorithm. The importance was defined by Gini impurity:   ∑   
  

   , where   

is the number of classes,    is the fraction of items labeled with class  . After 10-fold rounds, 

we averaged the features importance and selected important features by minimum 

threshold. The minimum threshold for each iteration was defined as              

   ( )    ( ), where   is the list of feature importance in which the zeros have been 

removed [27]. After 10-times hold-out rounds, we took the union of ten selected features list to 

get the robust selected feature list. 

3. Results 

3.1 Experiment Data Description 
The characteristics of the TSR experiment dataset are summarized by gender and shown 

in table 1. Male patients account for 61.96% of the total cases, and male patient average onset 

age is younger than female patients (65.4 vs. 69.71). In the type of stroke case, cerebral 

infarction stroke was more common in both females (79.5%) and males (79.7%). For the severity 

of stroke, 46.2% of female patients and 52.1% of male patients are classified as having a minor 

stroke (1 ≤ NIHSS ≤4). Most of the patients’ Barthel index total score was between 80 and 100 

(57.9% female and 70.0% male). 
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Table 1: Patient characteristics of Taiwan stroke registry experiment dataset 

 Female Male P value SMD 

Case number (%) 15,328 (38.04) 24,965 (61.95)   

Onset age (Mean ± SD) 69.71 ± 12.62 65.40 ± 12.64 <0.001 0.342 

Diagnosis   <0.001 0.112 

Ischemic stroke     

Infarct (%) 12,182 (79.5) 19,901 (79.7)   

Transient (%) 1,400 (9.1) 2,315 (9.3)   

Hemorrhagic stroke     

Intracerebral (%) 1,413 (9.2) 2,537 (10.2)   

Subarachnoid (%) 333 (2.2) 212 (0.8)   

Discharge mRS
*
   <0.001 0.253 

Good outcome (%) 7,979 (52.1) 16,081 (64.4)   

Poor outcome (%) 7,349 (47.9) 8,884 (35.6)   

Discharge total Barthel index
#
   <0.001 0.289 

Independent (%) 8,871 (57.9) 17,466 (70.0)   

Minimally dependent (%) 1,828 (11.9) 2,658 (10.6)   

Partially dependent (%) 1,524 (9.9) 2,048 (8.2)   

Very dependent (%) 771 (5.0) 832 (3.3)   

Totally dependent (%) 2,334 (15.2) 1,961 (7.9)   

Discharge total NIHSS
$
   <0.001 0.207 

No stroke symptoms (%) 3,349 (21.8) 5,896 (23.6)   

Minor stroke (%) 7,087 (46.2) 13,001 (52.1)   

Moderate stroke (%) 3,580 (23.4) 5,006 (20.1)   

Moderate to severe stroke (%) 562 (3.7) 473 (1.9)   

Severe stroke (%) 750 (4.9) 589 (2.4)   

SMD: standardized mean difference 
* 
Good outcome: mRS ≤ 2; Poor outcome: mRS ≥ 3 [28]. 

#
 Independent: 80~100; Minimally dependent: 60~79; Partially dependent: 40~59; Very dependent: 20~39; Totally 

dependent: < 20 [29]. 
$
 No stroke symptoms: 0; Minor stroke: 1~4; Moderate stroke: 5~15; Moderate to severe stroke: 16~20; Severe 

stroke: 21~42 [30]. 
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3.2 Important Features 

 We applied extra-trees algorithm with 10-times repeated hold-out with 10-fold cross-

validation to select robust important features. We selected 17 features for the ischemic stroke 

dataset and 22 features for the hemorrhagic stroke dataset from the 206 various features in whole 

feature set. The selected features are displayed as single heatmap and sorted by its importance in 

Figure 4. The numbers indicate how many times the feature passes the minimum threshold 

during cross-validation. For both stroke types, most of selected features are discharge NIHSS 

assessment items, discharge Barthel index, and the 30-day mRS degree which is the most 

important feature for 90-day mRS prediction. 

                  



12 

 

 

Figure 4. Selected features by extra-trees algorithm. The features are sorted by its importance. 

The numbers indicate how many times the feature passes the minimum threshold during cross-

validation. 
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3. 3 Evaluation Results 
Four supervised machine learning classifiers, SVM, random forest, ANN, and HANN, 

were evaluated on testing hold-out datasets repeated 10 times. The results of precision, recall and 

f1-score are presented in table 2. Using preadmission and inpatient data as feature inputs, the 

best performance was obtained in the ischemic stroke dataset with SVM (f1-score: 87.8%±0.2) 

and in the hemorrhagic stroke dataset with HANN (f1-score: 88.1%±0.7). In general, adding 

follow-up data which is the whole feature set, improves the performance of classifiers. The SVM 

achieved 92.9±0.1 f1-score in the ischemic stroke dataset and the random forest achieved 

91.4±0.6 f1-score in the hemorrhagic stroke dataset. By using fewer selected features, the 

performance of all classifiers was not decreased but even slightly improved. The ANN classifier 

showed the worst performance in most cases, compared to other classifiers. Figure 5 shows the 

ROC and its area under the curve (AUC) of each classifier tested by hold-out datasets. For the 

ischemic dataset, the hybrid neural network techniques have better AUC results. The HANN has 

the highest AUC with whole feature set and selected feature set (0.974±0.000 and 0.971±0.001). 

SVM performs better than other classifiers in the hemorrhagic dataset (0.970±0.003 AUC with 

whole feature set and 0.973±0.002 AUC with selected feature set). Four classifiers show similar 

AUC results on the training datasets during 10-fold cross-validation (appendix figure B), which 

indicates that our classifiers are neither over-fitting nor under-fitting. 
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Table 2. The 10-time holdout testing result of machine learning models on 90-day stroke 

outcome prediction. 

SVM:  support vector machine, RF: random forest, ANN: artificial neural network, HANN: hybrid artificial neural 

network. 

clinical feature set: preadmission and inpatient data, whole feature set: preadmission, inpatient and follow-up data, 

selected feature set: feature selection on whole feature set 

  Ischemic stroke 

(Mean ± SD) % 

 Hemorrhagic stroke 

(Mean ± SD) % 

  Precision Recall f1-score  Precision Recall f1-score 

Clinical 

feature set 

(n=203) 

ANN 86.5±0.2 89.2±0.3 87.6±0.6  87.9±0.9 88.3±1.0 88.0±0.9 

RF 86.6±0.2 89.8±0.2 87.8±0.2  87.7±0.7 88.4±0.8 87.9±0.8 

HANN 86.2±0.2 89.4±0.2 87.7±0.2  87.9±0.7 88.2±0.7 88.1±0.7 

SVM 86.7±0.2 89.4±0.2 87.8±0.2  87.0±0.8 87.4±0.8 87.1±0.8 

Whole 

feature set 

(n= 206) 

ANN 89.2±0.6 91.9±0.2 90.3±0.5  88.6±1.0 89.1±0.9 88.8±0.9 

RF 94.1±0.1 93.9±0.1 92.4±0.1  91.2±0.6 92.0±0.6 91.4±0.6 

HANN 91.5±0.5 93.9±0.3 92.6±0.4  89.0±0.7 89.5±0.6 89.2±0.7 

SVM 91.9±0.2 94.2±0.1 92.9±0.1  90.2±0.7 90.9±0.6 90.2±0.8 

Selected 

feature set 

(n=17/22) 

ANN 90.0±0.7 92.8±0.4 91.1±0.6  88.1±1.2 88.5±1.2 88.2±1.2 

RF 91.3±0.3 93.4±0.3 92.2±0.3  91.6±0.4 92.4±0.5 91.7±0.4 

HANN 91.8±0.3 94.1±0.1 92.8±0.2  90.1±0.4 90.7±0.6 90.1±0.4 

SVM 91.9±0.2 94.2±0.1 92.9±0.1  91.6±0.3 92.4±0.3 91.7±0.3 
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Figure 5. The receiver operating curve of 90-day stroke outcome prediction models on 10-times 

repeat hold-out testing data. 

3.4 Misclassification Analysis 

 The evaluation results show that there is no significant performance difference between 

predictive models employed in this study. Therefore, we further analyzed those failed prediction 

cases with selected feature sets to see their distribution and characteristics. The Venn diagram 

shown in Figure 6 illustrates their distributions and characteristics. In all failed prediction cases, 

32.1% cases (259/808) in the hemorrhagic stroke dataset and 55.2% cases (2,028/3,674) in the 

                  



16 

 

ischemic stroke dataset were failed predicted by all four machine learning classifiers. The ratios 

were much higher than other intersections between two and three classifiers, in both stroke type. 

We compare the selected features of cases that misclassified by all classifiers (incorrect group) 

with other cases that correctly classified by all classifiers (correct group), the result shown in 

table 3 and table 4 by stroke type respectively. In both stroke types, there was no significant 

difference by gender, discharge to home, nasogastric tube insertion and NIHSS assessments. The 

average of 30-day mRS and discharge mRS of incorrect group are significantly higher than 

correct group in both stroke type. Except in bladder and bowel control, the differences of BI 

assessments in both groups also revealed that patients in incorrect group have more severe stroke 

which effects patient’s daily activities. 

 

 

Figure 6. Venn diagram of failed prediction cases from four machine learning models.
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Table 3. A comparison of misclassifications and correct classifications with demographics and 

selected features in ischemic stroke.  

 Ischemic stroke  

 Misclassification 

(n=2,028) 

Correct classification 

(n=32,115) 

P value SMD 

Onset age (Mean ± SD) 68.91 ±11.78 67.67 ± 12.56 < 0.001 0.101 

Gender (%)   0.799 0.006 

Female 764 (37.7) 12,198 (38.0)   

Male 1,264 (62.3) 19,917 (62.0)   

90-day mRS 

(Mean ± SD) 

2.25 ± 0.96 1.82 ± 1.63 < 0.001 0.321 

30-day mRS 

(Mean ± SD) 

2.75 ± 0.81 1.95 ± 1.57 < 0.001 0.634 

Discharge mRS 

(Mean ± SD) 

2.85 ± 0.85 2.14 ± 1.51 < 0.001 0.576 

Transfers (%)   < 0.001 0.735 

0 23 (1.1) 2,852 (8.9)   

5 162 (8.0) 2,757 (8.6)   

10 980 (48.3) 5,904 (18.4)   

15 863 (42.6) 20,602 (64.2)   

Toilet use (%)   < 0.001 0.84 

0 104 (5.1) 4,577 (14.3)   

5 1,143 (56.4) 6,178 (19.2)   

10 781 (38.5) 21,360 (66.5)   

Stairs (%)   < 0.001 0.898 

0 665 (32.8) 8,330 (25.9)   

5 1,056 (52.1) 7,020 (21.9)   

10 307 (15.1) 16,765 (52.2)   

Mobility (%)   < 0.001 0.65 

0 78 (3.8) 4,456 (13.9)   

5 162 (8.0) 1,793 (5.6)   

10 807 (39.8) 5,002 (15.6)   

15 981 (48.4) 29,864 (65.0)   

Grooming (%)   < 0.001 0.741 

0 1,428 (70.4) 11,471 (35.7)   

5 600 (29.6) 20,644 (64.3)   

Feeding (%)   < 0.001 0.472 

0 77 (3.8) 3,875 (12.1)   

5 612 (30.2) 4,542(14.1)   

10 1,339 (66.0) 23,698 (73.8)   

Dressing (%)   < 0.001 0.754 

0 75 (3.7) 3,941 (12.3)   

5 1,059 (52.2) 6,221 (19.4)   

10 894 (44.1) 21,953 (68.4)   
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Table 3 (cont.) A comparison of misclassifications and correct classifications with demographics 

and selected features in ischemic stroke.  

 Ischemic stroke  

 Misclassification 

(n=2,028) 

Correct classification 

(n=32,115) 

P value SMD 

Bathing (%)   < 0.001 0.124 

0 599 (29.5) 7,727 (24.1)   

5 1,429 (70.5) 24,388 (75.9)   

Bladder control (%)   < 0.001 0.339 

0 44 (2.2) 3,275 (10.2)   

5 105 (5.2) 1,397 (4.3)   

10 1,879 (92.7) 27,443 (85.5)   

Bowel control (%)   < 0.001 0.358 

0 27 (1.3) 2,943 (9.2)   

5 85 (4.2) 1,402 (4.4)   

10 1,916 (94.5) 27,770 (86.5)   

Discharge to Home (%)   0.995 0.001 

No 184 (9.1) 2,904 (9.0)   

Yes 1,844 (90.9) 29,211 (91.0)   

Nasogastric tube (%)   0.058 0.045 

No 1,757 (86.6) 27,319 (85.1   

Yes 271 (13.4) 4,796 (14.9)   

Discharge NIHSS 5aL 

(Mean ± SD) 

0.41 ± 0.73 0.46 ± 0.97 0.019 0.060 

Discharge NIHSS 6aL 

(Mean ± SD) 

0.4 ± 0.63 0.47 ± 0.93 0.002 0.084 

Discharge NIHSS 5bR 

(Mean ± SD) 

0.4 ± 0.72 0.45 ± 0.96 0.01 0.065 
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Table 4. A comparison of misclassifications and correct classifications with demographics and 

selected features in hemorrhage stroke.  

 Hemorrhage stroke  

 Misclassification 

(n=259) 

Correct classification 

(n=3,806) 

P value SMD 

Onset age 

(Mean ± SD) 

59.95 ± 12.44 61.4 ± 13.79 0.1 0.11 

Gender (%)   0.64 0.034 

Female 162 (37.5) 1,489 (39.1)   

Male 162 (62.5) 2,317 (60.9)   

90-day mRS 

(Mean ± SD) 

2.14 (0.85) 2.29 (1.76) 0.17 0.11 

30-day mRS 

(Mean ± SD) 

2.98 (0.72) 2.53 (1.72) < 0.001 0.34 

Discharge mRS 

(Mean ± SD) 

3.24 (0.91) 2.76 (1.59) < 0.001 0.37 

Transfers (%)   < 0.001 0.72 

0 13 (5.0) 666 (17.5)   

5 41 (15.8) 512 (13.5)   

10 120 (46.3) 709 (18.6)   

15 85 (32.8) 1,919 (50.4)   

Toilet use (%)   < 0.001 0.89 

0 43 (16.6) 1,052 (27.6)   

5 159 (61.4) 823 (21.6)   

10 57 (22.0) 1,931 (50.7)   

Stairs (%)   < 0.001 0.71 

0 134 (51.7) 1,599 (42.0)   

5 95 (36.7) 706 (18.5)   

10 30 (11.6) 1,501 (39.4)   

Mobility (%)   < 0.001 0.66 

0 34 (13.1) 1,028 (27.0)   

5 40 (15.4) 328 (8.6)   

10 92 (35.5) 500 (13.1)   

15 93 (35.9) 1,950 (51.2)   

Grooming (%)   < 0.001 0.78 

0 225 (86.9) 2,048 (53.8)   

5 34 (13.1) 1,757 (46.2)   

Feeding (%)   < 0.001 0.67 

0 20 (7.7) 840 (22.1)   

5 122 (47.1) 733 (19.3)   

10 117 (45.2) 2,233 (58.7)   

Dressing (%)   < 0.001 0.84 

0 25 (9.7) 879 (23.1)   

5 160 (61.8) 907 (23.8)   

10 74 (28.6) 2,020 (53.1)   
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Table 4 (cont.) A comparison of misclassifications and correct classifications with demographics 

and selected features in hemorrhage stroke.  

 Hemorrhage stroke  
 Misclassification 

(n=259) 

Correct classification 

(n=3,806) 

P value SMD 

Bathing   0.08 0.116 

0 114 (44.0) 1,459 (38.3)   

5 145 (56.0) 2,347 (61.7)   

Bladder control   < 0.001 0.31 

0 26 (10.0) 769 (20.2)   

5 28 (10.8) 250 (6.6)   

10 205 (79.2) 2,787 (73.2)   

Bowel control   < 0.001 0.379 

0 15 (5.8) 671 (17.6)   

5 24 (9.3) 253 (6.6)   

10 220 (84.9) 2,882 (75.7)   

Discharge to Home   0.58 0.042 

No 49 (18.9) 782 (20.6)   

Yes 210 (81.1) 3,023 (79.4)   

Nasogastric tube   0.407 0.06 

No 176 (67.9) 2,482 (65.2)   

Yes 83 (32.0) 1,324 (34.8)   

Discharge NIHSS 1b 
(Mean ± SD) 

0.20 ± 0.52 0.35 ± 0.71 0.001 0.237 

Discharge NIHSS 5aL 
(Mean ± SD) 

0.64 ± 0.99 0.76 ± 1.26 0.136 0.105 

Discharge NIHSS 6bR 
(Mean ± SD) 

0.58 (0.38) 0.73 (1.2) 0.055 0.141 

Discharge NIHSS 6aL 
(Mean ± SD) 

0.64 (0.96) 0.78 (1.24) 0.079 0.125 

Discharge NIHSS 5bR 
(Mean ± SD) 

0.6 (0.91) 0.7 (1.2) 0.197 0.092 

Discharge NIHSS 10 
(Mean ± SD) 

0.44 (0.54) 0.50 (0.70) 0.148 0.103 

Admission NIHSS 6aR 
(Mean ± SD) 

1.01 (1.22) 0.97 (1.33) 0.629 0.032 

Admission NIHSS 6aL 
(Mean ± SD) 

1.05 ± 1.26 1.02 ± 1.34 0.72 0.024 

 

4. Discussion 

Improving the outcome of stroke is a global priority. Outcome prediction plays an 

important role in evidence-based decision-making and guides clinicians on how to best treat 

stroke patients. Medical registries have been used for years as sources of clinical data to support 
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evidence-based medicine. This study developed models of excellent stroke outcome prediction 

by using the Taiwan Stroke Registry (TSR).  

It is difficult to accurately predict functional outcomes after stroke [31]
 
even for 

experienced clinicians. Patients with less initial motor impairment [32] and less corticomotor 

system defects
 
[33] might have better motor outcomes. However, these correlations are not 

always correct when predicting the prognoses. There are numerous factors, including clinical 

features and treatments, that can influence the final stroke outcome. Consequently, these 

complicated interactions make conventional modelling very challenging to predict outcomes. 

Machine learning models are relatively independent of the underlying interactions and are able to 

simulate the result of a complex system. Many studies have proposed prognostic models for 

stroke outcome prediction using machine learning or statistic approach. Asadi et al. developed 

dichotomized mRS models of acute ischemic stroke and presented 0.6 AUC of ANN and 70% 

accuracy of SVM on a small clinical dataset (107 cases) [34]. In imaging-based machine learning 

for predicting stroke outcomes, Bentley et al. built an SVM model to identify acute ischemic 

stroke patients at risk for symptomatic intracranial hemorrhage using 116 acute ischemic stroke 

patients’ CT brain images. The AUC of their prognostic model achieved 0.744 [35]. Muscari et 

al. constructed a simple prognostic scale called Bologna Outcome Algorithm for Stroke (BOAS) 

to predicate dependency or death after ischemic stroke based on 221 ischemic stroke patients. In 

the test group, the accuracy was 79.0% and the AUC was 0.839 [36]. Heo et al. developed 

machine learning-based models with a prospective cohort of 2,923 patients with acute ischemic 

stroke. The AUC was 0.888 for ANN model, 0.810 for random forest model, 0.836 for SVM 

model, and 0.842 for logistic regression model [37].  

Compared to previous studies, our machine learning classifiers present relatively high 

performance (approximate 0.95 AUC) in both ischemic and hemorrhagic stroke. There are 

several factors considered to be causally associated with our higher performance. The first factor 

is the data quantity which is important for the machine learning algorithms. The supervised 

machine learning requires a large amount of labeled data to optimize its model. This study 

applied machine learning algorithms on 35,798 ischemic stroke cases and 4,495 hemorrhagic 

cases, which provides a sample size is significantly larger than the other studies mentioned above. 

The second factor is the data quality. The inherent need for large training datasets may affect the 

accuracy of the machine learning algorithms in studies. Poor data quality including outliers, 
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wrong labeling, or conflicting data can mislead the machine learning process. To avoid this, we 

used a series of data cleaning and validation processes ensure the quality of stroke datasets 

obtained from the national wide stroke registry repository for model training and testing. For 

data validation, we employed clinical-logic validation and LOWESS regulation by identifying 

the inconsistency of mRS, Barthel index, and NIHSS. This method can also be applied to other 

correlated features in the data bank based on the understanding of clinical meanings. The 

performance results also reveal that follow-up data is very useful for out-come prediction. 

Taking SVM as an example, it improves the AUC from 0.954 to 0.971 in ischemic stroke and 

from 0.946 to 0.970 in hemorrhage stroke. The follow-up data includes the 30-day mRS, which 

has the highest importance in both stroke type dataset. Previous studies have also reported 

similar finding that the 30-day mRS is highly correlated with 90-day outcome [38, 39].  

The AUC results calculated from 10-times repeat hold-out testing data found no 

significant performance differences among four machine learning classifiers. Therefore, the most 

important consideration may be the algorithm’s characteristics when choosing which machine 

learning model should be applied in medicine. For example, the random forest is able to report 

the feature’s importance, the neural network may need to be designed with an appropriate 

network structure based on the data characteristics using appropriate layers to process the data 

with different characteristics. It greatly improves the ability of neural network to extract patterns 

in data. In a real-world medical scenario, electronic medical records accumulate in hospital 

information system and it is computationally infeasible to train over the entire dataset all the time. 

Compared to traditional machine learning approach in a batch learning setting, online machine 

learning is a fundamentally different approach that update models from data streams sequentially 

[40]. The online machine learning can be directly applied to backpropagation neural networks 

[41], therefore the neural network can be a better choice if we expect our prediction model to be 

updated. According to the misclassification analysis result, the accuracy of predicting the more 

severe stroke patent’s outcome could be a discriminatory measure, if the major issue is model’s 

performance on outcome prediction. 

In previous studies, stroke outcomes were influenced by stroke severity [7, 8],  age [7, 8, 

42, 43], sex [42-44] and comorbidities [44]. We performed feature selection in this study and 17 

features were selected for ischemic stroke and 22 features were selected for hemorrhagic stroke 

from a total 206 features. The results showed that we identified a much smaller set of input 
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features that can still achieve good predictive performance. The benefit of the feature selection 

makes the machine learning classifier more practical because if fewer variables were required 

then it will reduce data entry time and expands the data generation. Among these selected 

features, behavior assessments (30-day mRS and the Barthel index) and neurological 

assessments (NIHSS) are selected as the most important features for prediction models. We 

calculated the correlation between 90-day mRS outcome and the total score of assessments using 

Spearman correlation. It shows strong positive correlation (0.92) between 30-day mRS and 90-

day mRS, strong negative correlation (-0.79) between Barthel index and 90-day mRS. The 

correlation between NIHSS and 90-day mRS is moderate correlation (0.66). The correlations 

reveal that behavior and neurological assessments are informative features for the ML algorithms 

in 90-day mRS outcome prediction task. Some managements during admission were also 

selected and the odds ratio was calculated for these features. The odds ratios (OR) of nasogastric 

(NG) tube insertion in ischemic and hemorrhagic stroke patients are 11.5 (10.8-12.4) and 7.2 

(6.3-8.3), respectively, and the results may imply that NG tubes are required in more severe 

patients. The OR of discharge to home in ischemic and hemorrhagic stroke patients are 0.056 

(0.051-0.062) and 0.076 (0.063-0.093), respectively, and that may suggest that less severe 

patients can care themselves at home without transferring to other facilities. These selected 

features are adapted from TSR recording and relatively easy to obtain compared to image data. 

Consequently, this model is more practical for clinical use by physicians. 

There are still some limitations about the machine learning models. For example, these 

classifiers although accurate in predicting the functional outcome of stroke behave as a black box 

[45, 46]. Clinicians cannot explain the relationship between the input features and the outcome to 

patients. Also, this study only compared machine learning algorithms on two types of stroke in a 

general scenario. Evaluating various machine learning classifiers by considering other moderator 

effects (i.e. age, gender) and specific clinical pathway (i.e. in an emergency room) will be 

explored further. All classifiers were not applied hyperparameter optimization. 

5. Conclusion 

In the present study, we assessed various supervised machine learning classifiers of their 

capability in 90-day mRS outcome prediction based on a national stroke registry. The results 

revealed that applying machine learning algorithms on a large dataset for important feature 
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selection and classifier training can be a powerful tool for stroke outcome prediction. The 

follow-up data is very useful for outcome prediction. In the case of the classifiers with similar 

performance, we can choose the predictive model based on the real-world requirements and its 

performance on severe stroke patients. 

Declaration of Competing Interest: The authors have no competing interests to declare. 

 

Acknowledgements: The authors thank the NIH library editing service.  This study is supported 

in part by Taiwan Ministry of Health and Welfare Clinical Trial Center (MOHW108-TDU-B-

212-133004), China Medical University Hospital, Academia Sinica Stroke Biosignature Project 

(BM10701010021), MOST Clinical Trial Consortium for Stroke  (MOST 107-2321-B-039 -004-

), Tseng-Lien Lin Foundation, Taichung, Taiwan, and Katsuzo and Kiyo Aoshima Memorial 

Funds, Japan.  Authors wish to express our sincere gratitude to those TSR investigators listed in 

appendix without whom this study would not be possible. 

Contributors: CHL conceived the idea of the study, implemented the machine learning 

approaches and drafted the manuscript. KCH and KRJ performed the statistic analyze and 

interpreted the result. CYH provided practical suggestion to this study. CHT, YS, LML, WLC, 

PLC, CLL and CYH processed and provided dataset. YCF provided key support, coordinated 

cooperative organizations and input practical concerns to the study. All authors contributed to the 

review of the manuscript and approved the final version. 

Competing interests Statement: the authors have no competing interests to declare. 

Reference 

[1] Krishnamurthi R, Feigin V, Forouzanfar M, Mensah G, Connor M, 
Bennett D, et al. Global Burden of Diseases, Injuries, Risk Factors Study 
2010 (GBD 2010); GBD Stroke Experts Group. Global and regional 
burden of first-ever ischaemic and haemorrhagic stroke during 1990-
2010: findings from the Global Burden of Disease Study 2010. Lancet 
Glob Health. 2013;1:e259-e81. 
[2] Thrift AG, Cadilhac DA, Thayabaranathan T, Howard G, Howard VJ, 
Rothwell PM, et al. Global stroke statistics. International Journal of 
Stroke. 2014;9:6-18. 

                  



25 

 

[3] Barker-Collo S, Feigin V, Parag V, Lawes C, Senior H. Auckland stroke 
outcomes study: part 2: cognition and functional outcomes 5 years 
poststroke. Neurology. 2010;75:1608-16. 
[4] Bates BE, Xie D, Kwong PL, Kurichi JE, Ripley DC, Davenport C, et al. 
Development and validation of prognostic indices for recovery of 
physical functioning following stroke: part 2. PM&R. 2015;7:699-710. 
[5] Bates BE, Xie D, Kwong PL, Kurichi JE, Ripley DC, Davenport C, et al. 
Development and validation of prognostic indices for recovery of 
physical functioning following stroke: part 1. PM&R. 2015;7:685-98. 
[6] Stinear C. Prediction of recovery of motor function after stroke. The 
Lancet Neurology. 2010;9:1228-32. 
[7] Meyer MJ, Pereira S, McClure A, Teasell R, Thind A, Koval J, et al. A 
systematic review of studies reporting multivariable models to predict 
functional outcomes after post-stroke inpatient rehabilitation. Disability 
and rehabilitation. 2015;37:1316-23. 
[8] Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW. Early 
prediction of outcome of activities of daily living after stroke: a 
systematic review. Stroke. 2011;42:1482-8. 
[9] Saposnik G, Ntaios G, Michel P, Team iR. An integer-based score to 
predict functional outcome in acute ischemic stroke: The ASTRAL 
scoreAuthor Response. Neurology. 2012;79:2293-4. 
[10] Strbian D, Meretoja A, Ahlhelm F, Pitkäniemi J, Lyrer P, Kaste M, et 
al. Predicting outcome of IV thrombolysis–treated ischemic stroke 
patients The DRAGON score. Neurology. 2012;78:427-32. 
[11] Flint A, Cullen S, Faigeles B, Rao V. Predicting long-term outcome 
after endovascular stroke treatment: the totaled health risks in vascular 
events score. American Journal of Neuroradiology. 2010;31:1192-6. 
[12] Deo RC. Machine learning in medicine. Circulation. 2015;132:1920-
30. 
[13] Obermeyer Z, Emanuel EJ. Predicting the future—big data, machine 
learning, and clinical medicine. The New England journal of medicine. 
2016;375:1216. 

                  



26 

 

[14] Hsieh F-I, Lien L-M, Chen S-T, Bai C-H, Sun M-C, Tseng H-P, et al. Get 
with the guidelines-stroke performance indicators: surveillance of stroke 
care in the Taiwan stroke registry: get with the guidelines-stroke in 
Taiwan. Circulation. 2010;122:1116-23. 
[15] Mohanty C, Ray S, Singhal A. Relationship between Barthel Index (BI) 
and the Modified Rankin Scale (mRS) Score in Assessing Functional 
Outcome in Acute Ischemic Stroke. Journal of Marine Medical Society. 
2016;18:144. 
[16] Cioncoloni D, Piu P, Tassi R, Acampa M, Guideri F, Taddei S, et al. 
Relationship between the modified Rankin Scale and the Barthel Index in 
the process of functional recovery after stroke. NeuroRehabilitation. 
2012;30:315-22. 
[17] Cleveland WS. Robust locally weighted regression and smoothing 
scatterplots. Journal of the American statistical association. 
1979;74:829-36. 
[18] Khatri P, Abruzzo T, Yeatts S, Nichols C, Broderick J, Tomsick T. Good 
clinical outcome after ischemic stroke with successful revascularization 
is time-dependent. Neurology. 2009;73:1066-72. 
[19] Castellanos M, Leira R, Tejada J, Gil-Peralta A, Davalos A, Castillo J. 
Predictors of good outcome in medium to large spontaneous 
supratentorial intracerebral haemorrhages. Journal of Neurology, 
Neurosurgery & Psychiatry. 2005;76:691-5. 
[20] Sulter G, Steen C, De Keyser J. Use of the Barthel index and 
modified Rankin scale in acute stroke trials. Stroke. 1999;30:1538-41. 
[21] Cristianini N, Shawe-Taylor J. An introduction to support vector 
machines and other kernel-based learning methods: Cambridge 
university press; 2000. 
[22] Liaw A, Wiener M. Classification and regression by randomForest. R 
news. 2002;2:18-22. 
[23] Gardner MW, Dorling S. Artificial neural networks (the multilayer 
perceptron)—a review of applications in the atmospheric sciences. 
Atmospheric environment. 1998;32:2627-36. 

                  



27 

 

[24] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
et al. Scikit-learn: Machine learning in Python. Journal of machine 
learning research. 2011;12:2825-30. 
[25] Keras. Available at <https://keras.io>. [accessed 24 Sep 2018]. 
[26] Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. 
Machine learning. 2006;63:3-42. 
[27] Kouwaye B. Regression Trees and Random forest based feature 
selection for malaria risk exposure prediction. arXiv preprint 
arXiv:160607578. 2016. 
[28] Wilson JL, Hareendran A, Grant M, Baird T, Schulz UG, Muir KW, et 
al. Improving the assessment of outcomes in stroke: use of a structured 
interview to assign grades on the modified Rankin Scale. Stroke. 
2002;33:2243-6. 
[29] Shah S, Vanclay F, Cooper B. Improving the sensitivity of the Barthel 
Index for stroke rehabilitation. Journal of clinical epidemiology. 
1989;42:703-9. 
[30] Hage V. The NIH stroke scale: a window into neurological status. 
NurseCom Nursing Spectrum (Greater Chicago). 2011;24:44-9. 
[31] Nijland RH, Van Wegen EE, Harmeling-van der Wel BC, Kwakkel G, 
Investigators EPoFOAS. Accuracy of physical therapists' early predictions 
of upper-limb function in hospital stroke units: the EPOS Study. Physical 
therapy. 2013;93:460-9. 
[32] Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of 
upper limb recovery after stroke: a systematic review and meta-analysis. 
Clinical rehabilitation. 2012;26:291-313. 
[33] Kim B, Winstein C. Can neurological biomarkers of brain impairment 
be used to predict poststroke motor recovery? A systematic review. 
Neurorehabilitation and neural repair. 2017;31:3-24. 
[34] Asadi H, Dowling R, Yan B, Mitchell P. Machine learning for outcome 
prediction of acute ischemic stroke post intra-arterial therapy. PloS one. 
2014;9:e88225. 

                  



28 

 

[35] Bentley P, Ganesalingam J, Jones ALC, Mahady K, Epton S, Rinne P, 
et al. Prediction of stroke thrombolysis outcome using CT brain machine 
learning. NeuroImage: Clinical. 2014;4:635-40. 
[36] Muscari A, Puddu G, Santoro N, Zoli M. A simple scoring system for 
outcome prediction of ischemic stroke. Acta neurologica Scandinavica. 
2011;124:334-42. 
[37] Heo J, Yoon J, Park HJ, Kim YD, Nam HS, Heo JH. Machine Learning-
Based Model Can Predict Stroke Outcome. Stroke. 2018;49:A194-A. 
[38] Ovbiagele B, Lyden PD, Saver JL. Disability status at 1 month is a 
reliable proxy for final ischemic stroke outcome. Neurology. 
2010;75:688-92. 
[39] Rost NS, Bottle A, Lee JM, Randall M, Middleton S, Shaw L, et al. 
Stroke severity is a crucial predictor of outcome: an international 
prospective validation study. Journal of the American Heart Association. 
2016;5:e002433. 
[40] Shalev-Shwartz S, Singer Y. Online learning: Theory, algorithms, and 
applications. 2007. 
[41] Sahoo D, Pham Q, Lu J, Hoi SC. Online deep learning: Learning deep 
neural networks on the fly. arXiv preprint arXiv:171103705. 2017. 
[42] Kelly-Hayes M, Beiser A, Kase CS, Scaramucci A, D’Agostino RB, Wolf 
PA. The influence of gender and age on disability following ischemic 
stroke: the Framingham study. Journal of Stroke and Cerebrovascular 
Diseases. 2003;12:119-26. 
[43] Nichols-Larsen DS, Clark P, Zeringue A, Greenspan A, Blanton S. 
Factors influencing stroke survivors’ quality of life during subacute 
recovery. Stroke. 2005;36:1480-4. 
[44] Reeves MJ, Bushnell CD, Howard G, Gargano JW, Duncan PW, Lynch 
G, et al. Sex differences in stroke: epidemiology, clinical presentation, 
medical care, and outcomes. The Lancet Neurology. 2008;7:915-26. 
[45] Alpaydin E. Introduction to machine learning: MIT press; 2009. 
[46] Warwick K. Artificial intelligence: the basics: Routledge; 2013. 

                  



29 

 

 

 

Appendix A: List of Taiwan Stroke Registry Investigators 
 

China Medical University Hospital: Yuh-Cherng Guo (Principal Investigator), 

Chon-Haw Tsai, Wei-Shih Huang, Chung-Ta Lu, Tzung-Chang Tsai, Chun-Hung 

Tseng, Kang-Hsu Lin, Woei-Cherng Shyn, Yu-Wan Yang, Yen-Liang Liu, 

Der-Yang Cho, Chun-Chung Chen, Chung-Hsiang Liu 

National Taiwan University Hospital: Jiann-Shing Jeng (Principal Investigator), Sung-Chun 

Tang, Li-Kai Tsai, Shin-Joe Yeh 

E-Da Hospital / I-Shou University: Shih-Pin Hsu (Principal Investigator), Han-Jung Chen, 

Cheng-Sen Chang, Hung-Chang Kuo, Lian-Hui Lee, Huan-Wen Tsui, Jung-Chi Tsou, Yan-

Tang Wang, Yi-Cheng Tai,Kun-Chang Tsai, Yen-Wen Chen, Kan Lu, Po-Chao Liliang, Yu-

Tun Tsai, Cheng-Loong Liang, Kuo-Wei Wang, Hao-Kuang Wang, Jui-Sheng Chen,  Po-

Yuan Chen, Cien-Leong Chye, Wei-Jie Tzeng, Pei-Hua Wu 

National Cheng Kung University Hospital:  Chih-Hung Chen (Principal 

Investigator), Pi-Shan Sung, Han-Chieh Hsieh, Hui-Chen Su 

Shin Kong WHS Memorial Hospital: Hou-Chang Chiu (Principal Investigator), Li-Ming Lien, 

Wei-Hung Chen, Chyi-Huey Bai, Tzu-Hsuan Huang, Chi-Ieong Lau,Ya-Ying Wu, Hsu-Ling 

Yeh, Anna Chang 

Kaohsiung Veterans General Hospital: Ching-Huang Lin (Principal Investigator),  Cheng-

Chang Yen 

Kaohsiung Medical University Chung-Ho Memorial Hospital: Ruey-Tay Lin 

(Principal Investigator), Chun-Hung Chen, Gim-Thean Khor, A-Ching Chao, 

Hsiu-Fen Lin, Poyin Huang 

Chi Mei Medical Center: Huey-Juan Lin (Principal Investigator), Der-Shin Ke, 

Chia-Yu Chang, Poh-Shiow Yeh, Kao-Chang Lin, Tain-Junn Cheng, Chih-Ho Chou, Chun-

Ming Yang, Hsiu-Chu Shen 

Chung Shan Medical University Hospital: An-Chih Chen (Principal Investigator), Shih-Jei 

Tsai, Tsong-Ming Lu, Sheng-Ling Kung, Mei-Ju Lee, Hsi-Hsien Chou 

Show Chwan Memorial Hospital: Hsin-Yi Chi (Principal Investigator), Chou-Hsiung Pan, Po-

Chi Chan, Min-Hsien Hsu, Wei-Lun Chang,Ya-Ying Wu , Zhi-Zang Huang , Hai-Ming 

Shoung,Yi-Chen Lo, Fu-Hwa Wang 

Cheng Hsin General Hospital: Ta-Chang Lai (Principal Investigator), Jiu-Haw Yin, 

Chung-JenWang, Kai-ChenWang, Li-Mei Chen, Jong-Chyou Denq 

En Chu Kong Hospital: Yu Sun (Principal Investigator), Chien-Jung Lu, Cheng-Huai Lin, 

Chieh-Cheng Huang, Chang-Hsiu Liu, Hoi-Fong Chan 

Far Eastern Memorial Hospital: Siu-Pak Lee (Principal Investigator) 

Kuang Tien General Hospital: Ming-Hui Sun (Principal Investigator), 

Li-Ying Ke 

Taichung Veterans General Hospital: Po-Lin Chen (Principal Investigator), 

Yu-Shan Lee 

Ditmanson Medical Foundation Chia-Yi Christian Hospital: Sheng-Feng Sung(Principal 

Investigator), Cheung-Ter Ong, Chi-Shun Wu, Yung-Chu Hsu, Yu-Hsiang Su, Ling-Chien 

Hung 
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Tri-Service General Hospital: Jiunn-Tay Lee (Principal Investigator), Jiann-Chyun Lin, Yaw-

Don Hsu, Jong-Chyou Denq, Giia-Sheun Peng, Chang-Hung Hsu, Chun-Chieh Lin, Che-

Hung Yen, Chun-An Cheng, Yueh-Feng Sung, Yuan-Liang Chen, Ming-Tung Lien, Chung-

Hsing Chou, Chia-Chen Liu, Fu-Chi Yang, Yi-ChungWu, An-Chen Tso, Yu- Hua Lai, Chun-I 

Chiang, Chia-Kuang Tsai, Meng-Ta Liu, Ying-Che Lin, Yu-Chuan Hsu  

Cathay General Hospital: Tsuey-Ru Chiang (Principal Investigator), 

Mei-Ching Lee, Pai-Hao Huang, Sian-King Lie, Pin-Wen Liao, Jen-Tse Chen 

Changhua Christian Hospital: Mu-Chien Sun (Principal Investigator), Tien-Pao Lai, Wei-

Liang Chen, Yen-Chun Chen, Ta-Cheng Chen, Wen-Fu Wang, Kwo-Whei Lee, Chen-Shu 

Chang, Chien-Hsu Lai, Siao-Ya Shih, Chieh-Sen Chuang, Yen-Yu Chen, Chien-Min Chen  

Taipei Tzuchi Hospital: Shinn-Kuang Lin (Principal Investigator, School of Medicine, Tzuchi 

University, Hualien, Taiwan), Yu-Chin Su, Cheng-Lun Hsiao, Fu-Yi Yang, Chih-Yang Liu, 

Han-Lin Chiang.  

Min Sheng General Hospital: Chun-Yuan Chang (Principal Investigator), I-sheng Lin,Chung-

Hsien Chien,Yang-Chuang Chang 

Lin Shin Hospital: Ping-Kun Chen (Principal Investigator), Pai-Yi Chiu 

National Taiwan University Hospital Yunlin Branch: Yu-Jen Hsiao (Principal Investigator), 

Chen-Wen Fang 

Landseed Hospital: Yu-Wei Chen (Principal Investigator), Kuo-Ying Lee, Yun-Yu Lin, Chen-

Hua Li, Hui-Fen Tsai, Chuan-Fa Hsieh, Chih-Dong Yang, Shiumn-Jen Liaw, How-Chin Liao 

Cheng Ching General Hospital: Shoou-Jeng Yeh (Principal Investigator), Ling-Li 

Wu, Liang-Po Hsieh, Yong-Hui Lee, Chung-Wen Chen 

China Medical University Beigang Hospital: Chih-Shan Hsu(Principal Investigator),Ye-Jian-

Jhih, Hao-Yu Zhuang, Yan-Hong Pan, Shin-An Shih 

Taipei Medical University -Wan Fang Hospital: Chin-I Chen (Principal Investigator), Jia-

Ying Sung, , Hsing-Yu Weng, Hao-Wen Teng, Jing-Er Lee, Chih-Shan Huang, Shu-Ping Chao 

Taipei Medical University Hospital: Rey-Yue Yuan (Principal Investigator), 

, Jau- Jiuan Sheu, Jia-Ming Yu, Chun-Sum Ho, Ting-Chun Lin 

Kuang Tien General Hospital Dajia Division: Shih-Chieh Yu(Principal Investigator) 

Changhua Christian Hospital Yunlin Branch: Jiunn-Rong Chen (Principal 

Investigator), Song-Yen Tsai 

Chang Bing Show Chwan Memorial Hospital: Cheng-Yu Wei (Principal Investigator), Tzu-

Hsuan Huang, Chao-Nan Yang, Chao-Hsien Hung, Ian Shih 

Lotung Poh Ai Hospital: Hung-Pin Tseng (Principal Investigator), Chin-Hsiung Liu, Chun-

Liang Lin, Hung-Chih Lin, Pi-Tzu Chen 

Taipei Medical University - Shuang Ho Hospital: Chaur-Jong Hu (Principal Investigator), 

Nai-Fang Chi, Lung Chan 

Taipei Veterans General Hospital & National Yang-Ming University School of 

Medicine:  Chang-Ming Chern (Principal Investigator),   Chun-Jen Lin,  Shuu-Jiun Wang, Li-

Chi Hsu,  Wen-Jang Wong, I-Hui Lee, Der-Jen Yen, Ching-Piao Tsai, Shang-Yeong Kwan, 

Bing-Wen Soong, Shih-Pin Chen, Kwong-Kum Liao, Kung-Ping Lin, Chien Chen, Din-E Shan, 

Jong-Ling Fuh, Pei-Ning Wang, Yi-Chung Lee, Yu-Hsiang Yu, Hui-Chi  Huang,  Jui-Yao Tsai 

Chi Mei Medical Center, Liouying: Ming-Hsiu Wu (Principal Investigator), 

Shi-Cheng Chen, Szu-Yi Chiang, Chiung-Yao Wang 

Buddhist Dalin Tzu Chi General Hospital: Ming-Chin Hsu (Principal Investigator) 
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St. MARTIN DE PORRES HOSPITAL: Chien-Chung Chen (Principal Investigator), Po-Yen 

Yeh, Yu-Tai Tsai, Ko-Yi Wang 

Sin-Lau Hospital, Tainan, the Presbyterian Church in Taiwan: Tsang-Shan Chen(Principal 

Investigator) 

Cardinal Tien Hospital: Ping-Keung Yip (Principal Investigator), Vinchi Wang, 

Kaw-ChenWang, Chung-Fen Tsai, Chao-Ching Chen, Chih-Hao Chen, Yi-Chien 

Liu, Shao-Yuan Chen, Zi-Hao Zhao, Zhi-Peng Wei 

Yumin Medical Corporation Yumin Hospital: Shey-Lin Wu(Principal Investigator) 

Kaohsiung Municipal Hsiao-kang Hospital: Ching-Kuan Liu(Principal Investigator)  

Wei Gong Memorial Hospital: Ryh-Huei Lin (Principal Investigator), Ching-Hua Chu 

Taipei City Hospital Ren Ai Branch: Sui-Hing Yan (Principal Investigator), 

Yi-Chun Lin, Pei-Yun Chen, Sheng-Huang Hsiao 

National Taiwan University Hospital Hsin-Chu Branch: Bak-Sau Yip (Principal Investigator), 

Pei-Chun Tsai,Ping-Chen Chou, Tsam-Ming Kuo, Yi-Chen Lee, Yi-Pin Chiu, Kun-Chang 

Tsai 

Taichung Hospital Department of Health : Yi-Sheng Liao (Principal Investigator) 

Tainan Municipal An-Nan Hospital-China Medical University: Ming-Jun Tsai (Principal 

Investigator), Hsin-Yi Kao 
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Appendix B: Details of Machine learning models 

Support vector machine 

The SVM is considered as one of the most robust and accurate method among the well-

known machine learning algorithms and has been widely used in clinical outcome prediction. We 

used the linear kernel function with a default penalty parameter C = 0.1.  

Random forest 

Random forest uses an ensemble of classification trees and works well with a mixture of 

numerical and categorical features. There are three primary parameters of Random forest 

classifier. The n_estimators is the number of trees we want to build before taking the maximum 

voting of predictions. In this study, we set n_estimators as default value 100. Second, the number 

of features (max_features) is the maximum number of features that random forest allowed to try 

in an individual tree. We set it as the square root of number of input features. Finally, the Gini 

impurity:   ∑   
  

    , where j is the number of classes and   be the fraction of items labeled 

with class i in dataset, was selected for the function to measure the quality of a split. 

Artificial neural network 

We built a basic three-layer neural network  that contains an input layer, one hidden layer 

of 2/3 the size of the input layer neurons with the rectification nonlinearity (ReLU) activation 

function, given by  ( )     (   )  and an output layer of two neurons with the softmax 

function: (  )  
   

∑   
 
   

 , where j is the number of output classes. To train the neural network, 

the loss function and the network optimizer were set as binary cross entropy and stochastic 

gradient descent (SGD) with the learning rate 5e
-3

 respectively. The neural network training was 

done for 150 epochs with batch size of 56. 

Hybrid artificial neural network 

The convolutional neural network (CNN) is a powerful technology and has achieved 

remarkable results in recent years. The core building block of a CNN is a set of learnable 

convolving filters in a convolutional layer that can calculate the inner product between the filter 

and input to detect some specific type of feature over a single spatial or temporal input. Inspired 

by the behavior of the convolutional layer, this study designed a hybrid neural network model 

that combined a dot product layer and a multi-layer perceptron (MLP) neural network to identify 

the pattern of various types of clinical data. We separated the clinical data input by whether it is 
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temporal data or not. For example, the admission and discharge NIHSS assessments as well as 

the discharge and 30-day mRS follow up are considered as temporal related data input. The rest 

of clinical data, such as demographic, laboratory data, and medication are categorized as non-

temporal related clinical data. Figure A illustrates the network architecture of the hybrid artificial 

neural network (HANN). We used a one-dimension convolution layer with 10 filters to process 

the temporal related clinical data. For each filter, both length parameters of the convolution 

window and the convolution stride are set as two, so the layer is simply calculating the inner 

product between the filter and input. The right side of HANN is a three-layer, fully connected, 

neural network that deals with the non-temporal related clinical data. A dropout layer with 0.5 

dropout rate was applied for reducing overfitting in neural networks. The number of hidden layer 

neurons (hidden layer_1 and hidden layer_3) was set as 2/3 the size of the input layer, plus the 

size of the output layer. For the output layers of both right and left sides (dense layer_2 and 

dense layer_4), the number of neurons was set as two which corresponds to our binary 

classification problem. The ReLU activation was applied to all hidden layers of HANN. We used 

a merge layer that sums the output tensors form both network and returns a single tensor as 

output. Following the merge layer, the final layer is connected to a softmax classifier with dense 

connections. For the model training, total number of epochs was 150. The mini-batch size was 

set to 56. We selected the binary cross entropy as the loss function and SGD with learning rate 

5e
-3

 to be optimizer. 
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Figure A. The network architecture of the hybrid artificial neural network (HANN) 
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Appendix Figure B: The receiver operating curve of 90-day stroke outcome 

prediction models on 10-fold cross-validation training datasets. 
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