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Abstract

Technology has become inevitable in human life, especially the growth of Internet of Things
(IoT), which enables communication and interaction with various devices. However, IoT
has been proven to be vulnerable to security breaches. Therefore, it is necessary to develop
fool proof solutions by creating new technologies or combining existing technologies to ad-
dress the security issues. Deep learning, a branch of machine learning has shown promising
results in previous studies for detection of security breaches. Additionally, IoT devices gen-
erate large volumes, variety, and veracity of data. Thus, when big data technologies are
incorporated, higher performance and better data handling can be achieved. Hence, we
have conducted a comprehensive survey on state-of-the-art deep learning, IoT security, and
big data technologies. Further, a comparative analysis and the relationship among deep
learning, IoT security, and big data technologies have also been discussed. Further, we
have derived a thematic taxonomy from the comparative analysis of technical studies of the
three aforementioned domains. Finally, we have identified and discussed the challenges in
incorporating deep learning for IoT security using big data technologies and have provided
directions to future researchers on the IoT security aspects.
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1. Introduction

The swift growth in emerging technologies such as, sensors, smartphones, 5G commu-
nication, and virtual reality leads to innovative applications such as, connected industries,
smart city, smart energy, connected automobiles, smart agriculture, connected building com-
plexes, connected health care, smart retail outlets, and smart supply chain, which adversely
contribute to the accumulation of massive amounts of data. A study conducted by the
National Cable & Telecommunications Association (NCTA) predicts that by 2020, approxi-
mately 50.1 Billion Internet of Things (IoT) devices will be connected to the Internet. The
growth of IoT devices makes the security of these devices debatable [1, 2]

According to McAfee (2018), there has been a barrage of cyberattacks and data breaches
that has hit almost every industry since 1st of January 2018. Further, many of these attacks
were targeted on IoT devices. The increasing use of IoT devices invites the cybercriminals
to target them. Additionally, the prospect of interconnectivity among IoT devices makes
them vulnerable [3]. Furthermore, VDC Research Group Inc. have also conducted a study
to determine the obstacles in developing connected devices. The research has indicated that
60% of the obstacles are related to security requirements in developing connected devices
[4]. In addition, based on Kaspersky Lab’s collection, the number of malware samples for
IoT devices has seen a rapid increase from 3219 samples for the year 2016 to 121588 samples
for the year 2018. It is clearly evident that there are huge number of vulnerabilities for the
IoT devices [5].

According to [2], many organizations are exposed to greatest challenges in monitoring
network based threats, prominently in the following sectors: government, energy, healthcare,
banks, and research centres. Moreover, these sectors invest in security monitoring tools in
order to protect and secure their infrastructure. As mentioned earlier, generally, the IoT
devices generate immense amounts of data that flows through networks. Data that flows
through a network is at the possible risk for network attacks. Further, the study has argued
that the existing tools and techniques are insufficient to detect innovative attacks triggered
by cybercriminals due to the volume, velocity, variety, and veracity of data. Moreover, when
huge amounts of data are being handled by the network, the security analytics report on a
weekly or monthly basis would not be sufficient enough to detect and mitigate the attacks.
Furthermore, the study has asserted that big data technologies would be able to handle the
challenges of the volume, velocity, variety and veracity of the data.

Data is generally categorised as big data based on the properties associated with it,
commonly known as the V’s of big data [6]. Big data technologies are the tools or technologies
used to efficiently process these data. Authors of [7], discuss that enterprises collect security
related data for regulatory compliance and post hoc forensic analysis. Furthermore, these
large enterprises generate approximately 10 to 100 billion events per day. The authors also
assert that existing mechanisms lack processing at large scales and big data analytics have
been used to analyse and correlate security-related data efficiently and at unprecedented
scales.

In this context, this present study proposes to employ deep learning and big data tech-
nologies to strengthen the security of IoT devices. Off late, deep learning has gained recogni-
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tion due to its non- manual feature engineering, unsupervised pre-training, and compression
capabilities, these features make the employability of deep learning feasible even in resource
constrained networks. Furthermore, deep learning has been widely implemented because
of its self-learning capability, potential to yield highly accurate results, and faster process-
ing time. This is vital, as resource constrained system may run into other issues such as
out-of-memory access, unsafe programing languages, and so forth [8].

Most of the existing literature separately focuses on deep learning, big data, and IoT
security. Some studies have either focused on deep learning [9, 10] or big data [11, 12] for IoT
security. To the best of our knowledge, none of the existing studies have comprehensively
reviewed the feasibility of employing both of these technologies in context of IoT security.

Table 1 summarizes most of the existing recent relevant studies and highlights the re-
search gap. From Table 1, it is concludable that many studies have failed to consider the
impact of volume, velocity, variety, and veracity of data generated by IoT devices, as against
[2] who have highlighted the impacts in their study. Hence, inclusion of big data technolo-
gies becomes mandatory to address the impact of volume, velocity, variety, and veracity of
data generated by IoT devices. Additionally, it is clearly evident in Table 1 that not many
studies have focused on deep learning and big data technologies for IoT security.

This paper is intended to guide deep learning, big data, and IoT researchers and devel-
opers, to whom IoT security would be of primary concern. The contributions of this paper
has been summarised below.

i We identified, and highlighted the key issues of IoT security.

ii We have picked five IoT security use cases where deep learning and big data technologies
could be of potential solution.

iii We have surveyed the state-of-the-art researches focused on deep learning, big data
technologies, and IoT security, to determine the technical applicability and limitations
of these three aforementioned domains.

iv We have developed a thematic taxonomy by extracting valuable information from the
state-of-the-art.

v We have analysed existing solutions based on the derived taxonomy.

vi We have highlighted the challenges and have proposed guidelines for future researchers
to encourage the successful application of deep learning, big data technologies, and IoT
security.

However, this study limits its scope only to deep learning and does not discuss on tradi-
tional machine learning algorithms with respect to big data technologies and IoT security.
Additionally, this survey also does not go into detail about IoT security for each available
smart application area, rather discusses in the networking and communications perspective.

This paper is structured as follows:
Section 2 details the motivation and use cases of, deep learning, big data technologies,

and IoT security. Section 3 introduces deep learning, big data technologies, and IoT security.
Section 4 provides the thematic taxonomy and discusses its components in detail. Section 5
critically analyses the state-of-the-art studies related to deep learning, big data technologies,
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and IoT security. Section 6 discusses the challenges and proposes future directions. Finally,
section 7 concludes this present study.

Table 1: Summary of recent literature relevant to deep
learning, big data technologies, and IoT security

Study Objective / Focus
of previous study

Limitations Significance of our
study

Research
Gap

[9] To provide knowledge
on IoT security issues.

The authors have not
discussed any big data
technologies.

Primarily discusses
the usage of big data
technologies.

Big Data
Technologies

[13] To survey on technolo-
gies and techniques
for reliable and secure
data communications

The authors have not
discussed any big data
technologies or about
big data in general

Provides a detailed ex-
planation on big data.

Big Data
Technologies

[14] To facilitate the ana-
lytics and learning in
IoT domain by provid-
ing overview of deep
learning

An in-depth analysis
has not been con-
ducted with respect to
IoT security. Further,
IoT attack types have
not been detailed

Discusses in detail on
IoT security and its
attack types.

IoT Security

[15] To investigate state-
of-the-art research in
big IoT data analytics

Lacks in-depth study
of IoT security

Performs an in-depth
analysis with respect
to IoT security.

IoT Security

[16] To provide a compre-
hensive survey and
taxonomy for existing
security solution in
vehicle-to-everything
communication tech-
nology

The authors have not
discussed big data
technologies.

The taxonomy details
on big data technolo-
gies has been pre-
sented.

Big Data
Technologies

[10] To discuss on ma-
jor cybersecurity chal-
lenges and opportuni-
ties for cybersecurity
+ edge computing +
IoT + Artificial Intel-
ligence (AI)

The authors have not
performed in-depth
analysis of big data
technologies.

In-depth analysis has
been conducted in the
state-of-the-art big
data technologies.

Big Data
Technologies

[2] To address issues of
real-time anomaly de-
tection

Lacks in depth anal-
ysis of deep learning
and attack types in
the IoT space.

Details on deep learn-
ing and IoT attack
types.

Deep Learn-
ing and IoT
Security

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



[17] To provide compre-
hensive security anal-
ysis of IoT

Minimal discussion
about deep learning
and lacks discus-
sion on big data
technologies.

Performs an in-depth
discussion of deep
learning and its al-
gorithms, and also
discusses big data
technologies.

Deep Learn-
ing and Big
Data Tech-
nologies

[18] To discuss on the most
prominent attacks in
IoT.

The authors have not
discussed deep learn-
ing and big data tech-
nologies

Discussion on deep
learning and big data
technologies has been
presented.

Deep Learn-
ing and Big
Data Tech-
nologies

[19] To discuss on vari-
ous security challenges
and threats with re-
spect to their possible
sources of occurrence.

Lacks discussion on
deep learning and big
data technologies

Discussed about deep
learning and big data
technologies.

Deep Learn-
ing and Big
Data Tech-
nologies

2. Motivation and use cases

In this section we have detailed on the motivation for our study and provided some use
case scenarios that motivate the survey of deep learning and big data technologies for IoT
security.

IoT devices have seen rapid growth in recent years, which is of a great concern in terms
of the security risks associated with them. The rapid growth of these devices and the
availability of modern hacking technologies have forced the necessity to ensure that IoT
devices are not vulnerable to security breaches. However, as of now, IoT devices have been
evidently proven to have security vulnerabilities, such as when IoT devices were compromised
with the Mirai malware and were used to attack Dyn, a Domain Name System (DNS)
provider. Therefore, it is necessary to come up with new technologies or a combination of
existing technologies to secure IoT devices from the attackers.

The IoT security requirements such as confidentiality, integrity, availability, authentica-
tion, and access control (see section 3.3) makes IoT devices unique and challenging especially
for developers to come up with sophisticated IoT systems that are resistant to IoT based
attacks. This study has been motivated by the fact that big data technologies support these
security requirements and deep learning algorithms have been proven effective in security
attack detection.

Over the years, deep learning has gained wide recognition among researchers and organi-
zations. Due to the capabilities of deep learning it has been applied in a variety of security
domains, such as, [20], [21], and [22] to identify security breaches. Furthermore, deep learn-
ing has proven its success in IoT security, it has been proven by successful implementation
in studies [23], [24], and [25].
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Besides, big data technologies have also been proven to be effective in processing of
various types of data. Studies such as, [26], [27], and [28] have shown promising results.
However, limited studies have been conducted on processing of IoT security data with big
data technologies and deep learning algorithms. From our critical analysis, we were able to
identify that only two studies have incorporated deep learning and big data technologies for
IoT security, which are [29] and [30]. This scenario has motivated us to conduct this study
and we believe this study will motivate future researchers in incorporating the three areas
discussed. Figure 1 below illustrates the IoT security use cases with their replationship to
big data technologies and deep learning characteristics. Additionally, the use cases have
been discussed in the following sub sections.

 

 
IoT Security Use 

Cases

Big Data 
Technologies

Volume

Turning Up The 
Freeze

Attack on Dyn

IoT Fish Tank

Velocity
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Monitor

Figure 1: IoT Security Use Cases

2.1. SirenJack

A vulnerability in emergency broadcast systems produced by Acoustic Technology Inc.
(ATI) was identified by Balint Seeber nicknamed SirenJack, a researcher of Bastille Secu-
rity. The systems allowed command packet broadcast over the air to be captured, modified
and replayed. The flaw was discovered when Seeber was auditing emergency alert systems
deployed across San Francisco [31, 32]. The SirenJack use case is a type of intrusion detec-
tion which can be evaded using deep learning and big data technologies as they have shown
promising results in detecting intrusions (see Section 4.2.1).

2.2. Turning Up The Freeze

Turning Up the Freeze was a Distributed Denial-of-Service (DDoS) attack conducted on
the environmental control systems in two apartment building in eastern Finland. The DDoS
attack disabled all environmental control systems in the two apartments completely, which
left the people in the apartment cold. In order to rectify the issue, the systems were rebooted.
However, the systems got stuck in an endless loop [33]. Environmental control systems that

6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



have processing capabilities will be capable of identifying a DDoS attack effortlessly using
deep learning and big data technologies. Few fellow researchers were capable of identifying
DDoS attacks using deep learning and big data technologies, as discussed in Section 5.

2.3. Attack on Dyn

A major attack was conducted on Dyn, a leading DNS provider on 21st October 2016.
The attack was a major DDoS attack that made approximately 85 major websites such as
Netflix, Twitter, PayPal, and Sony PlayStation unresponsive for users. This was a series
of three attacks, the first wave of attack affected the East coast, the second wave affected
California, the Midwest, and the Europe, the third wave was mitigated by Dyn. The attacks
are believed to be conducted by large amounts of IoT botnets that were infected by the Mirai
malware [34, 35, 36]. This major attack could have been mitigated with the use of deep
learning and big data technologies. The DNS provider genrally stores log data. These log
data could have been efficiently processed by big data technologies and analyzed using deep
learning algorihtms, to identify any type of anomalous behaviour. A proven example would
be study [26], where the authors were able to analyze anomalous behaviour using big data
technologies and machine learning.

2.4. IoT Fish Tank

In North America, hackers have used Internet-connected fish tank to hack a casino.
The fish tank was equipped with sensors to regulate temperatures, food monitoring, and
cleanliness of the tank. Hackers used the fish tank to get into the network. It was reported
that 10 GB worth data was transmitted to a device located in Finland [37]. This use
case provides us ample evidence that IoT devices can be used to manipulate an entire
network. Hence, stopping cyber criminals at firewall is key to prevent any catastrophic
incidents. Therefore, the continous monitoring of data flow using big data technologies and
deep learning would enable detection of IoT based security breaches at an early stage.

2.5. Hacked Baby Monitor

A baby monitor of a family in Ohio was hacked by an unknown hacker. When Adam and
Heather Schreck and their 10-month old daughter were asleep, they heard a man screaming
“Wake up baby! Wake up baby” from the baby monitor. When the baby monitor was
inspected, the family found the camera angle moving on its own and the voice of the man
screaming again. When Adam Schreck rushed into his daughter’s room, the angle of the
camera turned and pointed to his face and the man started screaming obscenities. The
parents rushed to unplug the camera. Similarly, in Texas a family’s wireless baby monitor
was hacked and a similar wakeup call was heard from the baby monitor [38]. For hackers
to get into a baby monitor, they have to use a network as the medium. This network can
be secured by combining deep learning and big data technologies to detect any anomalous
data or intrusion in real-time.

The above discussed use cases are some of the sophisticated attacks on IoT. Nevertheless,
these types of attacks on IoT are growing continuously and require modern day and most
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novel solutions. These complex attacks can be handled by deep learning due to its distin-
guishing features such as, capability of learning more abstract features, reduced training
complexity of the model, promising accuracy, capability to handle large datasets, and sup-
port for transfer learning [39, 40, 41, 42]. Additionally, big data technologies can play a vital
role in processing of IoT data, especially due to the volume, velocity, and variety of data
generated by IoT devices. Existing methodologies are inefficient in handling these types of
data, thus big data technologies become a necessity [43]. Furthermore, big data technologies
have also seen increased performance compared to traditional methods as illustrated by [44]
where the training time is much lesser compared to the regular training method.

This section has discussed the motivation for this study and some of the recent real world
attacks on IoT as use cases. Further, we have explained how deep learning and big data
technologies can contribute to IoT security.

3. Background

This section contains a comprehensive description of deep learning, big data technologies,
and IoT security. Additionally the relationship between these three domains have been
discussed, to provide fundamental knowledge and relationship mapping on these leading
edge topics.

3.1. Deep learning

Deep Learning is a subset of machine learning which has three learning techniques,
namely, supervised, semi-supervised and unsupervised learning. It consists of many layers of
artificial neural networks. Each of the layer contains some neurons with activation functions
that can be utilized to produce non-linear outputs. This methodology is said to be inspired
by the neuron structure of the human brain [45, 46].

In recent years, deep learning has attracted many researchers and organizations, com-
pared to traditional machine learning approaches. The authors of [14] have compared deep
learning against four machine learning algorithms, such as, Support Vector Machine (SVM),
Decision Trees, K means, and Logistic Regression using Google trends, and the results indi-
cate that deep learning is becoming more popular. Furthermore, this technology has been
applied in a variety of AI applications such as, image recognition, image retrieval, search
engines and information retrieval, and natural language processing.

Machine learning and deep learning have four phases in building a model. Figure 2 below
illustrates the difference between machine learning and deep learning.
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Figure 2: Machine Learning Vs. Deep Learning

As discussed in section 2, deep learning has gained recognition due to its characteristics of
being capable of learning more abstract features, reduced training complexity of the model,
promising accuracy, capability to handle large datasets, and support for transfer learning
[39, 40, 41, 42].

Deep learning in general has been explained in this subsection. Followed by the discussion
of the typical methodology and characteristics of deep learning.

3.2. Big data technologies

Big data can be described as the high-volume, high-velocity, and high-variety of infor-
mation that demands innovative forms of information processing to gain insights and for
decision-making [47]. Typically, big data is characterized with 6 traits, generally referred to
as the 6V’s.
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amounts of data. Sizes of data 
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Value: refers to the extraction of 
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Figure 3: 6V’s of Big Data
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Figure 3 illustrates the 6V’s, which are the basic characteristics of big data, in general.
However, data is classified as big data as long as it fulfils the first 3V’s which are volume,
velocity, variety [48]. Big data technologies can be described as the tools or technologies
that are used to efficiently process data that has been classified as big data. Some of the
big data technologies include, Apache Hadoop [49], Apache Spark [50], Apache Storm [51],
Apache Flink [52], Apache Cassandra [53], and Apache HBase [54].

In the above section we had illustrated the characteristics of big data, which are the
6V’s. Additionally, we had also listed some of the commonly used big data technologies.

3.3. IoT security

IoT enables sensors and devices in a smart environment to communicate with each other
and enables information sharing across platforms. Recently IoT has been widely adopted into
building intelligent systems such as, smart city, smart home, smart office, smart retail outlets,
smart agriculture, smart water management, smart transportation, smart healthcare, and
smart energy [15, 55, 56].

Due to the wide use of IoT in mobile devices, transportation facilities, public facilities,
and home appliances, these equipment can be used for data acquisition in IoT. Furthermore,
devices used in various applications that are connected to the IoT network can be controlled
remotely. The devices can communicate with each other and also with the central controlling
devices. Additionally, when deployed in various domains, variety of data can be collected
such as, geographical, astronomical, environmental, and logistical data [15].

IoT security is regarded as securing the entire deployment architecture of IoT from at-
tacks [57]. There are various factors that needs to be taken into consideration for developing
IoT security solutions. The following are the security requirements that needs to be met
for developing IoT security solutions. Due to the immense capabilities made available by
deep learning and big data technologies, they can be utilized to identify a pool of security
breaches related to the security requirements.

3.3.1. Confidentiality

Confidentiality enables information to be transmitted securely during all communica-
tions. When information is transmitted without authentication or encryption, adversaries
are given the chance to violate the privacy of the owner [58, 59]. Typically, big data tech-
nologies consist of secure transmission of data by using encryption methodologies, thus
preventing data to be compromised by adversaries [60].

3.3.2. Integrity

The integrity of an IoT system may be compromised by an adversary. Therefore, integrity
guarantees that data received has not been manipulated during transmission [61, 59]. In
addition, Apache Spark, a big data technology enables the support for data quality checks
in the Spark DataFrame [62]. This enables users to perform data integrity checks on the
IoT system.
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3.3.3. Availability

Availability in IoT systems refer to ensuring that legitimate users are able to access the
system and that unauthorized access is denied [63, 59]. One of primary goals of big data
technologies is to ensure its omnipresence to the user. Further, they can be run on multiple
nodes that ensures high availability of the application [64].

3.3.4. Authentication

Authentication refers to ensure the identity of the peer which IoT devices communi-
cate with. Furthermore, it is also concerned with valid users gaining appropriate access
for network tasks such as control of IoT devices and networks [61, 59]. Additionally, big
data technologies such as Apache Spark incorporate authentication mechanisms for Remote
Procedure Call (RPC) channels [60].

3.3.5. Access Control

Access control in IoT system should act as a means of ensuring that the authenticated
nodes are limited to access what they are privileged to and nothing more [61, 59]. Further-
more, it is known that big data technologies provide access control support for its applica-
tions. A filter is necessary for this to be achieved and each application can be equipped with
its own access control list [60]

Even though, deep learning is not directly related to the IoT security requirements,
the continous monitoring of networking and communications between the IoT devices and
system can aid in detecting and mitigating security breaches at an early stage. As discussed
in section 3.1, the charactersitics of deep learning contribute to the identification of security
breaches, this is because deep learning is capable of handling very large datasets, classifying
legitimate data and anomalous data at a higher accuracy rate, learning from complex data,
and learning from data at a much faster pace.
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Figure 4: Device Connection to Human Value in IoT

Figure 4 illustrates the connection to benefits of IoT devices.
The above sections had discussed on deep learning, big data technologies and IoT security

along with the relationship between them. We have further elaborated the aforementioned
topics in the following sections.

4. Taxonomy

This section highlights and proposes a taxonomy for deep learning, big data technologies,
and IoT security. This taxonomy is classified into different categories namely, Deep Learning,
IoT Security, and Big Data Technologies, and further sub categorised as Deep Learning
Architectures, Frameworks, Model Evaluation, IoT Security Application Area, IoT Security
Attacks, Datasets, Apache Hadoop, Apache Spark, and Apache Storm. Due to the limited
studies that have been conducted by combining deep learning, big data technologies, and
IoT security, we have identified the relationship among these three domains based on related
experimental studies that have used deep learning with a combination of either IoT security,
or big data technologies, and IoT security or big data technologies with security attack
detection, which consists of identical attacks as of that in the IoT space. The taxonomy
derived has been illustrated in Figure 5.
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4.1. Deep learning

In this subsection, we have detailed the common deep learning architectures, popular
deep learning frameworks, and the evaluation methods used to evaluate deep learning based
models.

4.1.1. Deep learning architectures

Deep learning architectures generally have three types of learning models, supervised
learning, unsupervised learning, and semi-supervised learning. In a supervised learning the
data used to train the architecture is fully labelled, whereas in the unsupervised learning,
the data is not labelled and the architecture tries to come up with a structure by extracting
useful information. In semi-supervised learning model a training dataset contains a mixture
of labelled and unlabelled data, this type of learning is futile when extracting relevant
features from the data is tedious [65]. Further, deep learning architectures can be categorised
into two types, discriminative and generative. The discriminative model generally supports
supervised learning methods, whereas the generative model supports unsupervised learning
methods [14].

i. Autoencoder (AE): AE is a type of Artificial Neural Network (ANN) that learns
efficient data coding in an unsupervised fashion [66, 67]. AEs comprise of an input and
an output layer that are connected using one or more hidden layers. Generally, AEs
consist of the same number of input and output layers. It aims in transforming inputs to
outputs in the simplest way possible, by ensuring the input is not distorted very much
[14].

ii. Recurrent Neural Network (RNN): RNN are said to be an extension of Feed
Forward Neural Network (FFNN), which takes advantage of sequential information.
RNNs get the name recurrent as they perform the same task for each element of a
sequence, where the output is dependent on previous computations [68].

iii. Restricted Boltzmann Machine (RBM): RBM is a kind of ANN with the capability
of representing and solving difficult problems. The RBM comprises of two process types,
learning and testing. In the learning phase, vast amount of input examples and desired
outputs are presented to generate the RBM structure where a general rule of mapping
inputs to outputs is learned. In the testing phase, outputs are produced for new inputs
by the RBM, abiding the general rule that was obtained in the learning phase [69].

iv. Deep Belief Network (DBN): DBN is a type of Deep Neural Network (DNN) that
comprises of multiple layers of hidden units, where there are connections between the
layers but not with the units of each layer. Further, DBNs can learn to probabilistically
reconstruct its inputs when trained with examples in unsupervised learning. Addition-
ally, on the post learning phase a DBN can be trained further with supervised learning
for classification problems [70, 71, 72].

v. Long Short-Term Memory (LSTM): LSTM consists of special units often referred
to as memory blocks in the recurrent hidden layer. Further, the memory blocks com-
prise of memory cells with self-connections storing the temporal state of the network in
addition to the special multiplicative units referred to as gates, which controls the flow
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of information. Each memory block consists of input and output gates, where the input
gate is responsible for the flow of input activations into the memory cell, and the output
gate is responsible for output flow of cell activations into the rest of the network [73].

vi. Convolutional Neural Network (CNN): CNN is a type of deep ANN which was
first proposed by the authors of [74, 75]. The CNN incorporates the back propagation
algorithm for learning the receptive fields of simple units. Furthermore, the CNN is
characterized by local connections, weight sharing and local pooling properties. The
local connections and weight sharing enable the model to discover local informative
visual patterns with few adjustable parameters. The local pooling property equips the
network with some translation invariance [76].

Table 2 classifies the architectures discussed above based on the category, learning model,
and the studies that have utilized these architectures. Furthermore, the relationship and
applicability of these architectures with big data technologies and IoT security have been
proved by substantiating the success of the implementation.

Table 2: Deep Learning Architectures

Architectures Category Learning Model Studies
AE Generative Unsupervised [23, 77]
RNN Discriminative Supervised [78]
RBM Generative Unsupervised &

Supervised
[79, 80, 81]

DBN Generative Unsupervised &
Supervised

[82, 83]

LSTM Discriminative Supervised [84, 25, 85, 86, 87]
CNN Discriminative Supervised [88, 89, 86, 87]

4.1.2. Frameworks

The popular frameworks that are typically used for implementing deep learning archi-
tectures (see Section 4.1.1) are as follows.

i. TensorFlow: TensorFlow is an innovative framework developed by Google, which of-
fers a variety of deep learning computation. TensorFlow was officially released in the
late 2015. It includes Java, C++, Go and Python Application Programming Interface
(API)s, and is primarily designed for computation on data flow graphs. Furthermore,
TensorFlow supports multi-CPU and multi-GPU computations with CUDA and SYCL
extensions. Additionally, TensorFlow Lite has been developed to provide support for
mobile and embedded machine learning. Further, TensorFlow Lite provides an Android
Neural Network API [90].
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ii. Theano: Theano is an open source Python library, used for developing complex algo-
rithms through mathematical expressions. It is typically utilized for machine learning
researches. Furthermore, it has gained wide acceptance among the deep learning com-
munity due to its support for automatic symbolic differentiation and GPU accelerated
computing. CUDA is used by Theano as one of its main backend for GPU accelerated
computation [91].

iii. Caffe: Caffe is a widely used training infrastructure, developed by Berkeley Vision and
Learning Center (BVLC) for deep learning based operations. DNNs are simulated as
a network of computing units in Caffe. The computing units are generally referred to
as “layers”, these layers take data as input, perform a set of operations, and pass the
output to the following layer [92].

iv. PyTorch: PyTorch is a deep learning framework based on python that acts as a replace-
ment for NumPy to use the power of GPUs and for deep learning research that provides
maximum flexibility and speed [93]. PyTorch is widely known for its two prominent
features, strong GPU acceleration support and building neural networks dynamically
[94].

v. Microsoft Cognitive Toolkit (CNTK): CNTK is an open source deep learning
framework for Windows and Linux. It is used for training and evaluating powerful deep
neural networks. Microsoft uses this toolkit for Cortana speech models and web rank-
ings. CNTK supports a variety of feed forward, convolutional, and recurrent networks
for speech, image, and text data, and also a combination of these data. Furthermore,
CNTK can scale to multiple GPU servers and is designed in aiming for efficiency [95].

vi. H2O: H2O is a fast, scalable, and open-source machine learning and deep learning
framework for developing smart applications. The support for advanced algorithms
such as deep learning, boosting and bagging elements make H2O preferable for smart
applications. H2O is capable of handling billions of data row in-memory even in a
small cluster. H2O is typically designed to start deploying within minutes and provides
support for Apace Hadoop and Apache Spark cluster [96].

vii. Deeplearning4j: Deeplearning4j is an open source framework for deep learning com-
putations developed by a team led by Adam Gibson and supported by the organization
SkyMind. This framework was written in Java, Scala, CUDA, C, and C++ and is dis-
tributed under the Apache license 2.0. Furthermore, it is compatible with Linux, OS X,
Windows, and Android. Deeplearning4j supports implementation of all deep nets such
as, RBM, DBN, Deep Autoencoder (DAE), and more [97].

Table 3 describes some frameworks commonly used for deep learning, the programming
languages they were written in, the latest stable release version, and the latest stable release
date.
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Table 3: Deep Learning Framework

Framework Written In Latest Stable
Release Version

Latest Stable
Release Date

TensorFlow Python, C++, and CUDA 1.12.0 5th November 2018
Theano Python, and CUDA 1.0.4 16th January 2019
Caffe C++ 1 18th April 2017
PyTorch Python, C++, and CUDA 7th February 2019
CNTK C++ 2.7 4th January 2019
H2O Java 3.24.0.3 7th May 2019
Deeplearning4j Java, Scala, CUDA, C,

C++, Python, and Clojure
0.9.1 13th August 2017

4.1.3. Model evaluation

The commonly used model evaluation techniques for deep learning based models are as
follows.

i. Confusion Matrix: Confusion matrix is a summary of the predicted results of the
classification model. The confusion matrix is derived by summarizing the total count of
correctly and incorrectly classified predictions based on each class [98]. It is necessary
to derive the following values before designing the confusion matrix:

(a) True Positive (TP): The true positive values refer to the number of instances
that has been correctly classified by the model [99].

(b) True Negative (TN): The true negative values are the number of negative in-
stances that were correctly classified by the model [99].

(c) False Positive (FP): False positive value is the number of negative instances
labelled incorrectly as positive instances [99].

(d) False Negative (FN): False negative value is the number of positive instances
labelled incorrectly as negative instances [99].

Table 4 explains the confusion matrix.

Table 4: Confusion Matrix
Actual positive Actual negative

Predicted positive TP FP
Predicted negative FN TN

ii. Recall: Recall also referred to as sensitivity or true positive rate refers to the propor-
tion of real positive instances that have been predicted positive [100]. Recall can be
calculated using the below formula.

Recall =
TP

TP + FN
(1)
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iii. Specificity: Specificity describes the effectiveness of the classification model in identi-
fying negative labels [101]. Specificity is calculated using the below formula.

Specificity =
TN

TN + FP
(2)

iv. False Positive Rate (FPR): FPR also called the Fall-Out is the proportion on neg-
ative instances classified incorrectly as positive instances. In simpler terms, probability
of false alarms to be raised [102]. The FPR is calculated using the below formula.

FalsePositiveRate =
FP

TN + FP
(3)

v. False Negative Rate (FNR): FNR refers to the proportion of incorrectly classified
samples to the number of positive samples [103]. The FNR is calculated using the below
formula.

FalseNegativeRate =
FN

TP + FN
(4)

vi. Precision: Precision is the proportion of predicted positives that are real positives.
Precision is applied on a variety of areas such as, machine learning, data mining, and
information retrieval [100]. Precision is calculated using the below formula:

Precision =
TP

TP + FP
(5)

vii. F-Measure: The f-measure is said to be the harmonic mean of the precision and recall
[82]. The f-measure is calculated using the below mathematical equation.

F1 = 2 · precision · recall
precision + recall

(6)

viii. Accuracy: Accuracy can be described as the overall effectiveness of the classification
model [101]. The formula used for the calculation of the accuracy is as follows:

AC =
(TP + TN)

TP + FP + TN + FN
(7)

ix. Matthew’s Correlation Coefficient (MCC): MCC is a technique used for measuring
the quality of binary and multiclass classification. The MCC values ranges from -1 to +1,
where -1 denotes total disagreement, 0 indicates random predications and +1 indicates
total agreement [104, 105]. The MCC can be calculated using the below formula:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(8)
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x. Kappa: Kappa also referred to as Cohen’s Kappa is a measure of the inter-reliability.
Kappa is said to be more robust compared to the simple percent agreement method.
Kappa values range from 0-1, the following list is the interpretation of Kappa[106]:

i 0 - 0.20 No Agreement
ii 0.21 - 0.39 Slight Agreement
iii 0.40 - 0.59 Fair Agreement
iv 0.60 - 0.79 Substantial Agreement
v 0.80 - 0.90 Almost Perfect

Kappa is calculated using the below formula:

k ≡ Po − Pe

1 − Pe

= 1 − 1 − Po

1 − Pe

(9)

Table 5: Deep Learning Model Evaluation

Study Confusion
Matrix

Recall Specificity FPR FNR Precision F-
Measure

Acc. MCC Kappa

[89] X X X X
[23] X X
[24] X X X X
[25] X X X X X
[85] X
[80] X X X X X X X X
[45] X X X
[86] X X X
[107] X
[87] X X X X X X
[108] X X X
[82] X X X
[78] X
[109] X X X X
[110]
[77] X X
[81] X X X
[44] X X X
[29] X X X
[30] X X X X
[111] X X X X X
[112] X

Table 5 highlights some studies that have incorporated the discussed model evaluation tech-
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niques to evaluate their models.
In this subsection, we detailed about common deep learning architectures along with

popular deep learning frameworks. Finally, we discussed on the evalaution methods used
for evaluating deep learning based models.

4.2. IoT security

This subsection will discuss on IoT security application areas where deep learning has
prominently been applied with a focus on IoT, the security attack types on the IoT space
where deep learning can be used to identify and mitgate those attacks, and finally the
datasets that contain IoT based attacks.

4.2.1. IoT security application areas

The common IoT security application areas where deep learning has prominently been
applied has been discussed below.

i. Anomaly Detection: Anomaly detection is the process of identifying anomalies.
Anomalies are often referred to as patterns that do not follow a standard pattern.
These anomalies are generated by abnormal activities such as, cyber-attacks, credit card
frauds, and more. An anomaly is generally categorized into three categories, namely
point anomalies, contextual anomalies, and collective anomalies.

(a) Point anomalies: If a data instance differs from a normal pattern in the dataset,
it is said to be a point anomaly.

(b) Contextual anomalies: If in a particular context, the data instance behaves
anomalously then it is called contextual anomalies.

(c) Collective anomalies: If a group of similar data instances behaves anomalously
compared with the entire dataset, they are said to be collective anomalies [113].

ii. Host Intrusion Detection System (HIDS): HIDS are used to monitor activities
and characteristics of a single host in a network for any abnormal activities. Generally,
agents are deployed onto target hosts in host-based intrusion detection systems. In some
cases, the agents may be deployed on remote devices. Sensors in host-based intrusion
detection systems are deployed as inline or passive. In inline sensors, the network traffic
passes through the sensors and then reaches the target hosts. The passive sensors
monitor a replica of the real network traffic [114].

iii. Network Intrusion Detection System (NIDS): A NIDS is used to monitor network
traffic flow. The different network layers are analysed by NIDS to detect any possible
security threats [114].

iv. Malware Detection: Malware detection is the process of identifying malware. Typi-
cally, there are two types of malware detection, which are static or dynamic analysis. In
the static analysis, the malware is directly analysed in its binary form, whereas, in the
dynamic analysis, the binary files are executed and the activities are monitored [115].

v. Ransomware Detection: A ransomware is a type of malware which encrypts the af-
fected computer and a ransom is demanded for decryption [116]. Ransomware detection
is the process of identifying ransomware attacks.
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vi. Intruder Detection: Intruder detection is the process of identifying intruders with
precise information. Intruders fall into the following 3 categories:

(a) Masquerader: A person trying to gain unauthorized access into a system
(b) Misfeasor: An authorized user who tries to access privilege features which the

users is prohibited from accessing.
(c) Clandestine user: A person who gains supervisory control of a system in order

to evade auditing and access control or to supress audit collection [78].

vii. IoT Botnet Attack Detection: A bot is a device connected to a common protocol
infrastructure which is remotely controlled. A device can be compromised and turned
into at bot by attackers. When an IoT device joins a botnet, the device can be utilized
for a variety of purposes, including DDoS attacks [117]. IoT botnet attack detection is
the act of detecting IoT botnet based attacks such as, DDoS.

Table 6 denotes the IoT security application areas where deep learning, mainly with big
data technologies have been applied.

Table 6: IoT Security Application Areas

IoT Security Application Area Studies
Anomaly Detection [81, 82]
HIDS [30]
NIDS [25, 80, 45, 44, 29, 30]
Malware Detection [89, 85, 109]
Ransomware Detection [87]
Intruder Detection [78]
IoT Botnet Attack Detection [23]

4.2.2. IoT security attacks

Various IoT security attack based on each layer are as follows.

4.2.2.1. Perception Layer Attacks. The perception layer consists of physical objects such
as, sensors and actuators, nodes, and devices. A perception layer attack affects the physical
object in the IoT infrastructure. Common perception layer attacks have been elaborated
below.

i. Botnets: Botnets such as Mirai, comprises of four major components: (i) a bot is the
malware which infects devices. The bot primarily aims in conducting two tasks, which is
to infect misconfigured devices and to attack a target server on receiving the command
from a botmaster, the person controlling the bot, (ii) a centralized management interface
monitors the condition of botnet and orchestrates the attack provided to the botmaster
through a Command & Control (C&C) server, (iii) the loader spreads the executables
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targeting various types of platforms such as, Acorn RISC Machine (ARM), MIPS, and
x86, through direct communication with new targets, and (iv) the report server is used
to maintain a list of devices in the botnet [118, 23].

ii. Sleep Deprivation Attack: Sleep deprivation attack is a type of attack conducted on
battery powered sensor nodes and devices. Typically, battery powered devices follow
a sleep routine in order to extend its lifetime. The sleep deprivation attack aims in
keeping the nodes and devices awake for an extended period of time, which results in
more battery power consumption and eventually shutting down of the nodes and devices
[119].

iii. Node Tampering & Jamming: Node tampering attacks are triggered when an entire
node or part of the node’s hardware is replaced physically. Electronically way node
tampering can be achieved by interrogating the nodes to gain access and manipulate
sensitive information, such as, routing tables, and shared cryptographic keys. Whereas,
a node jamming attack is when an attacker interferes with the radio frequencies of
wireless sensor nodes, which jams the signal and delays communication to the nodes.
Provided that the attacker is able to jam key sensor nodes, IoT services can be denied
[120].

iv. Eavesdropping: Eavesdropping is an attack that threatens the confidentiality of a
message. An eavesdropping attack is when the attacker overhears information that
is passed via a private communication channel. It is said that the Radio Frequency
Identification (RFID) is the most susceptible device for eavesdropping kind of attacks
[61].

4.2.2.2. Network Layer Attacks. The network layer generally consists of network compo-
nents such as, routers, bridges, and other types of networking components. A network layer
attack is an attack directed towards disrupting the network components in the IoT space.
Prominent network layer attacks in IoT have been discussed below.

i. Man-in-the-Middle (MIM): In the MIM attack an attacker has total control over
a communication channel between two legitimate entities. Further, the attacker is not
limited to reading messages, but to change, erase, and insert messages into the commu-
nication channel [121].

(a) Address Resolution Protocol (ARP) Cache Poisoning: The ARP protocol
targets the resolution of MAC addresses of a host given its IP. This is achieved by
transmitting an ARP packet request on the network. ARP cache poisoning is also
referred to as ARP spoofing, ARP poison routing is the process of counterfeiting
ARP packets that enables impersonation of another host on the network [122].

(b) DNS Spoofing: A DNS maps symbolic names to the IP address. A DNS spoofing
sometimes referred to as DNS cache poisoning, impacts the DNS resolver by storing
malicious mapping information between symbolic names and IP addresses. The
DNS server may be poisoned by an attacker by compromising an authoritative
DNS server or forging a response to a recursive DNS query [123].

22

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



(c) Session Hijacking: A session hijacking attack is the malicious act of the attacker
who manages to secure the user’s session identifier, allowing the attacker to transfer
the session to his/her own system [124].

ii. Denial of Service (DoS)/DDoS: DoS is a type of malicious attack that aims in
consuming resources or bandwidth of genuine users. A DDoS is a variant of the DoS
which is similar to the DoS attack but involves various compromised nodes. [125].

(a) User Datagram Protocol (UDP) Flood: UDP flood is a flooding attack where
multiple UDP datagrams are generated typically by a bot. These UDP datagrams
flood through various parts of the network and congest the entire network [126].

(b) Internet Control Message Protocol (ICMP) Flood: ICMP flood referred to
as ping floods where a continuous ICMP Echo Request (ping) packets are sent to
the host as fast as possible without waiting for a reply. This will consume incoming
and outgoing communications resources as the host tries to reply to the pings [125].

(c) SYN Flood: In a SYN flood attack an attacker sends vast amount of Transmission
Control Protocol (TCP) SYN packets to a target. This forces the target to utilize
constrained resources such as, CPU, bandwidth, and memory in order to reply to
the SYNs. High velocity of attack will cause a DoS attack and eventually will be
unable to serve genuine users [127].

(d) Ping of Death: The ping of death is an attack, where an attacker sends an
extremely large sized ping to the target with intention to collapsing the target.
Many operating systems tend to crash when the ping size has been exceeded [128].

(e) Slowloris: The Slowloris is a DDoS attack, where multiple HyperText Transfer
Protocol (HTTP) requests are opened and manipulated simultaneously between
the attacker and target. Slowloris are capable of collapsing an application by using
minimal traffic and attackers [129].

(f) Network Time Protocol (NTP) Amplification: NTP Amplification attack
is a type of reflection-based volumetric DDoS attack where the NTP is exploited
by the attacker to flood an amplified UDP traffic to a host. Hence, this affects
the host and surrounding infrastructure causing regular traffic inaccessible to the
resource [130].

iii. Routing Attacks: In routing attacks malicious nodes launch routing types of attacks
to disrupt routing operation or for performing DoS attacks [131].

(a) Sybil Attack: During Sybil attack a malicious node breaks the routing system,
and accesses information blocked by the node, or the network gets partitioned.
This attack is executed by a single attacker who creates multiple false identities
and pretends to be multiple in peer-to-peer networks (P-2-P) [132].

(b) Sinkhole Attack: Sinkhole attack is conducted by comprising a node which at-
tempts to draw traffic as much as possible from a specific area, by making itself
look appealing to the surrounding nodes based on the routing metric. Hence, the
malicious node attracts all traffic from the base station. This then provides the
attacker to conduct further attacks on the system [133].
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(c) Selective Forwarding Attack: A selective forwarding attack is capable of con-
ducting a DoS attack where malicious nodes selectively forward packets. The goal
of this attack generally is to disrupt routing paths. Nevertheless, it can be used to
filter any protocol [134].

(d) Wormhole Attack: The aim of a wormhole attack is to disrupt the network
topology and traffic flow. The wormhole attack takes place when a malicious node
tunnels messages among two different parts of the network through a high speed
link [135, 136].

(e) Hello Flood: The hello flood is one of the main attacks in the network layer. The
hello flood attack enables the attacker to force conventional nodes to lose power
by forcing them to transmit large hello packets with very high power [137].

iv. Middleware Attacks: In the IoT infrastructure the middleware comprises of compo-
nents such as cloud. A middleware attack directly involves malicious activities on the
middleware components of the IoT infrastructure.

(a) Cloud Based: In cloud based attack, the attackers directly attack a cloud plat-
form for various reasons, such as information theft, flooding attack, and so forth.
Common cloud based attacks include :

i. Cloud Malware Injection: During cloud malware injection attack an at-
tacker gains access to victim’s data in the cloud and uploads a malicious copy
of the victim’s service instance, therefore enabling the victim’s service to be
processed within the malicious instance [138].

ii. Cloud Flooding Attack: The cloud flooding attack enables the attacker
send a huge number of packets from innocent host in the network in order to
flood the victim. These huge packets can be a combination or multiple TCP,
UDP, and ICMP. Furthermore, this type of attack can affect the service’s
ability to serve the authorized users. Additionally, the usage of the cloud may
rise since it does not have the capability of identifying legitimate and attack
traffic [139].

(b) Authentication Attacks: Authentication based attacks are used to exploit the
authentication process that is used to verify a user, service, or application [140].

i. Brute Force:A brute-force attack makes an attacker to gain access by entering
a variety of login credentials with the hope of guessing the credentials correctly.
The attacker enters a variety of possible passwords until the correct password
is found [141].

ii. Dictionary Attack:The dictionary attack also referred to as the password-
guessing attack is when an attacker has built a database with possible pass-
words. The attacker executes this by eavesdropping on the channel and records
the transcript. After that, passwords are attempted to be generated to match
the recorded ones. If a match has been found, then the attacker has success-
fully managed to acquire the password [142].

iii. Replay Attack:A replay attack enables an attacker to intercept and capture
a digital communication or action and use it at a later point of time. This
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enables the attacker to use someone else’s information to masquerade as that
person [143].

(c) Signature Wrapping Attack: Signature wrapping attack enables an attacker
to appear as a legitimate user and perform arbitrary web service request. This is
achieved by injecting a malicious element into the message structure, this ensures a
valid signature for the legitimate elements and processing of the malicious element
in the application logic [144].

4.2.2.3. Application Layer Attacks. : An application layer is the application itself, such
as smart homes, smart cities, and smart grids. An application layer attack is related
to the security breaches of IoT applications. Prominent application layer attacks have
been briefed below.
(a) Malware: Malware is a type of attack, where executable codes are used by at-

tackers to disrupt the devices in the network. This enables the attackers to gain
unauthorized access or steal sensitive information. In the IoT network, the attack-
ers may take advantage of firmware flaws and are capable of disrupting the entire
IoT architecture [145, 146].

(b) Phishing Attack: Phishing is a type of attack which aims to extract sensitive
information such as, usernames, and passwords from users by appearing to be a
trustworthy entity. The sensitive information can be used later by cyber criminals
to cause harm to the user or system [147].

i. Spear Phishing: Spear phishing is targeted specially at selected individuals
and organizations, rather than random users. The attacker generally enhances
his knowledge on the target and settings. The attacker then may send a
message pretending to be of a legitimate entity [148].

ii. Clone Phishing: Clone phishing is when a legitimate email that was sent
previously is cloned into a malicious email which generally contains a link to
the phisher’s website [148].

iii. Whaling: Whaling is similar to spear phishing except that it is mainly tar-
geted at senior corporate executives and government officials [148].

(c) Code Injection Attack: A code injection attack focuses on depositing malicious
executable code (machine code) into the address space of the victim’s process, and
then authorizes control over to this code [149].

i. Structured Query Language (SQL) Injection: SQL injection executes
malicious SQL database statements by taking advantage of the insufficient
validation of data flow from the user to the database [150].

ii. Script Injection: During script injection or Cross-Site Scripting (XSS) a
malicious script, generally written in JavaScript is injected into the content of
the website. The malicious script is capable of leaking sensitive information
from the site [151].

iii. Shell Injection: Shell injection attacks sometimes referred to as command
injection attacks inject malicious commands into a system to perform malicious
activities [152].
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Table 7: Notable Attacks on IoT

Attack
Layer

Attack
Type

Year Title Description Results/Impact Citation

Physical Botnet 2012 Carna
Botnet

Used to measure
the extent of Inter-
net

Carna found total 1.3 billion
Internet Protocol version 4
(IPv4) addresses in use,
where 141 million were be-
hind a firewall and 729 mil-
lion reverse DNS records.
Remaining 2.3 billion IPv4
address was not used

[153,
154]

Network DNS
spoofing
/ DNS
hijack-
ing

2017 - Used DNS hi-
jacking to attack
40 government
agencies, telcom
companies, and
internet titans
across 13 countries
for 2 years

Update DNS records of or-
ganization so information
will be routed to hackers de-
fined servers

[155]

Application Malware 2016 Mirai Attack on Dyn
DNS service
provider. Mirai
malware installed
on large number of
IoT devices.

High –profile websites in-
accessible such as Twitter,
The New York Times for ap-
proximately 5 hours in the
United States.

[156]

Table 7 details on some of the notable attacks on the IoT space for each layer.

4.2.3. Datasets

The prominently used datasets for experimental analysis on deep learning, big data
technologies and/or for IoT security or network security are as follows.

i. UNSW-NB15: The UNSW-NB15 dataset was developed in 2015, which consists of a
combination of real modern normal and contemporary synthesized attack data. This is a
labelled dataset and consists of a total of 47 features. Further, this dataset consists of 9
attack types, namely fuzzes, analysis, backdoors, DoS, exploits, generic, reconnaissance
shellcode, and worm attack types [157].

ii. NSL-KDD: This dataset is an extension of the KDDCUP99 dataset, where selected
records are extracted from the entire KDDCUP99 dataset. In study [158], the authors
have asserted that the KDDCUP99 dataset highly affects performance of evaluated
systems and results in poor evaluation of anomaly detection techniques. Therefore, they
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have proposed the NSL-KDD, which excludes redundant records in the train set, the
proposed test sets do not contain duplicate records, on the hand in each difficulty level
the number of records selected are inversely proportional to the percentage of records
in the KDDCUP99 dataset, the train and test sets records are reasonable. NSL-KDD
dataset comprises of four attack types, namely DoS, User to Root (U2R), Remote to
Local (R2L), and Probe attacks.

iii. KDDCUP99: The KDDCUP99 dataset was created by the authors of study [159]
based on the DARPA’98 IDS evaluation program [160]. Additionally, this dataset is
widely used among researchers for the evaluation of anomaly detection approaches.
The DARPA’98 dataset is about 4 gigabytes of tcpdump data of 7 weeks of network
traffic. Further, the training data of the dataset consists of approximately 4,900,000
single vector connections in which each consists of 41 features, labelled as attack or
normal data. This dataset comprises of 4 types of attacks, DoS, U2R, R2L, and Probe
attacks [158].

iv. WSN-DS: WSN-DS dataset was created by [161] based on network traffic in wireless
sensor nodes. This dataset consists of a total of 26 labelled features. Additionally, the
WSN-DS consists of 4 types of DoS based attacks, namely black hole attacks, grayhole
attacks, flooding attacks, and scheduling attacks [161].

v. IoTPOT: IoTPOT dataset was developed by [162] which consists of IoT network traffic.
This dataset consists of normal and malware based network traffic, primarily used in
DDoS based attacks. The dataset is classified based on 5 malware families, namely
ZORRO, GAYFGT, nttpd, KOS, and *.sh [162].

vi. Kyoto: Kyoto dataset was built in 2006 for Intrusion Detection System (IDS) research.
This dataset is built based on 3 years of real network traffic data. Further, 14 features
derived from the KDDCUP99 and as well as additional 10 features have been included
in this dataset. Further, their honeypot data consists of a total of 50,033,015 normal
sessions and 43,043,255 attack sessions. In addition, it is discussed on the 3 attack
types, exploits, shellcodes, and malware [163].

vii. CICIDS2017: The CICIDS2017 dataset was created by the Canadian Institute for
Cybersecurity (CIC) in 2017. It contains real world benign and attack network traffic
data. This dataset consists of 225,746 records with a total of 80 features. Additionally,
this dataset consists of Brute Force, Web, DoS, Botnet, and DDoS types of attacks
[164].

viii. Coburg Intrusion Detection Data Sets (CIDDS)-001: CIDDS-001 is a labelled
flow based dataset developed for anomaly based NIDS evaluation. The dataset consists
of normal and attack traffic data collected over the period of four weeks. Further, this
dataset consists of 14 features and 4 types of attacks such as , DoS, PortScan, Brute
Force, and Ping Scan [165].

Table 8 describes the attack types that each dataset contains and list the studies that
have used the dataset for experimental analysis on deep learning, big data technologies
and/or for IoT security or network security.
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Table 8: IoT Based Attack Datasets

Attacks UNSW-
NB15

NSL-
KDD

KDD
CUP99

WSN-
DS

IoTPOT Kyoto CICIDS
2017

CIDDS-
001

Normal X X X X X X X X
DoS X X X X X X
Probe X X
R2L X X
U2R X X
Fuzzers X
Analysis X
Backdoors X
Exploits X X
Generic X
Reconnaissance X
Shell code X X
Worms X
Web X
Botnet X
DDoS X
Malware X X
PortScan X
BruteForce X X
Infilteration
PingScan X

Studies
Studies [25, 45,

30]
[24,
45,
30]

[80, 30] [30] [23] [30] [86, 30] [166]

An in depth discussion of the IoT security application areas, security based attacks on
IoT on each layer, and datasets used for deep learning based experimental analysis, has been
presented in this subsection.

4.3. Big data technologies

This subsection discusses the existing noteworthy big data technologies implemented in
the context of deep learning for IoT security or network security. Furthermore, the big data
technologies, their development platform, their latest stable versions, their latest stable
release dates, and some studies that have applied big data technologies with either deep
learning and/or for IoT security or network security have been tabulated in Table 9.
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4.3.1. Apache Hadoop

Apache Hadoop is a batch processing tool that provides scalability and fault-tolerance.
Hadoop supports petabytes of data and enables applications to be run on multiple nodes.
Furthermore, the log data is broken down into blocks and is sent to the nodes in the Hadoop
cluster. Additionally, Hadoop is popular due to its capability of quick retrieval, searching
log data, scalability, faster insertion of data, and fault tolerance [167].

4.3.2. Apache Spark

Apache Spark was developed as a unified model for distributed data processing by Univer-
sity of California, Berkely in 2009. Spark extends the MapReduce model with data sharing
abstraction called as Resilient Distributed Dataset (RDD). Using this extension, the Spark
can capture and process workloads such as, SQL, streaming, machine learning, and graph
processing [50].

4.3.3. Apache Storm

Apache Storm is an open source real-time computation system. Storm enables convenient
processing of streams of data in real-time. Further, it is capable of processing million tuples
per second per node. Storm is fast, scalable, fault-tolerant, and user friendly. Moreover,
storm provides capabilities to incorporate databases in the processing [51].

Table 9 details the development platform of big data technologies, the latest stable release
version,latest stable release date, and some studies that have applied big data technologies
with either deep learning and IoT security or security attack detection.

Table 9: Commonly Used Big Data Technologies

Big Data
Technologies

Development
Platform

Latest
Stable
Release
Version

Latest
Stable
Release
Date

Studies

Apache Hadoop Java 3.1.1 August 8th
2018

[82, 109,
110, 81,
44, 30]

Apache Spark Scala, Java,
Python, and R

2.4 April 23rd
2019

[82, 78,
109, 110,
77, 81, 29,
30]

Apache Storm Clojure and Java 1.2.2 May 17th
2018

[44]

Here, we discussed some of the prominently used big data technologies in the context of
deep learning and IoT security.
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5. State of the Art Deep Learning for IoT Security using Big Data Technologies

This section comprises of three subsections. The first subsection presents insights of the
state-of-the-art techniques in cases where deep learning has been applied for IoT security.
The second subsection details on the application of deep learning along with big data tech-
nologies. Finally, a comprehensive review of deep learning, big data technologies and IoT
security has been presented.

5.1. Deep learning and IoT security

This sub section discusses the state-of-the-art techniques used for IoT security using deep
learning techniques. The IoT has gained so much attention that even the military use IoT.
Internet of Battlefield Things (IoBT) is referred to as the usage of IoT for military oper-
ations and defensive applications. The authors of study [89] have identified that injection
of malware is the most common attack. Further, they have proposed a deep Eigenspace
learning approach to detect IoBT malware through the device Operational Codes (OpCode)
sequences. The OpCodes are transmuted into the vector space and deep Eigenspace learning
approach is used to classify benign and malicious application. Additionally, they have eval-
uated the sustainability of the proposed approach against junk code insertion attacks. They
have evaluated their model based on four evaluation metrics, namely accuracy, precision,
recall, and f-measure. In addition, they have compared two other similar studies based on
the metric. Comparatively, their proposed approach has achieved better accuracy of 99.68%,
precision of 98.59%, recall of 98.37%, and f-measure of 98.48%. Further, the proposed model
has been able to mitigate junk code insertion attacks [89]. Nevertheless, the datasets used
in this study is a self-created dataset. The quality and validity of the data is debatable.
Furthermore, a limited number of malware samples are included in the dataset.

IoT devices which are more easily compromised compared to desktop computers has
led to a rise in IoT botnet attacks. In order to mitigate this threat, the authors of [23]
have proposed the use of DAE to detect anomalous network traffic from compromised IoT
devices. Deep learning has been applied on the extracted behaviour snapshot of the network.
To evaluate their model, they have infected nine commercial IoT devices with the Mirai and
BASHLITE botnets. The model was evaluated based on the True Positive Rate (TPR),
False Positive Rate (FPR), and attack detection time. The TPR results received was 100%,
while the mean of the FPR was 0.007 +- 0.01 for their proposed model. Furthermore, their
model took 174 +- 212 milliseconds to detect the attacks. However, the model has only
been evaluated based on two botnets, namely the Mirai botnet and the BASHLITE botnet.
Additionally, the proposed model has only been compared with three machine learning
models. Comparison of other deep learning models will further clarify on the accuracy of
the model.

Deep learning with its capabilities such as, high-level feature extraction capability, self-
taught, and compression capabilities makes it an ideal hidden pattern discovery that aids in
discriminating attacks from benign traffic. Therefore, study [24] proposes a deep learning
approach based on Stochastic Gradient Descent (SGD), which enables the detection of at-
tacks in the social IoT. The model has been evaluated based on accuracy, precision, recall,

30

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



f1-measure, detection rate, and False Alarm Rate (FAR). The result show that deep models
have outperformed shallow models in every evaluation aspect. Additionally, it is discussed
that deep learning exhibits better performance compared to traditional machine learning
models. In contrast, the attacks evaluated has been limited, such as DoS, Probe, R2L,
and U2R attacks. Likewise, only a single dataset has been used to evaluate the model, the
NSL-KDD dataset.

Besides, the authors of study [25] have proposed a deep learning technique that enables
intrusion detection in IoT networks using the Bi-directional LSTM Recurrent Neural Net-
work (BLSTM RNN). The model has been evaluated using seven metrics, namely accuracy,
precision, recall, f1-score, miscalculation rate, FAR, and detection time. The proposed model
was able to achieve a high accuracy of 95.7% . On the other hand, the proposed model has
been evaluated on a single dataset. Also, the model was not compared with similar models
in terms of evaluation.

Furthermore, in study [85] the authors have proposed a deep learning model using LSTM
to detect malware in IoT based on OpCodes sequence. The model has been evaluated based
on accuracy, TP, FP, TN, and FN. The accuracy acquired was 98% on new malware, malware
not in the training data. On the contrary, the emulated dataset has been used in this study.
Additionally, there has been limited dataset samples/files, with a total of 180 malwares and
271 benign files.

Additionally, authors of study [80] have introduced a framework for IoT based on Soft-
ware Defined Networking (SDN). They primarily focused on IoT applications, where security
is critical, like smart cities. They have utilized the RBM to deploy an IDS to detect anoma-
lies. They have compared their proposed approach with machine learning algorithms and
have evaluated them based on eight metrics, TP, FP, TN, FN, precision, recall, False Discov-
ery Rate (FDR), and False Negative Rate (FNR). They were able to achieve a precision rate
of more than 94%. Nevertheless, they have opted for the KDD99 dataset, this is an outdated
dataset that contains attacks of the year 1999. Including recent datasets that contain mod-
ern day attacks will enhance the reliability of the model. Due to the fact that this dataset
is outdated, they only contain limited attack types such as, DoS, Probe, Reconnaissance,
R2L, and U2R.

In study [45] the authors have discussed that IoT applications face major security issues in
confidentiality, integrity, privacy, and availability. Therefore, they have proposed a model for
cyberattack detection in the IoT environment. A total of four evaluation metrics have been
used for model evaluation, which includes accuracy, precision, recall, and detection time.
Their results revealed the robustness of the accuracy and significant time saving. However,
the accuracy of the models have been above 95% for the NSL-KDD dataset whereas for
the UNSW-NB15 all models have achieved an accuracy less than 95%. Further, the time
also increases in the UNSW-NB15 compared to the NSL-KDD dataset. NSL-KDD is an
extension of the KDD99 dataset with certain modifications made. Whereas, UNSW-NB15
dataset is a more recent dataset containing modern day attacks. It can be seen from the
result that the model performs better on older datasets and performance decreases on recent
datasets.

Additionally, the authors in study [86] have proposed and implemented a four deep learn-
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ing algorithms and compared it against traditional machine learning algorithms. Further,
they have identified that the hybrid LSTM + CNN algorithm have outperformed all other
algorithms compared to deep learning and machine learning algorithms, with an astonish-
ing accuracy of 97.16%. Comparatively, all deep learning models have outperformed the
machine learning models. In contrast, the dataset was manipulated to balance the data as
it consists of highly unbalanced data. In addition, limited model evaluation metrics were
used such as, accuracy, precision, and recall. Further, evaluation metrics such as, f-measure,
MCC, and TPR, may be of added value to the model.

Besides, the authors of study [107] have proposed a deep learning approach with Dense
Random Neural Network (DRNN) to predict the probability of an ongoing network attack
based on the packet capture. Their methodology primarily focuses on online detection of
network attacks against IoT gateways. They have found that the results they obtained are
comparable to those of the results from the simple threshold detector. Nevertheless, their
study only focuses on limited types of attacks in the IoT space such as, UDP flood, TCP
SYN, sleep deprivation attack, barrage attack, and broadcast attack. Further, the results
have not been compared with other algorithms or with similar studies.

Ransomware, is a fast growing malware that has affected various industries in various
countries. Therefore, study [87] proposes a model that uses LSTM and CNN to distinguish
ransomware and goodware in networks. The evaluation metrics used for the model were
f-measure, TPR, FPR, and MCC. It is claimed that the model acquires an f-measure of
99.6% with a TPR of 97.2% in the classification of ransomware. It is also described that the
model has been able to identify new ransomware in a timely and accurate fashion. However,
the study used an emulated dataset. Additionally, the model only works in identifying
ransomware, not other types of network based attacks such as DoS attacks.

Table 10 discusses on the application area, deep learning algorithms, limitation of the
study and the citation of the discussed state of the art for deep learning and IoT security.

Table 10: Deep Learning and IoT Security

Application
Area

Deep Learning Ar-
chitecture / Model

Limitation of the Study Citation

Malware detection Convolutional net-
work

• Self-created dataset.

• Limited malware samples in
dataset.

[89]

IoT botnet attack
detection

DAE
• Model evaluated only on Mirai

and BASHLITE botnet.

• Proposed model compared
with 3 machine learning
algorithms.

[23]
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Attack detection SGD
• Limited to DoS, Probe, R2L,

and U2R attacks.

• Evaluated on a single dataset,
NSL-KDD.

[24]

Intrusion detection LSTM + Bi-
directional Recur-
rent Neural Network
(BRNN)

• Evaluated on a single dataset.

• Model not compared with sim-
ilar models.

[25]

Malware detection LSTM + Bidirectional
Neural Networks
(BNN)

• Emulated dataset.

• Limited dataset samples/files,
180 malwares and 271 benign
files.

[85]

Intrusion detection RBM
• Outdated dataset, KDD99

used.

• Limited attack types, DoS,
Probe, Reconnaissance, R2L,
and U2R.

[80]

Intrusion detection Deep Feed Forward
Neural Network
(DFNN) + backprop-
agation

• NSL-KDD dataset accuracy
above 95%, but accuracy drops
on the UNSW-NB15 dataset,
all <95%.

• Time has a significant increase
in the UNSW-NB15 dataset.

[45]

IoT network cyber-
security

CNN + LSTM
• Manipulated dataset to be-

come a balanced dataset.

• Limited model evaluation met-
rics, Accuracy, precision, and
recall only.

[86]
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DDoS attack detec-
tion

DRNN
• Limited network attacks dis-

cussed, UDP flood, TCP SYN,
sleep deprivation attack, bar-
rage attack, and broadcast at-
tack.

• No comparative analysis of
similar studies for evaluation
of model.

[107]

Ransomware detec-
tion

LSTM + CNN
• Emulated dataset.

• Detection of ransomware only.

[87]

The above discussed studies have implemented deep learning architectures for IoT secu-
rity and have evidently proven that deep learning can be applied for IoT security. However,
these studies have their own limitations that needs to be addressed in future studies.

5.2. Deep learning and big data technologies

This sub section discusses the state-of-the-art techniques used for deep learning and big
data technologies. With the vast amounts of data generated by various industries, leads
to the interest in developing big data tools for analysis. Thus, authors of study [108] have
proposed a framework that incorporates Apache Spark and a Multi-Layer Perceptron (MLP)
using cascade learning. There framework composes of three stages, first stage is the input
of dataset into Apache Spark, second stage is the cascade learning method, and in the third
stage deep learning algorithm is applied. The framework has been evaluated based on two
metrics, f1 score and accuracy. They have claimed that they have been able to obtain a
model that conducts large scale big data analysis within short periods of time, with lesser
computational complexity and with significant higher accuracy. Needless to say, the accuracy
and f1 score of the proposed model does not reach even 75% for all the stages. Furthermore,
limited big data technologies have been incorporated into the proposed framework.

Besides, in study [82] the authors have strongly claimed that machine learning techniques
are not robust enough to detect sophisticated attacks in existing IDS. Therefore, they have
proposed a distributed approach for abnormal behaviour detection in large scale networks.
They have used the DBN, multi-layer ensemble SVM, and Apache Spark to achieve their
model. Their model has been evaluated using Area under Receiver Operating Character-
istic (ROC), precision, recall, f-measure and training time. The model has shown high
performance in detection of abnormal behaviour in a distributed way. Further, this model
addresses the feature engineering step for ensemble learning, especially with large datasets.
However, the training time for their proposed approach has been significantly higher com-
pared to the other models they have evaluated. Further, the number of features in the
dataset make an impact on the accuracy of the model.
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Additionally, the authors in study [168] have designed and implemented a framework
that trains DNN using Apache Spark. Training of deep learning models requires large
amounts of data and is computational extensive. They have claimed that their proposed
framework can accelerate the training time by distributing the model replicas, through
the stochastic gradient descent, among nodes for data in Hadoop Distributed File System
(HDFS). The framework was evaluated based on run time, accuracy, and error rate. The
proposed framework has shown satisfactory performance of time and accuracy. In contrast,
the run time of the model shows an increase when there is lesser number of nodes. Moreover,
it is seen that the error rate decreases only as the number of iterations increase.

Furthermore, study [78] has proposed a framework to perform intruder detection and
analysis using RNN and rule association mining. The framework employs Apache Spark for
training after the dataset is normalized. The framework has been evaluated using the amount
of correctly classified instances, incorrectly classified instances, Kappa, mean absolute error,
root mean squared error, relative absolute error, and root relative squared error. the study
was able to achieve 199 correctly classified instances (100%) and 0 incorrectly classified
instances (0%). Further, a Kappa score of 1 has been achieved. On the other hand, the
study had limited the model for intruder detection only. In addition, other evaluation metrics
have not been considered for the model, such as training time, precision, and recall.

Netflow, a protocol used for network auditing analysis, and monitoring can be a source of
information for incident detection and forensic purposes. Therefore, study [109] has proposed
a method that incorporates NetFlows with Extreme Learning Machine (ELM) classifier,
trained in a distributed environment of Apache Spark for malware activity detection. The
model has been evaluated based on TPR, FPR, precision, accuracy, error rate, and f-measure.
The proposed model yields higher accuracy, less error rate, and higher f-measure in most
of the scenarios. However, in certain scenarios the method is executed the accuracy is
deemed as the second highest compared to other models evaluated. Further, various big
data technologies have not been considered.

Besides, the authors of the study [110] have proposed a DDoS detection method that
uses neural networks, implemented on the Apache Spark cluster. By applying the Hadoop
HDFS for its capability of creating fault-tolerant applications and efficiency in handling
of large datasets, combined with neural networks, they were able to achieve an accuracy
of 94%. They have affirmed that their system is capable of handling high velocity, and
high volume network flow in real-time and is capable of distinguishing between genuine and
attack data. Further, they have claimed that Apache Spark is suitable for processing of large
volume network traffic. Nevertheless, the accuracy can be further nourished using different
deep learning algorithms or by incorporating optimization methods. Also, the model is only
applicable to detect a single attack type.

Additionally, in study [77] the authors have proposed a system that incorporates two
approaches, namely the anomaly-based distributed ANN, and signature-based approach.
For the anomaly-based detector, BigDL deep learning library was used over Apache Spark.
For the signature-based approach, Suricata an open source IDS was used. Their models have
been evaluated based on FPR, accuracy, and DR. Their hybrid model has outperformed the
traditional signature-based detector, and neural based anomaly-detector. On the contrary,
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limited metrics have been used to evaluate the model. Likewise, the model is only limited
to detect a single type of attack.

Further, the authors of study [81] have proposed an anomaly detection method that uses
the RBM and RNN for anomaly detection in power grids. The authors have primarily used
Apache Hadoop and Apache Spark for analysing the heterogeneous data sources in power
big data, and to apply their deep learning framework. Their model has been evaluated based
on accuracy, FPR, and FNR. They were able to achieve high accuracy rates, low FPR, and
low FNR. However, the model has not been trained on the benchmark datasets. In addition,
limited evaluation metrics have been used for model evaluation.

Besides, in study [44] the authors have discussed on a framework for real-time intrusion
detection. They have used a CC4 neural network which was proposed in study [169] and the
MLP. Further, they have used Apache Storm to stream the data for real-time processing.
They have asserted that the training time sees a significant reduction when using Apache
Storm compared to the regular methods. They have evaluated the model based on accuracy,
FPR, training time, and FNR. They have achieved 89% accuracy and 4.32% FPR. Neverthe-
less, the average accuracy falls below 90%, which can be further improved by incorporating
other deep learning algorithms. In addition, the experiments have been conducted only on
a single dataset.

Table 11: Deep Learning and Big Data Technologies

Big Data
Technolo-
gies

Deep Learning
Architecture /
Model

Application
Area

Limitation of the Study Citation

Apache Spark MLP Healthcare &
tourism

• Accuracy and f1 score
<75%

• Limited big data tech-
nologies used

[108]

Apache Spark DBN Network
abnormal
behaviour
detection

• The training time
is high compared to
other models

• Number of features in
the dataset has an im-
pact on the accuracy

[82]

Apache Spark DNN Big data ap-
plications • Lesser the nodes, in-

crease of run time

• The error rate de-
crease only as itera-
tions increase

[168]
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Apache Spark RNN Intruder
detection • Limited to intruder

detection

• Other metrics not
considered such as
training time, preci-
sion, and recall.

[78]

Apache Spark ELM Malware de-
tection • In scenario 1, the ac-

curacy is second high-
est compared to other
algorithms

• Other big data tech-
nologies not explored

[109]

Apache Spark ANN DDoS attack
detection • Accuracy can be

improved using other
deep learning models

• Limited to single at-
tack

[110]

Apache Spark AE DDoS attack
detection • Other metrics not dis-

cussed such as train-
ing time

• Limited to a single at-
tack

[77])

Apache
Hadoop
Apache Spark

DRBM Anomaly de-
tection • Model does not use

benchmark datasets

• Other metrics not dis-
cussed such as train-
ing time

[81]

Apache
Storm

CC4 neural net-
work + MLP

Real-time in-
trusion detec-
tion

• Average accuracy falls
below 90%

• Experimented on a
single dataset.

[44]

Table 11 describes the big data technologies, deep learning architectures, application
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area, limitations, of the studies that have incorporated deep learning and big data technolo-
gies.

The discussed studies have utilized deep learning architectures and big data technologies
primarily for security and have shown implementation success. Nevertheless, these studies
have some limitations that can be overcome in future studies.

5.3. Deep learning and big data technologies for IoT security

This sub section discusses the relationship among the three prominent areas of our study.
Further, we have elaborated on the state-of-the-art techniques for deep learning, big data
technologies and IoT security. Additionally, we have tabulated the combination of the studies
used in the state-of-the-art and identified the use of deep learning, big data technologies, and
IoT security in each of these studies. Finally, we have discussed some of the prominently used
cloud infrastructure that supports deep learning, big data technologies, and IoT security.

Based on our critical analysis we have made effort to address the relationship between
deep learning, big data, and IoT security. However, past studies have only incorporated
either deep learning and IoT security or deep learning and big data technologies. Further-
more, minimal study has been conducted on deep learning, big data technologies, and IoT
security. This clearly makes it evident that there is a niche area for future researchers to
address. Moreover, with our maximum effort of critically analysing a variety of studies, we
have been able to identify only two studies that have discussed on all the three components.
The advantages and shortcomings of the two studies have been described below.

Due to the exponential growth of various interconnected devices, innovative attacks have
being conducted on these devices. Therefore, it is necessary to come up with innovative
and fool proof methodologies to prevent catastrophic incidents. Hence, authors of [29] have
designed a big data framework for intrusion detection using classification methods such as,
DNN, SVM, random forest, decision tress, and näıve Bayes. The metrics used for evaluation
are accuracy, recall, false rate, specificity, and prediction time. Apache Spark has been used
as a platform for implementing intrusion detection in smart grids using big data analytics.
They have claimed that the DNN algorithm gets the highest accuracy for the raw dataset.
Nevertheless, the highest accuracy gained was by the DNN model, but the accuracy is less
than 80%. Additionally, the DNN prediction time is higher compared to other models.

Besides, the authors in this study [30] have discussed the advancements in hardware,
software, and network topologies, including the IoT, pose security threats that require mod-
ern day approaches to be implemented. Thus, they have proposed a DNN based IDS. The
DNN used is MLP along with FFNN. It has been discussed that the framework has been
developed based on big data technologies, Apache Spark cluster computing platform. The
Apache spark cluster computing is setup over the Apache Hadoop Yet Another Resource
Negotiator (YARN). They have evaluated their model based on accuracy, precision, recall,
f-score, TPR, and FPR. Moreover, their model has outperformed all other traditional ma-
chine learning approaches in both HIDS and NIDS. However, in the multi-class calcification
the accuracy drops below 90% for certain attacks in some of the datasets. Further, the
DNN’s were not trained on the benchmark IDS datasets
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Table 12 compares studies based on the inclusion of deep learning, big data technologies,
and IoT security.

Table 12: Deep Learning, Big Data Technologies and IoT
Security

Study Deep Learning Big Data Technolo-
gies

IoT Security

[44] X X
[168] X X
[78] X X
[110] X X
[108] X X
[81] X X
[23] X X
[24] X X
[25] X X
[85] X X
[80] X X
[45] X X
[107] X X
[82] X X
[109] X X
[77] X X
[89] X X
[86] X X
[87] X X

As seen from Table 12, only deep learning and IoT security or deep learning and big data
technologies have been incorporated in these studies. Implementation success of studies [29]
and [30], convinces researchers that deep learning and big data technologies can be combined
for IoT security. Therefore, due to the limited study conducted on these areas, we encourage
future researchers to implement models based on a variety of deep learning algorithms, and
big data technologies for IoT security.

5.4. Cloud infrastrucutre for deep learning, big data technologies, and IoT security

This subsection details the cloud infrastructures that can be applied to deep learning,
big data technologies, and IoT security. Deep learning has shown promising results in
many domains, however deep learning maybe quite computational extensive on large scale
applications. This in turn, forces the inclusion of additional computational resources. When
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deep learning is applied on a massive scale application, existing resource may be limited.
Hence, cloud infrastructure can be utilized to solve this challenge as they contain vast
amounts of resources such as, multi-core CPU, multi-core GPU, memory, and bandwidth.
Additionally, some cloud infrastructures even provide support for big data technologies and
IoT.

We have tabulated some of the popular cloud services and their support for deep learning,
big data technologies and IoT in Table 13.

Table 13: Cloud Infrastrcture for Deep Learning, Big
Data Technologies and IoT

Cloud Services Support
for Deep
Learning

Support for
Big Data
Technologies

Support
for IoT

Google Cloud X X X
AWS Sagemaker X X X
Deep Cognition X X -
IBM Watson X X X
Microsoft Azure X X X
Oracle Cloud X X X
Alibaba Cloud X X X
TensorPad X - -

The expanding possibilities of the cloud have contributed to the growth of Crimeware-as-
a-Service (CaaS), which enables cybercriminals with limited technical expertise to conduct
organized and automated attacks [170]. There are many types of services provided by CaaS
such as, shadow broker services, Neutrino exploit kits, Mirai devices for rent, DiamondFox
modular malware services, Tox ransomware-as-a-service, and phishing-as-a-service.
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Figure 6: CaaS Types

Figure 6 illustrates the various types of CaaS available.
The above section of this paper had discussed on the state-of-the-art of deep learning,

big data technologies and IoT security. Moreover, the support for the three aforementioned
domains in the cloud has been discussed. Finally, we introduce on CaaS and some of its
types.

6. Open challenges and future directions

This section highlights the most significant research challenges in terms of IoT security
using deep learning and big data technologies. The state of-the-art capabilities in IoT
security, deep learning, and big data technologies have been examined to determine the
major research challenges, suggestions, and future directions.

6.1. Security threat detection

Due to high velocity and variety in multiple domain IoT applications, the complex struc-
ture of data makes it more challenging to detect security threats. Further, choosing the
recognized set of features for security analytics in deep learning algorithms can be interest-
ing [171]. Existing mechanisms lack efficiency in finding the hidden correlation between these
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features. Furthermore, emerging deep learning algorithms can handle the hidden parame-
ters from the IoT application. Moreover, deep learning is capable of finding the correlation
in the variety of data. Additionally, it is possible to acquire high detection rate to detect
zero-day attacks more efficiently [172]. Lastly, compared to traditional approaches, the dis-
tribution representation of deep learning algorithm can handle multiple feature selection
with tremendous data to extract the information for multi-domain IoT applications [173].

6.2. Training duration

Existing techniques take longer time to train the model for accurate detection. As well
as, they require large datasets to train the model [174]. These two conditions are major
bottlenecks in the current mechanism, however the capability of deep learning algorithms to
use less training duration and dataset enables to handle the model efficiently. In addition,
batch size might also impact the time consumed for training due to the accumulation of
network upon weight update [85]. These challenges should be handled by the option of
multiple layering in deep learning, which helps to weigh and recognize the set of specific
parameters from datasets. Lastly, the confined processing and storage facilities further
hinders the model’s training time. In contrast, the big data technologies and cloud based
architecture shall enhance the efficacy of the model by curtailing the training duration [175].

6.3. Time complexity

Most of the existing detection techniques have been developed for batch processing ap-
plication and not for real-time detection. Time complexity plays a vital role in detecting
threats in IoT applications, which contains more streaming data. Further, it helps to identify
the impact of several attributes involved in security threats. Another study has highlighted
that irrespective of using massive real time data the most common existing approaches are
ineffective in classifying intrusions as they employ shallow learning [25]. Moreover, these
time complexity issues can be resolved easily in deep learning approach by implementing
GPU component, as it aids in real time processing and is highly efficient in analysis of the
threat in real-time [39]. Furthermore, the employment of Apache Spark or Apache Hadoop
is effective in minimizing the time complexity [108].

6.4. Computing-in-memory

In-memory processing is a trending development technology for processing the data
stored in the in-memory database. It plays a vital role in streaming analytics and memory-
centric architecture. Conventional techniques are based on disk storage and relational
database which face multiple challenges to handle the modern data volume from IoT devices.
Further, these techniques become inadequate to integrate for security analytics which makes
the organizations to be more vulnerable in terms of security. In a relational database, data
are stored in multiple tables and need to use SQL to do any query processing. These existing
approaches further pose difficultly in combining and aggregating the data for processing and
SQL is designed to fetch rows of data before processing. The above mentioned issues will be
easily handled by in-memory processing for security analytics. The stored data is rapidly
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accessed when it is saved in RAM or flash memory compared to disk storage. Further, in-
memory processing allows data to be analysed in real-time. Real-time processing helps to
make faster reporting and decision making for a security threat. Modern big data technolo-
gies like Apache Spark and Apache Flink process their data in-memory. Incorporating these
technologies to develop new security analytics will enhance the performance and efficiency
for security analytics [2, 176, 177].

6.5. Computational and energy constraint

Computational complexity is one of the most important challenges in the field of IoT
device security, deep learning, and big data, research areas. IoT devices are operated in the
low power batteries and their CPUs have lower clock rates. Performing any computations
in the IoT devices should be fast and shall minimize the straightforward operations [61].
Instead, computation should be carried out in the cloud or edge computing. Similarly, a
study has highlighted that implementing algorithmic based security system should focus
more on producing lightweight computation system for analysis [178]. On the other hand,
the growth of big data as well as increasing computation power benefits the deep learning
techniques to grow rapidly, which in turn have been used in serval industries [25]. Further,
computations can be optimized using the properties of distributed computing and distributed
algorithms. The operations of these algorithm are performed in the hybrid network, in which
the jobs are distributed to various machines to improve their efficiency [30]. Some of the
above discussed challenges have been easily handled by the Apache Spark streaming big
data technological framework, which is capable of utilizing the RDD, Dstreams and parallel
computing features to process the data with feasible computation [108].

6.6. Security at edge

Edge computing platform enables more scalability for computational processes and stor-
age power for IoT devices. Further, it provides opportunities to the devices located near
to the data sources, which permit intelligent operation to be performed away from the cen-
tralized point of infrastructure. Meanwhile, cloud edge infrastructure in the network keeps
the IoT data source, especially with regards to network computing to furnish an intelligent
edge services to detect any threat in real-time. Moreover, IoT devices do not have sufficient
resources to store and analyze the data for any threat [175]. Thus, adopting edge computing
will facilitate to handle the above challenges by distributing the process to multiple resource
over cloud for analysis [179]. Lastly, integrating deep learning and big data technologies for
security analytics of IoT devices provide more efficient processing system to effectively and
accurately detect threats.
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Table 14: Summary of recommendation for research chal-
lenges and future research directions.

Challenge Recommendation Future Research Direc-
tion

Citation

Time complexity • Employ optimal fea-
tures for predicting
the total job execu-
tion time and for de-
tecting attacks.

• Control flow paths.

• Big data technologies
and GPU based archi-
tecture.

• Detection parameter
for real-time analysis.

[39, 25,
179, 108,
180]

Training dura-
tion • Small, medium and

large batch size for
training.

• Large volumes of at-
tack data.

• Extreme and ensem-
ble learning machine-
based classification.

• AE to remove noise.

• Adopting deep lean-
ing based LSTM and
DBN.

• Shorter training time.

• Capable to handle
large volume of data
for processing and
storage.

[85, 82,
175, 181,
30]

Computing-in-
memory • Streaming analytics.

• Memory-centric archi-
tecture.

• Data loading.

• Real-time processing.

• Big data technologies.

• New analytics model.

[2, 176,
177]

Security threat
detection • Distributed or service

oriented model to
handle high velocity
and variety of data.

• Early detection.

• Fault tolerance.

• Incorporating big
data technologies and
hybrid deep learning
algorithms.

[172, 171,
173]
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Computational
and energy
constraint

• Low-dimensional do-
main.

• Dimensionality reduc-
tion.

• Large scale big data
analytics.

• Distributed algo-
rithms.

• Lightweight model.

• MLLib library in
Apache Spark.

• Edge or cloud Com-
puting.

• Distributed system.

• High-speed networks
(5G).

[82, 29, 25,
182]

Security at edge
• Device identification.

• Access control.

• Fault tolerance.

• Hybrid algorithm for
analytics.

• Performing data ana-
lytics at edge- mod-
ernized framework.

[178, 179,
177, 45]

Table 14 summarizes the challenges, the recommendations, and future research directions.
This section had highlighted on the major research challenges in incorporating deep

learning and big data technolgoies for IoT security. Furthermore, the challenges have been
tabulated and recommendation and future research directions have been presented.

7. Conclusion

The expanding population of IoT devices has contributed to the consideration of secu-
rity risks associated with them. IoT devices are proven to be vulnerable due to the recent
increasing attacks such as, the Carna and Mirai botnets. Additionally, IoT devices produce
large volume, velocity and variety of data. This makes existing solutions less efficient and re-
quire modern day solutions. In this regard, deep learning has been widely accepted amongst
researchers and organizations due to their high accuracy, ability to learn deep features, and
minimal human supervision. In addition, big data technologies have also been of an interest
due to their capability in processing large amounts of data, along with their capability to
process data in a variety of environments such as real-time, batch, and stream. Hence, this
study had investigated the possibilities of incorporating deep learning and big data tech-
nologies for IoT security. Our findings indicate that many studies have incorporated deep
learning with IoT security or deep learning with big data technologies, however, there is a
lack of research in incorporating deep learning and big data technologies for IoT security,
nevertheless, our investigations had revealed that two studies have proven the efficiency and
feasibility of incorporating deep learning and big data technologies for IoT security over
traditional models. Considering the various IoT security requirements discussed (see sec-
tion 3.3) and the challenges discussed (see section 6) we have planned to propose a novel
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framework for IoT security based on deep learning and big data technologies and perform
an experimental analysis to prove its efficacy, in the near future. Furthermore, we will at-
tempt to negate the challenges in terms of solving the issues discussed in incorporating deep
learning and big data technologies for IoT security.

Acknowledgement

We would like to extend our sincere gratitude and appreciation to Dr. Ahmed Tajuddin
Bin Samsuddin, Mr. Keng Chee Chan, Ir. Dr. Abdul Aziz Bin Abdul Rahman, Mrs. Azlinda
Tee Binti Md Azlan Tee, and the members of editorial board, Telekom Research & Devel-
opment Sdn. Bhd for their continous support towards the publication of this manuscript.
We would also like to thank the anonymous reviewers and the editors of this journal who
helped us in improving the quality of our manuscript.

46

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



References

[1] N. Mohan, J. Kangasharju, Edge-fog cloud: A distributed cloud for internet of things computations, in:
Proc. Cloudification of the Internet of Things (CIoT), 2016, pp. 1–6. doi:10.1109/CIOT.2016.7872914.

[2] R. A. A. Habeeb, F. Nasaruddin, A. Gani, I. A. T. Hashem, E. Ahmed, M. Imran, Real-time big
data processing for anomaly detection: A survey, International Journal of Information Management
45 (2019) 289–307.

[3] G. Davis, G. Davis, Trending: Iot malware attacks of 2018, accessed on May 10, 2019 (Sep 2018).
URL https://securingtomorrow.mcafee.com/consumer/mobile-and-iot-security/top-trend

ing-iot-malware-attacks-of-2018/

[4] W. G. Wong, Developers discuss iot security and platforms trends, accessed on May 1, 2019 (Jul 2015).
URL https://www.electronicdesign.com/embedded/developers-discuss-iot-security-and-p

latforms-trends

[5] New trends in the world of iot threats, accessed on May 10, 2019.
URL https://securelist.com/new-trends-in-the-world-of-iot-threats/87991/

[6] A. Katal, M. Wazid, R. H. Goudar, Big data: Issues, challenges, tools and good prac-
tices, in: 2013 Sixth International Conference on Contemporary Computing (IC3), IEEE, 2013.
doi:10.1109/ic3.2013.6612229.

[7] A. A. Cardenas, P. K. Manadhata, S. P. Rajan, Big data analytics for security, IEEE Security &
Privacy 11 (6) (2013) 74–76. doi:10.1109/msp.2013.138.

[8] C. D. McDermott, F. Majdani, A. V. Petrovski, Botnet detection in the internet of things using deep
learning approaches, in: 2018 International Joint Conference on Neural Networks (IJCNN), IEEE,
2018, pp. 1–8.

[9] M. Aly, F. Khomh, M. Haoues, A. Quintero, S. Yacout, Enforcing security in internet of things
frameworks: A systematic literature review, Internet of Things (2019) 100050.

[10] J. Pan, Z. Yang, Cybersecurity challenges and opportunities in the new edge computing+ iot world,
in: Proceedings of the 2018 ACM International Workshop on Security in Software Defined Networks
& Network Function Virtualization, ACM, 2018, pp. 29–32.

[11] A. F. A. Rahman, M. Daud, M. Z. Mohamad, Securing sensor to cloud ecosystem using internet of
things (iot) security framework, in: Proceedings of the International Conference on Internet of things
and Cloud Computing, ACM, 2016, p. 79.

[12] C. Perera, R. Ranjan, L. Wang, S. U. Khan, A. Y. Zomaya, Big data privacy in the internet of things
era, IT Professional 17 (3) (2015) 32–39.

[13] R. Hussain, I. Abdullah, Review of different encryptionand decryption techniques used for security
and privacy of iot in different applications, in: 2018 IEEE International Conference on Smart Energy
Grid Engineering (SEGE), IEEE, 2018, pp. 293–297.

[14] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for iot big data and streaming
analytics: A survey, IEEE Communications Surveys & Tutorials 20 (4) (2018) 2923–2960.

[15] M. Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa, I. Yaqoob, Big iot data
analytics: architecture, opportunities, and open research challenges, IEEE Access 5 (2017) 5247–5261.

[16] A. Alnasser, H. Sun, J. Jiang, Cyber security challenges and solutions for v2x communications: A
survey, Computer Networks 151 (2019) 52–67.

[17] P. I. R. Grammatikis, P. G. Sarigiannidis, I. D. Moscholios, Securing the internet of things: Challenges,
threats and solutions, Internet of Things 5 (2019) 41–70.

[18] J. Deogirikar, A. Vidhate, Security attacks in iot: A survey, in: Proc. Analytics and Cloud) (I-SMAC)
2017 Int. Conf. I-SMAC (IoT in Social, Mobile, 2017, pp. 32–37. doi:10.1109/I-SMAC.2017.8058363.

[19] A. O. Otuoze, M. W. Mustafa, R. M. Larik, Smart grids security challenges: Classification by sources
of threats, Journal of Electrical Systems and Information Technology 5 (3) (2018) 468 – 483.

[20] B. Kolosnjaji, A. Zarras, G. Webster, C. Eckert, Deep learning for classification of malware system call
sequences, in: Australasian Joint Conference on Artificial Intelligence, Springer, 2016, pp. 137–149.

[21] Z. Yuan, Y. Lu, Z. Wang, Y. Xue, Droid-sec: deep learning in android malware detection, in: ACM
SIGCOMM Computer Communication Review, Vol. 44, ACM, 2014, pp. 371–372.

47

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



[22] Z. Yuan, Y. Lu, Y. Xue, Droiddetector: android malware characterization and detection using deep
learning, Tsinghua Science and Technology 21 (1) (2016) 114–123. doi:10.1109/TST.2016.7399288.

[23] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. Breitenbacher, Y. Elovici, N-
baiot—network-based detection of iot botnet attacks using deep autoencoders, IEEE Pervasive Com-
puting 17 (3) (2018) 12–22.

[24] A. A. Diro, N. Chilamkurti, Distributed attack detection scheme using deep learning approach for
internet of things, Future Generation Computer Systems 82 (2018) 761–768.

[25] B. Roy, H. Cheung, A deep learning approach for intrusion detection in internet of things using
bi-directional long short-term memory recurrent neural network, in: 2018 28th International Telecom-
munication Networks and Applications Conference (ITNAC), IEEE, 2018, pp. 1–6.

[26] R. A. Ariyaluran Habeeb, F. Nasaruddin, A. Gani, M. A. Amanullah, I. Abaker Targio Hashem,
E. Ahmed, M. Imran, Clustering-based real-time anomaly detection—a breakthrough in big data
technologies, Transactions on Emerging Telecommunications Technologies 0 (0) e3647, e3647 ett.3647.
doi:10.1002/ett.3647.

[27] G. P. Gupta, M. Kulariya, A framework for fast and efficient cyber security network intrusion detection
using apache spark, Procedia Computer Science 93 (2016) 824–831.

[28] V. P. Janeja, A. Azari, J. M. Namayanja, B. Heilig, B-dids: Mining anomalies in a big-distributed
intrusion detection system, in: 2014 IEEE International Conference on Big Data (Big Data), IEEE,
2014, pp. 32–34.

[29] K. Vimalkumar, N. Radhika, A big data framework for intrusion detection in smart grids using apache
spark, in: 2017 International Conference on Advances in Computing, Communications and Informatics
(ICACCI), IEEE, 2017, pp. 198–204.

[30] R. Vinayakumar, M. Alazab, K. Soman, P. Poornachandran, A. Al-Nemrat, S. Venkatraman, Deep
learning approach for intelligent intrusion detection system, IEEE Access 7 (2019) 41525–41550.

[31] C. Cimpanu, Sirenjack attack lets hackers take control over emergency alert sirens, accessed on May
10, 2019 (Apr 2018).
URL https://www.bleepingcomputer.com/news/security/sirenjack-attack-lets-hackers-t

ake-control-over-emergency-alert-sirens/

[32] J. Sanders, 5 biggest iot security failures of 2018, accessed on May 1, 2019.
URL https://www.techrepublic.com/article/5-biggest-iot-security-failures-of-2018/

[33] L. Mathews, Hackers use ddos attack to cut heat to apartments, accessed on May 1, 2019 (Nov 2016).
URL https://www.forbes.com/sites/leemathews/2016/11/07/ddos-attack-leaves-finnish-a

partments-without-heat/#4bd0d0961a09

[34] Iot role in dyn cyberattack, accessed on May 10, 2019.
URL https://www.kaspersky.com/blog/attack-on-dyn-explained/13325/

[35] D. Etherington, K. Conger, D. Etherington, K. Conger, Large ddos attacks cause outages at twitter,
spotify, and other sites – techcrunch, accessed on May 10, 2019 (Oct 2016).
URL https://techcrunch.com/2016/10/21/many-sites-including-twitter-and-spotify-suf

fering-outage/

[36] The possible vendetta behind the east coast web slowdown, accessed on May 10, 2019.
URL https://www.bloomberg.com/news/articles/2016-10-21/internet-service-disrupted-i

n-large-parts-of-eastern-u-s

[37] A. Schiffer, How a fish tank helped hack a casino, accessed on May 1, 2019 (Jul 2017).
URL https://www.washingtonpost.com/news/innovations/wp/2017/07/21/how-a-fish-tank-h

elped-hack-a-casino/?utm_term=.8ba4c46540ef

[38] T. Dodrill, Hacker turns baby monitor into real life nightmare, accessed on May 1, 2019 (May 2014).
URL https://www.offthegridnews.com/privacy/hacker-turns-baby-monitor-into-real-lif

e-nightmare/

[39] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, M. S. Lew, Deep learning for visual understanding: A
review, Neurocomputing 187 (2016) 27–48.

[40] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, A. Swami, The limitations of deep learn-

48

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



ing in adversarial settings, in: 2016 IEEE European Symposium on Security and Privacy (EuroS&P),
IEEE, 2016, pp. 372–387.

[41] R. Shokri, V. Shmatikov, Privacy-preserving deep learning, in: Proceedings of the 22Nd ACM SIGSAC
Conference on Computer and Communications Security, CCS ’15, ACM, New York, NY, USA, 2015,
pp. 1310–1321. doi:10.1145/2810103.2813687.

[42] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, Deep learning for sensor-based activity recognition: A
survey, Pattern Recognition Letters 119 (2019) 3–11.

[43] M. Strohbach, H. Ziekow, V. Gazis, N. Akiva, Towards a big data analytics framework for iot and smart
city applications, in: Modeling and processing for next-generation big-data technologies, Springer,
2015, pp. 257–282.

[44] G. Mylavarapu, J. Thomas, A. K. TK, Real-time hybrid intrusion detection system using apache
storm, in: Proc. and 2015 IEEE 12th Int 2015 IEEE 17th Int. Conf. High Performance Computing
and Communications IEEE 7th Int. Symp. Cyberspace Safety and Security Conf. Embedded Software
and Systems, 2015, pp. 1436–1441. doi:10.1109/HPCC-CSS-ICESS.2015.241.

[45] Y. Zhou, M. Han, L. Liu, J. S. He, Y. Wang, Deep learning approach for cyberattack detection,
in: IEEE INFOCOM 2018-IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), IEEE, 2018, pp. 262–267.

[46] C. Wang, S. Dong, X. Zhao, G. Papanastasiou, H. Zhang, G. Yang, Saliencygan: Deep learning semi-
supervised salient object detection in the fog of iot, IEEE Transactions on Industrial Informatics.

[47] A. Gandomi, M. Haider, Beyond the hype: Big data concepts, methods, and analytics, International
journal of information management 35 (2) (2015) 137–144.

[48] K. Adam, M. A. I. Fakharaldien, J. M. Zain, M. A. Majid, A. Noraziah, Bigdata: Issues, challenges,
technologies and methods, in: Proceedings of the International Conference on Data Engineering 2015
(DaEng-2015), Springer, 2019, pp. 541–550.

[49] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al., Apache hadoop yarn: Yet another resource negotiator, in: Proceedings of the
4th annual Symposium on Cloud Computing, ACM, 2013, p. 5.

[50] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen, S. Venkatara-
man, M. J. Franklin, et al., Apache spark: a unified engine for big data processing, Communications
of the ACM 59 (11) (2016) 56–65.

[51] J. S. van der Veen, B. van der Waaij, E. Lazovik, W. Wijbrandi, R. J. Meijer, Dynamically scaling
apache storm for the analysis of streaming data, in: 2015 IEEE First International Conference on Big
Data Computing Service and Applications, IEEE, 2015, pp. 154–161.

[52] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, K. Tzoumas, Apache flink: Stream and
batch processing in a single engine, Bulletin of the IEEE Computer Society Technical Committee on
Data Engineering 36 (4).

[53] A. Chebotko, A. Kashlev, S. Lu, A big data modeling methodology for apache cassandra, in: 2015
IEEE International Congress on Big Data, IEEE, 2015, pp. 238–245.

[54] D. Borthakur, J. Gray, J. S. Sarma, K. Muthukkaruppan, N. Spiegelberg, H. Kuang, K. Ranganathan,
D. Molkov, A. Menon, S. Rash, et al., Apache hadoop goes realtime at facebook, in: Proceedings of the
2011 ACM SIGMOD International Conference on Management of data, ACM, 2011, pp. 1071–1080.

[55] S. Moin, A. Karim, Z. Safdar, K. Safdar, E. Ahmed, M. Imran, Securing iots in distributed blockchain:
Analysis, requirements and open issues, Future Generation Computer Systems 100 (2019) 325–343.

[56] F. X. Ming, R. A. A. Habeeb, F. H. B. Md Nasaruddin, A. B. Gani, Real-time carbon dioxide
monitoring based on iot & cloud technologies, in: Proceedings of the 2019 8th International Conference
on Software and Computer Applications, ACM, 2019, pp. 517–521.

[57] M. A. Khan, K. Salah, Iot security: Review, blockchain solutions, and open challenges, Future Gen-
eration Computer Systems 82 (2018) 395–411.

[58] J.-S. Cho, S.-S. Yeo, S. K. Kim, Securing against brute-force attack: A hash-based rfid mutual au-
thentication protocol using a secret value, Computer communications 34 (3) (2011) 391–397.

[59] H. A. Khattak, M. A. Shah, S. Khan, I. Ali, M. Imran, Perception layer security in internet of things,

49

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Future Generation Computer Systems 100 (2019) 144–164.
[60] Spark security, accessed on May 10, 2019.

URL https://spark.apache.org/docs/latest/security.html

[61] M. M. Hossain, M. Fotouhi, R. Hasan, Towards an analysis of security issues, challenges, and open
problems in the internet of things, in: 2015 IEEE World Congress on Services, IEEE, 2015, pp. 21–28.

[62] How-to: Do data quality checks using apache spark dataframes, accessed on May 10, 2019 (Jul 2015).
URL https://blog.cloudera.com/blog/2015/07/how-to-do-data-quality-checks-using-apa

che-spark-dataframes/

[63] S. Babar, P. Mahalle, A. Stango, N. Prasad, R. Prasad, Proposed security model and threat taxonomy
for the internet of things (iot), in: International Conference on Network Security and Applications,
Springer, 2010, pp. 420–429.

[64] Spark standalone mode, accessed on May 10, 2019.
URL https://spark.apache.org/docs/latest/spark-standalone.html#high-availability

[65] G. Huang, S. Song, J. N. Gupta, C. Wu, Semi-supervised and unsupervised extreme learning machines,
IEEE transactions on cybernetics 44 (12) (2014) 2405–2417.

[66] C.-Y. Liou, J.-C. Huang, W.-C. Yang, Modeling word perception using the elman network, Neuro-
computing 71 (16-18) (2008) 3150–3157.

[67] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, D.-R. Liou, Autoencoder for words, Neurocomputing 139 (2014)
84–96. doi:10.1016/j.neucom.2013.09.055.

[68] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, M. Ghogho, Deep recurrent neural network for
intrusion detection in sdn-based networks, in: 2018 4th IEEE Conference on Network Softwarization
and Workshops (NetSoft), IEEE, 2018, pp. 202–206.

[69] B. Li, M. H. Najafi, D. J. Lilja, Using stochastic computing to reduce the hardware requirements
for a restricted boltzmann machine classifier, in: Proceedings of the 2016 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ACM, 2016, pp. 36–41.

[70] A. M. Abdel-Zaher, A. M. Eldeib, Breast cancer classification using deep belief networks, Expert
Systems with Applications 46 (2016) 139–144.

[71] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural Compu-
tation 18 (7) (2006) 1527–1554. doi:10.1162/neco.2006.18.7.1527.

[72] G. Hinton, Deep belief networks, Scholarpedia 4 (5) (2009) 5947. doi:10.4249/scholarpedia.5947.
[73] H. Sak, A. Senior, F. Beaufays, Long short-term memory recurrent neural network architectures for

large scale acoustic modeling, in: Fifteenth annual conference of the international speech communica-
tion association, 2014.

[74] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, L. D. Jackel,
Handwritten digit recognition with a back-propagation network, in: Advances in neural information
processing systems, 1990, pp. 396–404.

[75] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, L. D. Jackel, Back-
propagation applied to handwritten zip code recognition, Neural Computation 1 (4) (1989) 541–551.
doi:10.1162/neco.1989.1.4.541.

[76] M. Liang, X. Hu, Recurrent convolutional neural network for object recognition, in: Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015, pp. 3367–3375.

[77] S. Alzahrani, L. Hong, Detection of distributed denial of service (ddos) attacks using artificial intelli-
gence on cloud, in: 2018 IEEE World Congress on Services (SERVICES), IEEE, 2018, pp. 35–36.

[78] A. Thilina, S. Attanayake, S. Samarakoon, D. Nawodya, L. Rupasinghe, N. Pathirage, T. Edirisinghe,
K. Krishnadeva, Intruder detection using deep learning and association rule mining, in: 2016 IEEE
International Conference on Computer and Information Technology (CIT), IEEE, 2016, pp. 615–620.

[79] A. Elsaeidy, I. Elgendi, K. S. Munasinghe, D. Sharma, A. Jamalipour, A smart city cyber security
platform for narrowband networks, in: Proc. 27th Int. Telecommunication Networks and Applications
Conf. (ITNAC), 2017, pp. 1–6. doi:10.1109/ATNAC.2017.8215388.

[80] A. Dawoud, S. Shahristani, C. Raun, Deep learning and software-defined networks: Towards secure
iot architecture, Internet of Things 3 (2018) 82–89.

50

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



[81] L. Dong-Lan, L. Xin, Y. Hao, W. Wen-Ting, Z. Xiao-Hong, C. Jian-Fei, A multilevel deep learning
method for data fusion and anomaly detection of power big data, in: 3rd Annual International Con-
ference on Electronics, Electrical Engineering and Information Science (EEEIS 2017), Atlantis Press,
2017.

[82] N. Marir, H. Wang, G. Feng, B. Li, M. Jia, Distributed abnormal behavior detection approach based
on deep belief network and ensemble svm using spark, IEEE Access 6 (2018) 59657–59671.

[83] Y. He, G. J. Mendis, J. Wei, Real-time detection of false data injection attacks in smart grid: A
deep learning-based intelligent mechanism, IEEE Transactions on Smart Grid 8 (5) (2017) 2505–2516.
doi:10.1109/tsg.2017.2703842.

[84] J. Chauhan, S. Seneviratne, Y. Hu, A. Misra, A. Seneviratne, Y. Lee, Breathing-based authentication
on resource-constrained IoT devices using recurrent neural networks, Computer 51 (5) (2018) 60–67.
doi:10.1109/mc.2018.2381119.

[85] H. HaddadPajouh, A. Dehghantanha, R. Khayami, K.-K. R. Choo, A deep recurrent neural network
based approach for internet of things malware threat hunting, Future Generation Computer Systems
85 (2018) 88–96. doi:10.1016/j.future.2018.03.007.

[86] M. Roopak, G. Y. Tian, J. Chambers, Deep learning models for cyber security in iot networks, in:
2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), IEEE,
2019, pp. 0452–0457.

[87] S. Homayoun, A. Dehghantanha, M. Ahmadzadeh, S. Hashemi, R. Khayami, K.-K. R. Choo, D. E.
Newton, DRTHIS: Deep ransomware threat hunting and intelligence system at the fog layer, Future
Generation Computer Systems 90 (2019) 94–104. doi:10.1016/j.future.2018.07.045.

[88] J. Su, V. D. Vasconcellos, S. Prasad, S. Daniele, Y. Feng, K. Sakurai, Lightweight classification of IoT
malware based on image recognition, in: 2018 IEEE 42nd Annual Computer Software and Applications
Conference (COMPSAC), IEEE, 2018. doi:10.1109/compsac.2018.10315.

[89] A. Azmoodeh, A. Dehghantanha, K. R. Choo, Robust malware detection for internet of (battlefield)
things devices using deep eigenspace learning, IEEE Transactions on Sustainable Computing 4 (1)
(2019) 88–95. doi:10.1109/TSUSC.2018.2809665.

[90] W. G. Hatcher, W. Yu, A survey of deep learning: Platforms, applications and emerging research
trends, IEEE Access 6 (2018) 24411–24432. doi:10.1109/ACCESS.2018.2830661.

[91] H. Ma, F. Mao, G. W. Taylor, Theano-mpi: a theano-based distributed training framework, in:
European Conference on Parallel Processing, Springer, 2016, pp. 800–813.

[92] P. Roy, S. L. Song, S. Krishnamoorthy, A. Vishnu, D. Sengupta, X. Liu, Numa-caffe: Numa-aware
deep learning neural networks, ACM Transactions on Architecture and Code Optimization (TACO)
15 (2) (2018) 24.

[93] N. Ketkar, Introduction to pytorch, in: Deep learning with python, Springer, 2017, pp. 195–208.
[94] M. Ravanelli, T. Parcollet, Y. Bengio, The pytorch-kaldi speech recognition toolkit, in: Proc. Speech

and Signal Processing (ICASSP) ICASSP 2019 - 2019 IEEE Int. Conf. Acoustics, 2019, pp. 6465–6469.
doi:10.1109/ICASSP.2019.8683713.

[95] F. Seide, A. Agarwal, Cntk: Microsoft’s open-source deep-learning toolkit, in: Proceedings of the
22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16,
ACM, New York, NY, USA, 2016, pp. 2135–2135. doi:10.1145/2939672.2945397.

[96] A. Candel, V. Parmar, E. LeDell, A. Arora, Deep learning with h2o, H2O. ai Inc.
[97] A. Parvat, J. Chavan, S. Kadam, S. Dev, V. Pathak, A survey of deep-learning frameworks, in: Proc.

Int. Conf. Inventive Systems and Control (ICISC), 2017, pp. 1–7. doi:10.1109/ICISC.2017.8068684.
[98] What is a confusion matrix in machine learning, accessed on May 10, 2019 (May 2018).

URL https://machinelearningmastery.com/confusion-matrix-machine-learning/

[99] J. Han, M. Kamber, J. Pei, Data Mining: Concepts and Techniques, 3rd Edition, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2011.

[100] D. M. Powers, Evaluation: from precision, recall and f-measure to roc, informedness, markedness and
correlation, Journal of Machine Learning Technologies 2(1) (2011) 37–63.

[101] M. Sokolova, G. Lapalme, A systematic analysis of performance measures for classification tasks,

51

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Information Processing & Management 45 (4) (2009) 427–437. doi:10.1016/j.ipm.2009.03.002.
[102] What is a false positive rate?, accessed on May 10, 2019.

URL https://www.corvil.com/kb/what-is-a-false-positive-rate

[103] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, C. Wang, Ma-
chine learning and deep learning methods for cybersecurity, IEEE Access 6 (2018) 35365–35381.
doi:10.1109/ACCESS.2018.2836950.

[104] Matthews correlation coefficient, accessed on May 10, 2019.
URL https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews\_co

rrcoef.html

[105] B. Matthews, Comparison of the predicted and observed secondary structure of t4 phage lysozyme,
Biochimica et Biophysica Acta (BBA) - Protein Structure 405 (2) (1975) 442–451. doi:10.1016/0005-
2795(75)90109-9.

[106] M. L. McHugh, Interrater reliability: the kappa statistic, Biochemia medica: Biochemia medica 22 (3)
(2012) 276–282.

[107] O. Brun, Y. Yin, E. Gelenbe, Deep learning with dense random neural network for detecting at-
tacks against IoT-connected home environments, Procedia Computer Science 134 (2018) 458–463.
doi:10.1016/j.procs.2018.07.183.

[108] A. Gupta, H. K. Thakur, R. Shrivastava, P. Kumar, S. Nag, A big data analysis framework using
apache spark and deep learning, in: Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), 2017,
pp. 9–16. doi:10.1109/ICDMW.2017.9.

[109] R. Kozik, Distributing extreme learning machines with apache spark for netflow-based malware activity
detection, Pattern Recognition Letters 101 (2018) 14–20.

[110] C.-J. Hsieh, T.-Y. Chan, Detection ddos attacks based on neural-network using apache spark, in: 2016
International Conference on Applied System Innovation (ICASI), IEEE, 2016, pp. 1–4.

[111] S. Rathore, J. H. Park, Semi-supervised learning based distributed attack detection framework for iot,
Applied Soft Computing 72 (2018) 79–89.

[112] R. Abdulhammed, M. Faezipour, A. Abuzneid, A. AbuMallouh, Deep and machine learning approaches
for anomaly-based intrusion detection of imbalanced network traffic, IEEE Sensors Letters 3 (1) (2019)
1–4. doi:10.1109/lsens.2018.2879990.

[113] M. Ahmed, A. N. Mahmood, J. Hu, A survey of network anomaly detection techniques, Journal of
Network and Computer Applications 60 (2016) 19–31.

[114] M. Nobakht, V. Sivaraman, R. Boreli, A host-based intrusion detection and mitigation framework for
smart home iot using openflow, in: 2016 11th International conference on availability, reliability and
security (ARES), IEEE, 2016, pp. 147–156.

[115] J. Saxe, K. Berlin, Deep neural network based malware detection using two dimensional binary pro-
gram features, in: 2015 10th International Conference on Malicious and Unwanted Software (MAL-
WARE), IEEE, 2015, pp. 11–20.

[116] I. Kara, M. Aydos, Static and dynamic analysis of third generation cerber ransomware, in: 2018
International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism (IBIGDELFT),
IEEE, 2018, pp. 12–17.

[117] J. M. Ceron, K. Steding-Jessen, C. Hoepers, L. Z. Granville, C. B. Margi, Improving iot botnet
investigation using an adaptive network layer, Sensors 19 (3) (2019) 727.

[118] C. Kolias, G. Kambourakis, A. Stavrou, J. Voas, Ddos in the iot: Mirai and other botnets, Computer
50 (7) (2017) 80–84.

[119] S. Vashi, J. Ram, J. Modi, S. Verma, C. Prakash, Internet of things (iot): A vision, architectural
elements, and security issues, in: 2017 International Conference on I-SMAC (IoT in Social, Mobile,
Analytics and Cloud)(I-SMAC), IEEE, 2017, pp. 492–496.

[120] I. Andrea, C. Chrysostomou, G. Hadjichristofi, Internet of things: Security vulnerabilities and chal-
lenges, in: 2015 IEEE Symposium on Computers and Communication (ISCC), IEEE, 2015, pp. 180–
187.

[121] B. Barak, Constant-round coin-tossing with a man in the middle or realizing the shared random

52

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



string model, in: The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002.
Proceedings., IEEE, 2002, pp. 345–355.

[122] V. Ramachandran, S. Nandi, Detecting arp spoofing: An active technique, in: International Confer-
ence on Information Systems Security, Springer, 2005, pp. 239–250.

[123] S. Son, V. Shmatikov, The hitchhiker’s guide to dns cache poisoning, in: International Conference on
Security and Privacy in Communication Systems, Springer, 2010, pp. 466–483.

[124] P. De Ryck, L. Desmet, F. Piessens, W. Joosen, Secsess: Keeping your session tucked away in your
browser, in: Proceedings of the 30th Annual ACM Symposium on Applied Computing, ACM, 2015,
pp. 2171–2176.

[125] K. Sonar, H. Upadhyay, A survey: Ddos attack on internet of things, International Journal of Engi-
neering Research and Development 10 (11) (2014) 58–63.

[126] A. Bijalwan, M. Wazid, E. S. Pilli, R. C. Joshi, Forensics of random-udp flooding attacks, Journal of
Networks 10 (5) (2015) 287.

[127] M. Beaumont-Gay, A comparison of syn flood detection algorithms, in: Second International Confer-
ence on Internet Monitoring and Protection (ICIMP 2007), IEEE, 2007, pp. 9–9.

[128] J. Erickson, Hacking: the art of exploitation, No starch press, 2008.
[129] Y. G. Dantas, V. Nigam, I. E. Fonseca, A selective defense for application layer ddos attacks, in: 2014

IEEE Joint Intelligence and Security Informatics Conference, IEEE, 2014, pp. 75–82.
[130] J. Krupp, M. Backes, C. Rossow, Identifying the scan and attack infrastructures behind amplification

ddos attacks, in: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communica-
tions Security, ACM, 2016, pp. 1426–1437.

[131] B. Kannhavong, H. Nakayama, Y. Nemoto, N. Kato, A. Jamalipour, A survey of routing attacks in
mobile ad hoc networks, IEEE Wireless communications 14 (5) (2007) 85–91.

[132] Z. Trifa, M. Khemakhem, Sybil nodes as a mitigation strategy against sybil attack, Procedia Computer
Science 32 (2014) 1135–1140.

[133] I. Krontiris, T. Dimitriou, T. Giannetsos, M. Mpasoukos, Intrusion detection of sinkhole attacks
in wireless sensor networks, in: International symposium on algorithms and experiments for sensor
systems, wireless networks and distributed robotics, Springer, 2007, pp. 150–161.

[134] L. Wallgren, S. Raza, T. Voigt, Routing attacks and countermeasures in the rpl-based internet of
things, International Journal of Distributed Sensor Networks 9 (8) (2013) 794326.

[135] C. Eik Loo, M. Yong Ng, C. Leckie, M. Palaniswami, Intrusion detection for routing attacks in sensor
networks, International Journal of Distributed Sensor Networks 2 (4) (2006) 313–332.

[136] P. Pongle, G. Chavan, Real time intrusion and wormhole attack detection in internet of things, Inter-
national Journal of Computer Applications 121 (9).

[137] M. Mahajan, K. Reddy, M. Rajput, Design and simulation of a blacklisting technique for detection of
hello flood attack on leach protocol, Procedia Computer Science 79 (2016) 675–682.

[138] N. Gruschka, M. Jensen, Attack surfaces: A taxonomy for attacks on cloud services, in: 2010 IEEE
3rd international conference on cloud computing, IEEE, 2010, pp. 276–279.

[139] C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel, M. Rajarajan, A survey of intrusion detection
techniques in cloud, Journal of network and computer applications 36 (1) (2013) 42–57.

[140] J. Liu, Y. Xiao, C. P. Chen, Authentication and access control in the internet of things, in: 2012 32nd
International Conference on Distributed Computing Systems Workshops, IEEE, 2012, pp. 588–592.
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