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A B S T R A C T

While there are several partial solutions to model some aspects of cities (e.g. transportation or energy), there is
no framework allowing modelling of a complex system such as a city. This paper aims on providing a solution
that can be used by practitioners to model impact of different scenarios and smart city projects encapsulating
different subsystems, such as transportation, energetics or, for example, eGovernment. The term “smart cities” is
classified into Systems Theory, particularly focusing on Cyber-Physical Systems. This classification is further
elaborated to define a new term, so-called Smart City Agent (SCA). The SCA is considered as the main building
block for modelling smart cities. The approach within this paper however stresses the interconnection of dif-
ferent systems within a city. Its’ strength is in better exchange of data and among heterogeneous agents. This
information management approach is the missing key in the growing market of partial smart city solutions as it
will allow simulation of solutions in complex systems such as a city. The suitability of usefulness of the proposed
approach is demonstrated on a use case dealing with charging of electrical vehicles. The results show that the
approach is suitable for modelling of dynamic behaviour.

1. Introduction

The area of smart cities is currently undergoing a quick develop-
ment and many different solutions are emerging on the markets. It is
estimated that by 2030 more than 100 billion dollars will be invested in
smart city applications (Visvizi & Lytras, 2018). In the paper (Lom &
Pribyl, 2017), a modelling approach of smart cities called SMArt City
Evaluation Framework (SMACEF) was introduced. SMACEF is the
modular framework that allows modelling of the current state of a
system as well as its future states, and based on defined scenarios and
key performance indicators (KPIs) can be benchmarked which the
proposed solution is the best one. In other words, the goal of the fra-
mework is to evaluate if the proposed solutions are beneficial and
useful for cities or not.

The modelling approach is based on the Multi-Agent Systems
(MAS). Every object is represented by an intelligent agent. The practical
implementation of SMACEF was published in the paper (Pribyl, Lom, &
Přibyl, 2017). Based on SMACEF, a new type of an intelligent agent –
Smart City Agent (SCA) is introduced and described as a building block
for modelling smart cities in this paper. The area of smart city model-
ling is classified to the theories of Systems Theory and Cyber-Physical
Systems, and both can be modelled by Multi-Agent Systems.

The Smart City Agent is a modified version of an intelligent agent. It

is more suitable for benchmarking and evaluating purposes in smart
cities. The practical example of an implementation of Smart City Agents
using SMACEF is demonstrated. Cities are dynamic and nonlinear sys-
tems and for this reason the models have to be dynamically simulated
with different scenarios, and the results of these simulations should be
benchmarked.

The proposed solution can be directly used by practitioners to model
dynamic behaviour of interacting subsystems. The literature review
shown that at the present, there is no alternative solution to this task
and city representatives are depending on the providers of partial so-
lutions.

In the Sections 2,3 and 4, a city is classified into the Systems Theory
and Cyber-Physical Systems. In the Sections 5 and 6, modelling of smart
cities is fitted into Multi-Agent Systems. The Section 7 deals with the
definition of Smart City Agent followed by the use case, evaluation of
the results and discussion.

2. Background

A system according to (Rousseau, 2015) is: “a set of interacting or
interdependent component parts forming a complex whole. Every system is
delineated by its spatial and temporal boundaries, surrounded and influ-
enced by its environment, described by its structure and purpose and
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expressed in its functioning.” A system can be divided into subsystems. A
subsystem is a separable and identifiable part (component, element) of
a system. An example of a system according to the Systems Theory is
depicted in Fig. 1.

The system consists of subsystems and is surrounded by its en-
vironment. The system is defined by its structure S = (U, V) using a set
of internal objects (universum of system) U = (u1,…,u23) and a set of
internal relations V = (v1,…,v29). The example of an object, ui, can be a
parking sensor or a cloud and an example of internal relations, vj, can be
a communication between the parking sensor and the cloud. The system
in this example has its boundaries defined by B = (u1, u2, u3, u4, u5, u6).
The boundaries can be seen as interfaces among systems, subsystems
and environment. Accordingly, the subsystems have their boundaries
defined by Bsub1 = (u15, u16) and Bsub2 = (u21, u22, u23). The system has
also its input I = (i1, i2, i3, i4, i5) and output relations O = (o1, o2, o3) as
well as input Ui = (u1, u3, u4, u6) and output objects Uo = (u2, u5). The
subsystem 1 has only output relations Osub1 = (v18, v19, v20) and output
objects Uosub1 = (u15, u16). The subsystem 2 has input Isub2 = (v15) and
output relations Osub2 = (v13, v14, v16, v17) as well as the input Uisub2 =
(u22) and output relations Uosub2 = (u21, u22, u23). The environment is
defined by a set of external objects E = (e1, e2, e3, e4, e5, e6).

A city according to (James, Holden, & Lewin, 2013) is: “a large and
permanent human settlement and cities generally consist of complex sub-
systems for example for sanitation, utilities, land usage, housing, or trans-
portation. The concentration of development greatly facilitates interaction
among people and businesses, sometimes benefiting both parties in the pro-
cess, but it also presents challenges to managing urban growth.”

According to Systems Theory and the example in Fig. 1, a city can be
defined as an environment which consists of multiple systems that can
be divided into subsystems. The examples of systems within a city can
be represented by energy or transport systems. For example, energy
network or power plants are subsystems of the energy system, and
vehicles or infrastructure are subsystems of the transport system. The
example with the particular systems is shown in Fig. 2.

3. Cities versus smart cities

What is a difference between the terms “traditional cities” and
“smart cities” in this paper? In the traditional cities, (sub)systems are

commonly able to interact only with their environment. It means that
systems are mostly stand-alone and not interoperable with other sys-
tems. On the other hand, one of the main goals of smart cities is to
interconnect different systems and subsystems among themselves to
increase the quality of life, energy savings or to reduce emissions. The
main difference between the traditional and smart cities according to
the Systems Theory is demonstrated in Fig. 2 and the Fig. 3.

In Fig. 2, the (sub)systems of the transport system do not interact
with other (sub)systems and only interact with the environment. In the
Fig. 3, the individual (sub)systems of the transport system are inter-
connected with the (sub)systems of the energy system. In smart cities,
such interconnections among (sub)systems can represent exchange of
information or energy (resources). The particular example can be that
an electric car is able to communicate directly with the energy network
and reserve a performance for itself, or the infrastructure can commu-
nicate directly with power plants to optimize energy supplies based on
the demand from vehicles at the infrastructure. Within a city, many
other systems exist. Energy and transport systems has been selected to
show a particular example.

4. Smart cities as cyber-physical systems

Based on the previous sections, cities can be generally considered to
be seen as an environment according to the Systems Theory.
Nevertheless, this theory is very broad and the entire Systems Theory
can be divided to several specific subsets. One of these is called Cyber-
Physical Systems (CPS) and we demonstrate that cities can be con-
sidered to be CPS. Several papers related to this topic has been already
published (Hashem et al., 2016a). In simply terms, CPS means that the
physical and virtual (software) world are interconnected (Lee, Bagheri,
& Kao, 2015).

This perfectly fits to the aims of smart cities and allows us to in-
terconnect particular systems (e.g. energy, transport, buildings). The
physical part of the smart city is generally based on a network of sen-
sors and actuators embedded through-out the urban terrain, interacting
with wireless devices (e.g. tablets, smartphones) and having an
Internet-based backbone with cloud service (virtual part of CPS). The
data collected and flowing through such CPS may involve traffic con-
ditions, the occupancy of parking spaces, air/water quality information,

Fig. 1. The example of a system.
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the structural health of roads or buildings, and the location and status
of city resources including transportation vehicles, police officers or
healthcare facilities (Hashem et al., 2016a).

Smart cities are mainly about collecting and disseminating data. As
shown in the Fig. 4, to view the smart city (in terms of CPS) as a closed-
loop system is extremely important and, in some cases, critical. Simply
collecting and disseminating data to user groups can in fact be more
harmful than helpful (Ismagilova, Hughes, Dwivedi, & Raman, 2019).
As an example, today’s “smart parking” technology essentially informs
drivers about available parking spaces. As a result, it is often the case
that multiple drivers converge to where a few spaces are available, thus
creating additional traffic congestion from drivers attracted to the area
who cannot find a space (Geng & Cassandras, 2013).

The smart city can be classified as CPS where computing elements
coordinate and communicate with sensors, that monitor physical in-
dicators, and actuators, that modify the physical environment, where
they operate. CPS often seeks to control the environment in some way.
CPS uses sensors to connect all distributed intelligence in the environ-
ment to gain a deeper knowledge of the environment which enables a
more accurate control. In a physical context, actuators act and modify
the environment where users live. In a virtual context, CPS is used to
collect data from the virtual activities of users such as their involvement

in social networks or e-commerce sites. Then, CPS reacts in some way to
this data to predict actions or needs of users as a whole (Lee et al.,
2015).

CPS can be defined in the same way as a traditional system ac-
cording to the Systems Theory. The main difference is demonstrated in
the Fig. 5. The physical and virtual world are interconnected in CPS.
The boundary between systems is called an interface. In case of CPS,
communication interfaces are important. This concept is the key to the
smart cities, because these interfaces are used for interactions and
sharing information. Interfaces allow to create a modular system that
can be easily changed or extended. As depicted in the Fig. 5, an energy
system has two interfaces; the first one for energy supplying to other
systems such as vehicles or buildings (physical part); and the second
interface, which is used for communication with a cloud (cyber or
virtual part).

5. Modelling of smart cities

There are two main approaches to modelling cities – analytical and
heuristic. From the analytical point of view, the concept of systems is
shown in the Fig. 6, where i(t) is a vector of input variables, o(t) is the
vector of output variables and v(t) is a vector of state variables. The

Fig. 2. The example of a traditional city fitted to the Systems Theory.

Fig. 3. The example of a smart city fitted to the Systems Theory.
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systems interact among themselves via inputs (i(t) in the Fig. 6) and
outputs (o(t) in the Fig. 6). In case of a transport infrastructure,
transport demand is an example of the input, and traffic intensity is an
example of the output. The same approach can be applied to the in-
teraction of subsystems.

The term interconnection (or interaction) of (sub)systems means
information, energy or control relations among (sub)systems. Cities are
stochastic, dynamic and nonlinear systems. One of the main reason is
that human behaviour cannot be exactly predicted (Nomura, Kanda, &
Suzuki, 2008). The internal description of a dynamic nonlinear sto-
chastic system is defined by the equations 1.1 and 1.2 below (Markus,

Majchrzak, & Gasser, 2002):

v(t) = f(v(t),i(t),t) + x(t) (1.1)

o(t) = g(v(t),i(t),t) + y(t) (1.2)

where x(t) is the noise of the process and y(t) is the noise of the mea-
surement. The interconnection of (sub)systems is a complex area, be-
cause the goals of (sub)systems are different and often contradictory. It
is very important to find a balance among the goals of (sub)systems and
ensure that the entire system converges to a desired goal(s). Several
papers demonstrating how to do this have been published (Alam,
2015). The analytical model of cities is very complex as seen from the
equations above. To use an analytical model including the state of a
system, all input variables and the uncertainty in measurements for
complex systems such as smart cities is very challenging if not im-
possible (Rzevski & Skobelev, 2014). The authors Rzevski and Skobel
also provide a definition of complexity, as “a property of an open system
that consists of a large number of diverse, partially autonomous, richly in-
terconnected components, often called qgents, has no centralised control,

Fig. 4. Cyber-physical system as a smart city (Hashem et al., 2016a).

Fig. 5. The example of CPS as Energy system.

Fig. 6. The basic concept of the smart city as a system.
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and whose behaviour emerges from the intricate interaction of agents and is
therefore uncertain without being random “.

For this reason, so called heuristic models are often use as an al-
ternative when dealing with complex systems. Heuristic algorithms or
models find approximate (close to optimal) solutions but within an
acceptable (finite) time horizon. They typically work based on an in-
formed estimation, intuition, experience or just common sense (Pearl,
1983). As discussed in the previous section, smart cities can be gen-
erally classified to Systems Theory and specifically as CPS. These the-
ories can be modelled by various tools like system dynamics or Multi-
Agent Systems (MAS). MAS is very useful for modelling smart cities and
every object can be modelled as an intelligent agent. In our previous
papers (Lom & Pribyl, 2017; Pribyl et al., 2017), the SMACEF was in-
troduced and based on MAS that are one of a well-known heuristic
approach with many references Weiss (2013).

6. Smart cities and multi-agent systems

The MAS is a tool used for modelling and simulating of various
models. This tool is often used in similar areas and provides good re-
sults (Lin, Sedigh, & Miller, 2010; Sanislav & Miclea, 2012). Generally,
an intelligent agent can be imagined as a software model of a physical
object (building, car, street lamp, etc.) that based on its perception P =
(p0,…,pn) (sensing) of environment E = (e0,…,en), where is located,
makes a certain decision and based on it performed an action A = (a1,
…,an) affecting the environment. The agent has also its internal states S
= (s1,…,sn) (Weiss, 2013). The Fig. 7 shows the basic concept of the
agent in its environment.

In the Fig. 1, every object (internal u as well as external e) can be
viewed as an agent and modeled by MAS. It means that every system
consists of a set of agents. These agents can interact directly with each
other via input/output interfaces. The other view can be via an on-
tology agent that collects knowledges about a particular (sub)system
and can share them with others if necessary (Wang, Shen, & Hao,
2006). The ontology agent can be seen as boundaries of (sub)systems.

The basic example of CPS modeled by MAS is shown in the Fig. 8.
Four agents are defined in this example – a human, a cell phone, a cloud
and an autonomous vehicle. Every agent has a set of perceptions P, a set
of actions A and a set of internal states S. The environment is defined by
a set of environment states E. The analogy with the definition of a
system defined above can be seen.

Imagine a scenario where a human wants to communicate with an
autonomous vehicle via a cloud. The human performs an action a1 that
is perceived by the cell phone as p1. The cell phone sends a request a2 to
the cloud p2 that resends the request a3 to the autonomous vehicle p3.
The autonomous vehicle confirms the call and sends a response a4 back
to the cloud p4. This response a5 is sent back to the cell phone p5 and
finally the message a6 is read by the human p6. In this example, the
basic principle of communication and interacting of the different
components within CPS as modeled by MAS is demonstrated.

7. Smart city agent

In this section, the definition of an intelligent agent is modified in
order to better meet the modelling requirements of smart cities related
to simulation and modularity. This newly defined agent based on the

theory of an intelligent agent is called a Smart City Agent (SCA). Every
object in a smart city can be modelled as SCA and is characterized by a
set of input interfaces (inputs / perception), output interfaces (outputs /
actions), parameters, internal states, actions, input/output connections
and environmental states (Pribyl et al., 2017). The basic concept of SCA
as defined in this paper is depicted in the Fig. 9.

A set of inputs I = (i1,…,in) provides an interface for interacting
with an environment defined as a set of environment states E = (e1,
…,en) or with another agents defined as a set of input connections Ci =
(ci1,…,cin). This is the first difference compared to the theory of clas-
sical MAS. The classical MAS expects to interact directly with the en-
vironment. It does not always need to be true in smart cities. Imagine,
for example, a motion control of a lamp. A motion sensor observes a
change in the environment state and this information is sent via the
output interface through the connection to the input interface of the
lamp. Based on this information, the lamp changes the light intensity. A
set of parameters P = (p1,…,pn) provides an "internal tuning" variables
that can be used for parameterizing, e.g. an individual device perfor-
mance. We can use a parameter named performance to determine its
performance (e.g. 100W). This is the second difference compared to the
classical MAS theory, as there are no internal variables. A set of internal
states S = (s1,…,sn) represents the current states of an agent, which can
be changed based on inputs. In case of the lamp, the internal state can
be a level of light intensity by which the lamp is currently lighting. This
internal state can be modified according to the motion. A set of agent's
actions is represented by A = (a1,…,an). Actions are generated based
on changes of internal states. If the internal lamp`s state (light intensity)
is changed, the lamp increases or decreases its performance and ap-
propriate actions are performed. These actions are linked to a set of
outputs O = (o1,…,on) that again provides an interface for interacting
with the environment defined as a set of environment states E = (e1,
…,en) or with another agents defined as a set of output connections Co

= (co1,…,con). This theory is transformed into the SMArt City
Evaluation Framework (SMACEF) that has been introduced in the paper
including of a practical example (Lom & Pribyl, 2017).

8. Use case: modeling of charging of electric vehicles

To show how to design some project, let us focus on modeling of the
charging of Electric Vehicles, where two Smart City Agents are defined -
Electric Vehicle Agent (EVA) and Charging Station Agent (CSA) (Csonka
& Csiszár, 2017). More detailed explanation of this use case was pre-
sented in (Lom & Pribyl, 2019). Here, the authors describe only the part
relevant for demonstrating the practical application of Smart City
Agents. The internal diagram of EVA is shown in Fig. 10. The EVA has
two input interfaces – EVcom and EVenergy. EVcom represents the interface
which is used for receiving messages from a charging station(s) to the
vehicle. The interface EVenergy is used for charging the vehicle by elec-
tricity from a charging station. The subsequent input connections are
defined – EVi and EVe. EVi represents a “communication line” for re-
ceiving messages from a charging station. On the other hand, EVe re-
presents “energy line’ which is used for charging the electric vehicle.

The EVA has three parameters – Emax, Emin and ECR. Emax is the
maximal electricity capacity of the vehicle. Emin is the minimum level of
electricity when the vehicle sends the request for charging to all sta-
tions. ECR represents the consumption rate per minute of driving. These
parameters can be easily changed to simulate different scenarios.

Each EVA has two internal states – Pcur and Acur. Pcur represents the
remaining performance in the battery. When EVA is riding, Pcur de-
creases about ECR per one minute. Acur is the current state of the EVA
and it may be in one of the following four actions – Stop, Going,
Charging or Waiting. The output interface is only one – EVOut which
represents the communication interface used for sending messages from
EVA to a charging station(s). The subsequent output connection is de-
fined – EVo that represents a “communication line” for sending mes-
sages to a charging station.Fig. 7. An agent in its environment (Weiss, 2013).
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The Charging Station Agent (CSA) is designed in the same way as
EVA. The diagram of CSA is shown in Fig. 11. The CSA has one input
interface – CScom that represents the interface which is used for re-
ceiving messages from an electric vehicle(s). The subsequent input
connection is defined – CSi that represents a “communication line” for
receiving messages from EVA.

The CSA has three parameters – PP, SP and Pmax. PP is the purchase
price of electricity from energy network to a charging station. SP is the
selling price of electricity to EVA from CSA. To generate a profit, SP
must be higher than PP. Pmax represents the maximal performance

which can be used for charging of EVA. Again, these parameters can be
easily changed to simulate different scenarios.

The CSA has three internal states – CSprofit, Pdel and Acur. CSprofit
represents the actual profit of CSA which is calculated as the difference
between SP and PP (per kW). Pdel is the delivered performance which
has been used for charging EVA(s). Acur is the current state of the CSA
and it may be in one of the following two actions –Waiting or Charging.

The CSA has two output interfaces CSout and CSenergy. CSout re-
presents the communication interface used for sending messages from
CSA to an electric vehicle(s). The interface CSenergy is used for charging

Fig. 8. An agent in its environment (Weiss, 2013).

Fig. 9. The diagram of a Smart City Agent.

Fig. 10. Electric Vehicle as Smart City Agent.
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the vehicle by electricity from CSA. The subsequent input connections
are defined – CSo and CSe.

The final diagram showing the interaction between CSA and EVA is
shown in Fig. 12. The process is started by EVA which sends a request
for a charging. If any CSA is free, it confirms the request. If no CSA is
free, EVA must wait in the queue. The last part of the process is a

charging of EVA.

9. Results

The use case was implemented and evaluated as presented in (Lom
& Pribyl, 2019). Even though it is not the most complex problem, it still

Fig. 11. The internal diagram of Charging Station Agent.

Fig. 12. The interaction diagram between CSA and EVA.
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clearly demonstrates the usefulness of the proposed solution and lack of
alternatives.

The simulation model was conducted for three different scenarios,
always for the simulation time of 24 h. The number of charging stations
is various as depicted in Table 1. All scenarios are executed 10-times
and the average values of the indicators are calculated. No. of EVA is
the maximum number of vehicles that can be located at one time at
Charles Square. MaxEVA represents the maximum number of EVA in
the queue. Maximum waiting time (MaxWT) represents the maximum
time which some of EVA needs to wait for getting a free CSA. Mean
waiting time (MWT) in the queue (min) means the average time which
all EVA wait in the queue. The overview of scenarios is shown in
Table 1.

The first scenario is our base lane. The charging time, the capacity of
a battery and the price of electricity are all fixed. The second scenario
still keeps the price of electricity fixed (similarly to scenario 1), but the
charging time and the battery capacity have the distribution according
to Table 2 (e.g. 40 % of EVA has the capacity of battery 50 kWh with
the charging time 45min). The third scenario enhances the complexity
by using a dynamic price of electricity. Again, the charging time and the
capacity of battery have the distribution according to Table 2.

The variations of the capacity of batteries have a significant impact
on the mean waiting time in the queue as shown in Fig. 13. The dy-
namic price can additionally increase the mean waiting time in the
queue as people want obviously use the opportunity to charge their
vehicles cheaper.

The maximum number of EVA was generally achieved in scenario 3
("cheap" price) as shown in Fig. 14. In this scenario, vehicles have the
various capacity of batteries and also drivers want to charge their ve-
hicles most preferably. On the other hand, the lowest number of EVA in
the queue was achieved in the scenario 3 ("expensive" price) despite the
fact that vehicles have variable battery capacity compared to the sce-
nario 1. It shows that people are willing to wait extra time if they can
save money.

This use case demonstrated some of the benefits of SMACEF and the
interconnection of particular Smart City Agents. The different scenarios
can be simulated and various alternatives are modelled to achieve op-
timal results under the dynamic characteristics within a city.

10. Discussion

Municipalities and agencies often face the need to select among
various projects one, most suitable to solve a certain smart city need.
Hashema et al. (Hashem et al., 2016b) identified the main challenges in
addressing smart city projects as the planning phase: “Building an in-
tegrated master planning and control methodologies of big data for the smart
city is the main challenge encountered by smart city planners. Much of the
information that must be addressed will require time and money to cost

effectively meet the potential future requirements.” The first group of ap-
proaches tries to utilize multicriteria optimization and decision making.
Wu et al. (Wu & Chen, 2019) proposed a method based on a combi-
nation of Modified Delphi Method (MDM), Analytic Hierarchy Process
(AHP) and Zero-One Goal Programming (ZOGP). The authors stated its
limitation as follows: “Although the proposed model can be used in various
situations, it is not only laborious to answer the AHP questionnaire but also
difficult to confirm the consistency of the pairwise comparisons “. Basically,
this means that such approach does not capture the interactions and
synergies among different subsystems. It is a simplified approach, based
on panel of experts. The experts are provided with recommendations
and criteria to assess the most suitable project.

A natural solution to such limitations is in introducing simulation
environments. Simulation is a generally accepted tool to assess impact
of different measures and policies on a system (Antoniou et al., 2014). It
is being successfully used in various fields, including transportation,
energetics, business processes and many others (for example Hook,
2020; Jarrah, 2020 or Wunderlich et al., 2019). Simulation is well
suitable for modelling of dynamic systems with many interactions.
There is however a gap when we start to talk about really complex
systems with many heterogeneous actors. A city is clearly an example of
such complex system with many different overlapping subsystems.

10.1. Contributions to research

There is a need to have a simulation tool to estimate the impact of
certain smart city strategies and to select projects to be implemented.
The literature review revealed that there is no accepted model of a
smart cities. There are basically two possible approaches to this task.
First, usage of existing advanced models of partial domains and estab-
lishing a dynamic link among them (Přibyl, Přibyl, Lom, & Svítek,
2019); or creating a complex approach based on distributed hetero-
geneous agents and interactions among them (as proposed within this
paper). Both of these approaches include several challenges and are not
every explored. This is confirmed for example by Ismagilovaa et al.
(Ismagilova, Hughes, Dwivedi, & Raman, 2019), who provided an ex-
tensive literature review in the field of smart cities. The authors point
out that most of the studies within environmental or traffic category
rely heavily on simulations to develop their findings. They identified
several partial solutions, for example in the transportation or energy
management fields. They have though not find a tool to simulate the
smart city environment as a whole – which is the main contribution of
this paper.

In general, simulation software typically requires a large amount of
data. That is true also for the proposed solution. There is however a
growing trend towards big data processing and the evolution of Internet
of Things (IoT) technologies. This can be seen for example in the work
of Hashem et al. (2016b). If we look at the Fig. 1 in their paper, a
landscape of the smart city and big data technologies is provided. We
can see clear parallel to the case study provided within this paper. They
identify different actors, for example vehicles, parking spaces, or energy
consumptions and production nodes. The authors claim that “The key
enabler of these smart city applications is possibly the IoT in which everyday
objects and devices are connected to the network technologies.”We can only
confirm that. While the authors focus on the technological perspective
and the business model, we propose a modelling framework to assess
tits effects in our paper. The authors provide a survey on the usage of
big data and IoT in smart cities. Such data are needed to set up the
simulation model and to calibrate it. This is a necessary synergic step.

The proposed approach addresses the issues mentioned above.
While the results suggest its usefulness to model interactions in a het-
erogeneous environment, its main challenge will be certainly in so-
called curse of dimensionality (Bai, 2014). This is a commonly known
problem, especially in the field of artificial intelligence or soft com-
puting. Having many different actors/agents, each acting in a certain
space or dimension increases the overall complexity of the space.

Table 1
An overview of the scenarios.

Charging time
(min)

Capacity of battery
(kWh)

Price of electricity

Scenario 1 30 50 fixed
Scenario 2 30 - 60 35 - 60 fixed
Scenario 3 30 - 60 35 - 60 dynamic

Table 2
The distribution of EVA.

% of EVA (%) Charging time (min) Capacity of battery (kWh)

30 30 35
40 45 50
30 60 60
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However, the proposed multi-agent approach has the potential to dis-
tribute the intelligence in a way not to model the overall multi-
dimensional space, but limit it to the environment of each agent se-
parately (of course when keeping in mind its interfaces). This however
requires a commonly agreed meta-model covering the domain knowl-
edge base. Ontology has been identified as a key to standardize the
knowledge management and information exchange. M. del Mar Roldán-
García, et al. (del Mar Roldán-García, García-Nieto, Maté, Trujillo, &
Aldana-Montes, 2019) used the ontology-driven approach to formally
conceptualize essential elements of performance indicators in smart
cities. When talking about heterogenous and distributed agents, on-
tology has been identified as a key to multi-agent systems and is thus a
natural extension of the approach described in this paper (Obitko &
Mařík, 2020).

10.2. Practice and limitations

In order to demonstrate the proposed framework, a case study
dealing with charging of electrical vehicles was provided. Similar pro-
blem was addressed for example by Gellerta et al. (Gellert, Florea,
Fiore, Palmieri, & Zanetti, 2019). In their work the authors used
Markov chains, stride predictors and also their combination into a hy-
brid predictor in modelling the evolution of electricity production and
consumption in buildings. Such prediction uses historical data and
unfortunately does not take into consideration interactions and other
factors influencing consumption. The authors claim that the effects of a
technology-induced reorganization of the smart grid when users no
longer are passive participants in the relationship between them and
the infrastructure, but they become active and the information flow

Fig. 13. The comparison of the scenarios based on mean waiting time.

Fig. 14. The comparison of the scenarios based on maximum number of EVA in the queue.
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becomes bidirectional, can be profound and should be studied with
great attention. Such prediction is, though, centralized. And this is
exactly what the proposed simulation framework aims to achieve. The
effects of different actors can be evaluated. The multi-agent system is by
default of a distributed nature, exactly as the case study requires. When
combined with the prediction mechanism suggested for example by
Gellerta et al. (Gellert et al., 2019), on the input data, a future (pre-
dicted) impact of the distributed and interconnected environment can
be achieved.

We believe that the proposed solution is a key to further develop-
ment of a simulation tools in the field of smart cities. In order to utilize
it even further, it is recommended to base the multi-agent solution on a
domain ontology. Also, it will work best with the calibration data col-
lected by IoT technologies.

11. Conclusions

In this paper, the area of smart city modelling is classified to the
theories of Systems Theory and Cyber-Physical Systems. First, a smart
city can be generally seen as an environment according to the Systems
Theory, and particular systems (energy, buildings, transportation)
within the smart city can be seen as systems. These systems can be
divided into subsystems. The biggest difference between traditional
cities and smart cities is that systems interact only with their environ-
ment in traditional cities. It means that systems are mostly stand-alone
and not interoperable with other systems. In smart cities, systems are
interconnected by energy or information relations, and information
management becomes more and more important.

Second, the specific area of the Systems Theory is Cyber-Physical
Systems where physical (hardware) and virtual (software) worlds are
interconnected. Data from physical world are sent to virtual world
where are analysed and appropriate actions are performed.

Third, the Systems Theory and Cyber-Physical Systems can be
modelled by Multi-Agent Systems. A Smart City Agent as a building
block for modelling smart cities is introduced in this paper. The Smart
City Agent is a modified version of an intelligent agent. It is more
suitable for benchmarking and evaluating purposes in smart cities. The
practical example of an implementation of Smart City Agents using
SMACEF is demonstrated. The novel approach is demonstrated in this
paper as cities are dynamic and nonlinear systems. For this reason, the
models have to be dynamically simulated with different scenarios, and
the results of these simulations can be benchmarked. For the future
work, the authors suggest to implement more complex Smart City
project and discover the benefits of interconnecting system and sharing
data and information.

11.1. Future research directions

The proposed solution can be directly used by practitioners to model
dynamic behaviour of interacting subsystems. The literature review
shown that at the present, there is no alternative solution to this task
and city representatives are depending on the providers of partial so-
lutions. At the same time, it is recommended for researchers to elabo-
rate on the internal logic of particular Smart City Agents to further
detail the behavioural characteristics of particular subsystems as well as
the management of information exchange.

As a natural next step, a bigger and more complex case study
(particularly modelling of Vitezne square in Prague 6) will be devel-
oped. It shall not only demonstrate feasibility of the framework, but
address the real world issues, for example an impact of new building in
the area. It will be used in a project City simulation software (CSS) for
modelling, planning and strategic assessment of territorial city units sup-
ported by the Technology Agency of the Czech Republic. Here, it will be
coupled with outputs from research groups dealing with dedicated
models for environmental (e.g. spread of emissions), transport as well
as modelling of energy consumption. As part of the project, an ontology

will be developed to solve the issues described in Section 10.1 and to
allow the agents communicate with each other.
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