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Abstract

This article addresses a Periodic Vehicle Routing Problem with Time Win-
dow and Service Choice problem. This problem is basically a combination
of existing Periodic Vehicle Routing Problem with Time Window and Pe-
riodic Vehicle Routing Problem with Service Choice. We model it as a
multi objective problem. To solve this problem, we develop a heuristic al-
gorithm based on Improved Ant Colony Optimization (IACO) and Simulate
Annealing (SA) called Multi Objective Simulate Annealing - Ant Colony Op-
timization (MOSA-ACO). Improvements are made in following respects: a)
a Euclidean distance based solution acceptance criterion is developed; b) a
parameter control pattern is designed to generate different initial solutions;
c) several local search strategies are added. Benchmark instances generated
from Solomon’s benchmark instances and Cordeau’s benchmarks instances
are applied. Comparison algorithms include four population based heuristics
and IACO. Computation experiment results show that MOSA-ACO algo-
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rithm has a good performance on solving this problem.

Keywords:
Ant Colony Optimization, Multi Objective Optimization, Periodic Vehicle
Routing Problem with Time Window, Simulate Annealing, Service Choice

1. Introduction

In this article, we propose a special variant of existing Periodic Vehi-
cle Routing Problem (PVRP) called Periodic Vehicle Routing Problem with
Time Window and Service Choice (PVRPTW-SC). We give out a problem
model which is an extension of PVRP-SC problem model. Then, a hy-
brid heuristic algorithm called Multi-Objective Simulation Annealing - Ant
Colony Optimization (MOSA-ACO) is applied to this problem. Finally, com-
putation experiment results are reported. Experiment instances include in-
stances generated from VPRTW benchmark instances and PVRPTW bench-
mark instances. Experiment results show that the MOSA-ACO has a good
performance on PVRPTW-SC.
This research is first inspired by Jiting et al. [1]. In this paper, a geostation-
ary orbit (GEO) satellite observation planning problem is introduced. The
GEO satellite observation planning problem includes a GEO satellite and
several targets on earth to be visited. The aim of GEO satellite observation
planning problem is to find an observation plan with lowest cost and highest
profit. To solve this problem, a NSGA II based algorithm and a Multi Ob-
jective Travelling Salesman Problem (MOTSP) model are implemented. In
this paper, we extend this problem in several directions: a) in PVRPTW-SC
problem, multi trips in a planning horizon are considered; b) time window
constraint is considered; c) a changeable visit frequency of each customer in
planning horizon is considered. The PVRPTW-SC problem mainly focus on
discussing the influence of changeable visit frequency in PVRPTW scenar-
ios. To give a detailed description of PVRPTW-SC problem, we give out a
real-world scenario.
Suppose that there is a beverage warehouse serving n shops in a block and
this warehouse has m delivery men. Every week, this warehouse must make
a service plan which assigns the distribution routes of each day. Every shop
in this block has its unique service preference combinations (2 days a week,
for example). Because the daily beverage sales amount of a shop is uncer-
tain, some of these shops may face lacking of beverage stocks even though
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the beverage warehouse follows its distribution plan strictly and all customer
preferences are satisfied. Thus, to solve this problem, besides maintaining the
lowest visit frequency of every shop, which is indicated by the service pref-
erence combinations, the manager of this warehouse can choose to add extra
service to any of these shops to earn extra profits. The problem objectives
of PVRPTW-SC include visit frequency maximization, travelling distance
minimization and fleet size minimization.
The PVRPTW-SC problem is basically a combination of two Periodic Vehi-
cle Routing Problem (PVRP): Periodic Vehicle Routing Problem with Time
Window (PVRPTW) and Periodic Vehicle Routing Problem with Service
Choice (PVRP-SC). PVRP is a well-known combination optimization prob-
lem which is first proposed in Beltrami and Bodin [2]. The main variants of
PVRP problem can be seen in Fig.1:
To our best knowledge, this is the first article that studies PVRPTW-SC

Figure 1: PVRP problem and its variants (Francis et al. [3])

problem. So we give out a brief introduction of articles that studies PVRP-
SC and PVRPTW.
As far as we know, articles that study PVRP-SC problem and its variants are
rare. The first article that proposes PVRP-SC problem is Francis et al.[4].
In this article, the authors give out a working scenario of interlibrary loan
item management in North Suburban Library System. The system man-
ager must decide the visit frequency of each node and daily route plan. The
problem constraints include minimum visit frequency of each customer and
vehicle capacity constraint. To solve this problem, the authors first decom-
pose PVRP-SC problem into a TSP with Profit sub-problem which deals with
the routing problem and a ”knapsack” type problem which deals with the
vehicle capacity constraint using Lagrangian Relaxation technology. Then a
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branch and bound algorithm is applied to solve it. Another article that stud-
ies PVRP-SC variants is Francis et al.[5]. In this article, the authors give out
several kinds of operation complexities other than service choice (e.g. sched-
ule options, delivery strategies and arrival span). Tabu search heuristics as
well as technologies used in Francis et al.[4] are applied and evaluated.
PVRPTW, which is first proposed in Laporte and Mercier[6] in 2004, is
another important variant of PVRP problem. Then, several variants of
PVRPTW problem are proposed. Michallet et al.[7] proposes a PVRPTW
variant considering time spread constraints. The time spread constraints
mean that the daily arrival time of vehicles to a certain customer must be
irregular. Thus the service route plan will be unpredictable. And this has
a closely connection with the delivery security in special working scenarios
(e.g. for Cash In Transit companies). Periodic Green Vehicle Routing Prob-
lem with Time Window (PGVRPTW, Mirmohammadi et al.[8]) is another
variant of PVRPTW. In PGVRPTW problem, the vehicle travelling speeds
on different roads are connected with the traffic time. And also, the travel-
ling speed affects the CO2 emission, which is one of the problem objectives.
Multi-depot Periodic Vehicle Routing Problem (MDPVRPTW) Mingozzi[9]
is another kind of PVRPTW variants. In MDPVRPTW, there are several
depots. Vehicles can depart from any of these depots and return to any one
after finishing service. Recently, Cantu-Funes et al.[10] proposes a variant of
PVRPTW considering vehicle renting. This variant is named as Multi-depot
Periodic Vehicle Routing Problem with Time Window and Due Date. In this
problem, the original fleet size of vehicles are smaller than needed. Thus in
every planning horizon, service manager must make decisions of lease extra
vehicles to satisfy customers’ requirements. Multi-Periodic Vehicle Routing
Problem with Time Window (MPVEPTW, Athanasopoulos and Minis[11])
is another variant of PVRPTW. In MPVRPTW, service requirement has two
important attributes: requirement period window and requirement time win-
dow. For example, a customer may be serviced on Mondays and Tuesdays
(period window of two periods) between 8.00 am to 12.00 am (time window).
PVRPTW-SC is different from the original PVRP-SC problem in that it
contains time window constraints. For this reason, the method that decom-
poses the PVRP-SC problem into two sub-problems can be no longer applied.
And for the PVRPTW, the visit frequency of each customer is certain. Even
though in some Inventory Routing Problem (e.g. Bard and Nananukul[12],
Moin et al.[13], Song and Furman[14]), visit frequency of each customer can
be changed during planning horizon, the main aim is to satisfy each cus-
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tomer’s goods demands. And that makes a difference between PVPRTW-SC
and IRP problem.
Nature-inspired algorithms (e.g. Ant Colony Optimization, ACO and Artifi-
cial Bee Colony, ABC) have been applied to many combination optimization
problems, such as Travelling Salesman Problem (TSP, Tasgetiren et al.[15]),
Flow Shop Scheduling (FSS, Li et al.[16] Han et al.[17] Pan et al.[18]), Con-
strained Optimization Problem (COP, Gong et al.[19] Gao et al.[20] Gong
et al.[21]), Job Shop Scheduling (JSS, Li et al.[22] Li et al.[23] and Yu and
Yang[24]), and proved to be efficient. In this article, a heuristic algorithm
namely MOSA-ACO is applied. This algorithm is mainly a combination of
Improved Ant Colony Optimization (IACO) and Multi Objective Simulation
Annealing (MOSA). The IACO algorithm is basically a variation of MAX-
MIN Ant System (MMAS, Thomas and Holger[25]). IACO has been applied
to a PVRP problem and proved to be efficient. In this article, we use IACO to
generate initial solutions. Considering that PVRPTW-SC problem requires
optimization of three problem objectives simultaneously, MOSA algorithm is
also implemented. Detailed description of MOSA-ACO can be seen in sec-
tion 3.
The last of this article are organized as follows: section 2 gives out a detailed
PVRPTW-SC problem model; section 3 describes the algorithm appiled to
solve PVRPTW-SC called MOSA-ACO; section 4 gives out the computation
experiment results and discussions; section 5 gives out the conclusion and
future research work needed.

2. Problem Description

A general PVRPTW-SC model can be described as follows: a) an undi-
rected graph G = (N,E), which includes a set of node N (including customer
nodes and depot node) and a set of edges E; b) a planning horizon P gives out
the maximum planning horizon; c) a depot node d which includes location
and maximum fleet size and; d) a customer set {i ∈ N |i = 1, 2, ......, n}, which
includes locations, service demand information and preference service time
window of each customer; e) a set of edges {eij ∈ E|i, j = 1, 2, ......, n, i 6= j}
which correlates with the travelling cost cij on arc from node i to node j;
f) a set of vehicles {vk ∈ K|k = 1, 2, ......, K}, which includes the capacity
information qk of vk.
To model the PVRPTW-SC problem, we first give out some general notions:
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N donating set of customer nodes; N={0, 1, 2, ......, n}; node 0 donating the
depot node;
A donating the set of network arcs; A={(i, j) : i, j ∈ N};
K donating the set of vehicles;
C donating vehicle capacity (in this article, we assume that capacities of
vehicles in the fleet are equal);
T donating the planning horizon; T={1, 2, ..., t}; t donating the length of
period;
cij donating the travelling cost on arc ij;
tij donating the travelling time cost on arc ij;
mi donating the demand of goods of customer i;
qk donating the vehicle capacity of vehicle k;
ei donating the earliest time point that customer i is willing to be served;
li donating the latest time point that customer i is willing to be served;
Smi donating the minimum visit frequency that customer i must receive in
total planning horizon;
stit donating the service start time at customer node i in planning period t;
si donating time needed to finish service at customer node i;
wit donating the waiting time at customer node i in planning period t;
In our model, the decision making disciplines are as follow:

xijkt =

{
0, if no vehicle visit arc ij at period t
1, otherwise, i 6= j, i, j ∈ {0, 1, 2, ......, n}

wit donating the waiting time at node i in planning period t;
The optimization objectives are:

Minimize
K∑
k=1

T∑
t=1

N∑
i=0

N∑
j=0

cijxijkt (1)

Maximize

K∑
k=1

T∑
t=1

N∑
i=0

N∑
j=1

xijkt (2)

Minimizemax(
N∑
j=1

K∑
k=1

xijkt, k ∈ K, i = 0) (3)
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Subject to:

N∑
j=1

K∑
k=1

xijkt ≤ K, fort ∈ T, i = 0 (4)

N∑
j=0,j 6=i

K∑
k=1

xijkt ≤ 1, fori ∈ {1, 2, .....n},∀t ∈ T (5)

N∑
i=0,i 6=j

K∑
k=1

xijkt-
N∑
r=0

K∑
k=1

xjrkt = 0, forj ∈ {1, 2, .....n},

∀t ∈ T

(6)

N∑
j=1

xijkt ≤ 1, fori = 0, t ∈ T,∀k ∈ K (7)

N∑
j=1

xijkt-
N∑
j=1

xjikt=0, fori = 0, t ∈ T,∀k ∈ K (8)

N∑
i=1

N∑
j=0

xijktmi ≤ qk, for∀t ∈ T, k ∈ K (9)

T∑
t=1

N∑
i=0

K∑
k=1

xijkt ≥ Smjforj ∈ {1, 2, ......, n} (10)

stit ≥ ei,∀t ∈ T (11)

stit+si ≤ li,∀t ∈ T (12)

stit + si + wjt + tij = stjt, for∀t ∈ T (13)

In PVRPTW-SC problem model, the objectives are: travelling distance min-
imization (equation (1)); visit frequency maximization (equation (2)) and
fleet size minimization (equation (3)). The problem constraints include: con-
straint (4) ensures that the fleet size in each planning period must not exceed
the maximum fleet size; constraint (5) ensures any customer can be visited
at most once in one planning period; constraint (6) ensures that a route must
not finish at a customer node; constraints (7) and (8) together ensure that
any vehicle leaves the depot node must come back when it finish its service
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plan in a planning period; constraint (9) ensures the that the mission payload
allocated to a single vehicle must not exceed the maximum capacity of this
vehicle; constraint (10) ensures that the minimum visit frequency of each
customer must be satisfied; constraint (11) and (12) together ensure that
service must start and finish in customer preferred time window; constraint
(13) ensures the continuity of service time, waiting time and travelling time
in a feasible solution.
Our problem model is different from original PVRP-SC problem Francis et
al.[4] in following respects: a) PVRPTW-SC problem takes hard time win-
dow constraint into considerations; b) In PVRP-SC problem, there is an
implicit constraint that a reasonable set of routes for each driver to perform
must be maintained. In PVRPTW-SC problem, we do not maintain this
implicit constraint since it is not necessary; c) In PVRPTW-SC problem,
three problem objectives with conflictions are considered: travelling distance
minimization, fleet size minimization and visit frequency maximization. In
original PVRP-SC problem, only travelling distance is considered.
The relations between the three problem objectives are complicated. First, it
is obvious that adding extra service frequency is coincident with the growth
of travelling distance. Adding extra service frequency can also bring increase
to fleet size under the condition that the vehicle capacity constraint is a tight
constraint. The relations between travelling distance and fleet size are even
more complicated. According to [35], relation between reducing travelling
distance and reducing fleet size is not always negative. These two objec-
tives sometimes are positively correlated when the geographical distribution
of customers is clustered. Otherwise these two objectives are more likely to
be negatively correlated.

3. Multi-Objective Simulation Annealing Ant Colony Optimiza-
tion

Considering the complexity of PVRPTW-SC problem, we first divide
this problem into two sub-problems. In sub-problem 1, we decide service
frequency of each customer and assign customer service requirement to dif-
ferent day. This problem is like a classic PVRPTW problem with least visit
frequency constraint instead of visit combination constraint. Then, in sub-
problem 2, we address the daily routing plan optimization problem. The
daily routing plan optimization problem is a typical VRPTW problem. The

8



reason is that in PVRPTW-SC problem, a customer only has lowest visit
frequency requirement. So, in this article, we first assign the lowest visit
frequency of each customer to each day in planning horizon. With the help
of a K-mean based heuristic, we ensure that locations of customers assigned
to each day are clustered. Then, when an extra visit frequency is added to
service plan, it has a higher possibility to be added to the day in which the
average travelling distances from this customer to customers that are already
assigned to this day are short. When all customer visit frequencies (includ-
ing lowest visit frequency and extra visit frequency) are assigned to a certain
day, this problem becomes a VRPTW problem for each day in the service
plan. It should be admitted that dividing PVRPTW-SC problem into these
two sub-problems may lose some potential solution space. But based on the
experiment results we think that this weakness is acceptable. The algorithm
applied in this article is called Multi Objective Simulation Annealing 8C Ant
Colony Optimization (MOSA-ACO). The algorithm structure can be seen in
Fig.2:
The reasons that we design MOSA-ACO are as follows: a) IACO has been

Figure 2: MOSA-ACO algorithm structure

proved to be efficient at solving PVRPTW problem with an acceptable com-
putation cost. Thus, in MOSA-ACO, we use IACO to generate the initial
service plan. One thing should be admitted is that the original IACO is a
single objective algorithm. To make IACO suitable for the aim of finding
service plan with more customers, we build our IACO algorithm with an
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adjustable control parameter. We describe this modification in section 3.1.
With this modification, IACO can find solutions with variable customer ser-
vice frequency with acceptable service cost while the lowest service frequency
constraint is satisfied. And, the crossover operator in IACO has the ability of
local optimum avoidance in early searching phase. b) In MOSA procedure,
we mainly focus on reducing service cost. SA framework has an advantage
of local optimum avoidance since it can accept solutions with bad qualities.
In MOSA, we design a new multi objective criterion to decide whether the
current solution can be accepted. Then, several local search heuristics are
applied to the initial service plan. These heuristics have been proved to be
efficient at solving VRPTW problem. c) In MOSA-ACO, we also design a
reinitialization mechanism to enhance algorithm searching ability. In MOSA
procedure, if local search heuristics have run several iterations and no new
feasible solution is accepted, IACO with a new control parameter is applied
to generate new initial solutions. This will also help MOSA-ACO jump out
of local optimum and find new feasible solutions with higher diversity. The
MOSA-ACO follows steps below to construct solutions:
Step 1: initial solution is constructed using IACO based heuristics;
Step 2: the initial solution is evaluated using a Euclidean distance based
criterion, if the initial solution is accepted, then the initial solution is set to
be current solution and go to step 3; else go to step 7;
Step 3: current temperature is updated;
Step 4: Pareto Frontier is updated;
Step 5: four local search algorithms are applied to current solution;
Step 6: current solution is evaluated using a Euclidean distance based crite-
rion, if the current solution is accepted, go to step 3; else go to step 7;
Step 7: current temperature is updated, if the stop condition is reached, then
the algorithm is finished; else if the reinitialization condition is reached, go
to step 1; else the local search strategies are applied.
In the section below, we give out a detailed description of MOSA-IACO al-
gorithm.

3.1. Improved Ant Colony Optimization

The MOSA-ACO algorithm uses an IACO algorithm to construct initial
solutions. The IACO algorithm, which has a good performance in PVRPTW
in Yu and Zhang[24], is a combination of Ant Colony Optimization and Ge-
netic Algorithm. The IACO algorithm structure can be seen in Fig.3:
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Figure 3: IACO structure

The IACO algorithm of MOSA-ACO follows steps below to construct so-
lutions:
Customer distribution. In PVRPTW-SC problem, every customer has
a lowest visit frequency that must be satisfied. Thus, in the beginning of
an initial solution construction, we divide these requirements into each plan-
ning periods of the planning horizon using a K-means based method. The
K-Means method is a very commonly used cluster algorithm. This method
considers the similarity of each node in a graph and divides these nodes into
k groups. In this article, we divide customers into k groups using a distance-
based rule. The number of k is set to be equal to the number of planning
periods in a planning horizon. With the help of this method, we ensure that
customers that are divided into the same planning period are spatially clus-
tered. Customer nodes are first set to the nearest core. If the lowest visit
frequency of a customer is more than one, then it will be set to the first
nearest and second nearest core and so on. When the customer distribution
phase is finished, the lowest visit frequency constraint of each customer must
be satisfied. Fig.4 shows a result of customer distribution.

After customer distribution phase, every planning period has a list of
customers that must be visited in this period. This list of customers is called
cst.
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Figure 4: Customer distribution result

Solution construction. At the beginning of each iteration, an artificial
ant is put on the depot node. Then, it visits customer nodes following a
probabilistic rule donated in equation (14). Customers that are visited by
the artificial ant are put into the tabu list. When there is no customer that
can be visited, the artificial ant goes back to the depot and a new artificial
ant is put on the depot node and begin to build its own route. After all
customers in cst are visited, the daily plan is built. For each day in planning
horizon, IACO follows equation (14) to build daily plan.

P t
ij =


λ(τ tij)

α
(ηij)

β

N∑
s=1

λ(τ tis)
α
(ηis)

β
, ifnodejcanbeselected;

0, otherwise.

(14)
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In equation (14), P t
ij donates the probability that artificial ant chooses

node j to visit next when it is at node i. τ tij donates the pheromone infor-
mation on arc ij at planning period t. ηij donates the heuristic information,
which is set to 1/cij in this article. α and β are control parameters which
indicate the importance of heuristic and pheromone information. λ is a pa-
rameter which controls the willingness of artificial ants to choose a customer
node that is not in cst to visit. When a customer is in cst, λ is set to 1;
otherwise λ is set to a constant that is less than 1. The λ parameter is a new
mechanism that helps IACO generate solutions with different visit frequency.
Every time when MOSA-ACO is reinitialized, λ also changes. The value of λ
is between (0, 1). When λ becomes larger, artificial ants are more willing to
choose customers that are not in cst to visit. The route construction phase
is shown in fig.5:

Figure 5: Route Construction

Crossover. IACO algorithm of MOSA-ACO applies a crossover operator
to help find better solutions. The crossover operator breaks and relinks routes
in a same planning period to help improve solution quality and prevent local
optimum. The two crossover operations (i.e. one-point crossover operation
and two-point crossover operation) applied in IACO of MOSA-ACO are the
same as article Yu and Zhang[24]. Since the aim of crossover operator is to
improve the solution quality, only solutions found in crossover operator that
are feasible can update the pheromone information.
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Pheromone update. IACO of MOSA-ACO follows a self-adaptive manner
to update pheromone information. In every iteration, when crossover phase
is over and all new feasible solutions are generated, the algorithm updates
the pheromone information following equation (15):

τ tij
new

= (1− ρ)τ tij
old

+ ∆τ tij
old
ρ ∈ [0, 1] (15)

τ tij
new

donates the pheromone information on arc ij in next iteration. τ tij
old

donates the current pheromone information on arc ij. ρ donates the pheromone
evaporation rate. ∆τ tij

old
donates the pheromone that leaves on arc ij if ij

is in current solution. ∆τ tij
old

is decided using equation (16):

∆τ tij
old

=

(
δ × LOpt

Lcurrent

)
(16)

In equation (16), δ is a constant which donates the pheromone increment
baseline. LOpt is the total length of current best solution. The initial best
solution is generated using nearest neighbor search algorithm (all customers
must be visited in each planning period). Lcurrent is the total length of cur-
rent solution. It must be noticed that in original IACO, a punishment factor
is applied to reduce the pheromone that leaves on routes in infeasible so-
lutions. However, in IACO of MOSA-ACO, because the infeasible solutions
are simply discarded, this factor is removed. δ is decided using equation (17):

δ=τmax × ρ (17)

The τmax gives the upper bound of pheromone information leaves on an arc.
And also, a parameter τmin is given to donate the lower bound of pheromone
information. The τmax is set to the maximum iteration times. And τmin is
set to 1. The initial pheromone information of each arc is set to τmax.
Another thing that must be noticed is in IACO of MOSA-ACO, we use a
multi-dimensional pheromone matrix to save pheromone information in each
planning period. The reason is that the customers who need to be served in
different planning periods are different.
Local search. To improve the solution quality of IACO, 2-opt local search
heuristic is applied to the solutions generated by IACO. 2-opt is a widely ap-
plied local search strategy in VRPTW. Detailed description of 2-opt can be
seen in section 3.3. It must be noticed that in MOSA procedure several local
search heuristics are applied. However, only 2-opt heuristic is implemented
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in IACO as a result of reduction of computation cost and local optimum
avoidance.

3.2. Multi Objective Simulation Annealing

When a new feasible solution a is found, MOSA-ACO follows these steps
to decide whether this solution is accepted:
a) if solution a is a non-dominated solution, then it will be accepted directly
by MOSA-ACO.
b) if solution a is dominated by current Pareto Frontier solution set, then
a probabilistic based rule will be implemented to decide whether solution a
can be accepted. This rule can be seen in equation (18) and equation (19).
c) if solution a is accepted, then the current Pareto Frontier set will be
checked and solutions that are dominated by solution a will be deleted.
When solution a is dominated by current Pareto Frontier solution set, MOSA
first use equation (18) to evaluate the quality of solution a.

F (a) = min

√
(Obj1a −Obj1s )

2 + . . . . . .+ (Objna −Objns )2

s ∈ NS
(18)

In equation (18), NS donates the non-dominated solution set. F (a) donates
the fitness value of solution a. Objna donates the n objective value of solu-
tion a. Objns donates the n objective value of solution s. Basically, equation
(18) gives out the shortest Euclidean distance of the current solution to the
current non-dominated solution set found by MOSA-ACO. The reason that
multi objective criterion is introduced into MOSA-ACO is to measure the
quality difference between a new feasible solution and global best solutions.
In original SA framework, a feasible solution has a high possibility to be ac-
cepted when the difference between its fitness value and global best is small.
Since PVRPTW-SC problem has three problem objectives, to calculate the
difference of solution quality between a new feasible solution and global best
solutions, this criterion is applied. Fig.6 gives a visualized description of
F (a):

Then, MOSA uses equation (19) to decide whether solution a will be ac-
cepted:

PA(a) = e−F (a)/Tc (19)
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Figure 6: multi objective evaluation criterion (when newly found solution a is dominated
by current Pareto Frontier solution set)

In equation (19), Tc donates the current temperature, PA(a) donates the
probability that solution a will be accepted. Every time a new solution is
constructed, the current temperature is adjusted following equation (20):

Tn = Tc × ε (20)

In equation (20), Tn donates the temperature in next iteration, ε is a param-
eter which controls the decrease speed of Tc.
To avoid fast convergence, a backfire technology is also implemented. Every
time a new solution is accepted, the current temperature will be adjusted
using equation (21):

Tn = (Tp − Tc)× ω + Tc (21)

In equation (21), Tp donates the temperature last time when a feasible solu-
tion generated by IACO is accepted, ω is a control parameter. In this article,
ω is set to 0.5.

3.3. Local Search Heuristics

To improve the solution quality of MOSA, six kinds of local search heuris-
tics are applied. These local search heuristics include: the well-known 2-opt
(Croes [26]) and 3-opt (Lin [27]) heuristics, route elimination and new route
operators (Garcia-Najera and Bullinaria [28]) and node exchange and node
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insertion heuristics. The node exchange heuristic randomly selects 2 routes
in 1 planning period. Then, node exchange heuristic tries to break these 2
routes into 4 parts and then relinks these 4 parts into 2 new routes. Every
possible breaking position of these 2 routes is tested and the new solution
with lowest travelling distance is accepted. The node insert heuristic first
randomly chooses 2 routes in the same planning period. Then, node insert
heuristic randomly removes a customer node in route 1 and insert it into ev-
ery possible position in route 2. The solution with lowest travelling distance
is accepted. The node exchange heuristic is shown in fig.7 and node insertion
is shown in fig.8.

Figure 7: Node Exchange Heuristic

It should be notice that in MOSA-ACO, there are two phases that use
local heuristics. To reduce time cost, in IACO phase we only apply 2-opt
heuristic, which is the same as the original IACO algorithm.
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Figure 8: Node Insertion Heuristic

4. Numerical analysis

In this section, the numerical analysis design and results are reported.

4.1. Experiment design

In this paper, we use benchmark instances generated from two widely
applied benchmark instance problem sets. One of them is generated from
Solomon’s 50 benchmark problem instances. The other is generated from
Cordeau’s PVRPTW problem instances. These instances can be found at
http://neo.lcc.uma.es/vrp/vehicle-routing-problem/.
Solomon’s benchmark instances have 3 problem scales: 25 customers, 50
customers and 100 customers. In this paper we use the 50 customer in-
stances. According to Baños et al [29], a selected Solomon’s benchmark
instance set can be used to test the performance of an algorithm since the
Solomon’s benchmark instances are designed following some certain patterns.
In Solomon’s benchmark instances, there are six categories: C1 and C2 cate-
gories, R1 and R2 categories and RC1 and RC2 categories. In each category,
the distribution pattern of locations of customers is the same. In C1 and C2
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categories, locations of customers are clustered. In R1 and R2 categories,
locations of customers are randomly generated. And instances in RC1 and
RC2 categories have mixtures of random and clustered customers. Instances
in C1, R1 and RC1 have smaller time windows than instances in C2, R2 and
RC2. In each category, the customer geographical locations, demands and
service times are the same, while they differ in the percentage of customers
that have time windows and the time window intervals.
Since the Solomon’s benchmark instances are designed as VRPTW instances,
we generate our instances based on Solomon’s benchmark instances: the plan-
ning horizon is set to 5; the customer locations, demands and time windows
of each selected instances remain unchanged; for each customer, a minimum
visit frequency is given based on a probabilistic rule. The range of minimum
service is set to 1 to 3. For each customer, the probability that its minimum
visit frequency is set to 1 is 85%, while the probabilities of 2 and 3 are 15%
and 5%, respectively.
The PVRPTW-SC problem is also very similar to the PVRPTW problem,
so Cordeau’s C-PVRPTW problem instances are also applied to test the per-
formance of MOSA-ACO algorithm. In this paper, we only use instances in
Cordeau’s problem instances which have total customers less than 150. And
in Cordeau’s problem instances, all customers have possible visited combina-
tions. Since in PVRPTW-SC, we only focus on the visit frequency of each
customer, the possible visited combinations are no longer needed.
An example of PVRPTW-SC problem instance can be seen in Table 1.

Table 1: An example of PVRPTW-SC problem instance
Time Period 5 days Vehicle capacity 200 Max. fleet size 25
Customers:
Cust. No. X Coord. Y Coord. Demand Ready time Due date Service time Min. frequency

1 45 45 10 700 1200 90 2
2 30 45 5 200 800 90 3

......

In this paper, comparison algorithms include four widely applied popu-
lation based multi objective optimization algorithms, namely NSGA II [30],
SPEA2 [31], MOEA/D [32] and NSGA III [33]. MOEA based algorithms
are very commonly used meta-heuristics for many kinds of multiobjective
optimization problems [34]. The algorithm frameworks are open source
codes which can be gotten from https://yarpiz.com/category/multiobjective
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-optimization. To analyze the improvement of local search heuristics and
MOSA framework, computation experiments using original IACO algorithm
are included as well. For each algorithm, the customer minimum visit fre-
quency is first randomly distributed to the planning horizon. The daily plan
is initialized using a time-window insertion heuristic (TWIH) which is de-
scribed in Baños et al [29] and proved to be efficient for VRPTW problems.
The crossover operator, which is described in Garcia-Najera and Bullinaria
[28], is a widely applied crossover operator in VRP problems. The mutation
operators include ten efficient operators, namely random relocation, customer
best relocation, customer random migration, customer best migration, cus-
tomer random exchange, customer best exchange, customer exchange with
coincident time window, route partitioning, new route and route elimination,
for VRP problems to reduce travelling distances and fleet size. These oper-
ators are selected from Tan et al.[35], Alvarenga et al.[36], El-Sherbeny.[37]
and Garcia-Najera and Bullinaria [28]. To achieve adding extra visit fre-
quency to customers, two other operators are designed. One of them adding
extra visit frequency to customers that have lowest visit frequency. The
newly added service frequencies are put into the daily plan that has lowest
number of customers. In this operator, up to 5 randomly chosen customers
can be chosen in one time. Another operator is designed to randomly remove
visit frequencies from daily plan that has largest number of customers while
the lowest visit frequency constraint must not be broken. This operator re-
moves one visit of a customer in one time. All the 12 mutation operators
have the same probability to be chosen in one iteration. Other parameter
tuning methodologies are as follows.
For MOSA-ACO, there are 2 parts that should be tuned:
a) in the MOSA part, three parameters (initial temperature, target temper-
ature and delta) need to be tuned. The initial temperature is set using a
simple but efficient principle which is suggested in [38]. The initial temper-
ature is set such that a solution that is w% worse than the initial solution
can be accepted at a possibility of more than 50%. Thus, in this article, we
set the initial temperature at 800. We also follow a simple principle that the
algorithm can be terminated when a new solution can be accepted at a pos-
sibility of lower than 1%, so we set the target temperature at 10. Then, the ε
is set to 0.99, which is a commonly used ε of simulated annealing algorithm.
b) for IACO in MOSA-ACO, the control parameters (α and β) are suggested
by the original article [24]. The maximum iterations from 100 to 500 are
tested and 200 is chosen considering both algorithm performance and com-
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putation costs.
For population-based algorithms (NSGA II, SPEA2, NSGA III, MOEA/D),
the number of solutions generated by MOSA-ACO during 1 run is measured.
Then, the population size of 50 and total running time of 300 are chosen
to make sure that the solutions generated by MOSA-ACO and comparison
algorithms are nearly the same.
For IACO, the maximum running iterations are set to 1000 for instances that
contain 50 customers, 2000 for instances that contain customers that are more
than 50 but less than 100 and 3000 for instances that contain customers that
are more than 100. This will result in nearly the same computation costs of
IACO and MOSA-ACO.
All tests are running on a computer with Intel R○ CoreTM i5–4460 central
processing unit (four cores, 3.2 GHz) with 4 GBs of memory. All of the algo-
rithms are coded using MATLAB 2014a. The {α, β} is set to {2, 1}, which
is the same as it is in article Yu and Zhang[24]. ρ is set to 0.01. Maximum
running iteration of IACO in MOSA-ACO is set to 200.

4.2. Experiment result

We choose 20 benchmark problems to test the performance of MOSA-
ACO. λ is set to 1 for customers in cst. For customers that are not in cst,
factor λ is set following the steps below: a) λ is set to 0.5 when MOSA-ACO
is initialized; b) every time when a new solution generated by IACO is ac-
cepted by MOSA, λ is reduced by 0.1; c) while λ < 0, it is reset to 0.5.
In this section, the average performance of three algorithms are reported.
Table 3, 4 and 5 give the average value of three objectives of non-dominate
solutions found by the three algorithms in each instance. In tables below,
“T” is short for “Travelling Distance”, “FS” is short for “Fleet Size”, “VF”
is short for “Visit Frequency”. To help understanding the PVRPTW-SC
problem results, an visualized example is shown in Fig.9.

In VRPTW instances, MOSA-ACO algorithm shows a good ability of
finding solutions with higher total visit frequency and lower travelling dis-
tance. In 10 of 12 test instances, MOSA-ACO finds solutions with lowest
average travelling distance. And in 6 of 12 instances, MOSA-ACO finds so-
lutions with largest total visit frequency. In C type and RC type instances,
MOSA-ACO finds solutions with lowest travelling distance and highest total
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Table 2: Mean numbers of travelling distance, fleet size and visit frequency in Solomon’s
instances

MOSA-ACO IACO[24] NSGA II[30] SPEA 2[31] MOEA/D[32] NSGA III[33]
Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif.

C103-50
TD 913.92 1.6% 0.0% 1094.71 0.7% 19.8% 1150.33 6.1% 25.9% 1078.14 10.5% 18.0% 1038.10 6.9% 13.6% 963.15 7.2% 5.4%
FS 3.55 2.3% 15.5% 4.38 5.8% 31.5% 3.29 5.6% 8.8% 3.01 13.8% 0.3% 3.21 5.0% 6.4% 3.00 14.4% 0.0%
VF 97.77 2.7% 5.7% 102.58 2.9% 1.1% 103.73 3.8% 0.0% 93.02 7.8% 10.3% 98.06 4.5% 5.5% 99.30 6.9% 4.3%
CPU(s) 1063.29 1145.69 88.52 81.19 191.57 198.58

C108-50
TD 1216.65 1.6% 11.4% 1222.49 1.2% 12.0% 1335.57 2.7% 22.3% 1091.9 5.9% 0.0% 1331.75 4.9% 22.0% 1280.36 2.4% 17.3%
FS 4.28 1.7% 33.5% 5.11 2.5% 44.3% 2.95 8.3% 3.5% 3.45 7.7% 17.4% 3.31 5.5% 14.0% 2.85 0.3% 0.0%
VF 127.43 2.9% 0.0% 124.75 2.2% 2.1% 105.2 5.5% 17.4% 99.03 5.2% 22.3% 101.58 3.6% 20.3% 108.32 2.9% 15.0%
CPU(s) 2585.71 1587.14 93.8 80.18 191.33 202.99

C203-50
TD 1086.5 0.9% 0.0% 1109.55 0.7% 2.1% 1223.64 4.5% 12.6% 1225.23 6.4% 12.8% 1207.61 7.0% 11.2% 1169.10 8.5% 7.6%
FS 2.73 4.2% 45.9% 3.00 0.0% 50.8% 1.77 9.8% 16.6% 1.52 18.7% 2.9% 1.48 13.8% 0.0% 2.20 14.4% 32.9%
VF 115.21 2.1% 0.0% 111.88 2.1% 2.9% 99.98 3.3% 13.2% 98.87 5.7% 14.2% 103.92 3.1% 9.8% 107.48 3.4% 6.7%
CPU(s) 1244.32 1635.39 81.05 59.31 185.72 173.75

C208-50
TD 1113.8 0.8% 0.0% 1230.13 0.4% 10.4% 1201.4 3.7% 7.9% 1134.5 3.2% 1.9% 1207.61 7.0% 8.4% 1184.93 8.4% 6.4%
FS 2 0.0% 43.5% 2.00 0.0% 43.5% 1.53 6.9% 26.1% 1.13 13.6% 0.0% 1.38 13.8% 17.9% 1.34 6.3% 15.8%
VF 113.78 2.7% 1.0% 114.92 2.7% 0.0% 98.03 3.2% 14.7% 99.37 4.9% 13.5% 103.92 3.1% 9.6% 102.12 3.7% 11.1%
CPU(s) 3072.09 2296.34 70.82 49.8 185.17 170.99

R103-50
TD 1791.4 1.5% 0.0% 2067.54 1.0% 15.4% 1859.74 3.9% 3.8% 1800.47 6.3% 0.5% 1833.07 6.1% 2.3% 1816.77 7.3% 1.4%
FS 5.2 2.3% 10.6% 5.35 3.7% 13.2% 5.26 9.4% 11.6% 5.35 11.3% 13.1% 4.65 9.1% 0.0% 4.88 16.9% 4.7%
VF 107.93 2.5% 6.1% 114.95 1.1% 0.0% 105.67 3.7% 8.1% 103.89 5.4% 9.6% 103.99 4.0% 9.5% 103.39 9.1% 10.1%
CPU(s) 2355.44 2290.14 99.95 82.1 183.66 193.54

R108-50
TD 1384.7 0.8% 0.0% 1512.31 0.6% 9.2% 1519.16 4.1% 9.7% 1425.32 2.6% 2.9% 1469.62 8.1% 6.1% 1473.38 8.2% 6.4%
FS 3.33 4.5% 9.9% 3.64 3.6% 17.5% 3.54 3.4% 15.3% 3 5.4% 0.0% 3.28 4.9% 8.6% 3.30 11.3% 9.0%
VF 98.9 1.7% 3.7% 102.68 2.0% 0.0% 100.37 2.3% 2.2% 95.16 5.1% 7.3% 94.62 6.3% 7.8% 95.26 7.5% 7.2%
CPU(s) 2812.24 2250.75 99.59 99.52 195.45 202.62

R203-50
TD 1697.94 1.7% 4.3% 1946.29 2.6% 19.5% 1706.23 2.6% 4.8% 1676.23 4.5% 2.9% 1628.61 6.0% 0.0% 1636.54 5.9% 0.5%
FS 2.96 3.6% 49.0% 3.05 3.4% 50.5% 2.07 4.4% 27.1% 1.6 5.9% 5.6% 1.83 13.1% 17.7% 1.51 1.7% 0.0%
VF 126.31 2.5% 0.0% 126.02 2.4% 0.2% 110.51 3.3% 12.5% 111.64 2.9% 11.6% 108.36 8.2% 14.2% 113.94 4.9% 9.8%
CPU(s) 769.78 1581.57 183.44 99.52 175.49 199.44

R208-50
TD 1084.1 0.9% 0.0% 1108.53 4.7% 2.3% 1106.23 4.5% 2.0% 1107.52 3.4% 2.2% 1143.26 11.9% 5.5% 1090.23 7.1% 0.6%
FS 1.29 8.2% 22.1% 1.18 17.8% 14.8% 1.13 14.7% 11.1% 1.13 14.5% 11.1% 1.05 8.5% 4.3% 1.00 0.9% 0.0%
VF 91.4 2.3% 3.9% 95.09 5.7% 0.0% 91.2 2.3% 4.1% 90.66 3.3% 4.7% 88.93 5.8% 6.5% 89.71 6.0% 5.7%
CPU(s) 1264.67 1443.28 122.98 224.01 183.35 168.62

RC103-50
TD 1705 0.8% 0.0% 1767.38 1.1% 3.7% 1716.29 2.9% 0.7% 1793.1 6.0% 5.2% 1791.78 4.3% 5.1% 1756.95 4.5% 3.0%
FS 4.5 2.9% 6.0% 5.00 0.0% 15.4% 4.51 5.5% 6.2% 4.23 9.1% 0.0% 4.53 2.6% 6.6% 4.43 9.9% 4.5%
VF 96.65 2.0% 0.0% 96.59 1.8% 0.1% 95.85 4.9% 0.8% 94.72 5.7% 2.0% 92.01 3.7% 4.8% 92.60 5.9% 4.2%
CPU(s) 857.56 1108.96 152.41 97.09 170.38 190.08

RC108-50
TD 1439.9 0.8% 0.0% 1596.24 0.7% 10.9% 1507.51 3.7% 4.7% 1531.46 3.6% 6.4% 1587.47 3.6% 10.2% 1478.36 5.3% 2.7%
FS 3.99 3.1% 21.6% 4.57 3.0% 31.5% 3.81 5.9% 17.8% 3.13 3.5% 0.0% 3.59 8.5% 12.7% 3.33 12.6% 6.0%
VF 93.77 2.1% 0.7% 94.39 4.0% 0.0% 93.58 6.9% 0.9% 90.36 3.6% 4.3% 90.87 3.7% 3.7% 89.01 10.6% 5.7%
CPU(s) 965.5 1205.23 170.16 108.15 182.53 188.81

RC203-50
TD 1739.7 3.6% 0.0% 1942.25 1.4% 11.6% 1796.1 5.2% 3.2% 1766.47 7.1% 1.5% 1782.17 5.0% 2.4% 1752.38 8.6% 0.7%
FS 3 6.8% 37.0% 3.51 6.2% 46.1% 2.02 2.3% 6.4% 1.89 11.1% 0.0% 2.31 6.5% 18.1% 2.04 3.0% 7.3%
VF 125.06 6.3% 0.4% 125.58 1.9% 0.0% 107.86 4.8% 14.1% 108.18 6.9% 13.9% 111.41 5.9% 11.3% 112.90 11.6% 10.1%
CPU(s) 818.89 1429.20 207.06 92.08 191.48 216.05

RC208-50
TD 1365 14.3% 0.0% 1640.13 1.8% 20.2% 1468.03 2.9% 7.5% 1449.87 9.5% 6.2% 1484.93 12.0% 8.8% 1365.60 4.9% 0.0%
FS 1.84 2.0% 19.2% 2.00 0.0% 25.6% 1.54 11.8% 3.4% 1.63 15.0% 8.7% 1.80 7.4% 17.3% 1.49 3.2% 0.0%
VF 107.48 11.9% 0.0% 106.18 4.4% 1.2% 101.21 5.7% 5.8% 99.33 8.5% 7.6% 102.35 5.5% 4.8% 102.07 6.1% 5.0%
CPU(s) 994.67 1365.51 133.53 350.15 180.33 173.70

Table 3: Mean numbers of travelling distance, fleet size and visit frequency in Solomon’s
instances(averaged by type of instances

MOSA-ACO IACO[24] NSGA II[30] SPEA 2[31] MOEA/D[32] NSGA III[33]
Total Dif. Total Dif. Total Dif. Total Dif. Total Dif. Total Dif.

C-type TD 4330.8 0.0 4656.9 7.5 4910.9 13.4 4529.8 4.6 4724.1 9.1 4597.5 6.2
FS 12.6 38.5 14.5 59.8 9.5 5.2 9.1 0.0 9.4 3.3 9.4 3.5
VF 454.2 0.0 454.1 0.0 406.9 10.4 390.3 14.6 405.1 10.8 417.2 8.1

R-type TD 5958.2 0.0 6634.7 11.4 6191.4 3.9 6009.5 0.9 6074.6 2.0 6016.9 1.0
FS 12.8 19.6 13.2 23.7 12.0 12.3 11.1 3.7 10.8 1.2 10.7 0.0
VF 424.5 3.2 438.7 0.0 407.8 7.1 401.4 8.5 395.9 9.8 404.3 7.8

RC-type TD 6249.6 0.0 6946.0 11.1 6487.9 3.8 6540.9 4.7 6615.2 5.9 6353.3 1.7
FS 13.3 22.5 15.1 38.5 11.9 9.2 10.9 0.0 11.5 5.5 11.3 3.7
VF 423.0 0.0 422.7 0.1 398.5 5.8 392.6 7.2 399.4 5.6 396.6 6.2
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Figure 9: Example of visualized solution

visit frequency in total (shown in Table 3). And in R type instances, MOSA-
ACO finds solutions with lowest travelling frequency in total. Compared
with SPEA 2 which finds solutions with lowest total fleet size in C and RC
type instances, MOSA-ACO finds solutions with average 3.37% lower on to-
tal travelling distance and 10.11% higher on total visit frequency. Compared
with NSGA III which finds solutions with lowest total fleet size in R type in-
stances, MOSA-ACO finds solutions with average 2.93% lower on total trav-
elling distances and 7.41% higher on total visit frequency. And, MOSA-ACO
also shows a robust performance in most tested Solomon’s instances. Besides
RC208-50, the maximum divisions of travelling distance, fleet size and visit
frequency are 3.6% (RC203-50), 8.2% (R208-50) and 6.3% (RC203-50), re-
spectively. Another thing should be noticed is that in RC208-50 instance,
MOSA-ACO, SPEA 2, NSGA II and MOEA/D show more unstable perfor-
mances than they show in other instances. The reason may be that in RC2
type instances, the original problem instances have conflict objectives, which
means that reducing fleet size will increase travelling distance. And in RC2
type instances, customers have relatively long service time windows. Thus,
customers will have more possibility to be added extra visit frequency. And
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the algorithm performances become unstable. In VRPTW problem instances,
MOSA-ACO has a longer computation time cost compared with other algo-
rithms (except IACO). In all tested instances, the computation time cost of
MOSA-ACO is 5 to 10 times longer compared with other algorithms, while
other algorithms have almost the same computation time costs in all tested
instances. We also test performances of MOSA-ACO and original IACO algo-
rithms with Solomon’s instances. Compared with IACO, MOSA-ACO finds
solutions with 10.09% lower travelling distance, 13.8% lower fleet size and
1.03% lower total visit frequency on average. Since the difference of IACO
and MOSA-ACO is whether the local search strategies are implemented,
this phenomenon indicates that applying these local search heuristics brings
reduction of service costs at the price of a slightly reduction of service profits.

Table 4: Mean numbers of travelling distance, fleet size and visit frequency in Cordeau’s
instances

MOSA-ACO IACO[24] NSGA II[30] SPEA 2[31] MOEA/D[32] NSGA III[33]
Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif. Ave. Dev. Dif.

pr01
TD 4045.9 2.2% 2.0% 4500.45 1.1% 11.9% 4122.6 3.0% 3.9% 4087.8 5.2% 3.0% 4052.2 9.2% 2.2% 3963.2 8.9% 0.0%
FS 5.4 3.7% 25.9% 5.91 2.2% 32.3% 4 6.8% 0.0% 4 6.3% 0.0% 4.1 6.1% 1.3% 4.2 16.2% 5.5%
VF 144.7 2.7% 0.0% 142.52 1.6% 1.5% 137.1 3.7% 5.5% 135.1 4.3% 7.1% 131.1 7.4% 10.4% 132.8 7.7% 8.9%
CPU(s) 2130.7 1405.7 144.3 143.2 221.7 232.0

pr02
TD 7399.4 2.9% 0.0% 8157.9 0.8% 9.3% 7663.6 4.4% 3.4% 7542.8 2.7% 1.9% 7506.8 8.8% 1.4% 7484.6 6.3% 1.1%
FS 10.4 2.0% 23.2% 11.1 2.5% 27.9% 9 6.5% 11.2% 8.8 4.4% 9.2% 9.0 6.1% 11.2% 8.0 6.6% 0.0%
VF 307.6 2.4% 0.0% 301.2 1.5% 2.1% 284.6 2.4% 8.1% 290.9 2.4% 5.7% 283.0 6.6% 8.7% 277.7 4.3% 10.8%
CPU(s) 5532.8 4158.5 588.3 588.8 905.1 744.1

pr03
TD 10802 0.3% 0.0% 11787.8 1.0% 8.4% 11605.5 2.1% 6.9% 11924.8 2.0% 9.4% 11858.4 6.0% 8.9% 11700.3 2.7% 7.7%
FS 14.3 2.1% 11.2% 15.4 1.4% 17.7% 12.8 2.8% 0.8% 13.1 8.1% 3.1% 12.7 6.8% 0.0% 13.3 5.4% 4.3%
VF 455.7 0.5% 0.0% 454.8 1.0% 0.2% 422.9 1.2% 7.8% 424.3 1.4% 7.4% 432.0 5.4% 5.5% 448.1 2.1% 1.7%
CPU(s) 10379 9078.8 1207.7 1347.5 1824.1 1513.4

pr07
TD 9543 1.6% 0.3% 10363.5 0.7% 8.2% 10979.5 2.9% 13.3% 10287.8 4.5% 7.5% 10772.6 5.7% 11.7% 9516.6 5.1% 0.0%
FS 9.9 3.2% 19.9% 10.4 1.7% 23.8% 8.1 3.8% 2.1% 8.2 5.3% 3.3% 8.4 3.2% 5.8% 7.9 11.4% 0.0%
VF 347.2 2.9% 0.0% 342.9 0.6% 1.2% 322.1 1.7% 7.8% 320.5 2.5% 8.3% 335.1 2.9% 3.6% 324.3 4.0% 7.1%
CPU(s) 4695.1 3641.5 522.8 576.2 869.8 984.9

pr08
TD 14790 1.7% 0.0% 16401.2 0.6% 9.8% 15358.9 3.0% 3.7% 15778.2 3.8% 6.3% 15681.1 12.8% 5.7% 15241.5 5.2% 3.0%
FS 15.2 2.0% 17.0% 16.6 1.1% 23.8% 13.2 3.4% 4.4% 13.1 3.7% 3.7% 12.6 5.3% 0.1% 12.6 7.5% 0.0%
VF 679.5 1.6% 0.6% 683.8 0.5% 0.0% 625.9 0.9% 9.3% 623.2 1.3% 9.7% 626.5 4.7% 9.2% 635.2 1.6% 7.7%
CPU(s) 12379.3 10206.3 2009.9 2351.7 2298.1 2399.0

pr11
TD 3109.6 1.3% 0.0% 3396.6 1.5% 8.4% 3362.1 3.8% 7.5% 3327.2 3.5% 6.5% 3294.1 8.7% 5.6% 3216.4 6.9% 3.3%
FS 3.6 4.3% 2.8% 4.0 1.3% 12.9% 3.5 4.4% 0.0% 3.5 5.1% 0.0% 3.6 2.9% 3.8% 4.0 18.1% 13.0%
VF 139 2.3% 1.9% 141.7 1.7% 0.0% 131.4 2.9% 7.8% 132.8 3.3% 6.7% 132.7 5.0% 6.7% 141.2 4.0% 0.3%
CPU(s) 2778.2 2217.0 174.4 164.7 263.0 276.5

pr12
TD 5865.9 1.7% 0.0% 6313.3 1.2% 7.1% 6240.4 4.4% 6.0% 6572.3 3.8% 10.7% 6355.3 8.5% 7.7% 6114.8 6.8% 4.1%
FS 7.8 2.7% 12.8% 8.2 2.2% 17.0% 6.8 5.4% 0.0% 6.9 4.4% 1.4% 7.1 5.9% 4.6% 7.3 8.0% 6.3%
VF 295.9 2.2% 1.6% 300.6 1.1% 0.0% 274.6 2.0% 9.5% 278.8 2.1% 7.8% 283.6 3.9% 6.0% 282.8 2.3% 6.3%
CPU(s) 5858.5 3962.4 745.8 780 938.3 863.8

pr13
TD 8691.4 0.8% 0.0% 9396.5 0.9% 7.5% 9204.9 2.9% 5.6% 9007.9 3.6% 3.5% 9366.7 8.4% 7.2% 9141.7 4.6% 4.9%
FS 10.4 1.1% 11.9% 11.1 1.5% 17.7% 9.3 3.7% 1.4% 9.5 3.5% 3.5% 9.9 7.1% 7.8% 9.2 4.0% 0.0%
VF 445.1 1.0% 0.3% 446.4 1.1% 0.0% 402.7 1.2% 10.9% 410.5 1.9% 8.8% 417.5 4.2% 6.9% 427.1 2.7% 4.5%
CPU(s) 9972.4 8395.6 1622 1586.9 1851.7 1905.8

pr17
TD 7533.2 1.4% 0.0% 8004.0 0.9% 5.9% 8157.4 1.5% 7.7% 8502.5 5.9% 11.4% 8289.9 7.7% 9.1% 8150.3 4.4% 7.6%
FS 6 3.2% 7.0% 6.4 2.0% 13.1% 5.7 2.8% 2.1% 5.8 4.4% 3.8% 5.8 5.5% 3.2% 5.6 3.3% 0.0%
VF 333.1 2.8% 0.3% 334.2 0.9% 0.0% 315.7 1.3% 5.9% 329.4 3.3% 1.5% 317.3 5.0% 5.3% 322.3 3.1% 3.7%
CPU(s) 5219.2 5322.9 668.8 730.6 883.3 902.5

pr18
TD 12260 1.1% 0.0% 12935.1 0.8% 5.2% 13044.5 3.0% 6.0% 13451 2.6% 8.9% 13025.2 8.4% 5.9% 12859.7 5.3% 4.7%
FS 10.8 2.4% 14.1% 11.6 1.2% 20.1% 9.8 4.0% 5.3% 9.7 3.3% 4.4% 10.4 5.4% 11.2% 9.3 6.4% 0.0%
VF 675.1 0.8% 0.0% 672.8 0.7% 0.3% 621 0.7% 8.7% 621.8 0.9% 8.6% 637.3 3.2% 5.9% 646.2 1.4% 4.5%
CPU(s) 12001.1 12733.2 2426.9 2587.4 2715.4 2915.8

In Cordeau’s instances, MOSA-ACO also shows a good performance of
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finding solutions with lower travelling distance and higher total visit fre-
quency. In 4 of 10 tested instances, MOSA-ACO finds solutions with the
lowest average travelling distance and highest total visit frequency (shown in
Table 4). In 8 of 10 instances, MOSA-ACO finds solutions with lowest travel-
ling, and in 6 instances MOSA-ACO finds solutions with minimum travelling
distances. Compared with MOEA/D, MOSA-ACO finds solutions with 7.3%
average lower travelling distance, 5.9% higher average visit frequency while
total fleet size rises about 10.8%. Compared with MOEA/D, MOSA-ACO
finds solutions with 4.0% average lower travelling distance, 4.8% higher av-
erage visit frequency while total fleet size rises about 13.3%. Compared with
IACO, MOSA-ACO finds solutions with 7.4% lower fleet size and 8.5% lower
travelling distance while the visit frequencies are almost the same. This re-
sult is coincidence with the result of Solomon1instances. In all tested 10
instances, MOSA-ACO shows a robust performance. The maximum divi-
sions of travelling distance, fleet size and visit frequency are 2.9% (in pr02),
4.3% (in pr11) and 2.8% (in pr17). In Cordeau’s instances, MOSA-ACO also
has a higher computation cost compared with other algorithms. Detailed
comparisons can be seen in Table 4.

Table 5: Instance information of Cordeau’s instances

pr01 pr02 pr03 pr07 pr08

Number of days 4 4 4 6 6
Number of customers 48 96 144 72 144

pr11 pr12 pr13 pr17 pr18
Number of days 4 4 4 6 6
Number of customers 48 96 144 72 144

Finally, we can infer from table 4 and 5 that the computation cost of
MOSA-ACO shows a linear growth trend as problem scale becomes larger.
Table 5 shows the problem scales of all Cordeau’s instances tested. For ex-
ample, the problem scale of pr02 is 2 times of problem scale of pr01, and the
computation cost of MOSA-ACO in pr02 is around 2.5 times of computation
cost of pr01.
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4.3. Hyper-volume performance analysis

Hyper-volume (HV) analysis is an efficient method to compare the per-
formances of several multi objective optimization heuristic algorithms. HV
analysis can compare qualities of non-dominated solution sets of different
multi objective heuristics even when the actual Pareto Frontier is unknown.
In this paper, we applied a Monte-Carlo method based HV indicator since the
exact Pareto Frontier of each instance is unknown. This indicator can be ob-
tained from https://ww2.mathworks.cn/matlabcentral/fileexchange/30785-
hypervolume-computation. This indicator randomly generates points in an
area between a given lower bound and a given upper bound. Then, it calcu-
lates the percentage of points dominated by a given solution set. A graphic
description of this indicator is as follows.

Figure 10: Monte-Carlo based HV analysis: ND solution set 1 dominates 2 points, ND
solution set 2 dominates 3 points. Thus the HV coverage performance of ND solution set
1 is 50%, and the HV coverage performance of ND solution set 2 is 75%.

In this paper, the lower bound of each instance is set to the best values
of three objectives found by all algorithms during 10 runs. The travelling
distance and fleet size upper bounds of each instance are set to twice the total
travelling distance and fleet size of the solution found by TWIH heuristic,
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which is a commonly applied lower bound of fleet size and travelling distance
in multi objective VRP problems. And the visit frequency upper bound of
each instance is set to the sum of minimum visit frequency of each customer.
The sample time of each run is set to 1000000. And the simulation runs
10 times for each instance of all tested algorithms. Since the actual Pareto
Optimum of each instance is unknown, we only analyze the coverage perfor-
mances of the three algorithms. The average HV and analysis are shown as
follows.

Table 6 and 7 show the average, maximum and minimum HV coverage
percentages of the three algorithms. In Cordeau’s instances, MOSA-ACO
finds solutions with best average coverage performances in 7 of 10 tested
instances. When the average coverage performances are considered, MOSA-
ACO shows a good coverage performance of 78.7% on average of 10 tested
instances. MOSA-ACO is followed by MOEA/D (78.2% on average) and
NSGA III (74.0% on average). When the maximum coverage performances
are considered, NGSA III and MOEA/D both have coverage performances
of 81.6% on average of 10 tested instances. NSGA III and MOEA/D are
followed by MOSA-ACO (81.2% on average). When the minimum cover-
age performances are considered, MOSA-ACO has the best performance of
75.9% on average. Compared with IACO, the average coverage performance
of MOSA-ACO rises about 6.1% (78.7% to 72.6%). The experiment results of
Cordeau’s instances also indicate that MOSA-ACO has a robust performance
on Cordeau’s instances. Detailed experiment results of Cordeau’s instances
can be seen in Table 6.
In Solomon’s instances, MOSA-ACO finds solutions with best average cov-
erage performances in 8 of 12 tested instances. When the average coverage
performances are considered, MOSA-ACO shows a good coverage perfor-
mance of 64.6% on average of 12 tested instances. MOSA-ACO is followed
by MOEA/D (63.9% on average) and NSGA III (62.5% on average). When
the maximum coverage performances are considered, MOEA/D has the best
coverage performances of 72.2% on average of 12 tested instances. MOEA/D
is followed by MOSA-ACO (72.0% on average) and NSGA III (71.3% on av-
erage). When the minimum coverage performances are considered, MOSA-
ACO has the best performance of 57.8% on average. In VRPTW instances,
the coverage performance of MOSA-ACO rises about 9% (64.6% to 55.0%)
when it is compared with IACO algorithm. In VRPTW instances, all 6 algo-
rithms show more unstable coverage performances. The reason may be that
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Table 6: HV analysis of Cordeau’s instances(shown in percentage)

MOSA-ACO IACO[24] NSGA II[30] SPEA 2[31] MOEA/D[32] NSGA III[33]

pr01 Ave 56.2 52.4 53.6 53.5 61.6 56.2
Max 57.4 55.2 61.4 56.0 66.0 66.2
Min 55.3 48.9 48.2 49.8 54.5 48.9
Dif. 8.8% 15.0% 13.0% 13.2% 0.0% 8.8%

pr02 Ave 67.1 62.7 62.8 65.0 65.6 62.8
Max 68.7 64.5 67.7 67.5 67.7 70.8
Min 64.1 59.5 60.4 59.4 63.0 55.2
Dif. 0.0% 6.6% 6.4% 3.1% 2.2% 6.5%

pr03 Ave 80.9 76.2 72.8 70.6 81.9 76.0
Max 83.2 78.5 75.5 74.8 83.9 82.4
Min 78.0 73.7 69.1 69.1 78.4 68.7
Dif. 1.3% 7.0% 11.2% 13.8% 0.0% 7.2%

pr07 Ave 79.7 68.8 74.9 78.3 81.7 75.7
Max 80.7 70.6 79.8 81.9 82.5 81.4
Min 77.6 67.3 74.5 76.9 80.9 69.8
Dif. 2.4% 15.7% 8.3% 4.1% 0.0% 7.3%

pr08 Ave 75.3 72.2 73.9 71.9 74.3 75.2
Max 77.5 74.8 75.0 72.9 78.4 78.4
Min 73.4 69.6 71.5 69.8 72.6 70.4
Dif. 0.0% 4.1% 1.9% 4.5% 1.4% 0.1%

pr11 Ave 87.4 78.4 77.2 76.3 86.3 79.1
Max 93.8 86.1 86.5 84.7 93.6 94.0
Min 82.8 74.0 65.7 67.1 82.5 70.8
Dif. 0.0% 10.3% 11.7% 12.7% 1.2% 9.5%

pr12 Ave 87.3 78.1 76.4 78.6 85.5 80.9
Max 89.8 82.7 80.3 69.9 88.3 89.7
Min 84.3 78.7 72.5 61.8 82.9 72.7
Dif. 0.0% 10.5% 12.5% 10.0% 2.1% 7.4%

pr13 Ave 81.1 80.0 76.7 77.1 79.1 76.2
Max 84.7 79.9 78.2 79.0 85.4 83.3
Min 77.3 76.4 75.0 76.4 73.2 72.2
Dif. 0.0% 1.3% 5.4% 4.9% 2.4% 6.0%

pr17 Ave 91.1 83.4 84.2 83.6 85.6 81.1
Max 92.5 85.2 89.5 92.8 88.7 91.0
Min 88.8 80.3 80.1 74.1 80.2 73.7
Dif. 0.0% 8.5% 7.6% 8.2% 6.0% 11.0%

pr18 Ave 80.5 73.7 71.0 72.8 79.4 76.7
Max 83.4 77.2 73.4 74.8 81.9 78.4
Min 77.6 72.9 68.2 71.5 75.4 74.2
Dif. 0.0% 8.4% 11.8% 9.6% 1.4% 4.7%

Average 78.7 72.6 72.4 72.8 78.1 74.0
Dif. 0.0% 7.7% 8.0% 7.5% 0.7% 5.9%
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Table 7: HV analysis of Solomon’s instances(shown in percentage)

MOSA-ACO IACO[24] NSGA II[30] SPEA 2[31] MOEA/D[32] NSGA III[33]

C103-50 Ave 73.6 63.1 73.0 67.9 75.4 72.8
Max 81.0 68.1 80.0 86.2 82.3 80.5
Min 69.1 59.4 66.9 58.6 70.4 66.4
Dif. 2.4% 16.3% 3.1% 9.9% 0.0% 3.5%

C108-50 Ave 59.6 53.8 50.3 50.7 57.2 54.3
Max 62.9 58.0 54.8 58.5 64.2 58.7
Min 56.0 50.6 43.9 43.5 49.9 49.1
Dif. 0.0% 9.7% 15.6% 14.9% 4.0% 8.9%

C203-50 Ave 75.8 66.2 72.6 69.3 74.8 74.0
Max 96.8 69.7 82.9 88.9 82.0 81.1
Min 50.9 63.3 58.6 51.1 68.5 68.1
Dif. 0.0% 12.7% 4.2% 8.6% 1.4% 2.4%

C208-50 Ave 61.3 49.4 47.1 46.3 53.1 51.7
Max 63.9 53.5 53.9 57.5 66.4 58.7
Min 59.2 45.6 40.2 37.6 49.5 44.6
Dif. 0.0% 19.4% 23.2% 24.5% 13.3% 15.6%

R103-50 Ave 68.4 65.5 62.9 63.8 66.1 64.3
Max 71.8 69.8 75.1 74.0 72.8 72.6
Min 62.6 59.5 50.8 53.1 60.6 56.4
Dif. 0.0% 4.2% 8.0% 6.7% 3.3% 6.1%

R108-50 Ave 62.0 57.5 62.9 61.9 64.0 63.2
Max 67.6 66.5 69.1 67.5 70.4 71.3
Min 58.4 51.9 55.5 56.4 56.3 56.5
Dif. 3.1% 10.1% 1.6% 3.2% 0.0% 1.1%

R203-50 Ave 57.7 52.7 61.4 53.6 63.2 63.5
Max 59.9 62.9 65.6 59.2 71.7 67.0
Min 55.6 46.6 54.3 49.1 54.7 45.7
Dif. 9.1% 17.0% 3.3% 15.6% 0.5% 0.0%

R208-50 Ave 73.4 67.0 70.4 68.1 72.6 70.2
Max 80.7 83.3 82.6 72.5 78.5 81.4
Min 65.7 52.8 55.9 34.2 62.5 59.1
Dif. 0.0% 8.7% 4.1% 7.2% 1.1% 4.4%

RC103-50 Ave 55.1 37.3 58.5 54.8 62.0 60.2
Max 54.1 40.6 63.1 60.7 70.8 76.0
Min 52.5 32.9 54.3 52.4 57.5 55.1
Dif. 11.2% 39.8% 5.7% 11.6% 0.0% 2.9%

RC108-50 Ave 74.4 52.3 67.2 68.1 66.0 65.9
Max 80.3 58.3 79.8 83.5 76.6 73.4
Min 65.9 46.8 53.5 59.5 61.0 58.0
Dif. 0.0% 29.7% 9.7% 8.5% 11.4% 11.4%

RC203-50 Ave 61.1 54.0 58.0 59.4 60.6 59.7
Max 67.6 56.0 64.8 76.1 72.2 72.5
Min 58.1 50.3 44.5 41.0 53.8 52.0
Dif. 0.0% 11.6% 5.1% 2.8% 0.9% 2.3%

RC208-50 Ave 52.2 40.9 44.8 45.6 51.6 50.3
Max 76.9 44.1 57.3 56.2 58.1 62.0
Min 39.3 36.8 39.4 38.0 43.5 39.4
Dif. 0.0% 21.6% 14.2% 12.6% 1.2% 3.6%

Average 64.6 55.0 60.8 59.1 63.9 62.5
Dif. 0.0% 14.8% 5.9% 8.4% 1.1% 3.2%

29



R1, R2, RC1 and RC2 types of instances have contradictory objectives, while
C1 and C2 types of instances have positive correlating objectives (which is
suggested in Garcia-Najera and Bullinaria [28]). Detailed experiment results
of Solomom’s instances can be seen in Table 7.

5. Conclusion

In this article, we discuss a new variant of existing PVRP-SC problem
called PVRPTW-SC. We first give out the problem model based on the exist-
ing PVRP-SC problem model. Then, to solve this problem, we develop a hy-
brid multi-objective heuristic algorithm called MOSA-ACO. MOSA-ACO al-
gorithm is a combination of MOSA algorithm and IACO algorithm. Main al-
gorithm modifications include a new solution acceptation criterion of MOSA
and a new route construction method of IACO. To help MOSA-ACO find
solutions with better quality, a K-Mean based customer distribution method
and 6 local search strategies are also implemented. Benchmark instances
generated from Solomon’s benchmark instances and Cordeau’s instances are
used to test the performance of MOSA-ACO. Comparison algorithms in-
clude 4 widely applied population-based heuristics and original IACO algo-
rithm. Experiment results show that MOSA-ACO has a good and robust
performance on 2 benchmark instance sets with relatively higher computa-
tion costs. High computation cost of MOSA-ACO is caused by that MOSA-
ACO follows a constructive heuristic to build the initial solution. During
the constructive process, the constraint check runs on every possible move
to make sure that the solution is feasible. That means if an instance has
100 customers, the constraint check operator runs 100! times. Though the
population-based heuristics also have constraint check process, the process
is only applied after a solution is generated. Thus, if an instance has 100
customers, the constraint check operator runs only 100 times at most in one
move. Though the best acceptance principle is applied in mutation operators
which brings increases in computation cost, population-based heuristics are
more computational efficient than MOSA-ACO. Considering that when the
temperature is low and MOSA-ACO need to reinitialize frequently, the high
computation costs are reasonable.
Further research can be carried out in these directions: a) Techniques dealing
with customer selection is needed. In MOSA-ACO, we implement a K-mean
based customer selection technique to deal with customer selection problem
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of PVRTW-SC. However, other factors such as average length of customer
time windows may also affect the selection of customers. b) Problem decom-
position should be further discussed. In this article, we divide PVRPTW-SC
problem into a PVRPTW problem with lowest visit frequency constraint
and a VRPTW problem. This decomposition may lose some solution space.
So, improvement can be made on problem model or problem decomposition
method. c) Relations between enlarging visit frequency and reducing service
costs need to be further analyzed. d) Powerful heuristic operators need to
be implemented to improve algorithm performance. In this paper, heuristic
operators implemented in MOSA-ACO are designed to solve PVRP problems
and VRPTW problems. To further improve algorithm performance, power-
ful operators should be designed.
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