
Journal Pre-proofs

Efficient Genetic Algorithm for Feature Selection for Early Time Series Clas-
sification

Gilseung Ahn, Sun Hur

PII: S0360-8352(20)30079-6
DOI: https://doi.org/10.1016/j.cie.2020.106345
Reference: CAIE 106345

To appear in: Computers & Industrial Engineering

Received Date: 28 March 2019
Revised Date: 9 January 2020
Accepted Date: 6 February 2020

Please cite this article as: Ahn, G., Hur, S., Efficient Genetic Algorithm for Feature Selection for Early Time
Series Classification, Computers & Industrial Engineering (2020), doi: https://doi.org/10.1016/j.cie.2020.106345

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cie.2020.106345
https://doi.org/10.1016/j.cie.2020.106345


Efficient Genetic Algorithm for Feature Selection for Early Time 

Series Classification

Gilseung Ahnahn.kilseung@gmail.com, Sun Hur*,hursun@hanyang.ac.kr

Department of Industrial and Management Engineering, Hanyang University, Ansan, 15588, Korea 

*Corresponding author.

Highlights

A multi-objective feature selection for early classification is considered.

Starting time of classification is important for early classification.

Our model minimizes the starting time and execution time of classification.

We designed a genetic algorithm with better performance and faster convergence.

Abstract

This paper addresses a multi-objective feature selection problem for early time series 

classification. Previous research has focused on how many features to consider for a classifier, 

but has not considered the starting time of classification, which is also important for early 

classification. Motivated by this, we developed a mathematical model for which the 

objectives are to maximize classification performance and minimize the starting time and 

execution time of classification. We designed an efficient genetic algorithm to generate 

solutions with high probability. In experiment, we compared the proposed algorithm and 

general genetic algorithm under various experimental settings. From the experiment, we 

verified that the proposed algorithm can find a better feature set in terms of classification 

performance, starting time and execution time of classification than feature set found by 

general genetic algorithm.
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1. Introduction

Time series classification is used to predict the class label of a time series instance by a well-

trained classifier (Deng et al., 2013). That is, if a time series instance , 𝑖 𝒙(𝑖) =

, is given, its label, , is predicted by the classifier  as (𝑥(𝑖)
1 , 𝑥(𝑖)

2 , ⋯, 𝑥(𝑖)
𝑇 ) 𝑦(𝑖) 𝑓( ∙ ) 𝑦(𝑖) = 𝑓

. Time series classification is used to accomplish tasks in many fields, including fault (𝒙(𝑖))
detection in the manufacturing field (Lee et al., 2017), disease diagnosis in the medical field 

(Lacy et al., 2018), and stock trend analysis in the financial field (Moews et al., 2019).

Various classifiers such as neural networks (NNs) and support vector machines (SVMs) 

are employed and modified to classify time series. Ignatov (2018) employed a convolutional 

neural network (CNN) to recognize human activity from accelerometer data. Kim and Cho 

(2018) developed a C-LSTM (CNN- Long Short-Term Memory model) NN to detect 

anomalies in web traffic data. CNNs and LSTMs in the developed model extracted spatial 

features and temporal characteristics, respectively. Emoto et al. (2018) used NNs to detect 

low-intensity snoring episodes from a sleeping sound dataset. Cheng and Dong (2019) 

employed SVM technology to monitor the nanomachining process with respect to the 

machining performance. Kalantarian et al. (2016) used SVMs to segment streaming time-

series audio signals probabilistically. 

Earliness is critical for time series classification in time-sensitive applications such as 

detecting a medical patient's anomaly or predicting equipment unavailability (Xing et al., 

2012). Because many applications of time series classification are time-sensitive, early 

classification of time series is an important research topic. Its goal is to classify a time series 

instance as soon and accurate as possible (Rodríguez et al., 2001). To achieve this goal, 

various pre-processing techniques and efficient classifiers have been proposed. For example, 

Hills et al. (2014) constructed time series classifiers based on shapelet transformation to 

calculate similarity between two time series instances in a short time. Martinez et al. (2018) 

proposed a deep reinforcement learning framework for early classification of time series, by 

considering trade-off between earliness and classification accuracy. Hatami and Chira (2013) 

developed an ensemble for early classification of gas signal. The main idea of the ensemble is 

to use the agreement of an ensemble to decide to accept the candidate label after observing 



part of time series. If the agreement ratio is larger than cut-off, then the ensemble does not 

wait until the whole time series is collected but determines the label immediately with the 

part of time series. Xi et al. (2006) pointed out that dynamic time warping (DTW), a typical 

distance metric between two time series instances, is very expensive in terms of 

computational cost and thus is not suitable for early time series classification. In this regard, 

they proposed a computational reduction technique to speed up one-nearest-neighbor DTW.

Because the early classification of time series has multi-objectives including maximizing 

classification performance and minimizing classification time, it can be regarded as multi-

objective optimization problem (Mori et al., 2017). In general, there exist two or more Pareto 

optimal solutions for this problem, it is not clear which solution is superior. In this regard, 

many methods have been proposed to compare solutions with multi-objectives. Typical 

methods are weighted global criterion method, weighted sum method, lexicographic method, 

weighted min-max method, bounded objective function methods and so forth (Marler and 

Arora, 2004). Among them, the weighted global criterion method is one of the easiest and the 

most popular methods which convert the original multi-objectives into a single objective by 

linearly combining them, where weight for each objective function is determined by a user 

(Kasimbeyli, 2013).

The number of dimensions of a time series is a critical factor affecting earliness, and 

many researchers have tried to develop dimension reduction techniques, such as feature 

selection, for time series. Feature selection involves composing a subset of the feature set 

according to objectives such as the maximization of classification performance and/or 

minimization of classification time of a pre-defined classifier. Because the feature set for a 

time series is usually too large to compare all possible subsets, meta-heuristic algorithms such 

as genetic algorithms are employed to solve the problem. 

Table 1 summarizes the existing studies on feature selection with respect to meta-

heuristic algorithms and their objectives. 

As seen in this table, previous studies considered that the number of selected features (i.e., 

subset size) affected the classifier’s training and execution time of a pre-defined classifier. 

However, they did not consider the starting time of classification, which is also important for 

earliness, since the classification completion time is the sum of starting time and execution 

time. As far as our survey is concerned, this is the first research to present a multi-objective 

mathematical model for feature selection considering the performance, execution time, and 



starting time of classification.

The major contents and contributions of this paper can be summarized as follows. First, 

this paper establishes a multi-objective mathematical model for feature selection considering 

the performance, execution time, and starting time of classification. The execution and 

starting time of the classification are measured by means of the selected feature vector. 

Second, it develops an efficient GA to solve the established model. GA is selected because 

the way to handle the probability is suitable for our problem. That is, the probability to select 

a specific feature during the process of the algorithm should be adaptively determined 

according to the feature index and the number of candidate features, which is relatively easier 

in GA than other heuristic methods. However, general GA may search inferior solution 

spaces including solutions to select many features resulting in long execution and starting 

time of classification. 

 The rest of this paper is organized as follows. Section 2 describes the problem and the 

mathematical model. Section 3 explains the proposed GA for solving the established model. 

Section 4 compares the proposed GA and general GAs in various environments, and verifies 

that the proposed GA outperformed the general GA. Finally, Section 5 concludes the paper 

and suggests future research.

2. Problem Description and Mathematical Model 

The feature selection problem we considered was to find the subset  of feature set 𝑆 Ω =

, so that the classification performance of a pre-selected classifier with  is {𝑥1, 𝑥2,⋯,𝑥𝑇} S

maximized and the execution time and starting time of classification are minimized. The 

classification performance was measured by F-measure, which is the harmonic mean of 

precision and recall, and is described by the following equations:

,F ― measure = 2 × (precison × recall)/(precison + recall)

(1)

,        (2)precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

,        (3)recall =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁



where TP, TN, FP, and FN indicate true positive (TP), true negative (TN), false positive (FP) 

and false negative (FN), respectively. 

The execution time of classification for a time series instance  is defined as difference 𝒙𝑖

between time the instance enters a classifier and time the classifier determines class of the 

instance. It is proportional to the number of selected features (i.e., length of ). In addition, 𝒙𝑖

classification for a time series instance can start only after all values of selected features are 

collected. Therefore, the starting time of classification is the time that the value of the last 

feature is collected. Thus, the starting time of classification is proportional to the last index 

among selected features. For example, suppose there is a sensor measuring a certain value 

every second, and two feature subsets  and  are 𝑆1 = {𝑥1, 𝑥2, 𝑥3} 𝑆2 = {𝑥1, 𝑥2, 𝑥100}

considered. Since their sizes are the same, it may take approximately the same time to 

execute the classifiers with  and . However, the classifier with  can start to classify 𝑆1 𝑆2 𝑆2

an instance after 100 seconds, while the other classifier  can start after only 3 seconds.𝑆1

The mathematical model for the problem under consideration is constructed as follows: 

, (4)Minimize 𝑧1 = 1 ― 𝐹(𝑆)

, (5)Minimize 𝑧2 =
|𝑆|
𝑇

, (6)Minimize 𝑧3 =
max

 
{𝑡│𝑥𝑡 ∈ 𝑆}

𝑇

where  is the F-measure of a classifier with feature subset , which is a decision 𝐹(𝑆) 𝑆

variable. Equation (4) is for maximizing the classification performance, Equation (5) is for 

minimizing the number of selected features per unit time, and Equation (6) is for minimizing 

the last feature to be selected. We unify objective functions (4) − (6) by a weighted sum as 

follows:

, (7)Minimize 𝑍 = 𝑤1𝑧1 + 𝑤2𝑧2 + 𝑤3𝑧3

where  is weight for  and . Note that a user can 𝑤𝑘 (𝑘 = 1, 2, 3) 𝑧𝑘 𝑤1 + 𝑤2 + 𝑤3 = 1

determine  by considering relative importance of . For example, a user who thinks  𝑤𝑘 𝑧𝑘 𝑧2

and  are equally important, and  is twice as important as , can determine 𝑧3 𝑧1 𝑧2 𝑤1 = 0.5, 

 and .𝑤2 = 0.25 𝑤3 = 0.25



3. The Proposed Genetic Algorithm

The proposed GA is unique in terms of genetic operators, and this section focuses on 

describing the operators. Readers can refer to Yang and Honavar (1998) for the process of 

using GAs for feature selection. 

Solution  in the  generation used for a genetic 𝑝 (𝑝 = 1, 2, ⋯, 𝑃) ℎ𝑡ℎ (ℎ = 1, 2, ⋯, 𝐻)

algorithm is expressed as follows:

,   (8)𝒄ℎ
𝑝 = (𝑐ℎ

𝑝,1, 𝑐ℎ
𝑝,2,⋯,𝑐ℎ

𝑝, 𝑇)

where the element  is binary, and is defined as follows:𝑐ℎ
𝑝,𝑡

         (9)𝑐ℎ
𝑝,𝑡 =  {1, if 𝑥𝑡 is selected by 𝒄ℎ

𝑝,
0,         otherwise.            

That is, the feature subset composed by  is . 𝒄ℎ
𝑝 𝑆 = {𝑠𝑡|𝑐ℎ

𝑝,𝑡 = 1}

The initial solution  is generated with the following probability:𝒄1
𝑝

.   (10)Pr (𝑐1
𝑝,𝑡 = 1) = (1 ―

𝑡
𝑇 + 1)(1 ― 𝑤1)

× 0.5 for all 𝑡

This probability is always smaller than or equal to 0.5, which implies that the proposed GA 

selects features with low probability. It becomes smaller as the feature index  is bigger; 𝑡

therefore, those features whose values are measured later tend to be selected with smaller 

probability. This can help the second and third objective function values be minimized. 

Finally, the probability decreases as the weight, , of the first objective function increases.  𝑤1

This means that the proposed GA searches through many different potential solutions when 

the classification performance is more important than the start time and execution time. If we 

let , i.e., if we consider the classification performance only, then the probability 𝑤1 = 1

becomes 0.5, which reduces to the general GA. 

A crossover operator is defined similarly to the initial solution-generating operator. Let 

 be the child of two parental chromosomes  and . Then,  𝒄ℎ
𝑝 𝒄ℎ ― 1

𝑝1 𝒄ℎ ― 1
𝑝2 𝑐ℎ

𝑝,𝑡 (𝑡 = 1, 2, ⋯, 𝑇)

is probabilistically determined by  and  as follows: 𝑐ℎ ― 1
𝑝1,𝑡 𝑐ℎ ― 1

𝑝2,𝑡

.     Pr(𝑐ℎ
𝑝,𝑡 = 1|𝑐ℎ ― 1

𝑝1,𝑡 ,𝑐ℎ ― 1
𝑝2,𝑡  ) = (1 ―

𝑡
𝑇 + 1)(1 ― 𝑤1)

×
𝑐ℎ ― 1

𝑝1,𝑡  +  𝑐ℎ ― 1
𝑝2,𝑡

2

(11) 



Therefore, the probability of equation (11) is 0 when both  and  are 0, and is 𝑐ℎ ― 1
𝑝1,𝑡 𝑐ℎ ― 1

𝑝2,𝑡

 when both are 1. But if , then the probability becomes (1 ―
𝑡

𝑇 + 1)(1 ― 𝑤1)
𝑐ℎ ― 1

𝑝1,𝑡 ≠ 𝑐ℎ ― 1
𝑝2,𝑡

. From this, we can see that the child’s chromosome always becomes (1 ―
𝑡

𝑇 + 1)(1 ― 𝑤1)
× 0.5

0 with probability one if both genes of parents are 0. In contrast, the probability may not be 

one even though both genes of parents are all 1. 

Finally, the proposed GA employs flip bit mutation operators (usually adopted by general 

GAs) to prevent most solutions from becoming zero vectors. The GA randomly selects with 

probability , and exchanges elements 1 and 0, as depicted in Figure 1. As an example, 𝑝

randomly selected , , and  (shaded cells in the figure) are changed to  𝑐ℎ
𝑝,2 𝑐ℎ

𝑝,5 𝑐ℎ
𝑝,8 1 ― 𝑐ℎ

𝑝,𝑡

(  by the operator. 𝑡 = 2,5,8)

A pseudocode of the proposed algorithm is presented as follows.

Input: , , , , , , , 𝑆 = {𝑥1, 𝑥2, ⋯,𝑥𝑇} 𝑃 𝐻 𝑤1 𝑤2 𝑤3 𝑛𝑠 𝑛𝑚

Procedure

Step 1. Initialize the best score as zero and  as 1.ℎ

Step 2. Generate initial solutions  for  using equation (10)𝒄1
𝑝 𝑝 = 1, 2, ⋯, 𝑃

Step 3. Score every solution in the current generation using the objective function in (7)

Step 4. Find the solution with the lowest score in the current generation, and update best 

solution as the solution and best score as its score if its score is smaller than the best score 

Step 5. Initialize future generation as an empty set

Step 6. Select  solutions from the initial solutions based on the objective function 𝑛𝑠 ≤ 𝑃

value in (7) and append them to future generation 

Step 7. Repeat to generate a child by crossover using equation (11) for randomly selected two 

solutions in the future generation  times𝑃 ― 𝑛𝑠

Step 8. Randomly select  solutions in the future generation and apply the flip bit 𝑛𝑚 ≤ 𝑃

mutation operator. 



Step 9. Update current generation as the future generation. 

Step 10. Increase  by 1. If  equals to , then terminate this algorithm and return the best ℎ ℎ 𝐻

solution. Otherwise, go to Step 3.

4. Experiment and Results

4.1 Datasets and Process

The objective of the experiment is to verify that the proposed GA is efficient by comparing 

the classification performance of well-known time series classifiers, where one classifier is 

trained with the features selected by the proposed GA, and another is trained with the features 

by general GA under various experimental condition. Here, the general GA uses 

 for all  and  to generate initial solutions, and Pr (𝑐1
𝑝,𝑖 = 1) = 0.5 𝑝 𝑖

, where  and  are the parents of , as Pr (𝑐ℎ
𝑝,𝑖 = 1 | 𝑐ℎ ― 1

𝑝1,𝑖 ,𝑐ℎ ― 1
𝑝2,𝑖  ) =

𝑐ℎ ― 1
𝑝1,𝑖 + 𝑐ℎ ― 1

𝑝2,𝑖

2 𝒄ℎ ― 1
𝑝1 𝒄ℎ ― 1

𝑝2 𝒄ℎ
𝑝

explained in the Section 3.

GA parameters are set as following: (1) the maximum number of iterations is 50, (2) the 

number of solutions in each generation is 20, (3) the number of selected solutions in each 

generation is 10 (that is, 10 solutions with the smallest objective function values are selected), 

(4) the ratio of mutations is 0.2, (5) the parameter , of the flip bit mutation operator, is 0.1. 𝑝

In general, searching for a solution includes training a classifier, which requires extended 

computer time, but the proposed GA searches for a much smaller number of solutions. This is 

one of the strong points of the proposed GA. 

Five benchmark datasets for time series classification were obtained from UEA & UCR 

Time Series Classification Repository (http://www.timeseriesclassification.com). The 

information on these datasets is presented in Table 2.

The considered weight settings are (𝑤1, 𝑤2, 𝑤3) =

(1/3, 1/3, 1/3), (1/2, 1/4, 1/4), (1/4, 1/2, 1/4), (1/4, 1/4, 1/2), (1/7, 3/7, 3/7), (3/7, 1/7, 
3/7), (3/7, 3/7, 1/7), and the classifier types are NN and SVM. Therefore, a total of 5 (datasets)  7 (weight ×

settings)  2 (classifiers) = 70 cases are considered. ×

4.2 Results

Table 3 shows the results for the general GA and the proposed GA in terms of the objective 

http://www.timeseriesclassification.com


function value. We stopped the iteration when the number of iterations becomes 100. In the 

table, columns “General GA” and “Proposed GA” indicate the objective function values from 

the feature set selected by the two GAs, and “Difference” is the value of “General GA” minus 

that of “Proposed GA”. Positive values of “Difference” imply that the proposed GA showed 

better results than general GA.

As seen in Table 3, among 70 cases, only 9 cases showed that the general GA revealed better 

results than the proposed GA, and thus we conclude the proposed GA outperforms the 

general GA under most conditions. To be more specific, the proposed GA showed better 

results (i.e., smaller objective function values) except with dataset #1, whose length is 24 

(which is very short for a time-series). This is natural because the proposed GA searches a 

relatively small number of feature subsets, and therefore may be inappropriate to the small 

feature sets. As mentioned previously, however, time series datasets are usually long enough 

to apply the proposed GA.

Figure 2 shows the graphs of the objective function values of features selected by two 

GA’s, versus the number of iterations with dataset #2, for which the weights of objectives , 𝑧1

, and  are (1/3, 1/3, 1/3) and the NN is applied. The general GA attains its minimum 𝑧2 𝑧3

objective value when the number of iterations reached 50, while the corresponding number of 

iterations for our proposed GA was 33. It is clear that the proposed GA not only showed 

better performance, but also converged faster than the general GA. 

5. Conclusion

Early time series classification is one of the most important issues in many industrial fields. 

This paper addressed it by focusing on multi-objective feature selection, for which the 

objectives are based on performance, execution time, and starting time of classification. The 

feature selection problem was mathematically modeled and solved by means of an efficient 

GA we proposed in this research. We verified that the proposed GA outperformed the general 

GA under various settings in terms of efficiency and effectiveness. 

In practice, the feature selection result derived by the proposed GA can help the manager 

in the manufacturing industry, especially controlled by many equipment sensors, decide 

which sensors are either critical or unnecessary for classification task. As each sensor 



corresponds to the feature in the GA, it gives an effective and efficient way to select 

minimum number of sensors that achieves the best performance with the earliest start time of 

classification, which obviously leads to the remarkable reduction of management cost and 

production time.

This research focused on univariate time-series and thus the mathematical model and 

algorithm cannot be applied to obtain features for multivariate time-series. The model and 

algorithm for multivariate time-series will be investigated by the authors in the future. 
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Table 1. Summarization of feature selection research

Research Algorithm Objective functions

Xue et al. (2013) Particle swarm 
optimization

(1) Minimize error rate
(2) Minimize rate of features used

Huang et al. (2010) Genetic algorithm
(1) Maximize overall accuracy
(2) Maximize precision
(3) Maximize recall

Hancer et al. (2018) Artificial bee colony 
optimization

(1) Maximize accuracy
(2) Minimize number of selected features

Mlakar et al. (2017) Differential 
evolution

(1) Maximize accuracy
(2) Minimize number of selected features

Vignolo et al. (2013) Genetic algorithm (1) Maximize accuracy
(2) Minimize number of selected features

Table 2. Datasets used for the experiment

Dataset Name Length Train 
size Test size Number of 

classes Type

#1 Melbourne 
Pedestrian 24 1200 2450 10 Traffic

#2 Computers 720 250 250 2 Device
#3 FordA 500 3601 1320 2 Sensor
#4 ECG5000 140 500 4500 5 ECG
#5 Wafer 152 1000 6164 2 Sensor

Table 3. Comparison of results for the general GA and the proposed GA

Classifier Dataset 𝑤1 𝑤2 𝑤3 General GA Proposed GA Difference
1/3 1/3 1/3 0.3081 0.2992 0.0089
1/2 1/4 1/4 0.2934 0.4347 -0.1413
1/4 1/2 1/4 0.2293 0.2273 0.0020
1/4 1/4 1/2 0.3900 0.4533 -0.0633
1/7 3/7 3/7 0.1371 0.1399 -0.0028
3/7 1/7 3/7 0.2785 0.3866 -0.1081

#1

3/7 3/7 1/7 0.3137 0.3754 -0.0617
1/3 1/3 1/3 0.2580 0.1298 0.1282
1/2 1/4 1/4 0.2803 0.1769 0.1034
1/4 1/2 1/4 0.2862 0.0916 0.1946
1/4 1/4 1/2 0.2798 0.1755 0.1043
1/7 3/7 3/7 0.2246 0.0536 0.1710

NN

#2

3/7 1/7 3/7 0.2100 0.1474 0.0626



3/7 3/7 1/7 0.3390 0.1588 0.1802
1/3 1/3 1/3 0.2909 0.1711 0.1198
1/2 1/4 1/4 0.2571 0.2579 -0.0008
1/4 1/2 1/4 0.3119 0.1311 0.1808
1/4 1/4 1/2 0.3051 0.2575 0.0476
1/7 3/7 3/7 0.2310 0.0727 0.1583
3/7 1/7 3/7 0.2297 0.2147 0.0150

#3

3/7 3/7 1/7 0.2941 0.2230 0.0711
1/3 1/3 1/3 0.2893 0.2288 0.0605
1/2 1/4 1/4 0.4011 0.3412 0.0599
1/4 1/2 1/4 0.2929 0.1744 0.1185
1/4 1/4 1/2 0.3856 0.3407 0.0449
1/7 3/7 3/7 0.1975 0.1053 0.0922
3/7 1/7 3/7 0.3296 0.2938 0.0358

#4

3/7 3/7 1/7 0.3729 0.2888 0.0841
1/3 1/3 1/3 0.0727 0.0312 0.0415
1/2 1/4 1/4 0.0591 0.0298 0.0293
1/4 1/2 1/4 0.0968 0.0407 0.0561
1/4 1/4 1/2 0.0702 0.0334 0.0368
1/7 3/7 3/7 0.0943 0.0364 0.0579
3/7 1/7 3/7 0.0430 0.0213 0.0217

#5

3/7 3/7 1/7 0.1057 0.0380 0.0677
1/3 1/3 1/3 0.2535 0.2520 0.0015
1/2 1/4 1/4 0.3700 0.3695 0.0005
1/4 1/2 1/4 0.1906 0.1898 0.0008
1/4 1/4 1/2 0.3812 0.3787 0.0025
1/7 3/7 3/7 0.1208 0.1200 0.0008
3/7 1/7 3/7 0.3249 0.3253 -0.0004

#1

3/7 3/7 1/7 0.3152 0.3142 0.0010
1/3 1/3 1/3 0.2485 0.1320 0.1165
1/2 1/4 1/4 0.2874 0.1990 0.0884
1/4 1/2 1/4 0.2749 0.0990 0.1759
1/4 1/4 1/2 0.2839 0.1987 0.0852
1/7 3/7 3/7 0.2043 0.0587 0.1456
3/7 1/7 3/7 0.2182 0.1695 0.0487

#2

3/7 3/7 1/7 0.3277 0.1695 0.1582
1/3 1/3 1/3 0.2780 0.1888 0.0892
1/2 1/4 1/4 0.2505 0.2818 -0.0313
1/4 1/2 1/4 0.3069 0.1416 0.1653
1/4 1/4 1/2 0.3022 0.2823 0.0199
1/7 3/7 3/7 0.2149 0.0805 0.1344

SVM

#3

3/7 1/7 3/7 0.2274 0.2417 -0.0143



3/7 3/7 1/7 0.3043 0.2417 0.0626
1/3 1/3 1/3 0.2936 0.2300 0.0636
1/2 1/4 1/4 0.3822 0.3370 0.0452
1/4 1/2 1/4 0.2726 0.1746 0.0980
1/4 1/4 1/2 0.3901 0.3411 0.0490
1/7 3/7 3/7 0.1849 0.1049 0.0800
3/7 1/7 3/7 0.3070 0.2915 0.0155

#4

3/7 3/7 1/7 0.3440 0.2895 0.0545
1/3 1/3 1/3 0.1495 0.1222 0.0273
1/2 1/4 1/4 0.1450 0.1441 0.0009
1/4 1/2 1/4 0.1363 0.0878 0.0485
1/4 1/4 1/2 0.1492 0.1474 0.0018
1/7 3/7 3/7 0.1129 0.0521 0.0608
3/7 1/7 3/7 0.1163 0.1155 0.0008

#5

3/7 3/7 1/7 0.1721 0.1486 0.0235


