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Highlights

• Replicable comparison of inferences produced by non-monotonic reasoning

approaches.

• Assessment of the ill-defined construct of mental workload using real-world

data.

• Defeasible argumentation presented a superior inferential capacity of men-

tal workload.

• Use of defeasible argumentation in practical fields seldom reported in the

literature.

• Robust results analysed in two real-world contexts with three knowledge-

bases.
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Abstract

Several non-monotonic formalisms exist in the field of Artificial Intelligence for

reasoning under uncertainty. Many of these are deductive and knowledge-driven,

and also employ procedural and semi-declarative techniques for inferential pur-

poses. Nonetheless, limited work exist for the comparison across distinct tech-

niques and in particular the examination of their inferential capacity. Thus, this

paper focuses on a comparison of three knowledge-driven approaches employed

for non-monotonic reasoning, namely expert systems, fuzzy reasoning and de-

feasible argumentation. A knowledge-representation and reasoning problem has

been selected: modelling and assessing mental workload. This is an ill-defined

construct, and its formalisation can be seen as a reasoning activity under un-

certainty. An experimental work was performed by exploiting three deductive

knowledge bases produced with the aid of experts in the field. These were

coded into models by employing the selected techniques and were subsequently

elicited with data gathered from humans. The inferences produced by these

models were in turn analysed according to common metrics of evaluation in the

field of mental workload, in specific validity and sensitivity. Findings suggest

that the variance of the inferences of expert systems and fuzzy reasoning mod-

els was higher, highlighting poor stability. Contrarily, that of argument-based
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models was lower, showing a superior stability of its inferences across knowl-

edge bases and under different system configurations. The originality of this

research lies in the quantification of the impact of defeasible argumentation. It

contributes to the field of logic and non-monotonic reasoning by situating de-

feasible argumentation among similar approaches of non-monotonic reasoning

under uncertainty through a novel empirical comparison.

Keywords: Defeasible Argumentation, Argumentation Theory, Explainable

Artificial Intelligence, Non-monotonic Reasoning, Fuzzy Logic, Expert

Systems, Mental Workload

1. Introduction

Uncertainty associated to incomplete, imprecise or unreliable knowledge is

inevitable in daily reasoning and in many real-world contexts. Within Artificial

Intelligence (AI), many approaches have been proposed for the development of

inferential models capable of addressing such uncertainty. Among them, non-5

monotonic reasoning emerged from the area of logical AI as an alternative to

deductive inferences in logical systems. These were perceived as inadequate

for decision making in realistic situations (Bochman, 2007). Hence, reasoning is

non-monotonic, or defeasible, when a conclusion can be withdrawn in the light of

new information (Reiter, 1988; McCarthy, 1980; Kowalski & Sadri, 1991; Longo,10

2015; Brewka, 1991). A number of approaches for dealing with quantitative

reasoning under uncertainty exist (Parsons & Hunter, 1998), including compu-

tational argumentation (also referred to as defeasible argumentation) (Prakken

& Vreeswijk, 2001), fuzzy reasoning (Zadeh et al., 1965) and expert systems

(Durkin & Durkin, 1998). These approaches have led to the development of15

non-monotonic reasoning models based upon knowledge bases often provided

by human experts. Intuitively, since these models have been developed with a

human-in-the loop intervention, their reasoning processes and their inferences

have an intrinsic higher degree of interpretability and transparency when com-

pared to data-driven approaches for inference. Moreover, they assist on the20
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creation of models that can be verified, replicated and expanded, thus enhanc-

ing the trustworthiness of domain experts towards automated inferences and

the understanding of the application under investigation. Nonetheless, these

approaches have unique features that differentiate them. For instance, previ-

ous studies (Rizzo et al., 2018b,a) suggest that defeasible argumentation offers25

more powerful conflict resolution strategies; fuzzy reasoning is suitable for robust

representation of linguistic information through the application of fuzzy mem-

bership functions; and expert systems focus on imitating the problem-solving

ability of an expert. These approaches have all been extensively used in practi-

cal domains such as medicine, pharmaceutical industry and engineering (Longo,30

2016; Glasspool et al., 2006; Mardani et al., 2015; Liao, 2005). However, scholars

have predominantly focused on their individual application for non-monotonic

reasoning, but barely attempted to empirically investigate their differences in

terms of inferential capacity.

The aim of this study is to empirically evaluate the inferential capacity of35

defeasible argumentation models when compared to other models produced by

other well established reasoning approaches, in this case non-monotonic fuzzy

reasoning and expert systems. This evaluation can clarify the predictive accu-

racy of the investigated reasoning models, allowing defeasible argumentation to

be better situated among similar reasoning approaches and enabling different40

applications and experiments to be carried out. To achieve this goal, the prob-

lem of representing the construct of Mental Workload (MWL) has been chosen.

MWL is an ill-defined construct with no clear and widely accepted definition.

In a nutshell, it can be seen as the amount of mental activity devoted to a

certain task over time (Cain, 2007). A number of knowledge bases – developed45

by experts in MWL – were employed as the basis of the modelling and assess-

ment done by the selected approaches. Resulted models are used to infer mental

workload scalars employed for achieving the envisioned comparison. In particu-

lar, the inferential capacity is compared and quantified in terms of the validity

and sensitivity (O’Donnell & Eggemeier, 1986) of the produced inferences. Fig.50

1 depicts a streamlined design of the study. With the above elements, a pre-
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cise research question can be set: “To what extent does the inferential capacity

of defeasible argumentation differ from non-monotonic fuzzy reasoning and ex-

pert systems in terms of validity and sensitivity when applied to the problem of

mental workload modelling?”55

Defeasible

argumentation

Fuzzy reasoning

Expert systems

Non-monotonic
reasoning approaches

Models of inference

. . .

Models of inference

. . .

Models of inference

. . .

Mental workload models

. . .

Inferences

. . .

Inferences

. . .

Inferences

Analysis of sensitivity
and validity

Figure 1: Streamlined design of the study using three non-monotonic reasoning approaches

for mental workload modelling, compared according to their inferential capacity.

The remainder of this paper continues with Section 2 providing the related

work on non-monotonic reasoning, knowledge-based techniques for dealing with

non-monotonic problems and a precise description of the construct of MWL.

Section 3 presents the design of the empirical experiment aimed at answering the

above research question and the tasks performed by participants of the study in60

order to collect information for inference of MWL. The results, the analysis and

the discussion of this experiment are provided in Section 4. Eventually, Section

5 concludes the study and provides recommendations for future research.

2. Literature and related work

Inconsistent and conflicting pieces of information are often involved in real-65

world argumentative activities. To solve these, classical propositional logic has

demonstrated to be inadequate due to its monotonicity property (Reiter, 1980).

In monotonic reasoning, a knowledge base of reasons supporting certain conclu-
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sions, usually provided by domain experts, may only grow monotonically with

new reasons, not allowing the retraction of the previous conclusions. Therefore,70

defeasible reasoning has emerged as a potential solution to this problem, since

it is aimed at formalising non-monotonic reasoning activities (Dung, 1995; Rah-

wan & Simari, 2009; Chesñevar et al., 2000). This section introduces some of

the main non-monotonic formalisms and a few works that have attempted to

make a comparison among them. Subsequently, knowledge-base approaches, in75

particular expert systems, non-monotonic fuzzy reasoning and defeasible argu-

mentation, are explained in depth. The theories in which these approaches are

grounded are used as the building blocks for development of non-monotonic rea-

soning models of inference employed in the context of human mental workload.

To the best of the authors’ knowledge, there is a lack of comparisons among80

knowledge-based systems adopted for quantitative reasoning under uncertainty.

Hence, the main goal is to provide the reader with the intuitions and the re-

quired knowledge for comparing defeasible argumentation with similar reasoning

approaches.

2.1. Non-monotonic reasoning85

In non-monotonic reasoning, conclusions can be retracted in the light of

new reasons. In other words, non-monotonic reasoning relies on the idea that

a claim can be defeasibly derived from premises partially specified, but in the

case of an exception arising the claim can be withdrawn (Kowalski & Sadri,

1991). Many non-monotonic reasoning formalisms exist in Artificial Intelligence90

(Brewka, 1991). For instance inheritance networks with exception (Horty et al.,

1990) or semantic networks using Demptster’s rule (Ginsberg, 1984). Other

examples include non-monotonic logics like circumscription (McCarthy, 1980),

autoepistemic (Moore, 1985) and default logic (Reiter, 1980). Brewka et al.

(1997) provide a nice overview of non-monotonic logics categorized by modal-95

preference logics, fixed point logics and abductive methods. The recent work of

Hlobil (2018) presents a guideline for selection of non-monotonic logics based on

principles they reject, such as the Deduction-Detachment Theorem and Cumu-
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lative Transitivity (Czelakowski, 1985; Gabbay & Guenthner, 1984), resulting

in 17 different types of logics. A few works have proposed the extension of100

rule-based approaches, such as expert systems and fuzzy reasoning systems, to

incorporate a non-monotonic layer (El-Azhary et al., 2002; Nute et al., 1990;

Siler & Buckley, 2005; Castro et al., 1998; Morgenstern & Singh, 1997). An

alternative approach for performing non-monotonic reasoning is given by argu-

mentation systems as proposed in early studies (Birnbaum et al., 1980; Lin &105

Shoham, 1989) and other thorough surveys (Atkinson et al., 2017; Chesñevar

et al., 2000). This type of systems formalize non-monotonic reasoning by the

construction of arguments that can support or be against certain conclusions.

Nonetheless, only a few works have proposed a comparison among these for-

malisms. For instance, Delladio et al. (2006) investigate the relations between110

a normal default logic and a variant of a defeasible logic programming. Du-

tilh Novaes & Veluwenkamp (2017) make an empirical test of the accuracy of

two formal non-monotonic reasoning models: preferential logic and screened be-

lief revision. Yang et al. (2004) compare first order predicate logic, fuzzy logic

and non-monotonic logic implemented through negation as failure. Despite115

highlighting interesting connections among these formalisms, the focus of the

studies is usually theoretical or limited by a narrow scope. In this study, three

knowledge-based systems are investigated: expert systems, non-monotonic fuzzy

reasoning and defeasible argumentation. Knowledge-based systems are better

suited for capturing the intuitions of a specific problem when compared to non-120

monotonic logics or other proof-theoretic formalisms. Since rules or arguments

have to be predefined, only relevant non-monotonic contexts are modelled, liv-

ing little, if any, place for confusion. The next subsections provide readers with

further specific information on these.

2.2. Expert systems125

First developed by the AI community in the 1960s, expert systems are com-

puter programs created to emulate a human in a given field (Durkin & Durkin,

1998). In a nutshell, they try to transfer a vast body of specific knowledge
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from a human to a computer. In turn, the computer can make inferences and

reach a justifiable conclusion. In respect to expert system methodologies, some130

examples include rule-based systems, knowledge-based systems and fuzzy ex-

pert systems (Liao, 2005). Respectively, rule-based systems are based on rules

typically of the form “IF (antecedent) THEN (consequent)”; knowledge-based

systems are human-centred, focusing on the users, their needs and requirements;

and fuzzy expert systems employ fuzzy logic for dealing with uncertainty and135

linguistic terms. Nonetheless, regardless of the methodology, expert systems

are usually built upon two internal components: a knowledge base and an in-

ference engine (Durkin & Durkin, 1998). The former is provided by a human

expert and generally translated into a set of logical rules. The latter is aimed at

eliciting, firing and aggregating such rules towards a conclusive inference. More-140

over, engines might employ common strategies for producing inferences, such as

backward-chaining inferencing and forward-chaining inferencing. In both cases,

reasoning is exploited in a multi-step process in order to prove some goal or

hypothesis. For instance, in a backward-chaining inference process, rules that

contain a goal in their consequent part are collected and fired if their premises145

(same as antecedent) evaluate true. In turn, such premises might be supported

by other rules, causing the system to define sub-goals and to work in a recursive

fashion. Reflecting that behaviour, a forward-chaining inference process starts

by firing rules whose premises match the information initially available. In turn,

fired rules might trigger the firing of new rules, leading to a continuation of the150

process until the goal is reached or no other rule is fired. If multiple rules are

fired, both forward-chaining and backward-chaining engines might employ some

conflict resolution strategy. Common methods include choosing the first rule lo-

cated, deciding a priority for each rule or firing all possible lines of reasoning.

Other types of expert systems can also be found in the literature, such as frame-155

based expert systems or probabilistic expert systems (Durkin & Durkin, 1998;

Spiegelhalter et al., 1993).

Concerning areas of application, expert systems have been prominently used

in fields like medicine and robotics (Nohria, 2015; Singholi & Agarwal, 2018).
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For instance, medicine presents strong motivators for the development of med-160

ical expert systems, like the lack of specialists and lack of health facilities.

Most often they also require interpretable systems. Medical professionals need

to have the possibility to understand the reasoning behind a machine and the

causes that led it to make a decision. Therefore, in medical area, diagnosis

and treatment of diseases are the main goal, with expert systems built for the165

treatment of influenza, risk of hypertension, memory loss, liver disorders and

others (Nohria, 2015). In turn, robotics presents systems developed for fault de-

tection and fault tolerance, path and trajectory planning, vision control, mobile

robot control, obstacle detection in industrial robot and so on. The integration

of expert systems and robotics is a step forward factory automation still ac-170

tive and researched by the AI community (Singholi & Agarwal, 2018). A wide

range of other applications can be found in the expert system literature. Liao

(Liao, 2005) provides a decade review, with a considerable amount of specific

applications by system methodologies, such as: teaching, agriculture, financial

analysis, knowledge management, climate forecasting, decision making, urban175

design, psychiatric treatment, sensor control, waste water treatment and oth-

ers. In addition, due to its precondition of encoding human knowledge bases,

expert systems have naturally made use of different approaches for knowledge

representation, as presented in Hvam et al. (Hvam et al., 2008). These might

include graphical notations, logic, scientific formulas and rules. On more spe-180

cific cases: Mitra and Basu (Mitra & Basu, 1997) implement an expert system

which contains distinct knowledge representation schemes for designing micro-

processor based systems, while Hatzilygeroudis and Prentzas (Hatzilygeroudis

& Prentzas, 2004) propose the integration of symbolic rules, neural networks

and cases for the enhancement of knowledge representation and reasoning in185

expert systems.

Ultimately, non-monotonic techniques have been employed in expert sys-

tems in different ways (Gabbay, 1985) and used in industry with certain diffi-

culty (Morgenstern, 1998). A few examples include non-monotonic techniques

modelled through inheritance methods (Morgenstern & Singh, 1997), defeasible190
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logic (Nute et al., 1990) and default reasoning (El-Azhary et al., 2002). Here,

the notions of “contradictions” or “exceptions” are employed. These are defined

by domain experts, and describe special cases in which a rule is no longer valid

and has to be retracted from the reasoning process.

2.3. Non-monotonic fuzzy reasoning195

Fuzzy set theory, as proposed by Zadeh (Zadeh et al., 1965), uses the no-

tion of membership function, a special function that assigns to each object or

linguistic term a grade of membership in the range [0,1] ∈ R. Fuzzy sets are

formed by fuzzy objects and include similar notions to classical set theory such

as inclusion, union and intersection. A fuzzy control system or fuzzy expert200

system is a control system based on fuzzy reasoning. It is usually formed by

a set of inputs defined as a fuzzy set, a rule set and a defuzzification module

(Passino et al., 1998). In this case, this process is characterised as a Mamdani

fuzzy inference (Mamdani, 1974) (Fig. 2) and is the approach employed in this

study. Moreover, two other types of fuzzy inference methods are commonly205

found in the literature. The first, the Takagi-Sugeno fuzzy inference (Takagi

& Sugeno, 1993), presents the same fuzzification process, however, the output

membership functions are always linear or constant, producing in either case

a single number. On the one hand, there is no defuzzification process and on

the other hand, it is necessary to define weighting mechanisms or parameters210

for the linear output functions to compute a final crisp value. The second, the

Tsukamoto fuzzy inference (Tsukamoto, 1979), also differs from the other types

only by its output membership functions. In this case, consequents of each rule

are crisp values defined by a monotonical membership function and the real

input of the associated rule. Intuitively, it is a combination of the Mamdani215

and the Takagi-Sugeno fuzzy inference methods.

Since the original development of fuzzy set theory by Zadeh (Zadeh et al.,

1965), the range of its applications has been vast. Examples of application

domains include pattern recognition, decision making, signal processing, con-

trol engineering, medicine, finance and many others. Precup and Hallendoorn220
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Knowledge-base

Fuzzification module Inference engine
Defuzzification

module

Crisp
input x

Crisp
output x

Figure 2: General structure of a Mamdani fuzzy inference process (Cordón, 2011).

(Precup & Hellendoorn, 2011) present an extensive survey paper on industrial

applications of fuzzy control. Particularly, numerous applications of Mamdani

fuzzy control systems have been reported in the fields of robotics, automotive

industry and process industry. Due to the concern on the accuracy of such

applications, learning techniques have also been incorporated into fuzzy control225

systems in order to deal with the interpretability-accuracy trade-off (Cordón,

2011), leading to the fields of neuro-fuzzy systems (Nauck et al., 1997) and

genetic fuzzy systems (Cordón et al., 2004). Learning techniques might cover

structural changes ranging from the parameters optimization to the learning of

the rule set. Other works have also suggested additional extensions of fuzzy230

inference systems in order to support non-monotonicity of rules. Unfortunately,

these extensions are not well established. For example, in (Castro et al., 1998)

conflicting rules have their conclusions aggregated by an averaging function,

while in (Gegov et al., 2014) a rule-base compression method is proposed for

the reduction of non-monotonic rules. A third approach can be seen in (Siler &235

Buckley, 2005), whereby Possibility Theory (Dubois & Prade, 1998) is included

into the fuzzy reasoning system to tackle conflicting instructions. In Possibil-

ity Theory, contrarily to traditional fuzzy systems, propositions have two truth

values: possibility and necessity. The first indicates the extent to which data

fails to refute its truth while the second indicates the extent to which data sup-240

ports its truth. This theory is adopted in this study for the development of a

non-monotonic fuzzy reasoning system (detailed in Section 3.2).
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2.4. Defeasible argumentation

Argumentation, with origins grounded in philosophy, deals with the study of

assertion and definition of arguments usually emerged from divergent opinions.245

In the field of Artificial Intelligence, argumentation, also referred to as defeasible

argumentation (Bryant & Krause, 2008), is aimed at developing computational

models of arguments. Such models have become increasingly significant within

AI (Bench-Capon & Dunne, 2007), making defeasible argumentation widely em-

ployed for modelling non-monotonic reasoning (Chesñevar et al., 2000). Many250

studies also described its potential for practical applications, such as dialogue

and negotiation (Bench-Capon & Dunne, 2007; Black & Hunter, 2009; Kraus

et al., 1998; Amgoud et al., 2000), knowledge representation (Longo, 2015; Don-

dio & Longo, 2014) and decision making in health-care (Glasspool et al., 2006;

Longo & Dondio, 2014; Patkar et al., 2006). Some of the appealing properties255

of argument-based models include the lack of statistics or probability for in-

ference and capability to deal with partial and inconsistent pieces of evidence.

Thus, being closer to the way humans reason under uncertainty and leading to

a higher explanatory capacity (Longo, 2016). This can be exemplified by its

attempted use for the development of argumentation-based approaches to ex-260

plainable AI (Zeng et al., 2018). Moreover, their conflict resolution strategy is

strengthened by the large body of literature on acceptability semantics (Dung,

1995; Amgoud et al., 2017; Baroni et al., 2011; Baroni & Giacomin, 2009; Don-

dio, 2018). Acceptability semantics provide solid mechanisms for the selection of

acceptable arguments within a set of conflicting arguments. This set is usually265

represented by a graph in which arguments are depicted as nodes and attacks

(conflicts) between arguments are depicted as arrows. The set of acceptable

arguments is usually referred to as an extension. Acceptability semantics can

provide a unique extension or multiple extensions for the same set of conflicting

arguments. For instance, the common Dung’s grounded semantics (Dung, 1995)270

always returns a single extension while the Dung’s preferred semantics might

return a single or multiple ones (detailed in Section 3.3.4).

Several approaches also exist for quantitative argumentation, or argumen-
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tation that deals with numerical measurable arguments, such as Bipolar Ar-

gumentation, Probabilistic Argumentation, Multi-valued Argumentation and275

Weighted Argumentation (Rahwan & Simari, 2009). Despite this number of ap-

proaches, computational argumentation systems are usually structured around

layers specialised on the the definition of internal structure of arguments, the

definition of arguments interactions, the resolution of conflicts between argu-

ments and the possible resolution strategies for reaching a justifiable conclusion280

(Prakken & Vreeswijk, 2001). Still, the boundaries of such layers might not be

accurately defined. For that reason a few layered structures have been proposed

for the development of computational models of argument. Prakken & Sartor

(2002) suggest a four-layered view applied to legal argumentation that contains:

a logical layer, which defines the arguments themselves; a dialectical layer, fo-285

cused on the definition of notions such as attack and defeat; a procedural layer,

which regulates how parties can challenge and introduce new arguments; and

a strategic or heuristic layer, which defines how a dispute should be conducted

within the bounds of the procedural layers. Differently, Atkinson et al. (2017)

consider five main layers as the basic building blocks of an argumentation model:290

structural layer, relational layer, dialogical layer, assessment layer and rhetori-

cal layer. Another example of multi-layered structure can be found in (Longo,

2016) and is depicted in Fig. 3.

1) structure of arguments

2) conflicts of arguments

3) evaluation of conflicts

4) acceptance

status of arguments

5) accrual of

acceptable arguments

Translation of

knowledge base

into interactive

defeasible arguments

Elicitation of knowl-

edge base and

resolution of

inconsistencies

Final

inference

Figure 3: Five layers structure (Longo, 2016) adopted for the development of argument-based

models.
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This research study adopts this structured due to the nature of the ap-

plication selected for evaluation – modelling and assessment of human mental295

workload. In this case, each knowledge base employed is the result of the rea-

soning of a single agent and do not require a rhetorial layer. The objective is

to reason with arguments neutrally built from domain experts so as to achieve

a numerical inference representing the imposed mental workload by a specific

task. Each layer in this structure is supported by theoretical works in the field300

of defeasible argumentation. For example, in Layer 1, Toulmin (Toulmin, 1958)

provides one the first conceptual models of arguments aimed at contributing

with a more articulated structure for arguments. Another example is given by

Walton (Walton, 2013), who identifies and evaluates a variety of argumentation

structures in everyday discourse, such as argument from consequence, appeal305

to expert opinion, argument from analogy and argument by example. Other

models of argument are also described in (Bentahar et al., 2010). In Layer 2

the focus is on the relationship between arguments and management of their

conflicts. Prakken (Prakken, 2010) proposes a conflict classification with three

different classes: undermining attack when an argument is attacked on one of its310

premises, rebutting attack when an argument negates the conclusion of another

argument and undercutting attack, when an argument is attacked at one of its

defeasible inference rules. Following to Layer 3, the focus is now on the ability

to characterize the success of an attack. Commonly, attacks have a form of a

binary relation. In a binary attack relation all attacks are successful if they have315

a target (argument being attacked) and source (argument attacking) defined.

However, other approaches are presented in the literature, such as: strength of

arguments, preferentiality and strength of attack relations (Dunne et al., 2011;

Modgil, 2009; Martınez et al., 2008). The first one presents the inequality of the

strength of arguments that has to be accounted for in a decision-making pro-320

cess. Preferentiality assumes the information necessary to decide whether an

attack between two arguments is successful is pre-specified. The last approach,

strength of attack relations, tries to associate weights to attack relations in-

stead of arguments. Given an evaluation of attacks, acceptability semantics,
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placed in Layer 4, can be employed for the definition of the acceptability sta-325

tus of arguments. Dung semantics (Dung, 1995) and its variations (Caminada,

2007; Caminada et al., 2012) are the most well known. Other types include

SCC-recursive semantics (Baroni et al., 2005) focused on solving cyclic attack

relations of odd-length and ranking-based semantics (Bonzon et al., 2016) which

rank arguments from most acceptable to weakest one(s). Finally, the selection330

of extensions and the accrual of acceptable arguments is done in Layer 5. A few

strategies (Coste-Marquis et al., 2012; Konieczny et al., 2015) can be found in

the literature for selection of extensions, such as the employment of the strength

of arguments from Layer 3 or the selection of the extension(s) with higher car-

dinality. Nonetheless, this layer is not always required and is seemingly the less335

developed in the literature, requiring further investigation.

Some works tackle all these 5 layers (Chang et al., 2009; Hunter & Williams,

2010; Craven et al., 2012) while others do not (Patkar et al., 2006; Glasspool

et al., 2006; Grando et al., 2013). This structure has also been reproduced in past

studies (Rizzo & Longo, 2017; Rizzo et al., 2018a; Longo, 2015; Rizzo & Longo,340

2018) demonstrating structural effectiveness in different domains of application.

Unfortunately, despite the increasing application of argumentation in various

theoretical fields, the use of defeasible argumentation in practical fields is one of

the challenges in respect to the general deployment of argumentation technology

as suggested by Bench-Capon et al. (Bench-Capon & Dunne, 2007). This345

challenge represents the main motivation behind the research question outlined

in the introductory section.

2.5. Mental workload

To tackle the research question, a precise knowledge representation and rea-

soning problem has been selected: mental workload (MWL) modelling. Note350

that this problem is not the focus of this research study, but only an applica-

tion that allows the proposed comparison among the non-monotonic reasoning

approaches to be performed. Thus, only a brief introduction of its concept,

methods of measurement and evaluation metrics are provided here. The inter-
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ested reader can refer to the citations along this section for further information.355

Although no single definition has been developed so far (Young et al., 2015;

Hart, 2006), MWL can be intuitively described as the total cognitive cost needed

to accomplish a specific task over time (Cain, 2007). According to Cain (2007),

the main reason for measuring MWL is to quantify the mental cost of performing

a certain task in order to predict operator and system performance. It is mainly360

used in the areas of psychology and ergonomics, with applications in aviation

and auto-mobile industries (Paxion et al., 2014) and in interface and web design

(Tracy & Albers, 2006).

Since no correct measure of MWL exists, there are different methods that

have been proposed for measuring it (Eggemeier, 1988). These can be cate-365

gorised into subjective measures, task performance measures and physiological

measures. Task performance measures try to infer MWL from objective notions

of performance, like number of errors, completion time and time to respond

to a secondary task. Physiological measures try to infer a MWL scalar from

physiological responses, like pupillary reflex or muscle activity. In this work we370

adopt the class of subjective measures. This class leans on the analysis of the

subjective feedback (such as questionnaires) provided by humans engaging with

an underlying task. Among well known methods, the NASA-Task Load Index

(NASA-TLX) (Hart & Staveland, 1988) has been largely employed in the last

decades (Rizzo et al., 2016; Longo, 2014, 2015) and it is adopted in this research375

study for comparison purposes. It is a combination of six factors believed to in-

fluence mental workload: temporal demand, physical demand, mental demand,

frustration, effort and performance (Hart & Staveland, 1988). Each factor d is

quantified with a subjective judgement coupled with a weight w computed via

a pairwise comparison procedure. The set of questionnaires employed for mea-380

surement of each factor can be seen in Table A.11 (page 74). The final MWL

scalar is the weighted average of these six factors di and weights wi provided by

the operator (equation 1). The pairwise comparison procedure is made through

a set of questions, for example “which contributed more for the MWL: mental

demand or effort?”, “performance or frustration?”, giving a total of 15 prefer-385
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ences. The number of times each feature is chosen defines its weight. A few

modified versions of the NASA-TLX have also been proposed. Among them, the

most common is referred to as Raw TLX (RTLX) (Hart, 2006). It removes the

pairwise comparison procedure of NASA-TLX and instead averages the features

(equation 2). According to (Hart, 2006), comparisons between the NASA-TLX390

and the RTLX seem inconclusive, being both more or less sensitive than the

other to changes in task difficulty.

TLXMWL =
( 6∑

i=1
di × wi

) 1
15 (1) RTLXMWL =

( 6∑

i=1
di

)1
6 (2)

Another MWL assessment technique is the Workload Profile (WP) which is

based on the Multiple Resource Theory (MRT) (Wickens, 1991). Contrarily to

the NASA-TLX, it is built upon 8 dimensions: solving and deciding, selection of

response, task and space, verbal material, visual resources, auditory resources,

manual response and speech response (Table A.17, questions 6-13). The user is

required to rate each feature in the range 0 to 1. The final scalar is given then

by their sum (eq. 3).

WPMWL =
8∑

i=1
di (3)

Several criteria have been proposed for the selection and development of
inferential models of MWL (O’Donnell & Eggemeier, 1986), such as: diagnos-395

ticity, reliability, sensitivity and validity among others. Since the goal of this

research study is to evaluate the ability of non-monotonic reasoning techniques

to represent and assess MWL, the focus is on three different forms of validity

and sensitivity:

• convergent validity: it demonstrates the extent to which different MWL400

techniques correlate to each other(Tsang & Velazquez, 1996).

• concurrent validity: it determines to what extent a technique can explain

measures of objective performance, such as task execution time (Rubio

et al., 2004).

• face validity: it determines the extent to which a technique is relevant to405
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the persons answering the questions. Or if the workload reported seems

to be valid to participants of the experiment (Spielberger et al., 2010).

• sensitivity: it determines the capability of a technique to discriminate

significant variations in MWL and changes in resource demand or task

difficulty (O’Donnell & Eggemeier, 1986).410

Validity and its particular sub-forms have normally been assessed through

the analysis of correlation coefficients (Rubio et al., 2004) between produced

MWL scalars, while sensitivity has been formally evaluated by analysis of vari-

ance coupled with post hoc analysis (Rubio et al., 2004; Longo, 2015).

In summary, MWL is a complex construct built over a network of pieces415

of evidence; accounting and understanding the relationships of these pieces of

evidence as well as resolving the inconsistencies arising from their interaction

is essential in modelling MWL (Longo, 2014). In formal logics, these activities

are the key components of a defeasible argumentative process, where a set of

interactive pieces of evidence, called arguments, can be defeated by additional420

arguments (Longo, 2014). To the best of our knowledge, Longo (2012) was the

first to attempt to model MWL as a non-monotonic concept. Thus, in spite of

MWL not being the focus of this research, it is important to highlight that no

other authors have followed this modelling approach. Previous works have in-

vestigated the use of expert systems for MWL modelling (Rizzo et al., 2016) and425

the comparison of defeasible argumentation and non-monotonic fuzzy reasoning

(Rizzo & Longo, 2019, 2017). Nonetheless, these are not comprehensive stud-

ies, employing small sets of data and limited sets of inference models. Here, a

thorough investigation has been proposed, extending preceding studies and fine

tuning designed inference models. In particular, this research is secondary in430

terms of data employed. It employs information of studies proposed in (Longo,

2018b; Longo & Orru, 2019; Longo, 2018a, 2017; Longo & Dondio, 2015) for

the evaluation of MWL imposed on participants who performed two types of

tasks: information seeking web-based tasks and attendance to third-level classes

delivered at the Technological University Dublin (a detailed description of these435
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tasks if given in Section 3.4). The answers provided by these participants led to

the creation of three different datasets evaluated simultaneously in this study. In

specific, they were used to elicit the non-monotonic reasoning models introduced

in the next section.

3. Design and methodology440

In order to answer the research question a primary quantitative research

was designed as depicted in Fig. 4. Empirical evidence was employed with two

objectives in mind:

Dataset 1 Dataset 2 Dataset 3

Knowledge-base A Knowledge-base B Knowledge-base C

1. IF-THEN rules

2. Inference engine

3. Rules aggregation

Expert systems

1. Fuzzification

2. Inference engine

3. Defuzzification

Non-monotonic
fuzzy reasoning

1. Structure of arguments

2. Conflicts of arguments

3. Evaluation of conflicts

4. Dialectical status

5. Accrual of arguments

Defeasible argumentation

Non-monotonic fuzzy
reasoning models

Defeasible argu-
mentation models

Expert systems
models

Inferential capacity analysis
1. Convergent validity

2. Face validity
3. Concurrent validity

4. Sensitivity

Figure 4: Evaluation strategy schema and full inferential process applied to three distinct

knowledge-bases instantiated by three distinct datasets.

1. To investigate the capacity of non-monotonic reasoning models to assess

the construct of MWL according to state-of-the-art MWL measurement445
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techniques (NASA-TLX, Raw TLX and WP).

2. To investigate the quality of inferences produced by non-monotonic rea-

soning models.

The hypothesis for objective 1 is that non-monotonic reasoning models will

demonstrate high convergent validity with baseline instruments, thus being able450

to assess MWL. The hypothesis for objective 2 is that defeasible argumentation

models will demonstrate higher sensitivity, higher concurrent validity and higher

face validity than fuzzy reasoning and expert system models, thus showing that

defeasible argumentation has a better inferential capacity than the other non-

monotonic reasoning approaches. Table 1 lists the hypotheses and methods455

associated to each objective of this research study.

Table 1: Objectives and hypotheses of the research study.

Objective 1 Evaluation of the capacity to assess the construct of MWL.

Method Evaluation of convergent validity.

Hypothesis 1
Non-monotonic reasoning models will demonstrate moderate to

high convergent validity with baseline instruments.

Objective 2 Investigate the quality of produced inferences.

Method Evaluation of face validity, concurrent validity and sensitivity.

Hypothesis 2

Defeasible argumentation models will demonstrate higher sensi-

tivity, higher concurrent validity and higher face validity than

fuzzy reasoning and expert system models.

Three knowledge bases (Appendix A), designed by two interviewed experts,

were employed for the construction of models capable of inferring a mental

workload scalar (value in the range [0, 100] ∈ R). Each knowledge base was

built with rules constructed by only considering the information gathered with460

well known self-reporting mental workload instruments. Each rule was subse-

quently elicited with the data associated to its premises. The construction of

datasets, knowledge bases and description of performed tasks designed to as-
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sess MWL are detailed in the following subsections. As summarised in Fig.

4, non-monotonic reasoning models are firstly built upon an expert knowledge465

base and a reasoning approach. Secondly, these models are instantiated with

the data associated to the selected knowledge base and the respective inferences

are produced (MWL scalars). This process is repeated for each knowledge base.

Finally, the inferences produced using all knowledge bases are compared against

each other to test the research hypotheses.470

3.1. Expert systems

Focused on imitating the problem-solving ability of a human expert, expert

systems are one of the most well known reasoning approaches in the literature.

A step-by-step description of their inferential process is provided along with a

running example (Fig. 5) for the problem chosen in this paper: mental workload475

modelling and assessment. This example is referred throughout this section and

is aimed at providing a complete overview of the expert system procedure for

inferring a MWL scalar with real-world data.

3.1.1. IF-THEN rules and contradictions

The first step of an expert system is to model a knowledge base usually480

gathered from an expert with rules of the form “IF (antecedent) THEN (con-

sequent)”. In this research study, the antecedent is one or a set of premises

associated to a number of MWL features, believed by the expert, to influence

MWL, while the consequent is associated to a possible MWL level that can

be deductively derived from the premises. Examples of hypothetical rules are485

described below:

- Rule 1: IF low mental demand THEN underload MWL

- Rule 2: IF low effort THEN fitting load MWL

Each level of a premise in the antecedent, as well as each level of the con-

sequent, are mapped to a numerical range by the domain expert. The input490

values then determine the activated rules and contradictions. A rule can also
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Knowledge-
base

Input values

Inference engine

Rules quan-
tification and
aggregation

Knowledge base (Appendix A.1)

Performance: 50

Temporal demand: 45

Mental demand: 70

Frustration: 25

Effort: 50

(A) Input values

provided by user

IF-THEN Rules

FR1 : IF low frustration THEN underload

MD4 : IF high mental demand THEN overload

PF3 : IF medium upper performance

THEN fitting minus load

TD2 : IF medium lower temporal demand

THEN fitting minus load

EF3 : IF medium upper effort

THEN fitting plus load

Contradictions

R3a: IF FR1 THEN not MD4

R3b: IF MD4 THEN not FR1

(B) IF-THEN rules and contradictions

from activated rules

PF3 : IF medium upper performance

THEN fitting minus load

TD2 : IF medium lower temporal demand

THEN fitting minus load

EF3 : IF medium upper effort

THEN fitting plus load

(C) Non discarded rules
Rule Value Conclusion
PF3 49 fitting minus load

TD2 45 fitting minus load

EF3 50 fitting plus load

(D) Rules quantification

Heuristic MWL scalar
h1 47

h3 48

(E) Rules aggregation

Figure 5: An illustration of a reasoning process of an expert system. The order of operations

is from step (A) to step (E).

be contradicted by other rules which intend to bring forward and support con-

tradictory information. An example of a hypothetical contradiction is:

- Contradiction 1: IF high effort THEN not Rule 1

The set of IF-THEN rules and the set of contradictions is now ready to be495

elicited. In detail, the second step of the expert system is to define the inference

engine aimed at firing rules and solving contradictions among them.

3.1.2. Inference engine

The inference engine starts with the activation of IF-THEN rules and con-

tradictions with real-world data. This means that input data will be used to500

evaluate antecedents of rules and contradictions, firing a sub-set whose eval-

uation returns true. If both a IF-THEN rule and at least one contradiction

challenging the rule have been activated, then the inference engine discards the
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rule. This mechanism will eventually form a set of surviving rules. Fig. 5.A,

5.B and 5.C respectively depict the input values in the running example, the505

set of activated rules and the set of surviving rules. Note that these rules and

arguments come from a real knowledge base that can be seen in Appendix A.

They may not be the same as hypothetical rules and contradictions, such as

Rule 2 and Contraction 1. Experts can have different opinions and the fact that

a set of premises infers a conclusion in one knowledge base does not mean it has510

to infer the same conclusion in another knowledge base.

3.1.3. Rules quantification and aggregation

The rules in the set of surviving rules might have distinct consequents. For

example, in this research study, there might be rules inferring different MWL lev-

els. Since the goal is to aggregate them and extract an unique scalar, most rep-515

resentative of the imposed mental workload, an aggregation strategy is needed.

In this situation, a usual expert system would have a typical set of choices for se-

lection of rules, for example: deciding a priority for each rule, returning multiple

outcomes or choosing the first rule activated. However, none of these strategies

is applicable in this research study. The knowledge bases do not explicit prefer-520

ences among rules, order of activation or possibility to compute more than one

output. Because of that, rules have to be quantified and aggregated1 to infer a

MWL scalar in the range [0, 100] ∈ R.

In the quantification step, a value has to be attributed for each surviving IF-

THEN rule. In this study, this value is defined according to the numerical range525

of the consequent of the rule, the numerical range of its premises and the input

values provided for the rule activation. In the basic scenario of an IF-THEN rule

with only one premise, it will be quantified as the minimum (resp. maximum)

value of the numerical range of its consequent if its premise is activated with its

1A third step, after the definition of rules and inference engine, is provided here for the

design of expert system models. Commonly, the final inference of usual expert systems is given

by the inference engine. However, in the interest of clarity, quantification and aggregation of

rules are defined in a third step, which could theoretically still be part of the inference engine.
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minimum (resp. maximum) value. For instance, consider Rule 2 rewritten with530

hypothetical numerical ranges:

- Rule 2 rewritten: IF effort ∈ [0, 33] THEN MWL ∈ [33, 66]

In this case, if the input value for effort is 0, then Rule 2 value will be

33. Analogously, if the input value for effort is 33, Rule 2 value will be

66. Activation values in between 0 and 33 are evaluated according to a linear535

relationship. To formalize the generic case, IF-THEN rules are precisely defined,

followed by the definition of the function f that returns their value:

Definition 1 (Generic IF-THEN rule). A generic IF-THEN rule is defined,

without loss of generalisability, as:

IF (i1 ∈ [l1, u1] AND i2 ∈ [l2, u2] ) OR (i3 ∈ [l3, u3] AND i4 ∈ [l4, u4])540

THEN MWL ∈ [lc, uc]

Where in ∈ R is the input value of the feature n with numerical range [ln ∈ R,

un ∈ R]; [lc ∈ R, uc ∈ R] is the numerical range for the MWL level being

inferred; and AND and OR are boolean logical operators.

Definition 2 (Generic rule value). The value of a generic IF-THEN rule r545

is given by the function:

f(r) = (uc−lc)
Rmax−Rmin

× (v −Rmax) + uc, where

v = min[max(i1, i2), max(i3, i4)],

Rmax = min[max(u1, u2), max(u3, u4)],

Rmin = min[max(l1, l2), max(l3, l4)]550

Note that the value of a rule will always lies between the numerical range

[lc, uc] of the MWL level being inferred. In a nutshell, Def. 2 provides a nor-

malization formula for rules that employ logical operators AND/OR, replacing

them for max and min operators2. Fig. 5.D provides a numerical example.

2Different operators could have been employed if defined by the knowledge base designer.
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Finally, four heuristics are defined to accomplish the aggregation of surviving555

IF-THEN rules inferring some MWL level. The strategies are developed in order

to extract different points of view from the remaining rules and accommodate

the use of rule weights. No preference or weight among rules is provided in

the employed knowledge bases, still the pairwise comparison procedure of the

NASA-TLX is adapted here as a form of rule weight. The aim is to investigate560

the impact of adding this extra information on the inferential capacity of the

expert system models. In the pairwise comparison procedure, the number of

times a feature has been chosen over another is its respective weight, which

in turn will also represent the weight of the IF-THEN rules whose antecedents

contain such feature. Observe that instead of general rule weights, rules will565

have different weights on a case by case basis.

- h1: definition of the sets of surviving rules grouped by their MWL level.

Extraction of the largest set. Average of the values of the rules in the

largest set. In case two or more largest sets exist, the above process is

repeated for each of them and their average is returned. The idea is to570

give importance to the largest set of surviving rules supporting the same

MWL level.

- h2: same as h1 but applying the weighted average instead of the average.

The goal here is to add the information from the pairwise comparison

procedure provided by the NASA-TLX questionnaire.575

- h3: average value of all surviving IF-THEN rules. This is to give equal

importance to all surviving IF-THEN rules, regardless of which level of

MWL they were supporting.

- h4: same as h3 but applying the weighted average instead of the average.

Again, the goal is to employ the information of the pairwise comparison580

procedure of the NASA-TLX.

Fig. 5.E depicts the output for two heuristics.
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3.2. Non-monotonic fuzzy reasoning

For comparison purposes, fuzzy reasoning is the second reasoning approach

selected in this research study. It provides a robust representation of linguistic585

information by using fuzzy membership functions. In addition, it considers

Possibility Theory (Dubois & Prade, 1998) in the reasoning process to tackle

non-monotonicity. Similarly to expert systems, a running example of a single

inference with real-world data is depicted in Fig. 6 and referred throughout this

subsection.590

3.2.1. Fuzzification module

The first step, the fuzzification module, starts with the definition of fuzzy

IF-THEN rules and fuzzy contradictions. Hypothetical examples of these are:

- Fuzzy Rule 1: IF low mental demand THEN underload MWL

- Fuzzy Rule 2: IF low effort THEN fitting load MWL595

- Fuzzy Contradiction 1: IF high effort THEN not Fuzzy Rule 1.

Fig. 6.A and Fig. 6.B depict the representation of the knowledge base of an

expert with fuzzy IF-THEN rules and fuzzy contradictions.

Afterwards, each linguistic term associated to a feature level or MWL level,

such as low or underload, is described by a fuzzy membership function (FMF)600

that is also provided by the knowledge base designers. Appendix A.4 depicts

the three options provided, using linear, trapezoidal and Gaussian shapes. In

the running example, membership functions for MWL levels and feature levels

and can be seen in Fig. 6.C and Fig. 6.D respectively.

3.2.2. Inference engine605

Once the fuzzification step has been completed and the knowledge base of

the expert translated into fuzzy rules and fuzzy contradictions, the next step

is to solve such contractions. Possibility Theory is used here as a possible

approach, as implemented in (Siler & Buckley, 2005) for fuzzy reasoning with
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Knowledge
base

Input values

Fuzzification
module

Inference
engine

Defuzzification
module

Knowledge base (Appendix A.1)

Performance: 50

Temporal demand: 45

Mental demand: 70

Frustration: 25

Effort: 50

(A) Input values

provided by user

Fuzzy IF-THEN Rules

FR1 : IF low frustration THEN underload

MD4 : IF high mental demand THEN overload

PF3 : IF medium upper performance

THEN fitting minus load

TD2 : IF medium lower temporal demand

THEN fitting minus load

EF3 : IF medium upper effort

THEN fitting plus load

Fuzzy contradictions

R3a: IF FR1 THEN not MD4

R3b: IF MD4 THEN not FR1

(B) Fuzzy IF-THEN rules and fuzzy

contradictions from activated rules

(C) Example of membership func-

tions for MWL levels

(D) Example of membership func-

tions for feature levels

Rules Zadeh  Lukas. Prod.

FR1 0.28 0.28 0.28

MD4 0.21 0.21 0.21

PF3 1 1 1

TD2 0.75 0.75 0.75

EF3 1 1 1

(E) Truth values for fuzzy IF-THEN rules for

different fuzzy logics

FR1 temp: 0.28

MD4 temp: 0.21

FR1 final: min(0.28, 1 - 0.21) = 0.28

MD4 final: min(0.21, 1 - 0.28) = 0.21

(F) Equation (1) applied for contradictions

R3a and R3b

Rule
Truth
value

Conclusion

FR1 0.28 underload

MD4 0.21 overload

PF3 1 fitting minus load

TD2 0.75 fitting minus load

EF3 1 fitting plus load

(G) Final truth values of IF-THEN

rules after solving contradictions

MWL Zadeh  Lukas. Product
Underload 0.28 0.28 0.28

Fitting minus 1 1 1

Fitting plus 1 1 1

Overload 0.21 0.21 0.21

(H) Final aggregated MWL levels

truth values for different fuzzy logics

(I) Graphical representation of the ag-

gregated FMFs of MWL levels

Defuzzif. Zadeh  Lukas. Product
Centroid (47.6, 0.23) (47.6, 0.23) (47.6, 0.23)

Mean of max 50 50 50

(J) Defuzzification of (I) and final inference

Figure 6: An illustration of a reasoning process of a fuzzy reasoning system with the property

of non-monotonicity. The order of operations is from step (A) to step (J).
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rule based systems. According to this approach, truth values can be represented

by possibility (Pos) and necessity (Nec) as defined in Section 2.3. Both are

values between [0, 1] ∈ R. Possibility of a proposition can also be seen as the

upper bound of its respective necessity (Pos ≥ Nec). In this study, necessity

represents the membership grade of a proposition and possibility is always 1

for all propositions. Under these circumstances, the effect on the necessity of a

proposition A by a set of propositions Q which contradicts A is derivable as:

Nec(A) = min(Nec(A),¬Nec(Q1), . . . ,¬Nec(Qn)) (4)

where ¬Nec(Q) = 1−Nec(Q). Sidnce there is no addition of supporting infor-

mation but only attempts to contradict or refute information, equation (4) can

deal with the contradictions in the knowledge bases of this study. For instance,

the truth value of the Fuzzy Rule 1, assuming that it is contradicted only by

the Fuzzy Contradiction 1, is given by:610

- Truth value of Fuzzy Rule 1 =

min (Nec(low mental demand), 1 - Nec(high effort))

Nec(low mental demand) is the membership grade of the linguistic variable

low of the feature mental demand. For instance, if mental demand = 1, then

Nec(low mental demand) = 1, according to the membership function low of615

Fig. A.26b (p. 82). Also, for instance, if Nec(high effort) = 0 then it must

be noted that the Fuzzy Contradiction 1 has no impact on the Fuzzy Rule 1

and if Nec(high effort) = 1 the new truth value of the Fuzzy Rule 1 is 0.

Values between 1 and 0 indicates that the Fuzzy Rule 1 is partially refuted.

The truth value of the Fuzzy Rule 1 represents the truth value of underload in620

this particular rule.

It is important to highlight that the approach developed in (Siler & Buckley,

2005) has been inspired by a multi-step forward-chaining reasoning system. In

this research study, reasoning is done in a single step, in the sense that data

is imported and all rules are fired at once. However, it is possible to define a625

precedence order of fuzzy contradictions. More exactly, it is possible to define a
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tree structure in which the consequent of a fuzzy contradiction is the antecedent

of the next fuzzy contradiction. In this way, equation (4) can be applied from

the root or roots to the leaves. This approach is sufficient for knowledge bases

that do not contain cyclic exceptions, but according to the knowledge bases630

employed in this study, that is not the case. For instance consider the following

hypothetical fuzzy IF-THEN rules and their fuzzy contradictions:

- Fuzzy Rule 3: IF low temporal demand THEN underload

- Fuzzy Rule 4: IF high frustration THEN overload

- Fuzzy Contradic. 2: IF low temporal demand THEN not Fuzzy Rule 4635

- Fuzzy Contradic. 3: IF high frustration THEN not Fuzzy Rule 3

In this case it is not clear if Fuzzy Contradiction 2 or 3 should be solved

first. Given that there is no information on the knowledge bases (accounted in

this study as per Appendix A) to decide whether a fuzzy rule or a fuzzy con-

tradiction is more important than another, here they are solved simultaneously.640

Firstly, the truth values of all fuzzy rules are stored before solving any cyclic

fuzzy contradictions. Secondly, the final truth value of fuzzy rules is calculated

according to equation (4) and the temporary values stored before as per example

below:

- Temp1 = Nec(Fuzzy Rule 3) = Nec(low temporal demand)645

- Temp2 = Nec(Fuzzy Rule 4) = Nec(high frustration)

- Truth value Fuzzy Rule 3 = min (Nec(low temporal demand), 1 - Temp2))

- Truth value Fuzzy Rule 4 = min (Nec(high frustration), 1 - Temp1))

Having a mechanism to solve fuzzy contradictions, fuzzy operators can be

applied to the antecedents of fuzzy IF-THEN rules and for the aggregation of the650

consequents (MWL levels) across the rules. Three known operators are selected

for investigation: the Zadeh, the Product and the  Lukasiewicz operators. Table
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2 lists the t-norms and t-conorms (fuzzy AND and fuzzy OR) respectively for

each operator. Antecedents might employ OR or/and AND, while consequents

(MWL levels) are aggregated only by the OR operator. For instance, the truth655

value of underload in a context where only Fuzzy Rule 1 and Fuzzy Rule 3 infer

underload is “Nec(Fuzzy Rule 1) OR Nec(Fuzzy Rule 3)”.

Table 2: T-Norms and t-Conorms employed for two propositions a and b

Fuzzy operator T-Norm T-Conorm

Zadeh min(a,b) max(a,b)

 Lukasiewicz max(a + b - 1, 0) min(a + b, 1)

Product a.b a + b - a.b

Fig 6.E, 6.F and 6.G respectively depicts the truth values of fuzzy rules, the

resolution of the contradictions and the updated truth values of fuzzy rules.

At this stage if rule weights are defined these should be applied to the current660

truth values of fuzzy IF-THEN rules. In this study, the approach proposed

by (Ishibuchi & Nakashima, 2001) is selected. In this case, rule weights are

normalized in the range [0, 1] ∈ R and multiplied by the current truth value of

each rule. Weights are provided by the pairwise comparison procedure of the

NASA-TLX questionnaire (Table A.13) and adapted as in the expert systems665

design (Section 3.1.3).

Eventually, the truth values of the final MWL levels are generated by ag-

gregating the consequents of the fuzzy IF-THEN rules using the OR operator.

Fig. 6.H depicts an example with no rule weights.

3.2.3. Defuzzification module670

The output of the inference engine is a graphic representation of the aggre-

gation of the consequents (MWL levels) of the updated fuzzy IF-THEN rules

(Fig. 6.I). Several methods can be used for calculating a single defuzzified scalar

(Hellendoorn & Thomas, 1993). Two are selected here: mean of max and cen-

troid. The first returns the average of all elements (MWL levels) with maximal675
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membership grade. The second returns the coordinates (x, y) of the centre of

gravity of the geometric shape formed by the aggregation of the membership

functions associated to each consequent (MWL level). The defuzzified scalar is

represented then by the x coordinate of the centroid (as per Fig. 6.J).

3.3. Defeasible argumentation680

The definition of argument based-models follows the 5 layer modelling ap-

proach proposed in (Longo, 2016) and depicted in Fig. 3 (Section 2.4). It starts

with the definition of the internal structure of arguments, followed by the def-

inition of conflicts among arguments, the definition of the acceptance status

of each argument and the aggregation of the accepted arguments. A running685

example is depicted in Fig. 7 and referred throughout this subsection.

3.3.1. Layer 1 - Definition of the internal structure of arguments

Most commonly an argument is composed of one or more premises that

provides reason or support a conclusion. Thus, the first step of an argumentation

process usually focuses on the construction of forecast arguments defined as:690

Forecast argument : premises→ conclusion

This structure includes a set of premises (believed to influence the conclu-

sion being inferred) and a conclusion derivable by applying the inference rule

→. It is an uncertain implication which is used to represent a defeasible argu-

ment. In order to solve the application in hand (MWL), similarly to the rules695

of expert systems, premises and conclusions are strictly bounded in numerical

ranges associated to natural language terms (for instance low and underload).

An example of a hypothetical forecast argument is given below (it matches Rule

1 of Section 3.1.1):

− ARG 1: low mental demand → underload700

In the running example, the selected knowledge base and input values (Fig.

7.* and 7.A) are the same employed in the expert systems and the non-monotonic

fuzzy reasoning system (as per Fig. 5 and Fig. 6 respectively). The forecast

arguments that are activated from these can be seen in Fig. 7.B.
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Knowledge
base

Input values

Layer 1

Layer 2

Layer 3

Layer 4

Layer 5

(*) Knowledge base (Appendix A.1)

and respective AF
Performance: 50

Temporal demand: 45

Mental demand: 70

Frustration: 25

Effort: 50

(A) Input values

provided by user

Forecast arguments

FR1 : low frustration → underload

MD4 : high mental demand → overload

PF3 : medium upper performance → fitting minus load

TD2 : medium lower temporal demand → fitting minus load

EF3 : medium upper effort → fitting plus load

(B) Forecast arguments from activated

rules in the knowledge-base

Undercutting attacks

R3a: low frustration ⇒ ¬ MD4

R3b: high mental demand ⇒ ¬ FR1

(C) Undercutting attacks from activated

contradictions in the knowledge-base

(D) Sub-argumentation frame-

work

(E) Grounded semantics: com-

puted extensions

(F) Preferred semantics:

first computed extensions

(G) Preferred semantics:

second computed extension

Argument Conclusion Value

FR1 underload 25

MD4 overload 70

PF3 fitting minus load 49

TD2 fitting minus load 45

EF3 fitting plus load 50

(H) Conclusion and value of

activated arguments

Semantic Extension MWL

Preferred 1 42.25

Preferred 2 53.25

Mean 47.75

Grounded 1 48

(I) Accrual (average) of accepted

forecast arguments by each semantic

Figure 7: An illustration of a reasoning process of an argument-based defeasible reasoning

system. The order of operations is from step (A) to step (I). The argumentation framework

related to the knowledge base employed is depicted in step (*).
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3.3.2. Layer 2 - Definition of the conflicts of arguments705

In order to evaluate inconsistencies, the notion of mitigating argument (Matt

et al., 2010) is introduced. This is formed by a set of premises and an under-

cutting inference ⇒ to an argument B (forecast or mitigating):

Mitigating argument : premises⇒ ¬B

Both forecast and mitigating arguments are special defeasible rules, as defined in710

(Prakken, 2010). Informally, if their premises hold then presumably (defeasibly)

their conclusions also hold. Different types of mitigating arguments exist in the

literature, such as rebuttal and undermining (Prakken, 2010). In this research,

the notion of undercutting attack is employed for the construction of mitigating

arguments and thus enabling the resolution of conflicts. An undercutting attack715

defines an exception, where some inference carried out in the attacked argument

is no longer allowed. Contradictions, such as in Section 3.1.1, represent the in-

formation necessary for the construction of undercutting attacks. For example,

the corresponding hypothetical mitigating argument that can be constructed

from Contradiction 1 (Section 3.1.1) via an undercutting attack is:720

− UA1: high effort ⇒ ¬ ARG 1

All forecast arguments and undercutting attacks form an argumentation

framework (AF) (as in Fig. 7.∗). Fig. 7.C lists the activated undercutting

attacks for the input values (Fig. 7.A). In this example undercutting attacks

originate from the contradiction “C3: FR1 and MD4 cannot coexist”, listed in725

Table A.15. It was defined by a domain expert and manually translated as two

undercutting attacks.

3.3.3. Layer 3 - Evaluation of the conflicts of arguments

At this stage, the created AF can be elicited with data. Forecast and miti-

gating arguments can be activated or discarded, based on whether their premises730

evaluate true or false. Consequently, attacks between activated arguments will

be evaluated before being activated as well. As mentioned in Section 2.4, at-

tacks usually have a form of a binary relation. In a binary relation a successful

(activated) attack occurs whenever both its source (attacking argument) and

32

                  



its target (argument being attacked) are activated. Another approach that can735

be adapted in this study is the strength of arguments. In this case, similarly to

the definition of rule weights in expert system and fuzzy reasoning, the strength

of each argument is extracted from the pairwise comparison procedure of the

NASA-TLX. The number of times a feature has been chosen in the pairwise

comparison procedure will represent the feature strength, which in turn will740

also represent the strength of the arguments employing such feature. Conse-

quently, an attack is considered successful only if the strength of its source is

equal or greater to the strength of its target.

From the activated forecast/mitigating arguments and successful attacks, a

sub-argumentation framework emerges (sub-AF), as in Fig. 7.D. This is equiv-745

alent to the Abstract Argumentation proposed in Dung (1995).

3.3.4. Layer 4 - Definition of the acceptance status of arguments

Given a sub-AF acceptability semantics (Baroni et al., 2011; Dung, 1995)

are applied to compute the acceptance status of each argument, that means

its acceptability. An argument A is defeated by B if there is a valid attack750

from A to B (Dung, 1995). Not only that, but it is also necessary to evaluate

if the defeaters are defeated themselves. Hence, acceptability semantics are

aimed at evaluating which arguments are ultimately defeated. A set of non

defeated arguments is called extension, or a subset of arguments that can be

mutually acceptable according to some rationale. Extensions are in turn used755

in the 5th layer of the reasoning structure of Fig. 3 (p. 12), to produce a final

inference. The internal structure of arguments is not considered in this layer,

that is why the definition of sub-AF here is equivalent to the notion of abstract

argumentation framework (AAF) as proposed by Dung (Dung, 1995). An AAF

is a pair < Arg, attacks > where: Arg is a finite set of abstract arguments,760

attacks ⊆ Arg × Arg is binary relation over Arg. Given sets X, Y ⊆ Arg, X

attacks Y if and only if there exists x ∈ X and y ∈ Y such that (x, y) ∈ attacks.

A set X ⊆ Arg of argument is:

- admissible iff X does not attack itself and X attacks every set of arguments
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Y such that Y attacks X;765

- complete iff X is admissible and X contains all arguments it defends, where

X defends x if and only if X attacks all attackers of x;

- grounded iff X is minimally complete (with respect to ⊆);

- preferred iff X is maximally admissible (with respect to ⊆)

These represent a few argument-based semantics among others that have770

been proposed in the literature (Baroni et al., 2011). However, here the focus is

on the grounded and preferred semantics. Fig. 7.E, 7.F and 7.G depict different

extensions when employing the grounded and preferred semantics in the running

example.

3.3.5. Layer 5 - Accrual of acceptable arguments775

Eventually, in the last step of the reasoning process, a final inference has to

be produced. In case multiple extensions are computed, one extension might be

favoured over the others. In this study, the cardinality of an extension (number

of accepted arguments) is used as a mechanism for selecting the favoured one.

Intuitively, a larger extension of arguments might be seen as more relevant than780

smaller extensions. In case some of the computed extensions have the same

highest cardinality, these are all brought forward in the reasoning process. After

the selection of the larger extension/s, a single scalar is produced through the

accrual of its/their arguments. This is defined by the set of accepted forecast

arguments within an extension (those that support a MWL level). Mitigating785

arguments already completed their roles by contributing to the resolution of

conflicting information (layer 4) and thus are not considered in this layer. For

each forecast argument, a final scalar is generated for its representation. It

follows from the same formula described in Def. 2 (Section 3.1.3). Fig. 7.H lists

the values computed for the forecast arguments in the running example. The790

overall MWL level brought forward by an extension is computed by aggregating

the scalars of its forecast arguments. This aggregation can be done in different
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ways, for instance considering measures of central tendency. Here, similarly to

expert systems, the average and the weighted average are accounted for, with

arguments weights being defined the same way as their strengths are. Fig. 7.I795

concludes the running example by depicting the outcome of each semantics using

the average operator. Note that since there are two preferred extensions with

the same number of accepted forecast arguments, the outcome of the preferred

semantics is the mean of its two extensions.

3.4. Participants and procedures800

Three distinct experiments were performed with human subjects. In the first

and second, a number of third-level classes were delivered to students at the

Technological University Dublin, School of Computer Science, Dublin, Ireland.

In the third, nine information seeking web-based tasks of varying difficulty and

demand were performed by volunteer participants over three popular web-sites:805

Google, Wikipedia and Youtube. Subjects were briefed about the study and

they were requested to sign a consent form that included data protection and

treatment. Privacy and anonymity of participants were in all respects protected

by the authors. After each task, a self-reporting questionnaire aimed at assess-

ing mental workload was given to subjects. These can be seen at Fig. A.11, A.13810

and A.17 in the Appendixes. Besides completing the questionnaires, in some

scenarios participants were required to fill in another scale providing an indica-

tion of their experienced mental workload (Fig. 8). This question was designed

for triangulation purposes with the assumption that only the person executing

a task can precisely self-assess its own experienced mental workload (Moustafa815

et al., 2017). Table 3 summarises the three experiments, the questionnaires

employed and the number of participants. It also mentions the mental work-

load assessment instrument that will be employed as baseline for comparison

purposes.
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How much mental workload the teaching session imposed on you?

underload
optimal load

overloadextreme
underload

extreme
overload

Figure 8: Baseline self-reporting measure of Mental Workload

Table 3: Set up of experiments under evaluation.

Label
Experimental

setting
Questionnaire

(Appendixes)
Features

Self
Assess.

Baseline
instruments

Records

Ea
Third-level

classes
A.11+A.13 NASA-TLX 3 Fig. 8 NASA-TLX3 230

Eb

Third-level

classes
A.17 Longo 4 Fig. 8

Raw TLX 5

& WP 6
237

Ec
Seeking web-based

information
A.17+A.13 Longo4 None

NASA-TLX3

& WP5
405

3.4.1. Third-level classes at Technological University Dublin820

In the first two experiments (Ea and Eb, Table 3) students attended third-

level classes in the Technological University Dublin and filled either question-

naires A.11+A.13 or A.17 (Appendix A). The set of questionnaires were related

to the features being analysed at each experiment. In experiment Ea only fea-

tures of the NASA-TLX measurement technique were being investigated, while825

in experiment Eb a larger set of features was being considered for MWL mod-

elling and assessment. Therefore, two distinct sets of data were generated. In

total students were from 24 distinct countries (age 19-74, mean 30.9, std =

7.63) and attended four topics of the module ‘Research Methods’ in the Master

of Science: science, scientific method, research planning and literature review.830

These topics were delivered in three different forms during the semesters of the

3(Hart & Staveland, 1988).
4(Longo, 2014).
5(Hart, 2006).
6(Tsang & Velazquez, 1996).
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academic terms 2015-2018:

1. Traditional direct instruction, using slides projected to a white board;

2. Multimedia video of content. Transformation of the content of the slides

of 1 into a multimedia video projected to a white board;835

3. Constructivist collaborative activity added to 2.

Table 4 summarises the number of participants for each topic delivered in

experiments Ea and Eb, grouped by delivery method. It provides additional

figures related to the experiments carried out. Further details of these activi-

ties are not necessary for this research study, but the reader can find specific840

information in (Longo, 2018b; Longo & Orru, 2019).

Table 4: Number of students across topics and delivery methods

Topic Duration (Mins)
Delivery method

1 2 3

Science [18, 62] 31 70 19

Scientific method [20, 46] 39 36 41

Research planning [10, 68] 43 45 41

Literature review [18, 57] 41 43 18

3.4.2. Information seeking web-based tasks

In the third experiment, nine information seeking web-based tasks of vary-

ing difficulty and demand (Table B.19 in the Appendix), were performed by

participants over three websites: Google, Wikipedia and Youtube. These web-845

sites were selected due to their popularity and assumption that participants

were familiar with their interfaces. In this way, situations of underload MWL

were expected to happen. If non-popular websites were chosen the chances of

spotting underload MWL would be reduced. In addition, the original interface

of each web-site was slightly manipulated in order to impose different MWL850

demands on participants interacting with them, leading to 9 tasks on the orig-

inal websites and 9 tasks on the modified websites (18 in total). 46 volunteers

performed all the tasks in a random order in different days, over 2 or 3 sessions
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of approximately 45/70 minutes each. Afterwards, the questions of Table A.17

were answered using a paper-based scale in the range [0..100] ∈ ℵ, partitioned855

in 3 regions delimited at 33 and 66. 405 valid instances were generated. Despite

not being necessary in this study, the reader can obtain more information on

the construction of this dataset in (Longo, 2018a, 2017; Longo & Dondio, 2015).

3.5. Summary of models and comparative metrics

Tables C.20, C.21 and C.22 in the Appendix list models built using the rea-860

soning approaches detailed in Sections 3.1, 3.2 and 3.3. Each reasoning approach

provides different configuration parameters that can impact results either posi-

tively or negatively. Thus, it is important to cover the highest possible number of

configurations. Some examples of parameters are heuristics for expert systems,

acceptability semantics for defeasible argumentation and fuzzy logic for fuzzy865

reasoning. Moreover, some types of data might require special configuration pa-

rameters, as it is the case in this study for the pairwise comparison procedure of

the NASA-TLX. To adapt their use fuzzy reasoning and expert systems imple-

ment the notion of rule weights at different stages of their reasoning processes,

while defeasible argumentation implements the notion of strength of arguments870

during the evaluation of conflicts between arguments. The inferential capacity

of such models was evaluated by analysing the sensitivity and three forms of va-

lidity of their inferences (scalar values). As suggested in Section 2.5, the three

forms of validity employed are convergent, face and concurrent validity. The

first has been assessed through an analysis of the correlation coefficients of the875

inferences produced by the designed models and the scores produced by selected

baseline instruments. The second has been assessed through an investigation of

the mean squared error (MSE7) of the inference of each designed model against

the mental workload scores reported by students using the scale of Fig. 8. The

third has been assessed through an analysis of the correlation coefficients of the880

7MSE = 1
n

∑n

i=1

(
Yi −Xi

)2
, where Y is the vector of inferences made by the designed

models and X the vector of self-reported values.
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inferences produced by the designed models and an objective performance mea-

sure, in this case task completion time. Finally, sensitivity has been formally

assessed by analysing the variance of the distributions generated by inferences of

the designed non-monotonic reasoning models followed by a post hoc analysis.

Table 5 summarises comparative metrics, the statistical test associated to them885

and in which experiment they were employed. Before presenting the results

and the discussion of the study, Table 6 summarises experiments by reasoning

models and statistical tests applied.

Table 5: Comparative metrics, associated statistical tests and experiments that contain infor-

mation for their application.

Property Definition Statistical test
Experiment

(Table 3)

Convergent validity
It refers to the extent to which different
MWL measures that should be theoret-
ically related, are in fact related.

Correlation
coefficient

Ea, Eb, Ec

Face validity

It determines the extent to which a
measure of MWL appears effective in
terms of its stated aims (measuring
mental workload).

Mean Squared
Error (MSE)3

Ea, Eb

Concurrent validity

It determines the extent to which a
model correlates with an objective per-
formance measure, in this case task
completion time.

Correlation
coefficient

Ec

Sensitivity

It determines the capability of a tech-
nique to discriminate significant varia-
tions in MWL and changes in resource
demand or task difficulty.

Analysis of vari-
ance plus post
hoc analysis.

Ea, Eb, Ec

4. Results and discussion

Collected data was used to elicit models listed in Tables C.20, C.21 and C.22890

(Appendix C). The evaluation metrics of Table 5 are analysed in the following

sections.
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Table 6: Streamlined design of experiments under evaluation. Additional details of experi-

ments can be found in Table 3. Full list and detail of all the designed models can be seen in

Appendix C. Additional details on statistical tests can be seen in Table 5.

Experiment Ea

Experimental settings Models Analysis

Features: 6, Table A.11 Expert systems: E{1-4} Convergent validity

Task: Third level classes Fuzzy reasoning: FL{1-12} and FC{1-12} Face validity

Records: 230 Defeasible argumentation: A{1-4} Sensitive

Experiment Eb

Experimental settings Models Analysis

Features: 21, Table A.17 Expert systems: E{5-6} Convergent validity

Task: Third level classes Fuzzy reasoning: FL{13-18} and FC{13-18} Face validity

Records: 237 Defeasible argumentation: A{5-6} Sensitivity

Experiment Ec

Experimental settings Models Analysis

Features: 21, Table A.17 Expert systems: E{7-8} Convergent validity

Task: Seeking web-based Fuzzy reasoning: FL{19-24} and FC{19-24} Concurrent validity

Records: 405 Defeasible argumentation: A{7-8} Sensitive

4.1. Convergent validity

This property is aimed at determining whether, and to which extent, two

MWL inference models are correlated. It is the metric employed to achieve895

objective 1 (Section 3) and test its research hypotheses. The expectation is a

moderate to high correlation coefficient with state-of-the-art MWL measure-

ment techniques, which demonstrates that the designed models are in fact rep-

resenting and assessing the construct of MWL. Here, the Spearman correlation

coefficient was selected because of the non-normality of most of the distribu-900

tions of the inferences produced by the designed models. Formally, this was

confirmed by the Shapiro-Wilk test, which was not greater than the alpha level

set (alpha=0.05). Fig. D.27, p. 86, depicts the density plots of the inferences

produced by all models, while Fig. 9, 10 and 11 depict the Spearman correlation

coefficients of their inferences and those of the baseline instruments.905

From Fig. 9 it is possible to observe that the models designed for exper-

iment Ea could all achieve a medium to high correlation coefficient with the
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Figure 9: Spearmans correlation coefficients between NASA-TLX scores and inferences of

designed models for experiment Ea (p < 0.05). Models employing the pairwise comparison

information of the NASA-TLX are labelled with an inferior ., while those not employing it

are labelled with an inferior ?.

NASA-TLX baseline instrument (coefficients: 0.44 - 0.68). This demonstrates

the capacity of the investigated reasoning approaches to allow the development

of models to represent and assess the construct of MWL in experiment Ea,910

since they are in line with the baseline instrument. Models employing the pair-

wise comparison information of the NASA-TLX (labelled with an inferior .)

had in general a slightly higher correlation coefficient than analogous models

not employing this information (labelled with an inferior ?). Yet, a few excep-

tions can also be observed, such as: FL6× FL12, FC6× FC12 and E1× E2.915

This indicates that acceptable MWL inference models can be designed with less

information than the original NASA-TLX instrument.

Fig. 10 depicts the correlation coefficients of the designed models and se-

lected baseline instruments in experiment Eb: the Raw TLX in Fig. 10.a and

the Workload Profile in Fig. 10.b. Contrarily to results of experiment Ea, not920

all models could achieve a moderate/high convergent validity. In detail, fuzzy

models employing the mean of max defuzzification approach had the lowest

correlation coefficients (labelled with an inferior •) against both Raw TLX and

Workload Profile. In addition, there is a stark contrast when these are compared

to their counterparts employing the centroid defuzzification approach (labelled925
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(a) Correlations against RAW TLX
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(b) Correlations against Workload Profile

Figure 10: Spearmans correlation coefficients between Raw TLX scores (a), Workload Profile

scores (b) and inferences of designed models for experiment Eb (p < 0.05). Inferior symbols are

used to represent: centroid defuzzification approach (◦), mean of max defuzzification approach

(•), fuzzy logic operator Zadeh (Z), Product (P) and  Lukasiewicz (L).

with an inferior ◦), be it among models of linear fuzzy membership functions

or Gaussian fuzzy membership functions. This is a strong indication that the

mean of max is not a suitable parameter within a model to assess MWL in

experiment Eb, regardless of the fuzzy operator or shape of the fuzzy member-

ship function employed. As for the FMFs, it is also possible to notice some930

differences when employing different fuzzy operators. For instance, models em-
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ploying the Zadeh and Product operator (labelled with an inferior (Z) and (P)

respectively) tend to have a higher correlation coefficient when employing Gaus-

sian FMFs (FL13 × FC13, FL14 × FC14, FL15 × FC15 and FL16 × FC16),

while models employing the  Lukasiewicz operator (labelled with an inferior (L))935

present the inverse behaviour, with similar to lower correlation coefficient for

models of Gaussian FMFs (FL17 × FC17 and FL18 × FC18). Among expert

system models, also note a lower correlation coefficient for E5 whose heuristic

is h1 (the average of surviving rules inferring the MWL level supported by the

greatest number of surviving rules) than E6 whose heuristic is h3 (average of940

all surviving rules). This suggests that the process of filtering surviving rules

(h1) instead of taking all of them into account (h3) for the final inference might

not be a good strategy. In other words, it also suggests that all surviving rules

might be of equal importance on the expert system reasoning process, regard-

less if their conclusions are the same or not of other surviving rules. Finally,945

defeasible argumentation models show very much alike correlation coefficients

among them, suggesting no difference exists between preferred and grounded

semantics in this experiment.

Fig. 11 depicts the results for experiment Ec. It is possible to observe

some similar results to the convergent validity in Eb: the same correlation trend950

between the designed models and the distinct baseline instruments (NASA-TLX

and WP), better correlation for expert systems employing heuristic h1 (E7)

instead of h3 (E8), no significant difference between defeasible argumentation

models and worse performance in general for fuzzy models employing the mean

of max defuzzification approach (labelled with an inferior •). However, the955

impact of the FMFs shape is not analogous as that of previous findings, in fact

it is not possible to observe a significant difference in their correlation coefficients

except for models FL24 and FC24.

In summary, it is worth highlighting some common findings and differences

related to the convergent validity of models across reasoning approaches. For960

instance, the expert system and defeasible argumentation reasoning approaches

appear to be more robust for modelling the construct of MWL across the dif-
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(a) Correlations against NASA-TLX

◦
FL1

9

◦
FC

19

•
FL2

0

•
FC

20

◦
FL2

1

◦
FC

21

•
FL2

2

•
FC

22

◦
FL2

3

◦
FC

23

•
FL2

4

•
FC

24

E7 E8 A7 A8

0

0.5

1

0.48

0.15

0.55

0.21

0.56 0.530.52

0.21

0.57

0.21

0.56

0.15

0.66

0.87 0.87 0.86

Reasoning models for MWL inference

C
or

re
la

ti
on

Fuzzy (linear FMF) Fuzzy (Gaussian FMF) Expert systems Defeasible arg.

(b) Correlations against Workload Profile

NASA-TLX
(0.55)

Figure 11: Spearmans correlation coefficients between NASA-TLX scores (a), Workload Profile

scores (b) and inferences of designed models for experiment Ec (p < 0.05). Fuzzy models

employing the centroid defuzzification approach are labelled with an inferior ◦, while those

employing the mean of max are labelled with an inferior •.

ferent internal configurations of models and the different knowledge bases em-

ployed. This is demonstrated by the overall higher Spearman correlation coeffi-

cient between such models and baseline instruments across experiments (in the965

range 0.62 - 0.89 for defeasible argumentation and 0.45 - 0.89 for expert sys-

tems). Contrarily, parameters of the fuzzy reasoning models seem to lead to the

development of models that are more sensitive to the knowledge bases employed.
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Even when selecting the same fuzzy operator, the same defuzzification method

and the same fuzzy membership functions, fuzzy models can behave in stark970

contrast when compared to baseline instruments. For instance, while model

FC6 presents a high correlation coefficient (0.6) with NASA-TLX in experiment

Ea, the analogous model FC24 with same parameters, except for knowledge

base input, presents a low (0.15) correlation coefficient with NASA-TLX in ex-

periment Ec. This suggests that there is no fuzzy logic, defuzzification method975

or fuzzy membership functions better than others, having these to be selected

in a case by case analysis with the knowledge base. This can also be observed

by the similar correlation coefficients of fuzzy models in experiment Ea (overall

coefficients: 0.44 - 0.64) and contrasting correlation coefficients in experiments

Eb and Eb (respectively in ranges -0.21 - 0.45 and 0.02 - 0.57).980

4.2. Face validity

This property is aimed at determining the extent to which a measure of

MWL appears effective. It is one of the metrics employed to achieve objective

2 (Section 3) and test its research hypotheses. It was analysed according to

the mean square error (MSE) of produced inferences and self-reported MWL985

values (Fig. 8, p. 34). Fig. 12 and 13 depict the results for experiments

Ea and Eb respectively. Experiment Ec does not present information about

self-reported MWL values. Overall, the majority of models across reasoning

approaches could achieve similar or better MSE than baseline instruments. The

higher discrepancy, and worst performance (higher MSE), is given by fuzzy990

models employing the mean of max defuzzification approach (labelled with an

inferior •). Similarly to convergent validity, defeasible argumentation models

demonstrated robustness across the three experiments and expert system models

performed better when employing heuristic h2/h4 (the average/weighted average

of all surviving rules, labelled with an inferior +).995

As for experiment Ea, a significant difference has been found between models

employing the pairwise comparison information of the NASA-TLX and those not

employing it. Among fuzzy models with linear FMF there is an average decrease
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NASA-TLX

Figure 12: Mean squared error of each designed model for experiment Ea and baseline instru-

ment NASA-TLX. Inferior symbols are used to represent: centroid defuzzification approach

(◦), mean of max defuzzification approach (•), heuristics h1 (−) and h3 (+), use (respectively

no use) of the the pairwise comparison information of the NASA-TLX (., respectively ?).

of 24% MSE when employing the pairwise comparison information (FL{1 −
6} × FL{7− 12}), while fuzzy models with Gaussian FMFs present a decrease1000

of 27.6% (FC{1 − 6} × FC{7 − 12}). A similar trend is observable in expert

system models, with a decrease of 19.5% (E2, E4 × E1, E3), and defeasible

argumentation models, with a decrease of 18.4% (A2, A4×A1, A3). In contrast

to convergent validity, the use of the information from the pairwise comparison

procedure demonstrated to have a stronger impact in face validity, even when1005

used in distinct ways by the investigated reasoning approaches. In other words,

despite not being essential to achieve high convergent validity with baseline

instruments, the information from the pairwise comparison procedure seems to

have a positive impact on the quality of the produced inferences according to

the analysis of face validity.1010

4.3. Concurrent validity

Aimed at determining the extent to which a model correlate with an objec-

tive performance measure, in this case task completion time, concurrent validity

was also assessed through an analysis of correlation coefficients between the de-

signed models and baseline instruments in experiment Ec. A reminder that1015
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Figure 13: Mean squared error of each designed model for experiment Eb and baseline instru-

ments RAW TLX (lower dotted line at 212.57) and Workload Profile (upper dotted line at

274.91). Inferior symbols are used to represent: centroid (◦) and mean of max defuzzification

approach (•) and heuristics h1 (−) and h3 (+).

in the experiments Ea and Eb an objective performance measure has not been

gathered. From Fig. 14 it is possible to note that even the baseline instruments

do not have a high Spearman correlation coefficient with task completion time

(NASA-TLX: 0.28 and WP: 0.18), while most of the designed models present

a coefficient between 0.2 and 0.26, lying between the two baseline instruments.1020

This suggests that the investigated reasoning approaches, when set up with cer-

tain parameters, are as good as the baseline models. The exceptions presenting

a lower correlation coefficient are the fuzzy models of Gaussian FMFs employing

the mean of max defuzzification approach (FC20, FC22 and FC24) and the

expert system E7 employing heuristic h1. This trend is very similar to the one1025

depicted for convergent validity in Fig. 11, suggesting that these combinations

of parameters (Gaussian FMFs + mean of max for fuzzy models and heuristic

h1 for expert system models) do not help to create robust models of MWL. It is

also worth noting that fuzzy models FL20 and FL22 could achieve a favourable

correlation coefficient with task completion time, despite having low convergent1030

validity. It suggests that models with low convergent validity might also produce

acceptable inferences.
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Figure 14: Spearmans correlation coefficients between task completion time and the inferences

of designed models for experiment Ec (p < 0.05). Only 288 instances (out of 405 of experiment

Ec) have an associated time due to measurement errors. Inferior symbols are used to represent:

centroid (◦) and mean of max defuzzification approach (•) and heuristics h1 (−) and h3 (+).

4.4. Sensitivity

In line with other studies (Rubio et al., 2004; Longo, 2015), sensitivity was

assessed by performing an analysis of variance over the MWL distributions1035

generated by the designed models and the baseline instruments. The aim is

to investigate the capability of a model to discriminate significant variations in

MWL and changes in resource demand or task difficulty. In detail, the non-

parametric Kruskal-Wallis H test was performed over the MWL distributions

generated by each model. As mentioned before, normality of the distribution of1040

most of the models was not found according to the Shapiro-Wilk test. Hence,

the equivalent of one-way ANOVA could not be employed. Baseline instruments

and designed models for experiments Ea and Eb were not capable of rejecting the

null hypothesis of same distribution of MWL scalars across tasks (p < 0.01). In

these experiments, it can be argued that the performed tasks are of pedagogical1045

nature and are of similar complexity, since all classes are related to the same

general topic: ‘Research Methods’. Thus, it is difficult to create procedures that

can statistically and significantly affect overall MWL (Longo, 2018c).

As for experiment Ec, the null hypothesis of same distribution of MWL
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Figure 15: Sensitivity of MWL models designed for experiment Ec with Games-Howell post

hoc analysis. The maximum pairwise comparisons of 18 tasks is
(18

2

)
= 153. Baseline instru-

ments are depicted in bold.

scalars across tasks was rejected. That means that there exist models that lead1050

to significantly different inferences when used to evaluate the MWL imposed by

the web-based tasks. However, the Kruskal-Wallis H test does not tell exactly

which pairs of tasks executed by participants are different from each other. Con-

sequently, a post hoc analysis was performed and the Games-Howell test was

chosen because of unequal variances of the distributions under analysis. Fig.1055

15 depicts how many pairs of tasks each model was capable of differentiating

at two significance levels (p < 0.05 and p < 0.01). As it can be observed, sim-

ilarly to convergent and concurrent validity, defeasible argumentation models

and expert system E8 outperformed the other models. When compared to the

baseline instruments, results for these models are in between the NASA-TLX1060

and the WP for both significance levels. Despite the high sensitivity of defeasi-

ble argumentation models, it is possible to observe a slight difference between
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them, with a better performance achieved by model A8 whose argumentation

semantics is the preferred semantics. Among fuzzy models, it is worth noting

that the best performance is given by FL20 and FL22. It strengthens the re-1065

sults of concurrent validity, suggesting that models of low convergent validity

might produce satisfactory inferences. Another interesting observation comes

from model FC19. In spite of presenting similar convergent and concurrent

validity with its linear counterpart (FL19), in this case its sensitivity was su-

perior, being close to or better than WP, while FL19 was always distant from1070

the baseline instruments. It shows that Gaussian FMFs can provide more sen-

sitive models when employed with certain fuzzy operators and defuzzification

approaches (in this case Zadeh and centroid respectively). Other fuzzy models

demonstrated to have poor sensitivity, underperforming the baseline models. In

detail, as expected by convergent and face validity analysis of experiment Ec,1075

fuzzy models of Gaussian FMFs employing the mean of max defuzzification ap-

proach led to the worst performance, not being able to statistically differentiate

between any pair of tasks.

4.5. Internal configurations of models and interpretations

Quantifications of the validity and sensitivity of the developed models sug-1080

gest that, in general, the investigated reasoning approaches can be successfully

employed for mental workload modelling and assessment. Nonetheless, the anal-

ysis across different experiments and evaluation metrics seems to indicate a

contrasting performance when particular parameters of distinct reasoning tech-

niques are employed. Table 7 summarises average results across experiments for1085

the designed models grouped by internal parameters. Some results are in fact a

single value, and so, have no standard deviation reported. For the other cases,

Figures 16 - 22 depict the respective boxplots.

Most negative impacts seemed to be caused by the application of the mean of

max defuzzification approach by fuzzy models and heuristics for the refinement1090

of surviving rules by expert system models (h1/h2). These lead to the devel-

opment of models that, in average, underperformed in all evaluation metrics
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Table 7: Average and standard deviation of evaluation metrics in all experiments by specific

parameters of each reasoning approach. Bold numbers are used to represent the best results

among the pairwise comparisons inside the table.

Reasoning

technique
Parameter

Average Validity (σ) Avg. Sensitivity (σ)

p < 0.05 / p < 0.01Convergent Face Concurrent

Fuzzy

reasoning

Mean of Max 0.27 (0.25) 622.28 (277.81) 0.11 (0.12) 5.3 (6.0) / 2.16 (2.4)

Centroid 0.46 (0.15) 282.07 (44.71) 0.23 (0.01) 8.3 (4.8) / 3.8 (1.6)

Linear 0.37 (0.25) 521.8 (316.44) 0.23 (0.02) 7.6 (3.8) / 3.8 (0.7)

Gaussian 0.38 (0.21) 382.89 (172.95) 0.11 (0.12) 6 (6.9) / 2.16 (2.7)

Rule weight 0.57 (0.06) 324.58 (121.82) - -

No rule weight 0.57 (0.05) 434.21 (170.65) - -

Expert

systems

h1/h2 0.62 (0.09) 490.53 (231.03) 0.1 (-) 9 (-) / 4 (-)

h3/h4 0.75 (0.09) 262.85 (27.62) 0.23 (-) 21 (-) / 14 (-)

h1/h3 0.69 (0.02) 333.27 (92.44) - -

h2/h4 0.67 (0.02) 273.09 (58.92) - -

Defeasible

argument.

Preferred 0.77 (0.07) 255.29 (33.90) 0.25 (-) 23 (-) / 16 (-)

Grounded 0.76 (0.09) 259.27 (33.86) 0.24 (-) 21 (-) / 15 (-)

Strength of arg. 0.7 (0.0) 219.31 (2.02) - -

Binary relation 0.68 (0.02) 268.4 (6.2) - -

(validity, sensitivity) and, in the case of fuzzy models, also tend to have a much

higher standard deviation when compared to their counterparts: the centroid

approach and the heuristics h3/h4. The explanation for such discrepancy might1095

lie in the role of the mean of max defuzzification approach and the role of the

heuristics h1/h2 in their respective models. Note that despite being employed

by distinct reasoning techniques these roles might in fact be related. While the

mean of max defuzzification approach selects only the rules whose conclusion(s)

have the highest degree of truth, the refinement of surviving rules by heuristics1100

h1/h2 discards rules not inferring the MWL level supported by the greatest

number of surviving rules. Thus, these can be seen as apparently unsuccessful

attempts to resolve conflicts among rules by selecting some of them believed to

be suitable for inferring a final MWL scalar.
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Figure 16: Boxplots of evaluation metrics by defuzzification approach of fuzzy reasoning

models.

Figure 17: Boxplots of evaluation metrics by application of rule weight or not on fuzzy rea-

soning models.

Figure 18: Boxplots of evaluation metrics by heuristics applying weighted average of argu-

ments (h2/h4) and heuristics applying regular average of arguments (h1/h3) on expert system

models.
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Figure 19: Boxplots of evaluation metrics by heuristics averaging all arguments (h1/h2) and

heuristics averaging a subset of arguments (h3/h4) on expert system models.

Figure 20: Boxplots of evaluation metrics by acceptability semantics on defeasible argumen-

tation models.

Figure 21: Boxplots of evaluation metrics by attack relation on defeasible argumentation

models.
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Figure 22: Boxplots of evaluation metrics by fuzzy membership function shape of fuzzy rea-

soning models.

In contrast, it is worth noting the robustness of defeasible argumentation,1105

with only a slight performance variance among its models across distinct eval-

uation metrics and experiments. This suggests that defeasible argumentation

has a greater capacity of resolving conflicts among rules, thus optimally han-

dling non-monotonicity. It is also interesting to observe the small differences

between results generated by models employing the preferred semantics and1110

the grounded semantics. These semantics diverge when multiple extensions are

generated by the preferred semantics, since the grounded semantics can only

output a single extension. In case of multiple extensions the one(s) with the

highest cardinality is (are) selected. Similarly to the heuristics h1/h2 and mean

of max defuzzification approach, this selection of an extension among multiple1115

ones is also an attempt of conflict resolution. However, in the case of defeasible

argumentation, produced results are stronger, suggesting that the conflict res-

olution strategy of defeasible argumentation is likely stronger than the conflict

resolution strategy of fuzzy reasoning and expert systems.

From Table 7 it is possible to inspect and further spot other differences1120

between particular parameters employed by reasoning models. For instance,

the impact of using the extra information from the pairwise comparison of the

NASA-TLX is similar and, as expected, positive across all reasoning approaches.

This use is made by fuzzy models employing rule weights, expert system mod-

els employing heuristics h2/h4 and defeasible argumentation models employing1125

strength of arguments. In these cases the convergent validity is preserved and
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the mean squared error between produced inferences and self-reported MWL

values (face validity) is reduced. This can be observed in Fig. 17, 18 and 21

which compare models using and not using the information from the pairwise

comparison. At last, the difference between linear and Gaussian FMFs on fuzzy1130

models is not absolute. While models of Gaussian FMFs present analogous av-

erage results for convergent validity and better average results for face validity,

linear models seem to have better average results for concurrent validity and

sensitivity. This observation can also be supported by the boxplot comparison

of Fig. 22. Such mixed results do not allow the drawing of conclusions in regards1135

to the impact of the shape of FMFs on MWL modelling and assessment.

4.6. Discussion

The overall medium to high degree of convergent validity of the investigated

models indicated that their inferences can be considered valid, as per alternate

hypothesis of objective 1 (Section 3). As a consequence, the findings from the1140

analysis of the face validity, concurrent validity and sensitivity can be considered

consistent, quantifying the extent by which the designed reasoning models can

represent MWL. This analysis seems to also indicate a better inferential capac-

ity of the defeasible argumentation models, or in this case, a better capacity of

producing inferences with improved face validity, improved concurrent validity1145

and improved sensitivity. This conclusion was further supported by the exam-

ination of average results of the designed models when grouped by their con-

figuration parameters. Defeasible argumentation models presented the lowest

standard deviations of such averages, demonstrating robustness across its inter-

nal configurations. This advantage was inspected over two other non-monotonic1150

reasoning approaches namely fuzzy reasoning and expert systems. It also held

despite the underlying knowledge bases employed. Comparable results were

only achieved by expert systems employing one of the designed heuristics for

conflict resolution. This similarity is likely due to the lower amount of conflict-

ual rules employed within knowledge bases when elicited with real-world data.1155

For example, the knowledge base solely built upon the NASA-TLX attributes
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(Appendix A.1) can only have up to six arguments that can be activated given

input data. Thus, the requirement of further comparisons for knowledge bases

of higher topological complexity might be reasonable. Nonetheless, defeasible

argumentation models consistently showed a higher correlation with baseline1160

models, a significantly lower mean squared error against the subjective percep-

tion of mental workload rated by participants, an analogous concurrent validity

to the baseline models and a sensitivity in-between the NASA-TLX and WP

models. This suggests the potential of defeasible argumentation as a modelling

tool for knowledge bases characterised by uncertainty, partiality and conflictual1165

information. A summary of the comparison of defeasible argumentation against

fuzzy reasoning and expert systems across experiments is listed in Table 8 for

convergent validity and Table 9 for the other evaluation metrics. Based on these

the acceptance statuses of Hypotheses 1 and 2 (Section 3) are listed in Table

10.1170

Table 8: Status of reasoning approaches according to convergent validity. A X means medium

to high convergent validity for all the designed models employing the reasoning approach.

Reasoning approach
Convergent validity

Ea Eb Ec

Expert systems X X X
Fuzzy reasoning X Partially Partially

Defeasible argumentation X X X

Table 9: Status of defeasible argumentation (DA) compared to fuzzy reasoning (FR) and

expert systems (ES) according to sensitivity, face validity and concurrent validity across the

3 experimental settings. Comparison symbols are used to represent equal (=), better (<) and

considerably better (�) results on average for models built upon defeasible argumentation.

A (−) means not applicable. The reasoning approach employed by the best-performing model

is listed in the last row.

Comparison approach
Sensitivity Face validity Concurrent validity

Ea Eb Ec Ea Eb Ec Ea Eb Ec

Expert systems = = < < < − − − <

Fuzzy reasoning = = � < < − − − <

Best model − − DA DA ES/DA − − − FR/DA
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Table 10: Acceptance status of the hypotheses of the research study.

Hypothesis 1
Non-monotonic reasoning models will demonstrate moderate to

high convergent validity with baseline instruments.

Acceptance status

Accepted by defeasible argumentation and expert systems. Par-

tially accepted by fuzzy reasoning, with some models presenting

low convergent validity.

Hypothesis 2

Defeasible argumentation models will demonstrate higher sen-

sitivity, higher concurrent validity and higher face validity than

fuzzy reasoning and expert system models.

Acceptance status

Partially accepted. On average sensitivity and validity are

consistently better for defeasible argumentation. By individ-

ual models, defeasible argumentation has better results overall,

but expert systems and fuzzy reasoning can produce results of

equivalent face and concurrent validity on certain experiments.

5. Conclusion and future work

This study presented an extensive comparison of non-monotonic rule-based

reasoning techniques for the practical problem of mental workload modelling.

These techniques are promising not only because they can approximate the in-

ferential capacity of a knowledge representation and reasoning application, but1175

they also offer a flexible approach for translating different knowledge bases and

beliefs of domain experts into computational rules. Furthermore, they sup-

port the creation of models that can be falsified, replicated and extended, thus

enhancing the understanding of the construct of mental workload itself and

possibly other applications of interest. Such advantages, for instance, are not1180

provived by data-driven techniques, even the ones able to produce interpretable

solutions. Hence, if they are to be used in other domains of application and by

other domain experts, it is necessary to perform a meticulous – and not per-

formed before – examination of one of their crucial aspects namely inferential ca-

pacity. In particular, the inferential capacity of expert systems, non-monotonic1185
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fuzzy reasoning and defeasible argumentation models was examined. A set of

models, for each reasoning approach, was created following the structures em-

ployed in the literature. For instance, expert systems adopted the common

two internal components: a knowledge base and an inference engine (Durkin

& Durkin, 1998). Fuzzy reasoning models followed the structure of a typical1190

Mamdani fuzzy inference process (Mamdani, 1974). Defeasible argumentation

models were constructed based on a 5-layer schema upon which argumentation

systems are typically built (Longo, 2016). Nonetheless, the implementation of

the non-monotonicity property was not straightforward for expert systems and

fuzzy reasoning. The former required different heuristics for aggregating rules1195

and inferring MWL as a numerical index. Usual conflict resolution strategies of

expert systems could not be employed due to the nature of the domain, which

required all the reasoning to be made in a single step. The latter, fuzzy rea-

soning, had non-monotonicity implemented by using Possibility Theory, having

truth values, named possibility and necessity, associated to each piece of infor-1200

mation. Possibility allowed fuzzy reasoning models to determine the extent to

which data fails to refute its truth, while necessity represented the usual truth

values of fuzzy logic. Besides such adaptations, the investigation of configu-

ration parameters was also performed for each reasoning technique for tuning

purposes.1205

Findings indicated how models or a subset of models built upon the three

reasoning techniques had a good convergent validity with three selected base-

line models of mental workload: the NASA Task Load Index (Hart & Stave-

land, 1988), its RAW extension (Hart, 2006) and the Workload Profile (Wick-

ens, 1991). The designed inferential models were elicited with three knowledge1210

bases, three distinct sets of data and assessed according to common evaluation

metrics of MWL, namely sensitivity and validity. Findings revealed a good con-

vergent validity against baselines, suggesting how constructed reasoning models

can actually model the underlying construct: mental workload. In detail, fuzzy

reasoning presented varied results due to the higher number of available configu-1215

ration parameters, providing greater flexibility but limiting its applicability and
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use by domain experts. Equivalently, applicability and use by domain experts

is also limited in expert systems due to varied results. Some of these are inferior

to the results of defeasible argumentation when employing one set of heuristics,

but similar when employing the complementary set of heuristics. Hence, the1220

analysis of knowledge bases of topologies of higher complexity is a possible di-

rection of future research. Finally, defeasible argumentation showed additional

robustness compared to fuzzy reasoning and expert system models according to

overall validity and sensitivity, holding despite the parameters being employed

and underlying knowledge base. The originality of this research lies in the quan-1225

tification of the impact of defeasible argumentation. It is a result of a thorough

empirical research in two real-world experimental settings employing primary

data gathered from humans, and three knowledge bases produced with the aid

of human experts. All these elements provide some generalisability to the results

and also help on identifying situations in which the non-monotonic reasoning1230

approaches are likely better or worse to each other. It does not verify which

of them is ultimately better. Other representations of fuzzy reasoning systems

could give better outcomes, the same way other representations of defeasible

argumentation and expert systems could also give better outcomes. However,

this research has produced an extensive number of inferential models of differ-1235

ent configurations. Hence, it contributes to the field of logic and non-monotonic

reasoning by better situating defeasible argumentation among similar reasoning

approaches and illustrating a replicable comparison process between them. This

comparison has been performed using an application whose knowledge bases are

formed by uncertain information. In spite of that, quantitative metrics of eval-1240

uation could still be employed since these were pre-defined in the literature of

mental workload. Because of that, this study is even more significant to the field

of non-monotonic reasoning, showing how a quantitative evaluation process can

be performed in a uncertain context.

Future work will concentrate on investigating knowledge bases of different1245

and increased topological complexities. In addition, this study is limited for

being performed in a single domain of application. Comparisons performed in
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other areas might enhance results and extend its generalisability. One possi-

ble adequate field of comparison in the domain of knowledge representation is

computational trust modelling (Parsons et al., 2010; Dondio & Longo, 2014,1250

2011). In order to improve the acceptance of defeasible argumentation for non-

monotonic activities, the investigation of its explanatory capacity is also sug-

gested. Higher explanatory capacity might lead to higher levels of adoption not

only in the field of knowledge representation and reasoning but also in areas

such as health-care and autonomous vehicles. Previous work (Rizzo & Longo,1255

2018) have attempted to perform a preliminary qualitative analysis of defeasible

argumentation and non-monotonic fuzzy reasoning in terms of a few properties

for explainability analysis from explainable AI. However, explainability is a com-

plex concept and additional examination should be performed so as to assess the

usability and effectiveness of explanations provided. Another line of research1260

may be pursued by increasing the explanatory capacity of models built upon

defeasible argumentation through the addition of new explainable layers. For

instance the argumentation semantics designed in (Fan & Toni, 2015) for giving

explanations to arguments. Lastly, the application of hybrid reasoning tech-

niques, such as neuro-fuzzy systems (Nauck et al., 1997), genetic fuzzy systems1265

(Cordón et al., 2004) and fuzzy argumentation (Dondio, 2017) is recommended.

Their investigation might lead to possible alternative solutions capable of pre-

senting strong inferential and explanatory capacity for non-monotonic reasoning

problems.
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Appendix A. Knowledge bases

In this appendix three knowledge-bases in the field of human mental work-

load are described. These knowledge-bases are built upon subjective measures1615

of mental workload measurement. In other words, they rely on the subjective

feedback (in this case questionnaires) provided by humans engaging with an

underlying task. For each knowledge base the following are defined:

1. Features: A set of features (attributes) believed to influence mental work-

load and its assessment (with the aid of an expert);1620

2. Questions: A set of questions for quantitatively quantifying the above

features;

3. Mapping: A map between natural language terms and numerical ranges

(for instance “low = [0, 33]”).

4. Inferential rules: A list of inferential IF-THEN rules employing natural1625

language terms of item 3.

73

                  



5. Contradictions: A list of contradictions and exceptions for rules of item 4

in three possible forms:

- IF Rule A THEN not Rule B.

- Rule A and Rule B cannot coexist.1630

- IF premises THEN not Rule A.

6. Graphical representation: A graphical representation of rules and contra-

dictions of items 4 and 5.

At the end of the section a set of fuzzy membership functions is also provided.

These can be used to compute the membership grade of natural language terms1635

(defined in 3).
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Appendix A.1. Knowledge base A

Table A.11: Questions associated to the NASA Task Load Index and employed as features of

the knowledge-base A (Hart & Staveland, 1988).

Feature Question

Mental demand

How much mental and perceptual activity was required (e.g.

thinking, deciding, calculating, remembering, looking, searching,

etc.)? Was the task easy or demanding, simple or complex, exact-

ing or forgiving?

Physical demand

How much physical activity was required (e.g. pushing, pulling,

turning, controlling, activating, etc.)? Was the task easy or de-

manding, slow or brisk, slack or strenuous, restful or laborious?

Temporal demand

How much time pressure did you feel due to the rate or pace at

which the tasks or task elements occurred? Was the pace slow

and leisurely or rapid and frantic?

Effort
How hard did you have to work (mentally and physically) to ac-

complish your level of performance?

Performance

How successful do you think you were in accomplishing the goals,

of the task set by the experimenter (or yourself)? How satisfied

were you with your performance in accomplishing these goals?

Frustration

How insecure, discouraged, irritated, stressed and annoyed versus

secure, gratified, content, relaxed and complacent did you feel

during the task?

Table A.12: Natural language terms and associated numerical ranges employed to reason with

features in knowledge base A.

Features MWL
Terms Range Terms Range

Low [0, 33) Underload [0, 33)

Medium Lower [33, 50) Fitting minus load [33, 50)

Medium Upper [50, 67) Fitting plus load [50, 67)

High [67, 100] Overload [67, 100]
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Table A.13: The pairwise comparison procedure of the Nasa Task Load Index instrument

(Hart & Staveland, 1988). This comparison is employed for the definition of weights for each

feature. The number of times a feature is selected represents its respective weight.

Pair feature 1 feature 2
1 temporal demand � OR � frustration
2 performance � OR � mental demand
3 mental demand � OR � physical demand
4 frustration � OR � performance
5 temporal demand � OR � effort
6 physical demand � OR � frustration
7 performance � OR � temporal demand
8 mental demand � OR � effort
9 physical demand � OR � temporal demand
10 frustration � OR � effort
11 physical demand � OR � performance
12 temporal demand � OR � mental demand
13 effort � OR � physical demand
14 frustration � OR � mental demand
15 performance � OR � effort

Table A.14: (fuzzy) IF-THEN rules for knowledge base A designed by a domain expert believed

to influence mental workload and its assessment.

Label Internal structure
MD1 low mental demand THEN underload mwl
MD2 medium lower mental demand THEN fitting minus load mwl
MD3 medium upper mental demand THEN fitting plus load mwl
MD4 high mental demand THEN overload mwl
TD1 low temporal demand THEN underload mwl
TD2 medium lower temporal demand THEN fitting minus load mwl
TD3 medium upper temporal demand THEN fitting plus load mwl
TD4 high temporal demand THEN overload mwl
EF1 low effort THEN underload mwl
EF2 medium lower effort THEN fitting minus load mwl
EF3 medium upper effort THEN fitting plus load mwl
EF4 high effort THEN overload mwl
PF1 low performance THEN overload mwl
PF2 medium lower performance THEN fitting plus load mwl
PF3 medium upper performance THEN fitting minus load mwl
PF4 high performance THEN underload mwl
FR1 low frustration THEN underload mwl
FR2 high frustration THEN overload mwl
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Table A.15: Contradictions associated to knowledge base A designed by a domain expert

believed to influence mental workload and its assessment.

Label Internal structure

R1 IF high performance THEN not FR2

R2 IF low performance THEN not FR1

C1 MD1 and FR2 cannot coexist

C2 TD1 and FR2 cannot coexist

C3 FR1 and MD4 cannot coexist

C4 FR1 and TD4 cannot coexist

C5 FR1 and EF4 cannot coexist

C6 EF1 and FR2 cannot coexist

C7 EF1 and MD4 cannot coexist

R3 IF EF4 THEN not MD1

Figure A.23: Graphical representation of knowledge base A. Nodes can represent (fuzzy)

IF-THEN rules or premises of contradictions. Arrows represent contradictions between two

rules.
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Appendix A.2. Knowledge base B

Features employed in this knowledge base are the same ones listed in Table

A.17. Natural language terms and associated numerical ranges are the same ones1640

listed in Table A.12. The remaining information for modelling and assessing

mental workload by this knowledge base are described in the following tables

and figures.

Table A.16: (fuzzy) IF-THEN rules for knowledge base B designed by domain expert for in-

ference of mental workload. The same principle of mental demand applies to the attributes

temporal demand (TD), physical demand (PD), solving and deciding (SD), selection of

response (SR), task and space (TS), verbal material (VM), visual resources (VR),

auditory resources (AR), manual response (MR), speech response (SPR), effort (EF),

parallelism (PR), and context bias (CB), forming 52 other rules.

Label Internal structure

MD1 IF low mental demand THEN Underload

MD2 IF medium lower mental demand THEN Fitting minus

MD3 IF medium upper mental demand THEN Fitting plus

MD4 IF high mental demand THEN Overload

PS1 IF low frustration THEN Underload

PS2 IF high frustration THEN Overload

MV1 IF low motivation THEN Underload

PK1 IF low past knowledge THEN Overload

PK2 IF high past knowledge THEN Underload

SK1 IF low skills THEN Overload

SK2 IF high skills THEN Underload

PF1 IF low performance THEN Overload

PF2 IF medium lower perf. THEN Fitting minus

PF3 IF medium upper perf. THEN Fitting plus

PF4 IF high performance THEN Underload
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Table A.17: Features and respective questions for their measurement employed in knowledge

base B. They were originally proposed in (Longo, 2014).

Feature Question

Mental demand
How much mental and perceptual activity was required (e.g., thinking,
deciding, calculating, remembering, looking, searching, etc.)? Was the
task easy (low mental demand) or complex (high mental demand)?

Temporal demand
How much time pressure did you feel due to the rate or pace at which the
tasks or task elements occurred? Was the pace slow and leisurely (low
temporal demand) or rapid and frantic (high temporal demand)?

Effort How much conscious mental effort or concentration was required? Was
the task almost automatic (low effort) or it required total attention (high
effort)?

Performance
How successful do you think you were in accomplishing the goal of the
task? How satisfied were you with your performance in accomplishing the
goal?

Frustration
How secure, gratified, content, relaxed and complacent (low psychological
stress) versus insecure, discouraged, irritated, stressed and annoyed (high
psychological stress) did you feel during the task?

Solving and deciding
How much attention was required for activities like remembering, problem-
solving, decision-making and perceiving (eg. detecting, recognizing and
identifying objects)?

Selection of response How much attention was required for selecting the proper response channel
and its execution? (manual - keyboard/mouse, or speech - voice)

Task and space How much attention was required for spatial processing (spatially pay
attention around you)?

Verbal material How much attention was required for verbal material (eg. reading or pro-
cessing linguistic material or listening to verbal conversations)?

Visual resources How much attention was required for executing the task based on the
information visually received (through eyes)?

Auditory resources How much attention was required for executing the task based on the
information auditorily received (ears)?

Manual Response How much attention was required for manually respond to the task (eg.
keyboard/mouse usage)?

Speech response How much attention was required for producing the speech response(eg.
engaging in a conversation or talk or answering questions)?

Context bias
How often interruptions on the task occurred? Were distractions (mo-
bile, questions, noise, etc.) not important (low context bias) or did they
influence your task (high context bias)?

Past knowledge How much experience do you have in performing the task or similar tasks
on the same website?

Skill Did your skills have no influence (low) or did they help to execute the task
(high)?

Motivation Were you motivated to complete the task?
Parallelism Did you perform just this task (low parallelism) or were you doing other

parallel tasks (high parallelism) (eg. multiple tabs/windows/programs)?
Arousal Were you aroused during the task? Were you sleepy, tired (low arousal)

or fully awake and activated (high arousal)?

Task difficult
1
8 ((solving/deciding) + (auditory resources) + (manual response) +
(speech response ) + (selection of response) + (task/space) +
(verbal material ) + (visual resources))

Physical demand
How much physical activity was required (e.g. pushing, pulling, turning,
controlling, activating, etc.)? Was the task easy or demanding, slow or
brisk, slack or strenuous, restful or laborious?
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Table A.18: Contradictions for knowledge base B designed by domain expert for inference of

mental workload.

Label Internal structure
AD1a IF low arousal and low task difficulty THEN not PF4
AD1b IF low arousal and low task difficulty THEN not PF3
AD1c IF low arousal and low task difficulty THEN not PF2
AD2a IF low arousal and high task difficulty THEN not PF4
AD2b IF low arousal and high task difficulty THEN not PF3
AD2c IF low arousal and high task difficulty THEN not PF2
AD3a IF medium lower arousal and low task difficulty THEN not PF1
AD3b IF medium lower arousal and low task difficulty THEN not PF4
AD4a IF medium lower arousal and high task difficulty THEN not PF1
AD4b IF medium lower arousal and high task difficulty THEN not PF3
AD4c IF medium lower arousal and high task difficulty THEN not PF4
AD4d IF medium upper arousal and high task difficulty THEN not PF1
AD4e IF medium upper arousal and high task difficulty THEN not PF3
AD4f IF medium upper arousal and high task difficulty THEN not PF4
AD5a IF medium upper arousal and low task difficulty THEN not PF1
AD5b IF medium upper arousal and low task difficulty THEN not PF2
AD5c IF medium upper arousal and low task difficulty THEN not PF3
AD5d IF high arousal and low task difficulty THEN not PF1
AD5e IF high arousal and low task difficulty THEN not PF2
AD5f IF high arousal and low task difficulty THEN not PF3
AD6a IF high arousal and high task difficulty THEN not PF2
AD6b IF high arousal and high task difficulty THEN not PF3
AD6c IF high arousal and task difficulty THEN not PF4
MV2 IF low motivation THEN not EF3
MV3 IF low motivation THEN not EF4
MV4 IF high motivation THEN not EF1
MV5 IF high motivation THEN not EF2
DS1 IF high task difficulty and high skills THEN not EF4

DS2
IF high task difficulty and high skills and low effort THEN not
PF1

DS3
IF high task difficulty and high skills and medium lower effort

THEN not PF1

DS4
IF high task difficulty and high skills and medium upper effort

THEN not PF1
R1 MD1 and SD4 cannot coexist
R2 MD4 and SD1 cannot coexist
R3 PK1 and SK2 cannot coexist
R4 PK2 and SK1 cannot coexist
R5 PK1 and EF1 cannot coexist
R6 PK2 and EF4 cannot coexist
R7 SK1 and EF1 cannot coexist
R8 SK2 and EF4 cannot coexist
R9 CB4 and PS1 cannot coexist
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Figure A.24: Graphical representation of knowledge base B. Nodes can represent (fuzzy)

IF-THEN rules or premises of contradictions. Arrows represent contradictions between two

rules.

Appendix A.3. Knowledge base C

This knowledge base is a mix of knowledge bases A and B. The elements1645

required by it are defined as following:

• The features employed are listed in Table A.17.

• Natural language terms and associated numerical ranges are listed in Table

A.12.

• IF-THEN rules are listed in Table A.16.1650

• Contradictions are from both Tables A.18 and A.15.

• The graphical representation of the knowledge base is depicted in Fig.

A.25.
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Figure A.25: Graphical representation of knowledge base C. Nodes can represent (fuzzy)

IF-THEN rules or premises of contradictions. Arrows represent contradictions between two

rules.
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Appendix A.4. Fuzzy membership functions

Fig. A.26 depicts the possible fuzzy membership functions employed for1655

modelling the natural language terms listed in Table A.12

(a) Triangular MWL levels (b) Triangular feature levels

(c) Trapezoid and triangular MWL levels (d) Trapezoid and triangular feature levels

(e) Gaussian MWL levels (f) Gaussian feature levels

Figure A.26: Employed fuzzy membership functions for different MWL and feature levels.
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Appendix B. List of information seeking web-based tasks

Table B.19: List of experimental web-based tasks employed for measurement of imposed

mental workload. Each website had two interfaces: the original one and one slightly modified,

generating two tasks for each description. These tasks were first designed and employed in

(Longo, 2014).

Task Description Task condition Web-site

T1.1, T1.2
Find out how many people live in Sid-
ney

Simple search Wikipedia

T2.1, T2.2
Read simple.wikipedia.org/wiki/

Grammar

No goals, no time pressure Wikipedia

T3.1, T3.2

Find out the difference (in years) be-
tween the year of the foundation of the
Apple Computer Inc. and the year of
the 14th FIFA world cup

Dual-task and mental arithmetical
calculations Google

T4.1, T4.2

Find out the difference (in years) be-
tween the foundation of the Microsoft
Corp. & the year of the 23rd Olympic
games

Dual-task and mental arithmetical
calculations Google

T5.1, T5.2

Find out the year of birth of the 1st

wife of the founder of playboy
Single task + time pressure (2-min
limit). Each 30 secs user is warned
of time left

Google

T6.1, T6.2

Find out the name of the man (inter-
preted by Johnny Deep) in the video
www.youtube.com/watch?v=FfTPS-TFQ_c

Constant demand on visual and
auditory modalities. Participant
can replay the video if required

Youtube

T7.1.T7.2

a) Play the song www.youtube.com/

watch?v=Rb5G1eRIj6c. While listening
to it, b) find out the result of the poly-
nomial equation p(x), with x = 7 con-
tained in the wikipedia article http:

//it.wikipedia.org/wiki/Polinomi

Demand on visual modality and
inference on auditory modality.
The song is extremely irritating Wikipedia

T8.1, T8.2

Find out how many times Stewie
jumps in the video www.youtube.com/

watch?v=TSe9gbdkQ8s

Demand on visual resource + ex-
ternal interference: user is dis-
tracted twice & can replay video

Youtube

T9.1, T9.2

Find out the age of the blue fish
in the video www.youtube.com/watch?v=

H4BNbHBcnDI

Demand on visual and auditory
modality, plus time-pressure: 150-
sec limit. User can replay the
video. There is no answer.

Youtube
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Appendix C. List of models built using each reasoning approach

Table C.20: Designed argument-based models and their parameters across each layer.

Model
Exp.

(Table 3)
Layer 1 Layer 2 Layer 3 Layer 4 Layer 5

Arguments Conflicts Attack relation Semantics Accrual
A1 Ea KB1 (Appendix A.1) Binary Grounded average
A2 Ea KB1 (Appendix A.1) Strength of arg. Grounded w. average
A3 Ea KB1 (Appendix A.1) Binary Preferred card. + average
A4 Ea KB1 (Appendix A.1) Strength of arg. Preferred card. + w. average
A5 Eb KB2 (Appendix A.2) Binary Grounded average
A6 Eb KB2 (Appendix A.2) Binary Preferred card. + average
A7 Ec KB3 (Appendix A.3) Binary Grounded average
A8 Ec KB3 (Appendix A.3) Binary Preferred card. + average

Table C.21: Designed expert system models and their parameters.

Model
Knowledge-base

(App. A)
Heuristic

(p. 23)
Experiment

(Table 3)
E1 KB1 h1 Ea

E2 KB1 h2 Ea

E3 KB1 h3 Ea

E4 KB1 h4 Ea

E5 KB2 h1 Eb

E6 KB2 h3 Eb

E7 KB3 h1 Ec

E8 KB3 h3 Ec

85

                  



Table C.22: Designed fuzzy reasoning models and their parameters.

Model Operators
Defuzzification

method
Rule

weight
KB

(App. A)
FMF

(App. A.4)
Experiment

(Table 3)
FL1 Zadeh Centroid no KB1 Triangular Ea

FL2 Zadeh Mean of max no KB1 Triangular Ea

FL3 Product Centroid no KB1 Triangular Ea

FL4 Product Mean of max no KB1 Triangular Ea

FL5  Lukasiewicz Centroid no KB1 Triangular Ea

FL6  Lukasiewicz Mean of max no KB1 Triangular Ea

FL7 Zadeh Centroid yes KB1 Triangular Ea

FL8 Zadeh Mean of max yes KB1 Triangular Ea

FL9 Product Centroid yes KB1 Triangular Ea

FL10 Product Mean of max yes KB1 Triangular Ea

FL11  Lukasiewicz Centroid yes KB1 Triangular Ea

FL12  Lukasiewicz Mean of max yes KB1 Triangular Ea

FL13 Zadeh Centroid no KB2 Trapezoid Eb

FL14 Zadeh Mean of max no KB2 Trapezoid Eb

FL15 Product Centroid no KB2 Trapezoid Eb

FL16 Product Mean of max no KB2 Trapezoid Eb

FL17  Lukasiewicz Centroid no KB2 Trapezoid Eb

FL18  Lukasiewicz Mean of max no KB2 Trapezoid Eb

FL19 Zadeh Centroid no KB3 Trapezoid Ec

FL20 Zadeh Mean of max no KB3 Trapezoid Ec

FL21 Product Centroid no KB3 Trapezoid Ec

FL22 Product Mean of max no KB3 Trapezoid Ec

FL23  Lukasiewicz Centroid no KB3 Trapezoid Ec

FL24  Lukasiewicz Mean of max no KB3 Trapezoid Ec

FC1 Zadeh Centroid no KB1 Gaussian Ea

FC2 Zadeh Mean of max no KB1 Gaussian Ea

FC3 Product Centroid no KB1 Gaussian Ea

FC4 Product Mean of max no KB1 Gaussian Ea

FC5  Lukasiewicz Centroid no KB1 Gaussian Ea

FC6  Lukasiewicz Mean of max no KB1 Gaussian Ea

FC7 Zadeh Centroid yes KB1 Gaussian Ea

FC8 Zadeh Mean of max yes KB1 Gaussian Ea

FC9 Product Centroid yes KB1 Gaussian Ea

FC10 Product Mean of max yes KB1 Gaussian Ea

FC11  Lukasiewicz Centroid yes KB1 Gaussian Ea

FC12  Lukasiewicz Mean of max yes KB1 Gaussian Ea

FC13 Zadeh Centroid no KB2 Gaussian Eb

FC14 Zadeh Mean of max no KB2 Gaussian Eb

FC15 Product Centroid no KB2 Gaussian Eb

FC16 Product Mean of max no KB2 Gaussian Eb

FC17  Lukasiewicz Centroid no KB2 Gaussian Eb

FC18  Lukasiewicz Mean of max no KB2 Gaussian Eb

FC19 Zadeh Centroid no KB3 Gaussian Ec

FC20 Zadeh Mean of max no KB3 Gaussian Ec

FC21 Product Centroid no KB3 Gaussian Ec

FC22 Product Mean of max no KB3 Gaussian Ec

FC23  Lukasiewicz Centroid no KB3 Gaussian Ec

FC24  Lukasiewicz Mean of max no KB3 Gaussian Ec

86

                  



Appendix D. Density plots

Figure D.27: Density plots of inferred MWL scalars by all designed models and baseline

instruments. A{1-8} are argument-based models. FC{01-24} are fuzzy reasoning models of

Gaussian fuzzy membership functions. FL{01-24} are fuzzy reasoning models of linear fuzzy

membership functions. E{1-8} are expert system models. Other graphs are the result of

baseline models (NASA-TLX, Raw TLX, WP and Self Report) in the different experiments

(Ea, Eb and Ec).
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