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Highlights 
Comparison of Morphometric Parameters in Prediction of Hydrocephalus Using Random Forests 
Busra Ozgode Yigin,Oktay Algin,Gorkem Saygili 
• Hydrocephalus was estimated from MR images using a machine learning method. 
• The effects of commonly used morphometric parameters on hydrocephalus prediction were 
compared both individually 
and groupwise. 
• Accuracy of over 93% with an AUC score of 99% was achieved in hydrocephalus classification. 

• Machine-learning based classification outperformed common clinic threshold in terms of accuracy 
over 10%. 
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ABSTRACT 

Ventricles of the human brain enlarge with aging, neurodegenerative diseases, intrinsic, and extrinsic 
pathologies. The morphometric examination of neuroimages is an effective approach to assess structural 
changes occurring due to diseases such as hydrocephalus. In this study, we explored the effectiveness of 
commonly used morphological parameters in hydrocephalus diagnosis. For this purpose, the effect of six 
common morphometric parameters; Frontal Horns’ Length (FHL), Maximum Lateral Length (MLL), 
Biparietal Diameter (BPD), Evans’ Ratio (ER), Cella Media Ratio (CMR), and Frontal Horns’ Ratio 
(FHR) were compared in terms of their importance in predicting hydrocephalus using a Random Forest 
classifier. The experimental results demonstrated that hydrocephalus can be detected with 91.46% 
accuracy using all of these measurements. The accuracy of classification using only CMR and FHL 
reached up to 93.33%. In terms of individual performances, CMR and FHL were the top performers 
whereas BPD and FHR did not contribute as much to the overall accuracy. 

ART I C L E INFO 

Keywords: Hydrocephalus morphological parameters feature importance semi-automatic analysis 

1. Introduction 
Brain ventricles are dilated with the accumulation of excessive cerebrospinal fluid which leads to a 
condition known as hydrocephalus. Hydrocephalus affects a wide range of people, from infants to 
elderly adults. Generally, the ventricular enlargement is measured using parameters derived from the 
dimensions of the ventricles instead of their actual volumes. Different morphological parameters are 
used in the literature for the diagnosis of hydrocephalus such as Bicaudate Ratio (BCR), Bifrontal 
Index (BFI), Bioccipital Index (BOI), Biparietal Diameter (BPD), Cella Media Ratio (CMR), Evans’ 
Ratio (ER), Minimum Lateral Length (MLL), Third Ventricle Width (TVW), Third Ventricle Sylvian 
Fissure Ratio Index (TSFI), and Third Ventricle Ratio (TVR) [1, 2]. These parameters are useful not 



 

only for the diagnosis and classification of hydrocephalus but also for the follow-up and evaluation of 
the expansion of the ventricular system after operations such as ventricular shunts [3, 4]. 

Diagnostic methods for hydrocephalus involve a mixture of clinical and imaging approaches. 
Accurate and effective evaluation of many CSF-related diseases, especially hydrocephalus, can be 
performed much faster using new sequences and techniques developed in parallel with the progress in 
MRI technology. MRI is mostly preferred over CT since it may provide better detail of the borders of 
ventricles [5, 6]. MRI is helpful in the diagnosis of hydrocephalus and helps in the management and 
postoperative follow-up of the patients [7, 8]. 

In this paper, we aim to compare the performances of the above-mentioned parameters in 
hydrocephalus detection. For this purpose, we trained a random forest classifier to predict 
hydrocephalus and measure the importance of each parameter. To our knowledge, there is no other 
study in the literature that compares the performance of these parameters. 

The rest of the paper is organized as follows: In section 2, we explain the methodology that we use to 
measure linear parameters and our classifier that we train on our dataset. Section 3 presents the 
experimental setup and results. We discuss our results in section  4. In section 5, we draw our 
conclusions and suggest possible topics for future research. 

Figure 1: Illustration of the parameters for the evaluation of hydrocephalus; MLL (a), DSL (b), 
MTD (c), BPD (d), DM (e), FHL (f). 

2 Methodology 
2.1 Measurements of Linear Parameters 
All the measurements that are used in the calculation of parameters are demonstrated in Fig. 1. These 
measurements are: 

a : MLL - The narrowest width between the lateral walls. 

b : DSL - The internal diameter of the skull in the same line as MLL. 

c : MTD - Maximum transverse diameter of the skull. 

d : BPD - Maximum width of internal diameter of the skull. 

e : DM - Inner diameter of the skull in the same line as FHL. 

f : FHL - Width of greatest span of frontal horns. 

With these measurements the following parameters are calculated: 

- Evans’ Ratio (
f
d

): the ratio of maximum width of the frontal horns of the lateral ventricles, f, and 

the greatest internal diameter of skull, d [9]. ER was described by Evans[10] in 1942 as a method of 
measurement of ventricular size in pediatric patients. Current guidelines state that an ER greater than 
0.3 indicates hydrocephalus [5, 11, 12]. 

-Cella Media Ratio (
a
c

): the ratio of the minimum distance between lateral walls of lateral ventricles 

in cella media region,a, and maximum transverse (external) diameter, c. It is expected to be smaller 
than 0.25 in normal cases [9]. 

-Frontal Horn Ratio (
f
e

): the ratio of maximum width of the frontal horns of the lateral ventricles, f, 

and inner diameter of skull in the same line as f, e [9, 13]. Mean FHR was found to be 0.302 by Singh 
et al.[14] similar as in the studies by Swati et al.[9] (0.30) and by Hahn et al.[15](0.31) on 200 normal 
CT scans. 



 

CMR is expressed differently in different studies. We named these variations as CMR1, CMR2, and 
CMR3. Swati et al. [9] defined CMR as the ratio of the MLL (a) to MTD (c) with the threshold value 
of 0.25 for the diagnosis of hydrocephalus (CMR1). Kolsur et al. [16] defined CMR as the ratio of 
MLL (a) to BPD (d) (CMR2). Their threshold was 0.227. Patnaik et al. and Singh et al. [2, 14] 
described CMR as the ratio of MLL (a) to DSL (b) with the threshold of 0.22 (CMR3). In another 
study, this threshold is selected as 0.295 [17]. Although measured differently, the same threshold 
values are used for these parameters in different studies. Therefore, it is confusing which threshold 
value to use for which parameter. Therefore, we calculated all these three variations of CMR and 
picked CMR1 as CMR because it provided the most accurate result. 

2.2 Random Forests for Classification 
Random Forest (RF) is one of the most popular machine learning algorithms because it provides 
accurate results without exhaustive hyper-parameter tuning and can be applied to both regression and 
classification problems. RF is an ensemble learner composed of decision trees. Decision trees are 
prone to over-fitting in contrast RF utilizes a bagging approach to cope with over-fitting. 
Additionally, RF requires no pre-processing of the feature space such as standardization and needs a 
fewer number of hyper-parameters to be set. Furthermore, RF uses its internal estimates and a small 
subset of features to measure feature importance. Considering all of these advantages, we preferred 
RF as our classifier [18, 19, 20]. The two most widely used feature importance measures are impurity 
and permutation importance. For the impurity importance, a split that reduces impurity, hence the 
features used in the split are considered important. Based on this viewpoint, the impurity importance 
for a feature ix  is computed by the sum over the number of splits (across all tress) that include ix , 
proportionally to the number of samples it splits [21, 22]. Breiman [23] proposed to calculate the 
permutation importance by measuring the Mean Decrease Accuracy (MDA) of the forest when ix  
values are permuted randomly in the out-of-bag samples [24]. Thanks to popular machine learning 
libraries [19, 23, 25], both of these feature importance measures have shown their practical utility in 
an increasing number of experimental studies. Measures based on the impurity reduction of splits, 
such as the Gini importance, are popular because they are simple and fast to compute. Scikit-learn 
library has a function to calculate the Gini, and we have used it to calculate the feature importance. 

3 Experiments and Results 
3.1 Data and Experimental Setup 
In our experiment we used MRI data from National Magnetic Resonance Research Center 
(UMRAM), Bilkent University. The study population composed of 48 subjects (21 males and 27 
females) in the age group of 4-84 years, with 25 subjects diagnosed with hydrocephalus and 23 
subjects diagnosed with normal. All images were taken by a trained and experienced neuroradiologist 
in standardized condition and manner. T2-weighted axial MR images in which all parameters were 
easily observed were preferred for the measurement of the parameters. One experienced 
neuroradiologists (O. A.) and one radiologist (S. E.) independently evaluated all MR images, blinded 
to clinical information. The subjects were labeled as hydrocephalus and healthy, based on 
morphological MR parameters and clinical findings, such as the presence of headache, visual 
disturbances, vomiting, according to our previous studies [7, 26, 27]. 

MRI examinations were performed using a 3T unit (Trio with Tim; Siemens Healthcare AG, 
Erlangen, Germany) with a birdcage-multichannel head coil. The 3-tesla MRI protocol is given in 
Table 1. The parameters were measured by two experienced neuroradiologists according to the 
literature [7, 9, 10, 11, 14]. Recent findings have shown that morphological measurements vary 
greatly depending on the slice location of the brain MR images [5, 11]. Therefore, the parameters 
were defined and measured from the same locations of the patients based on registration with anterior 
and posterior commissure line. 

Table 1  

3 Tesla MRI protocol used for the study. 



 

Sequences/Parameters 3D-MPRAGE 3D-SPACE (with VFAM) T2W-TSE FLAIR 

TR/TE (ms)  2130 / 3.45   3000 / 579  6300 / 84  6000 / 405
TI (ms) 1100 - - 2100 

Slice thickness 0.8 0.6 4 0.9 

FOV*(mm) 230x230 240x240 220x220 230x230 

Acquisition time (minute) 5 5 0.39 9 

NEX 1 2 1 1 

Number of slices 240 240 24 192 

Flip angle ( ) 8 100 180 - 

Imaging plane Sagittal Sagittal Axial Sagittal 

PAT factor 2 2 2 - 

PAT mode GRAPPA GRAPPA GRAPPA - 

Voxel size (mm) 0.8x0.8x0.8 0.6x0.6x0.6 1x0.9x4 0.9x0.9x0.9 

FA mode - T2 variant - - 

Notes = TI: time of inversion; 3D-SPACE: three-dimensional sampling perfection with application-
optimized contrasts using different flip angle evolutions; 3D-MPRAGE: 3D T1W magnetization 
prepared rapid acquisition gradient-echo; T2W-TSE: T2 weighted turbo spin-echo; FLAIR: fluid-
attenuated inversion-recovery; NEX: number of excitations; FOV: field of view; PAT: parallel 
acquisition technique; GRAPPA: generalized auto calibrating partially parallel acquisitions. 

The RF classification was implemented using Python programming language with Scikit-learn library. 
Since we have a limited number of data, we have applied 10-fold cross-validation to our data so that 
we could use the entire data set for both testing and training. It provides a good indication of the 
generalization error. K-fold cross-validation divides the data set into K subsets, and it uses the K-1 of 
the subsets for training and one for the test. The cross-validation procedure was repeated ten times, 
yielding ten random partitions of the original data. Receiver Operator Characteristic (ROC) curves, 
accuracy, recall, and the area under the curve (AUC) values have been obtained by calculating the 
mean of ten times k-fold results. 

3.2 Experimental Results 
The parameters mentioned in the previous sections will now be referred to as features. We applied our 
classifier with six features (FHL, BPD, MLL, ER, CMR, FHR) obtained from axial MR images. First, 
we aim to measure the success of each feature individually. Hence, we attained a confusion matrix for 
each feature. We used the ROC curve, AUC, accuracy, and recall values as the performance criteria 
for RF classification. Accuracy, recall, AUC, and ROC results for 10-fold cross-validation for all 
individual features are represented in Fig. 2 and Table 2. The results in Table 2 show that the FHL 
(95%) and CMR (91.67%) outperform others in terms of accuracy. From the results, it is seen that 
especially FHL and CMR are leading in decision making, whereas FHR and BPD are the worst 
performers. 

Figure 2: ROC curves for the individual features as FHL, MLL, BPD, ER, CMR, and FHR 
respectively. AUC values are also shown on the graphs. 

Figure 3: Left column shows ROC curves and right column shows feature-importance based 
random forest classifier. From top to bottom added features CMR, FHL, MLL, ER, FHR, and BPD, 
respectively. 

In our next experiment, we utilized all features together in our RF classifier and the order of 
importance of these features was obtained. These features were added to each other according to their 



 

effectiveness in decision-making. As can be seen from the accuracy scores in Fig. 3, the accuracy of 
our original model, which includes all six features, is 91.46%, whereas the accuracy of our ‘limited’ 
model with only two features (CMR and FHL) achieves 93.33%. Hence, adding more features did not 
improve the overall accuracy. Table 2 and Table 3 showed that although FHL has higher accuracy 
when used alone (95%), the AUC value is higher when used together with CMR. 

Table 2: The success of classification with the individual features 

 Accuracy Recall AUC 

Only FHL 95.0% 0.95 0.94 0.1±  

Only CMR 91.67% 0.92 0.93 0.12±

Only MLL 89.58% 0.90 0.94 0.12±

Only ER 86.25% 0.86 0.95 0.09±

Only FHR 75.42% 0.75 0.83 0.16±

Only BPD 57.7% 0.58 0.58 0.24±

Table 3: The success of classification with features together 

 Accuracy Recall AUC 

CMR+FHL 93.33% 0.93 0.99 0.02±

CMR+FHL+MLL 92.71% 0.92 0.99 0.04±

CMR+FHL+MLL+ER 91.87% 0.91 0.98 0.05±

CMR+FHL+MLL+ER+FHR 91.46% 0.91 0.99 0.04±

CMR+FHL+MLL+ER+FHR+BPD 91.46% 0.91 0.98 0.06±

 

In Fig. 4 (a), the accuracy results of the individual features, and (b) the accuracy results obtained by 
adding the features one after the other are presented. These accuracies were obtained from ten times 
ten-fold cross-validations. The results show that the accuracies do not vary between separate ten-fold 
tests which supports the consistency of our results. 

Figure 4: (a)Boxplots for the individual features as CMR, FHL, MLL, ER, FHR, and BPD 
respectively. (b) Boxplots for the CMR (1), CMR + FHL (2), CMR + FHL + MLL (3), CMR + FHL + 
MLL + ER (4), CMR + FHL + MLL + ER + FHR (5) , CMR + FHL + MLL + ER + FHR + BPD (6) 

4 Discussion 
We compared the success of the parameters used in the diagnosis of hydrocephalus in our classifier 
individually. According to our results, individual performances of FHL and CMR outperformed other 
parameters. Since FHL, MLL, and BPD are measures of length, they are influenced by the variation in 
the size of ventricles due to anthropometric differences in normal subjects. Hence, thresholding these 
values is not plausible. The success of FHL alone was higher than its combination with CMR in terms 
of accuracy. However, a higher AUC value (0.99) was obtained when FHL was used with CMR. 
Since FHL is a measure of length, there is no strict threshold value for this parameter in the literature. 
Also, when we classified the data with CMR using 0.25 as the threshold value, as suggested by Swati 
at al.[9], we achieved 81.25%  accuracy. Using the threshold value of 0.22, as suggested by Kolsur et 
al.[16], Patnaik et al. [2] and Singh et al. [14], we achieved 77%  accuracy. Our classifier 
outperformed both of these thresholds because the RF classifier uses multiple thresholds for a single 
feature depending on the number of estimators than a single threshold value. 



 

The most successful results were obtained by FHL and CMR, so first we trained and tested the dataset 
using both of them together. Our result showed that 45 out of 48 patients were correctly classified (
93.33% ). As we add more features, our accuracy decreased, suggesting that adding more features 
does not necessarily increase the accuracy. We argue that adding weak features increases the noise 
and eventually misleads the classifier. 

As shown in Fig. 4, there is almost no variation in the accuracy obtained using ten-fold cross-
validation. Furthermore, we averaged ten times ten-fold cross-validations for more robust results. The 
fact that there is almost no variance between the accuracy values shows that we have found consistent 
results. Although we used a large enough dataset to evaluate these parameters, larger datasets would 
be more desirable for the fully automatic classification of hydrocephalus. 

5 Conclusion and Future Work 
We used the Random Forest classifier for the diagnosis of hydrocephalus using the most commonly 
preferred six parameters from the literature. Our results show that BPD and FHR are the least 
effective parameters, while CMR and FHL are the most effective ones for determining hydrocephalus. 
Although combining multiple parameters did not necessarily improve our results, we achieved 
93.33% accuracy and 0.99 AUC value by combining CMR and FHL. We recommend using CMR and 
FHL more than ER in the diagnosis of hydrocephalus. For quick analysis, FHL can be used 
individually, but for the suspicious cases, it is more reliable to use FHL and CMR together. As a next 
step, we aim to use deep learning algorithms such as CNN to predict hydrocephalus without using 
these parameters. 

According to the literature, the success of the parameters (ER, FHL, MLL, BPD, CMR, FHR) we 
evaluated in our study was limited for evaluating the improvement after shunting or predicting the 
response to CSF diversion therapy [7, 26, 27]. Comprehensive and large population-based studies are 
required for a new criterion of improvement after shunting. 

Physiological measurements or parameters (like ICP, brain compliance, fNIRS, etc.) are also 
important for the assessment of hydrocephalus (especially for the evaluation of shunt response). 
However, our study is mainly MR based and retrospective. Future studies needed relating to these 
issues. 
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- Hydrocephalus was estimated from MR images using a machine learning method. 

- The effects of commonly used morphometric parameters on hydrocephalus prediction were 
compared both individually and groupwise. 

- Accuracy of over 93% with an AUC score of 99% was achieved in hydrocephalus classification.  

-Machine-learning based classification outperformed common clinic threshold in terms of 
accuracy over 10%.  
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