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Fenggao Tang, Xuedong Wu, Zhiyu Zhu, Zhengang Wan, Yanchao Chang, Zhaoping Du, Lili Gu 

School of Electronics and Information, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 

212003, China 
Abstract: Many effective methods have been proposed for face recognition in the past 

decade and the face recognition accuracy is also gradually improved, but these algorithms 

usually need to perform face alignment process based on the prior knowledge of facial 

structure before extracting facial features. The face recognition system usually consists of face 

detection, face alignment, facial feature extraction, etc., which are independent of each other, 

and it is difficult to design and train the end-to-end face recognition model. In this paper, an 

end-to-end face recognition method based on spatial transformation layer is proposed. 

Specifically, the spatial transformation layer is placed in front of the feature extraction layer 

of the face recognition network, and the face region is aligned by alignment learning which 

requires neither prior knowledge nor artificially defined geometric transformation. The face 

identity category information allows the convolutional neural network to automatically learn 

the most appropriate face alignment. Simulation experiments on CASIA-WebFace, LFW 

(Labeled Face in the Wild) and YTF (Youtube Face) face database have shown that the 

suggested alignment learning algorithm in this paper can realize the end-to-end face 

recognition and can effectively improve the face recognition rate as well. 

Keywords: Face recognition; Spatial transformation layer; Alignment learning; Convolutional 

neural network 

1. Introduction 
In the past decade years, the successful application of convolutional neural networks 

(CNN) in the image field has greatly improved the performance of computer vision tasks, such 

as face recognition and face verification [1, 2, 3]. The traditional face recognition methods are 

to construct the classification model mainly with artificially designed features, while the deep 

learning is to automatically learn more robust facial features through a large amount of 

training data. Therefore, CNN can achieve better recognition effects in the case of posture, 

occlusion, and illumination variation [4, 5].  

However, the change of face posture is still one challenge of face recognition system in 

practical application. There are two ways to deal with such problems: one is to create a 

posture model to handle the facial posture change, Masi et al. [6] proposed an algorithm to 
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calculate the posture distribution of the training data and establish two CNN models which 

correspond to the frontal face and the profile face respectively, and an excellent face 

recognition effect was obtained in the case of posture change. Liao et al. [7] suggested a 

partial face recognition localization method with multi-keypoint descriptors to represent 

align-free faces in which the descriptors’ size was determined by image content and face 

images. The other method is to introduce a face alignment process before facial feature 

extraction. Taigman et al. [8] developed a DeepFace network algorithm using deep learning 

for face recognition at the first time, and the 3D alignment method was used to solve the 

problem of out-of-plane rotations that traditional 2D alignment methods could not solve. Hu 

et al. [9] presented a face recognition method based on a 3D deformation model by modeling 

the 3D image alignment and the texture difference of the reference image, and the 3D face 

recognition performance was improved and had excellent robustness to posture, illumination, 

and occlusion changes. Recognition performance can be improved effectively by adding a face 

alignment step during the test phase, so a typical face recognition system is usually divided 

into three stages: 1) face detection; 2) facial landmarks localization and face alignment by 2D 

or 3D geometric transformation; 3) face recognition. In general, face alignment and facial 

feature extraction are performed independently. Many face alignment methods rely on 

accurate facial landmarks localization which is more difficult than face recognition tasks. 

Moreover, manual labeling of facial landmarks is much more laborious and expensive than 

collecting personal identity information. The geometric transformation, which usually is 

defined artificially, is used to complete the face alignment when the facial lanmarks are 

obtained. For example, a widely used method is to align the corner points of eyes, nose and 

mouth by similar transformation. It is not clear whether other types of 2D geometric 

transformations are beneficial for subsequent facial feature extraction. 

However, can we assume that the location of facial landmarks doesn’t need the prior 

knowledge for face recognition task? Since facial features can be learned through data 

training, can we also complete face alignment with training data? In the four stages of face 

recognition, other stages can be completed by data training, the prior knowledge that still 

needs to be manually defined in the process of correcting face images will appear to be out of 

place. Therefore, this paper proposes a face recognition method based on spatial transform 

layer, which can merge face alignment and facial feature extraction into one network 

framework, and any prior knowledge or artificial definition of face alignment is not required. 

During the training phase, the network can learn the alignment method automatically to align 
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each facial image, and then sends the aligned image to the facial feature extraction layer for 

further processing. 

The paper is organized as follows: Several existed related works are briefly introduced 

in Section 2. In Section 3, we will describe the details of our model architecture. The 

experimental results on the LFW [10] data set and the YTF [11] data set are described in 

Section 4. Section 5 summarizes the work of this paper. 

2. Related Work 

In recent years, with the rapid development of deep learning, face recognition 

technology has made great progress. Traditional face recognition methods based on artificial 

features have not been able to meet people's needs. Since the Deepface face recognition 

method proposed by Taigman et al. [8] has shown that the deep recognition model of training 

large amounts of data can achieve higher recognition effect, a large number of face 

recognition algorithms based on deep learning technology constantly can refresh the record. 

Many researchers have analyzed the network structure for face recognition: He et al. [12] 

presented a deep residual network, it not only can make the neural network deeper and solve 

the accuracy degradation problem, but also can enhance the image feature expression ability. 

Hu et al. [13] proposed a feature recalibration method, which could automatically determine 

the importance of each feature channel number by learning and then could enhance useful 

features and suppresses unimportant features. Chen et al. [14] introduced mobile-net into 

the face recognition algorithm, although the final recognition accuracy was slightly reduced, 

the network running speed had been greatly improved. In addition, some researchers 

provided some face recognition algorithms based on the network loss function, such as Wen 

et al. [15] suggested a face recognition algorithm with the basis of Center Loss function which 

could increase the inter-class distance by bringing the sample closer to each category, and 

had excellent generalization ability for new data. Liu et al. [1] proposed an angular softmax 

loss function by adding margin to make each category having a larger decision surface, and 

this can obtain the effect of maximum the intra-class distance and minimum the inter-class 

distance. Unlike the multiplicative angular margin approach, Deng et al. [16] introduced a 

cosine additive angular margin algorithm which could make the easy training procedure and 

improve the face recognition rate.  

In most face recognition methods based on deep learning, the input to the network is an 

aligned image both training and testing phases. The usual practice is to perform face 

alignment by 2D or 3D geometric transformation with facial landmarks. Experiments have 
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shown that correct alignment can improve face recognition performance. Parkhi et al. [17] 

found on the LFW dataset that there would be a 1% performance improvement when aligning 

face images. Although the 3D alignment is more accurate than the simple 2D alignment, there 

is no obvious advantage for the final recognition rate. Therefore, this paper mainly studies 

the 2D face alignment problem. 

In fact, there have been many studies on the problem of geometric transformation 

learning, such as handwritten digit recognition and bird classification. Jaderberg et al. [18] 

proposed the network structure of the spatial transform layer, and their purpose was to learn 

the optimal spatial transformation mode through the network automatically and improve the 

robustness of the CNN to translation, scaling, rotation and even distortion of images. Because 

its parameters were differentiable, the spatial transform layer could train the image features 

through backpropagation to get the optimal transform parameters. Affected by this work, 

Chen et al. [19] improved the performance of face detection by using the spatial 

transformation layer. Therefore, this paper uses the spatial transformation layer to 

automatically learn the face alignment and integrate it with facial feature extraction to form 

end-to-end training. 

3. Methodology 

This section mainly introduces the setting of the end-to-end face recognition system and 

the overall structure of the system at first, and then the network settings, the loss function 

selection and the localization network based on the spatial transformation layer for the 

prediction of geometric parameters are presented, finally, the details of the spatial 

transformation layers of different transformation types such as identical, similarity and affine 

transformation are described. 

3.1 Overall structure of the system 
A complete face recognition system mainly includes three main parts: face detection, face 

alignment and face recognition. The specific process is to captures the face image or video as 

input through the camera and then detects it through the face detection algorithm. The 

aligned face is sent to the model to get identity information. Generally speaking, these three 

parts are designed and implemented separately. These three different computer vision tasks 

require different mathematical models under the traditional technology framework, so it is 

very difficult to integrate them together. 

With the rapid development of deep learning, face detection, facial landmarks location 

and face recognition methods based on convolutional neural networks can achieve better 
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results. It is interesting that both of the overall network architecture and image processing 

are very similar. This characteristic is likely to make the design of the end-to-end face 

recognition system reality. The end-to-end face recognition model with satisfied people’s 

expectation is based on the face identity and take it as the only supervised signal, and the 

facial model is trained in a complete end-to-end manner. However, the implementation of this 

method is very difficult, in order to reduce the difficulty, we use the face detection as an 

independent task and the face alignment and the face recognition as the main part of end-to-

end design in this study. 

For face detection tasks, we can use multi-tasking cascade network (MTCNN) [20] or a 

single stage face detector (SSH) [21] to detect faces. The MTCNN multiscales the image to 

form an image pyramid to detect various scales faces at first, and then classifies the faces with 

the first network (Pnet) and returns the coefficients of the facial borders which are rejected 

by non-maximum suppression. The more detailed facial borders coefficients are sent to the 

final network (Onet) to get the final facial borders and facial landmarks by putting the 

processed facial borders into the second network (Rnet) for further classification and facial 

borders regression. The SSH is an anchor-based face detection algorithm that uses different 

scale anchors to detect different size faces. The face detection effect is shown in Figure 1. In 

fact, any existed face detection algorithm can be applied to our system. We have proved 

through experiments that the impact of face detection accuracy on the final face recognition 

effect is negligible. The main reason for this is that the alignment network can automatically 

learn the appropriate alignment method to improve the accuracy and stability of the facial 

borders. 

 

Figure 1. The effect of MTCNN algorithm. 

For facial alignment and recognition tasks, here we design an end-to-end network which 

is mainly composed of a localization network that predicts the alignment parameters of facial 

image, sampler, and deep network for facial feature extraction. The structure diagram is 

shown in Figure 2. In the localization network, we use three convolutional layers whose 

convolution kernel size is 3*3. After each convolutional layer, we connect the batchnorm layer, 

the relu activation function layer and the maximum pooling layer with a kernel of size 2*2. 
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The fully connected layer is connected before the geometric parameter transformation layer, 

in which the projection transformation has 8 learnable parameters, the affine transformation 

has 6 parameters and the similar transformation has 4 parameters. 

MTCNN

θ

ResNet

Face detection

Face alignment

Facial feature extraction

Localization 

network

 
Figure 2. The overall architecture of the system. 

The input image needs to be subsampled to 64x64 before entering the localization 

network, because it is unnecessary to use high-resolution image when calculating the 

transformation parameters. The residual network structure of the face feature extraction 

layer is shown in Table 1. Here, the first 7x7 convolution layer is replaced by a 3x3 convolution 

layer. Although a large convolution kernel has a larger receptive field, some details may be 

lost. A dropout, a full connection layer and a BN layer are used to output the face features in 

the last layer of the network. The cosine angle interval loss function in Arcface is used as the 

loss function of the network, which can not only make the network extract more 

discriminative features, but also accelerate the convergence speed of the model. 

 
Table 1 Network model structure. 

layers Convolutional network structure 

Conv1.x 
[3×3, 64]×1, S2 

[3×3, 64; 3×3, 64]×2 

Conv2.x 
[3×3, 128]×1, S2 

[3×3, 128; 3×3, 128]×4 

Conv3.x 
[3×3, 256]×1, S2 

[3×3, 256; 3×3, 256]×8 

Conv4.x 
[3×3, 512]×1, S2 

[3×3, 512; 3×3, 512]×2 

Dropout, FC1, BatchNorm 512 

Annotation: In Table 1, Conv1.x, Conv2.x, Conv3.x, Conv4.x represent convolution units which contain 
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multiple convolution units and residual units. [3×3, 64]×1 indicates that the convolutional layer contains 

1 group which contains 64 convolution kernels with size of 3×3, S2 means a step size of 2, and FC1 is a fully 

connected layer. [3×3, 64; 3×3, 64]×2 presents 2 groups and each convolution unit includes 64 convolution 

kernels with size of 3×3. 

3.2 Localization Network  
The essence of the localization network is used to regress the transformation parameters, 

and it is also a balance between the complexity of the model structure and the prediction 

accuracy. When the network inputs the feature image, it will output a spatial transformation 

parameter through a series of hidden network layers. Therefore, we hope that the network 

structure is as simple as possible, and the network is expected to have sufficient prediction 

accuracy.  

In order to obtain a localization network that satisfies the requirements, we have 

experimented with different structures which are a combination of a convolutional layer and 

a fully connected layer. The experimental data set is CASIA-WebFace, its label corresponds to 

the facial landmarks obtained by the face detection algorithm, and the loss fuction of mean 

square error is utilized. We keep the same experimental conditions except the network 

structure. The experimental results are shown in the table 2. 

Table 2 Different setting of localization network. 

Setting Network Structure Loss (MSE) 

1 1 Conv, 1FC 0.005213 

2 2 Conv, 1FC 0.004795 

3 3 Conv, 1FC 0.004659 

4 2 Conv, 2FC 0.005169 

5 3 Conv, 2FC 0.004635 

It can be seen from Table 2 that the final loss value of setting 5 is the smallest, which also 

indicates that the network structure has lower fitting error than other structure settings, but 

the network parameters need to be increased compared with setting 3. However, the fitting 

error of setting 3 is only a little higher than setting 5, so we choose setting 3 as the localization 

network in this study. 

3.3 Spatial transformation network 
It can be concluded from [18] that the parameter transformation forms supported by the 

spatial transformation network include translation, scaling, affine, projection and even thin-

plate spline transformation. In the traditional 2D face alignment method, the similarity 

transformation matrix is obtained by detecting the facial landmarks and the average face 

template. However, Wagner et al. [22] proved that the use of projection transformation in the 

face recognition process with large posture changes would make the model more stable and 
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could get better recognition performance. We analyze three geometric transformations 

including similarity transformation, affine transformation and projection transformation in 

this paper. 

Assume that the coordinates of each pixel of the input image feature 𝑈 are (𝑥𝑖
𝑠, 𝑦𝑖

𝑠), and 

(𝑥𝑖
𝑡 , 𝑦𝑖

𝑡)  is the coordinates of each pixel of the feature map 𝑉  after being sampled and 

transformed by the grid generator, the space transformation function 𝒯𝜃  is a 2D 

transformation function. For the projection transformation, the correspondence between 

(𝑥𝑖
𝑠, 𝑦𝑖

𝑠) and (𝑥𝑖
𝑡 , 𝑦𝑖

𝑡) can be described as: 

(
𝑥𝑖

𝑠

𝑦𝑖
𝑠) = 𝒯𝜃(𝐺𝑖) = 𝐴𝜃 (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) =
1

𝑧𝑖
𝑠 [

𝜃11 𝜃12 𝜃13

𝜃21 𝜃22 𝜃23

𝜃31 𝜃32 1
] (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

)                       (1) 

𝑉𝑖 = ∑ ∑ 𝑈𝑤ℎ𝑘(𝑤 − 𝑥𝑖
𝑠, ℎ − 𝑦𝑖

𝑠)

𝑊

𝑤=1

𝐻

ℎ=1

                                         (2) 

where 𝐴𝜃  is composed of eight transformation parameters and 𝑧𝑖
𝑠 is 𝜃31𝑥𝑖

𝑡 + 𝜃32𝑦𝑖
𝑡 + 1. 

This is equivalent to convolving the image of the sampling kernel 𝑘 with height H and width 

W, which is shown in equation (2) (where 𝑉𝑖 represents the pixel value of the 𝑖𝑡ℎ position 

of the output image, and the sampling kernel 𝑘(𝑤 − 𝑥𝑖
𝑠, ℎ − 𝑦𝑖

𝑠) = 𝑚𝑎𝑥(0,1 − |𝑤 − 𝑥𝑖
𝑠|) ×

𝑚𝑎𝑥(0,1 − |ℎ − 𝑦𝑖
𝑠|).). In the back-propagation phase, we need to calculate the gradient of 

the variable 𝑉𝑖 for the eight transformation parameters. Equation (2) shows the case when 

𝑤 = 𝑥𝑖
𝑠 or ℎ = 𝑦𝑖

𝑠, but in reality, the probability of 𝑥𝑖
𝑠 or 𝑦𝑖

𝑠 being an integer is very small. 

Considering that their effect on the gradient during backpropagation is negligible, we 

empirically set the gradient of these points to zero. For unequal points, we can caculate their 

gradients using chain derivation rule. Taking the parameter 𝜃31 as an example, the gradient 

of the input coordinate points is as shown in Equations (3-5). 

𝜕𝑉𝑖

𝜕𝜃31
=

𝜕𝑉𝑖

𝜕𝑧𝑖
𝑠

𝜕𝑧𝑖
𝑠

𝜕𝜃31
= (

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠

𝜕𝑥𝑖
𝑠

𝜕𝑧𝑖
𝑠 +

𝜕𝑉𝑖

𝜕𝑦𝑖
𝑠

𝜕𝑦𝑖
𝑠

𝜕𝑧𝑖
𝑠) 𝑥𝑖

𝑡 = −
𝑥𝑖

𝑡

𝑧𝑖
𝑠 (

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠 𝑥𝑖

𝑠 +
𝜕𝑉𝑖

𝜕𝑦𝑖
𝑠 𝑦𝑖

𝑠)     (3) 

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠 = ∑ ∑ 𝑈𝑤ℎ

𝜕

𝜕𝑥𝑖
𝑠

𝑊

𝑤=1

𝐻

ℎ=1

𝑘(𝑤 − 𝑥𝑖
𝑠, ℎ − 𝑦𝑖

𝑠) 

                           = ∑ ∑ 𝑈𝑤ℎ𝑚𝑎𝑥(0,1 − |ℎ − 𝑦𝑖
𝑠|)𝑡𝑓(𝑤 − 𝑥𝑖

𝑠)

𝑊

𝑤=1

𝐻

ℎ=1

                         (4) 

𝑡𝑓(𝑤 − 𝑥𝑖
𝑠) = {

0, |𝑤 − 𝑥𝑖
𝑠| > 1

1,0 < 𝑤 − 𝑥𝑖
𝑠 ≤ 1

−1, −1 ≤ 𝑤 − 𝑥𝑖
𝑠 ≤ 0

                                      (5) 

For similarity transformations, we can define as: 
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(
𝑥𝑖

𝑠

𝑦𝑖
𝑠) = 𝒯𝜃(𝐺𝑖) = 𝐴𝜃 (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

) = [
𝜆 cos 𝛼 −𝜆 sin 𝛼 𝑡1

𝜆 sin 𝛼 𝜆 cos 𝛼 𝑡2
] (

𝑥𝑖
𝑡

𝑦𝑖
𝑡

1

)                   (6) 

where 𝛼  is the angle of rotation, 𝜆  is the scale factor, 𝑡1  and 𝑡2  are the horizontal 

displacement and the vertical displacement. Similarly, the gradient of 𝑉𝑖  for 𝜆 and 𝛼  is 

shown in Equations (7) and (8). 

𝜕𝑉𝑖

𝜕𝛼
=

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠

𝜕𝑥𝑖
𝑠

𝜕𝛼
+

𝜕𝑉𝑖

𝜕𝑦𝑖
𝑠

𝜕𝑦𝑖
𝑠

𝜕𝛼
=

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠 (𝑡2 − 𝑦𝑖

𝑠) +
𝜕𝑉𝑖

𝜕𝑦𝑖
𝑠 (𝑥𝑖

𝑠 − 𝑡1)                   (7) 

  
𝜕𝑉𝑖

𝜕𝜆
=

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠

𝜕𝑥𝑖
𝑠

𝜕𝜆
+

𝜕𝑉𝑖

𝜕𝑦𝑖
𝑠

𝜕𝑦𝑖
𝑠

𝜕𝜆
                                                                                        

=
𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠 (𝑥𝑖

𝑡 cos 𝛼 − 𝑦𝑖
𝑡 sin 𝛼) +

𝜕𝑉𝑖

𝜕𝑥𝑖
𝑠 (𝑥𝑖

𝑡 sin 𝛼 + 𝑦𝑖
𝑡 cos 𝛼)                   (8) 

As mentioned in the introduction, the widely used face recognition alignment scheme is 

a non-reflective similarity transformation. However, it is unclear how different types of 2D 

conversions can affect face recognition performance. In order to explore the type of 

transformation that is most suitable for face recognition, we will train four different models 

including identical, similarity, affine and projection, transformations under the condition that 

keeping the training set and the rest of the network structure unchang. For the identical 

transformation, the detected face region is directly cropped at the center for recognition. 

Corresponding results and face accuracy with LFW and YTF are presented in Section 4. 

4 Experimental results and analysis 

In order to verify the effectiveness of the end-to-end face recognition method, CASIA-

WebFace [23] is used as the training set. Although increasing the training set size or multi-

patch feature fusion can improve the performance of face recognition effectively, the main 

work of this study is to verify the feasibility of end-to-end learning and the impact of face 

alignment on different geometric transformation types on recognition results. Therefore, we 

train different types of alignment networks on CASIA-WebFace and only use a single patch 

feature for identification, and then test the performance of the model on the LFW and YTF 

datasets. 

Although increasing the training set size or multi-patch feature fusion can effectively 

improve the performance of face recognition, the main work of this study is to verify the 

feasibility of end-to-end learning and the impact of face alignment on the recognition results 

of different geometric transformation types. Therefore, we train different types of alignment 

networks on CASIA-WebFace using only one single patch feature for identification and then 
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test the performance of the model on LFW and YTF datasets. 

The CASIA-WebFace dataset contains 10575 people with total 494,414 face images, in 

which everyone has a number of pictures ranging from tens to hundreds, and we use 

horizontal flipping for data augmentation. For each picture, the face detection algorithm 

described in the Section 3 is used to detect the face, and then the face image is cropped using 

an area slightly larger than the detection frame. The cropped image is directly sent to the end-

to-end face recognition network. and the fixed-size area is directly cropped as the training 

data by the image center point if the face is not detected. 

Assuming that the batch size is 64, the loss function is Arcface and its cosine angle 

interval parameter is 0.5 in our study. The optimizer uses the random gradient descent 

method with momentum (the momentum value and the initial network learning rate are set 

to be 0.9 and 0.01). After each 10000 iterations attenuation, we find that we can obtain the 

best results when the learning rate of alignment network is 10-100 times smaller than that 

of the recognition network. Maybe the main reason is that the loss value generated by the 

recognition network is much larger than the value of the transformation parameter. 

We test the trained models on two widely used unconstrained face recognition 

benchmark datasets named LFW and YTF. The LFW face dataset contains 5749 people 

including total 13233 face images. The YTF dataset contains 3425 video sequences with 1595 

different identities and an average of 2.15 videos for each person. We need to verify 5000 

pairs of videos (2500 pairs of videos from the same person, 2500 pairs of videos from 

different people), and the final recognition rate can be obtained by averaging these 5000 

similarity values calculated from each pair of videos. Both datasets are allowed to use 10 folds 

cross-validation. We use the sum of corresponding positions between each tested image and 

its mirror image feature as the final feature representation and use the cosine distance to 

calculate the similarity between these two images. The optimal classification threshold is 

determined by training 9 datasets, and then the remaining datasets is tested. 

Table 3. Face verification performance on LFW and YTF datasets. 

Method trainset LFW YTF 

FaceNet 200M 99.76% 95.1% 

DeepID2+ 0.2M 99.47% 93.2% 

Center Face[15] 0.7M 99.28% 94.9% 

A-softmax[1] 0.46M 99.47% 95.0% 

AM-Softmax[3] 0.46M 99.58% 96.2% 

Ours (Identical) 0.46M 98.01% 93.4% 

Ours (Similarity) 0.46M 98.87% 94.2% 

Ours (Affine) 0.46M 99.02% 94.6% 
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Ours (Projective) 0.46M 99.24% 94.6% 

Table 3 shows the numerical results of the verification performance, and several 

observations can be found from the verification accuracy. At first, among the four types of 

transformations, the identity transformation results in the lowest verification accuracy 

(98.01% and 93.4%) which is consistent with previous research, and the explicit alignment 

of face images can significantly improve the efficiency of face recognition. Secondly, projection 

transformation (99.24%) is more suitable for face recognition than similar transformation 

(98.87%) and affine transformation (99.02%). This is not surprising because the projection 

transformation can more accurately describe the imaging process of most camera.  

Figures 3 and 4 show the corresponding ROC curves which represent the relationship 

between the false positive rate and the true positive rate of the sample at different 

classification thresholds, and this can reflect the quality of face recognition model. We can see 

that the verification accuracy of face recognition models with different geometric 

transformation types on the YTF data set is similar comparing with the LFW data set, in which 

the curves representing similar transformation and affine transformation almost coincide 

with each other. This is expected because the average face features are extracted from a series 

of video sequence images when testing on YTF and it can greatly alleviate the impact of face 

pose transformation. However, face alignment is still helpful for the generalization of face 

recognition model. 

 

Figure 3. ROC curve for face verification on LFW. 
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Figure 4. ROC curve for face verification on YTF. 

5. Conclusions  

We propose an end-to-end trainable framework in which the face alignment and the 

facial feature extraction can be jointly trained using only the personal identity as the 

supervising signal. Therefore, explicit knowledge about human face characteristics and 

artificially defined geometric transformation principles are no longer needed for face 

alignment in the recognition task. In fact, our proposed method provides a foundation for the 

future implementation of end-to-end face recognition system, and this can be easily extended 

to other fine-grained image recognition tasks. The other future work is to use more training 

data and more carefully designed data enhancement strategies to improve the robustness of 

transformation prediction for extreme posture changes and exaggerated facial expressions. 
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