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Abstract

In practical video surveillance, the quality of facial regions of interest is usually affected
by the large distances between the objects and surveillance cameras, which undoubtedly
degrade the recognition performance. Existing methods usually consider the holistic rep-
resentations, while neglecting the complementary information from different patch scales.
To tackle this problem, this paper proposes a multi-scale patch based representation fea-
ture learning (MSPRFL) scheme for low-resolution face recognition problem. Specifically,
the proposed MSPRFL approach first exploits multi-level information to learn more ac-
curate resolution-robust representation features of each patch with the help of a training
dataset. Then, we exploit these learned resolution-robust representation features to reduce
the resolution discrepancy by integrating the recognition results from all patches. Finally, by
considering the complementary discriminative ability from different patch scales, we try to
fuse the multi-scale outputs by learning scale weights via an ensemble optimization model.
We further verify the efficiency of the proposed MSPRFL on low-resolution face recognition
by the comparison experiments on several commonly used face datasets.

Keywords: Face recognition, low-resolution, feature learning, multi-scale patch

1. Introduction

Face image recognition, as one of the most commonly used biometrics technologies,
has become the research hotspot of the pattern recognition community in past decades
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Generally, most of the current methods perform well on the cases
that the acquired region of interest (ROI) has high image resolution and contains enough
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discriminative information for recognition tasks. However, in real-world robotics and video
surveillance applications, the observed faces generally have low-resolution (LR) together
with pose and illumination variations, while the referenced faces are always enrolled with
high resolution (HR). The main challenge is to match an LR probe face with limited details
against HR gallery faces. We name this kind of problem as low-resolution face recognition
(LRFR). An alternative solution is down-sampling the HR galleries and then matching in
the same resolution space. In this way, the resolution discrepancy is reduced at the expense
of losing the discriminative facial details in the gallery.

Generally, there are two typical categories to address the LRFR problem. One is super-
resolution approaches, which first synthesize the target HR faces from the observed LR
image, and then utilize traditional face recognition approaches in the common resolution
domain. The other is resolution-robust feature extraction methods, which directly extract
discriminative features from respective domains, thus obtain better performance than super-
resolution methods.

Super-resolution approaches devote to synthesize the target HR faces from the input
LR image to alleviate the resolution gap. Recently, most methods mainly focus on the
reasonable design of regularization terms. Jiang et al. [11] incorporated smooth prior to
their objective to obtain stable reconstruction weights. Recently, they further proposed an
efficient context-patch based face hallucination method via thresholding locality-constrained
representation and reproducing learning strategy [12]. Liu et al. [13] proposed to super-
resolve the target face images and suppress noise simultaneously. Rajput et al. [14] proposed
an iterative sparsity and locality-constrained representation model for robust face image
super-resolution. To hallucinate HR face from a real low-quality face, a definition-scalable
inference method was proposed in [15]. These previous super-resolution approaches fail to
acquire the high-quality face from the recognition respective, lacking discriminative facial
details for the subsequent face recognition tasks.

Resolution-invariant approaches just consider the face recognition problem directly.
Jian et al. [16] proposed a singular value decomposition-based framework to perform both
hallucination and recognition simultaneously. Yang et al. [17] presented a discriminative
multidimensional scaling method to take both intraclass distances and interclass distances
into account. Wang et al. [18] studied the LR image recognition problem with the assistance
of HR samples and proposed partially coupled networks to combat the domain mismatch
problem. Banerjee et al. [19] designed a deep network-based method to synthesize realistic
HR images for recognition. Mudunuri et al. [20] propose a convolutional neural network
architecture to recognize LR images as well as generalize well to images of unseen categories.
Later, Mudunuri et al. [21] further proposed an orthogonal dictionary alignment method with
a re-ranking scheme to enhance the recognition accuracy. Recently, Li et al. [22] analyzed
different metric learning methods for LRFR and provided a comprehensive analysis of the
experimental results in real surveillance applications. Zangeneh et al. [23] presented a two-
branch deep convolutional neural network for LRFR task. However, the aforementioned
methods usually take the holistic images into account when extracting resolution-robust
features, while the complementary information from different patch scales is overlooked.

In this paper, to tackle the above problems, we formulate a multi-scale patch based

2

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



representation feature learning (MSPRFL) scheme to further promote the performance of
low-resolution face recognition. Due to the various degradations from HR to LR space,
it is impractical to extract sufficient distinct features directly from the LR faces for ideal
matching of LR probes against HR galleries. On the contrary, we propose to learn resolution-
robust representation features on patches with the help of a pre-collected training dataset.
Then, the new learned resolution-robust features are exploited to recognize the LR probe
by integrating the recognition results from all patches. Because it is usually unreasonable
to predefine an approving patch scale for all experimental cases and patches from different
scales may provide the complementary discriminative ability for recognition, we further
devote to fuse the multi-scale outputs by learning scale weights via an ensemble optimization
model. Experimental results verified the superiority of our MSPRFL in recognizing the low-
resolution faces compared to several state-of-the-art approaches.

We organize the rest of our paper as follows. Section 2 details our method, including
local feature extraction, patch-based representation feature learning, recognition strategy,
and multi-scale fusion. Section 3 evaluates the effectiveness of the proposed method and
further provides some discussions. The conclusions are given in Section 4.

2. The proposed MSPRFL

The local patch-based trick has been largely used in many communities [7, 12, 24, 25,
26, 27, 28, 29, 30, 31]. The reasons are two-fold: (i) Compared with the global features,
local features are more robust to local variations such as pose, expression, and illumination.
(ii) Since the local dictionary based linear system seems to be under-determined, the local
patch-based linear system may obtain more accurate representation than the global image-
based one. Based on these two observations, in this section, we will detail our proposed
method. We first introduce the local feature extraction strategy in subsection 3.1 and
then give our patch-based representation feature learning formulation in subsection 3.2.
We next introduce the classification procedure based on these representation features in
subsection 3.3. Finally, we combine the multi-scale outputs in subsection 3.4 to achieve the
best recognition performance. The whole framework of the proposed MSPRFL method is
shown in Fig. 1.

2.1. Local feature extraction

The most commonly used feature descriptors to depict the image patches can be the
raw luminance values of pixels. Generally, from the viewpoint of perception, the human
visual system is more focused on the high-frequency component of the object. Also, the raw
patch features can not reveal the potential relationship between LR patches and their HR
counterparts. Inspired by the work in [32], we also exploit the gradients maps of the local
patches as the feature descriptor due to its effectiveness and simplicity. The 1-D filters used
here are composed of:

f1 = [−1, 0, 1],

f3 = [1, 0,−2, 0,−1],

f2 = f T1 ,

f4 = f T3 ,
(1)
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Figure 1: Overview of the proposed MSPRFL method (the red grid denotes the patch dividing strategy).

in which the superscript T denotes the transpose operation. For each LR patch, we can
obtain four feature vectors using these four filters, which are then concatenated into one
vector. In practice, we do not directly conduct these four filters on those extracted image
patches; instead, we filter the global image with these four filters in the horizontal and
vertical directions by

Gij = Ai ∗ fj, j = 1, 2, 3, 4, (2)

where Ai ∈ Rp×q is the ith LR image, * operator stands for convolution. Thus, for each
LR image, four gradient maps are obtained. Then, at each location, we concatenate the four
patches extracted from these gradient maps to form the feature descriptor by

gi = [gi1; gi2; gi3; gi4], (3)

where patch gij ∈ Rd×1 comes from the gradient maps Gij(j = 1, 2, 3, 4) with the same
location. Specifically, the features for each LR image patch region also involve their neigh-
boring relationship, which has been verified to be helpful for patch-based recognition strat-
egy [24]. Finally, gi ∈ R4d×1 is considered as the local patch feature representation from the
LR image Ai.

2.2. Patch-based representation feature learning

Let Al =
{
A1
l , A

2
l , . . . , A

M
l

}
and Ah =

{
A1
h, A

2
h, . . . , A

M
h

}
be the LR and HR training

faces, Yl and Yh be the test probe and gallery face images. For Ah and Yh, their overlapped
patches at location (i, j) are represented as

{
Amh (i, j) ∈ <d×1|1 ≤ i ≤ R, 1 ≤ j ≤ C

}
and{

Yh(i, j) ∈ <d×1|1 ≤ i ≤ R, 1 ≤ j ≤ C
}

. Using the local feature extraction (LFE) strategy
described in subsection 2.1, the feature descriptors of overlapped position patches are also
extracted from Al and Yl, and represented as

{
Aml (i, j) ∈ <4d×1|1 ≤ i ≤ R, 1 ≤ j ≤ C

}
and

4

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



{
Yl(i, j) ∈ <4d×1|1 ≤ i ≤ R, 1 ≤ j ≤ C

}
, where R and C denote the numbers of patch in

every row and column.
For simplicity, we omit the index (i, j) in the next section. For each patch Yl and Yh,

they can be collaboratively with

Yl =
M∑

m=1

Am
l α

m
l + el,Yh =

M∑

m=1

Am
h α

m
h + eh, (4)

where el and eh denote the representation error. We can get the representation weights
of the patch Yl and Yh by considering the subsequent constrained least square problem

α∗
l = arg min

αl

∥∥∥∥∥Yl −
M∑

m=1

Am
l α

m
l

∥∥∥∥∥

2

2

, s.t.

M∑

m=1

αml = 1,

α∗
h = arg min

αh

∥∥∥∥∥Yh −
M∑

m=1

Am
h α

m
h

∥∥∥∥∥

2

2

, s.t.

M∑

m=1

αmh = 1.

(5)

In our experiments, we find that the problem (5) may have an unstable solution. Re-
searchers [26, 33] have made many efforts on regularization constraints and suggested that
locality constraints are more powerful than sparsity constraints in exposing the inherent
geometry of the nonlinear manifold. Thus, we also introduce the locality constraint and
rewrite our objective as

α∗
l = arg min

αl





∥∥∥∥∥Yl −
M∑

m=1

Am
l α

m
l

∥∥∥∥∥

2

2

+ λl

M∑

m=1

[dml α
m
l ]2



 ,

α∗
h = arg min

αh





∥∥∥∥∥Yh −
M∑

m=1

Am
h α

m
h

∥∥∥∥∥

2

2

+ λh

M∑

m=1

[dmh α
m
h ]2



 ,

(6)

where λl and λh are regularization parameters, and dml = ‖Yl − Aml ‖22 is the metric
between LR probe and each LR training atom (dmh has the similar definition).

Actually, from the viewpoint of feature extraction, the relational vector α∗
l returns a

representation feature containing the representation similarity of a probe LR patch to each
LR training patch. Also, for a gallery HR patch, α∗

h returns a representation feature vector
of representation similarity to each HR training patch. Using this representation similar-
ity learning strategy, for each LR probe and HR gallery, we can study resolution-robust
discriminative representation features for the following recognition task.

We will detail how to obtain the above relational feature vector α∗
l (α∗

h can be obtained
in the same way). The problem (6) can be reformulated as the following form:

α∗
l = arg min

αl

{‖Yl − Alαl‖22 + λl‖Dlαl‖22}, (7)
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where Dl is a diagonal matrix with the size of M ×M , and with entries

Dmm
l = dml , 1 ≤ m ≤ M. (8)

Following [34], we can derive the analytical solution of objective (7) as

αl = (Gl + λlD
2
l )\ones(M, 1), (9)

where variable ones(M, 1) denotes an M-dimensional vector with entries of ones, and the
symbol “\” represents the left matrix division operation. while Gl = CTC is a covariance
matrix with

C = Yl · ones(M, 1)T − Al. (10)

The final representation feature vector is given by rescaling to satisfy
∑M

m=1 α
m
l = 1.

2.3. Recognition procedure

With the help of a referenced LR-HR training patch pair Al and Ah, we can obtain the
representation features from the LR probe patch y and the HR gallery patch set Xh for low-
resolution face recognition purposes. Concerning all elements in Xh, their representative and
discriminative features over the training patch set Ah can be denoted as F = [F1, F2, . . . , Fc],
where Fk is the subset of the kth class, with each column of Fk is a representation feature
vector from class k. Concerning probe patch y, we use a column vector x to denote its
representation feature over Al. Then, the representation of x over F is

ρ∗ = arg min
ρ
{‖x− Fρ‖22 + η‖ρ‖22}. (11)

η is the balance parameter. The solution of problem (11) is ρ∗ =
(
F TF + η · I

)−1
F Tx.

Thus, for each class, we can calculate its regularized reconstruction by

ri(x) = ‖x− Fi· ρ∗i ‖22 /‖ρ∗i ‖22, (12)

where vector ρ∗i denotes the weights corresponding to the ith class. Finally, the recogni-
tion output of the probe patch y is Identity (y) = argmini {ri}.

2.4. Multi-scale fusion

In our experiments, we find that it is usually unreasonable to find a suitable patch scale
for various experimental configurations (e.g., different databases). The recognition results of
patch based representation feature learning (PRFL) versus various patch scales and testing
gallery scales on two widely used face databases are shown in Fig. 2, from which, we can make
the following findings. First, for different datasets, the suitable patch scale always varies a
lot. Second, for different testing gallery sample scale per person, the suitable patch scale
also varies a lot. To handle those above troubles, we propose to adaptively fuse the multi-
scale complementary recognition results from different patch scales for further performance
improvement.
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Figure 2: The recognition results of PRFL based on different patch size and testing gallery sample size.

With the help of an example set T = {(xi, zi)} (i = 1, 2, . . . , n) and s scales, we can
define a decision matrix D [35] by

dij = f(hij, zi) =

{
+1, if hij = zi
−1, if hij 6= zi

, (13)

where zi denotes the true label of example xi and hij(i = 1, 2, . . . , n, j = 1, 2, . . . , s)
denote the recognition outputs of samples xi on s scales. Then, we can define the ensemble
loss of xi as

lxi = l(ε(xi)) = l

(
s∑

j=1

βjdij

)
, (14)

where β = [β1, β2, . . . , βs]
T is the weight parameters of s scales and

∑s
j=1 βj = 1. Con-

sidering the whole set T, its ensemble loss is denoted as

l(S) =
n∑

i=1

lxi =
n∑

i=1

[1−
s∑

j=1

βjdij]
2 = ‖e1 − Dβ‖22, (15)

where e1 = [1, 1, . . . , 1]T , whose length is s.
The goal of ensemble optimization is to minimize equation (15). However, directly min-

imizing equation (15) will lead to unstable solution. Inspired by the robustness of sparse
coding [36], we impose l1-regularized constraint on the objective to obtain the adaptive
fusion weights:

β̂ = arg min
β
{‖e1 − Dβ‖22 + γ‖β‖1}

s.t.

s∑

j=1

βj = 1, βj > 0,
(16)
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Figure 3: Example images from the LFW face dataset. Top: HR gallery faces; Bottom: LR probe face.

Figure 4: Example images from the Multi-PIE face dataset. Top: HR gallery faces; Bottom: LR probe
faces.

where γ is the regularization parameter. By some simple algebraic derivations, equation
(16) can be reformulated as

β̂ = arg min
β

{∥∥∥ê− D̂β
∥∥∥
2

2
+ γ‖β‖1

}
s.t. βj > 0, j = 1, 2, · · · , s, (17)

where ê = [e1; 1], D̂ = [D; e2] and e2 = [1, 1, . . . , 1] have a length of s. Problem
(17) can be easily solved by the widely used l1 ls solver [37]. Once we gain the opti-
mal values of the scale weights, the recognition result of the probe sample xi is Identity
(xi) = arg maxk {

∑
βj|hij = k}.

3. Experiments and discussions

In this section, we perform experiments on three public face sets (LFW, Multi-PIE, and
real-world NUST-RWFR) to validate the superiority of the proposed method for recognizing
the low-resolution faces. Without loss of generality, we treat the original high-quality face
images as HR galleries, while the downsampled and then upscaled faces are taken as LR
probes.

3.1. Datasets descriptions

The Labeled Faces in the Wild (LFW) [38] is a database of face photographs designed for
studying the problem of unconstrained face recognition. The database contains more than
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Figure 5: Example images from the NUST-RWFR face dataset. Top: HR gallery faces; Bottom: LR probe
faces.

13,000 face images of 5,749 persons collected from the web. LFW-a contains the same images
available in the original LFW database after alignment using a commercial face alignment
software. We gathered the objects that have more than ten samples to form a dataset with
158 objects from LFW-a. All the face parts are manually cropped and resized to 165× 120.
Fig. 3 exhibits several example faces from this set.

The Multi-PIE face dataset [39] collects face images from 337 subjects in four separate
sessions together with expression, pose and illumination variations. In our experiment, we
choose a subset that contains 164 individuals from session 3. For each person, 10 samples
with neutral expressions and another 10 samples with smile expressions are used. We resize
all the images to 100× 80. Fig. 4 depicts some examples of face images from this dataset.

The real-world database, NUST-RWFR face database [40], collects 2400 color faces from
100 subjects with different lighting conditions, facial expressions, and blurring. All the im-
ages are acquired in a real-world situation in two separate periods, and each period includes
12 samples. The image qualities in the first period are relatively good, while that in the
second period are poor. We manually crop the face region of each image and resize them to
80× 80. Some samples are listed in Fig. 5.

3.2. Ablation study

In this part, we investigate the effect of local feature extraction and multi-scale ensemble
learning. In our method, we use the first- and second-order gradient maps of the local patches
as the feature descriptors due to its effectiveness and simplicity. Then, these extracted
features are used for the discriminative representation feature leaning on a given training
dataset. Also, we propose to adaptively fuse the multi-scale complementary recognition
results from different patch scales for further performance improvement using multi-scale
ensemble learning.

To illustrate the effect of local feature extraction, we first give an example on the NUST-
RWFR face dataset. Fig. 6(a) illustrates the combination coefficients ρ of the learned rep-
resentation features without (the top row) or with (the bottom row) feature extraction for
a query patch from subject 1. Fig. 6(b) shows the corresponding residuals for these 100
subjects. From Fig. 6, we can see that the coefficients obtained by our method with lo-
cal feature extraction are much sparse than those without local feature extraction, and the
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Figure 6: An explanatory example from the NUST-RWFR dataset. (a) Combination coefficients of a query
patch from subject 1. (b) The residuals of the query patch from subject 1. The left column indicates
results without feature extraction. While the right column indicates results with feature extraction. Large
coefficients correspond to the correct subject and the smallest residual is related to subject 1.

dominant coefficients are related to subject 1. Thus, the smallest residual in Fig. 6(b) (the
bottom row) corresponds to the correct label (subject 1). This example verifies that with
the local feature extraction, the learned representation features are more discriminative. We
also give the recognition results of our method with or without local feature extraction on
three datasets in Fig. 7(a). The recognition results further demonstrate that our method
with local feature extraction can obtain better performance. To investigate the effect of
multi-scale ensemble learning, we give the recognition results of PRFL and its multi-scale
version (i.e., MSPRFL) on three datasets in Fig. 7(b). From Fig. 7(b), we can observe
that compared with PRFL, by fusing the multi-scale recognition results from different patch
scales, MSPRFL indeed promotes the performance improvement.
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Figure 7: The effect of (a) local feature extraction and (b) multi-scale ensemble learning in our method.

3.3. Experimental settings

In our method, we use seven scales, which have the sizes of 4× 4, 6× 6, 8× 8, 10× 10,
12 × 12, 14 × 14 and 16 × 16. Parameter γ (in Eq. (17)) is fixed as 0.1 for all databases.
For simplicity, we set λl = λh in our experiments. As in [24], we also separate the whole
gallery set into the new probe subset (one sample per subject) and the new gallery subset
(the remainder of the gallery set) for scale weight learning purpose.

For the LFW face dataset, the HR face samples have a size of 48×48. We first downsam-
ple the HR samples by a scaling factor of K (K is 2, 4, 8) and then upsampled them back to
the original resolution to serve as the corresponding LR versions. We divide the dataset into
three parts. We treat the first part (3 images per person) as the training subsets Ah and Al.
The second part (5 images per person) is used as the HR gallery set Xh. The remainders (2
images per person) are used as the LR probe set Yl. For each scaling factor K, the tests are
performed 10 runs for each method.

For the Multi-PIE face dataset, we set the size of the HR images as 32 × 24, 44 × 32,
64× 48 and 100× 80 in this experiment. All the HR face samples are first downsampled by
a scaling factor of 4 and then upscaled back to the primal size to serve as the LR probes.
As for each person, we randomly choose 3 samples with neutral expressions as the training
subsets Ah and Al, another 4 samples with neutral expressions as the HR gallery subset Xh,
and the remaining 4 samples with smile expressions as the LR probe subset Yl. For each
image size, the tests are performed 10 runs for each method.

For the NUST-RWFR face dataset, the size of the HR face images is 48 × 48. We first
downsample the HR images to the size 12×12 and then upsampled them back to the original
resolution by bicubic interpolation to serve as the LR faces. For each class, we randomly
pick 4 samples as the training subsets Ah and Al, another 4 samples as the LR probe subset
Yl, and the rest K (K is 6, 8, 10, 12, 14) samples as the HR gallery set Xh. For each K, we
perform the tests 10 runs for each method.
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Table 1: The recognition results (%) on the LFW database.

Methods ×2 ×4 ×8

LcBR 47.48±3.49 32.17±3.49 17.25±2.79

ISLcR 47.47±3.56 32.76±3.60 17.29±2.51

TLcR 47.52±3.63 32.87±3.47 17.55±2.62

RPCN 47.71±3.45 33.36±3.63 20.37±2.34

DAlign 47.82±3.48 33.69±3.76 20.48±2.75

Centerloss 48.52±3.87 33.95±3.49 20.62±2.60

TDCNN 48.58±3.57 33.65±3.36 20.54±2.19

MSPRFL 50.54±2.52 36.90±2.77 24.25±1.17

Table 2: The recognition results (%) on the Multi-PIE database.

Methods 32× 24 44× 32 64× 48 100× 80

LcBR 47.57±7.29 61.33±7.38 74.31±7.15 84.26±4.61

ISLcR 48.19±7.48 61.16±7.90 75.16±7.82 84.60±5.82

TLcR 48.47±7.45 61.79±7.91 75.52±7.35 84.65±4.25

RPCN 49.19±7.53 62.83±7.16 76.75±6.83 85.34±4.58

DAlign 50.27±7.66 62.96±7.34 76.87±6.58 85.53±4.91

Centerloss 50.59±7.08 63.15±6.47 77.32±6.36 86.85±4.89

TDCNN 50.93±7.25 63.14±6.35 77.43±6.55 86.93±3.75

MSPRFL 54.88±6.67 67.80±7.02 80.80±6.05 89.98±3.65

3.4. Comparison results

The effectiveness of our method is evaluated by comparing it with two types of state-
of-the-arts: the first is super-resolution methods, including LcBR [13], ISLcR [14] and
TLcR [12] approach. These vision-based methods cascade the super-resolved HR faces with
one well-known baseline of deep-learning based recognition methods, i.e., DFLA [41], for
recognition tests. The second one is resolution-invariant feature extraction methods that
just use LR images as the probe, including RPCN [18], DAlign [21], Centerloss [22] and
TDCNN [23] approach. It is worthy to note that in all experiments, for resolution-invariant
methods, we exploit the same gallery and probe sets. Concerning super-resolution methods,
we exploit the same training sets.

Tables 1-3 show the average recognition rates and std of the respective approaches in all
cases. For a better demonstration, we also list some super-resolved results in Fig. 8. As seen
in Fig. 8, the hallucinated faces usually have some ghosting artifacts around mouth, eye and
face contours. Recognition results in Tables 1-3 also demonstrate that directly feeding the
hallucinated HR faces into classifier engine seems to contribute less to recognition. On the
contrary, the resolution-robust feature extraction methods (i.e., RPCN, DAlign, Centerloss,
and TDCNN) consider the discriminative abilities of features, getting higher recognition
rates than super-resolution methods. The quantitative compared results also show that
our MSPRFL outperforms super-resolution methods and resolution-robust feature extrac-
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Table 3: The recognition results (%) on the NUST-RWFR database.

Methods 6 8 10 12 14

LcBR 38.73±3.45 40.49±3.52 43.36±3.76 46.12±3.32 47.09±3.17

ISLcR 39.58±4.76 40.43±3.98 43.38±3.88 46.40±3.56 47.24±3.77

TLcR 39.90±3.34 40.95±3.48 43.90±3.45 46.78±3.34 47.65±3.49

RPCN 40.76±2.61 41.49±3.54 44.48±3.21 47.80±3.60 48.18±3.33

DAlign 40.96±2.93 42.25±3.50 44.68±3.20 48.14±3.18 48.27±3.39

Centerloss 41.65±2.85 42.81±3.14 45.68±3.22 48.45±3.00 48.68±3.22

TDCNN 41.46±3.97 42.87±3.30 45.26±3.32 48.15±2.99 48.21±3.24

MSPRFL 44.80±2.23 45.90±2.83 49.25±2.45 50.43±2.50 51.65±2.59

Figure 8: Face hallucination results on the NUST-RWFR dataset. From first to the fifth columns: the ob-
served LR inputs, the super-resolved results of Bicubic interpolation, LcBR [13], ISLcR [14], and TLcR [12].
The last two columns denote the HR probe and one HR gallery.

tion methods, respectively. These achievements confirm that by integrating the recognition
results of all patches and further taking full advantage of the complementary discrimina-
tive ability from various patch sizes, our proposed MSPRFL can dramatically enhance the
recognition performance.

3.5. Parameter analysis

In this section, we mainly investigate the effect of parameters used in our approach.
We also perform experiments on above mentioned three datasets (i.e., LFW, Multi-PIE,
and NUST-RWFR) and the experimental configurations are the same as that in the above
experiments. In this experiment, we just vary one parameter while fixing the other one. We
divide the whole training set into three parts. The first part (one image per person) is used
as the probe set, the second part (one image per person) is treated as the gallery set, and
the remainders are used as the dictionary.

13

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



0.001 0.005 0.01 0.05 0.1 0.5 1

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
o
g
n
it
io

n
 r

a
te

LFW

Multi-PIE

NUST-RWFR

0.001 0.005 0.01 0.05 0.1 0.5 1

 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
e
c
o
g
n
it
io

n
 r

a
te

LFW

Multi-PIE

NUST-RWFR

Figure 9: The recognition results of MSPRFL with different values of parameters in different face datasets.

Fig. 9 plots the recognition rates of MSPRFL with different values of parameters λ and
η in different face datasets. As seen in Fig. 9, MSPRFL always achieves higher recognition
results when the parameter λ is set around 0.1. For LFW and Multi-PIE database, MSPRFL
always gives higher recognition results when the parameter η is set around 0.005. For the
NUST-RWFR database, MSPRFL can obtain higher recognition results when the parameter
η is set around 0.1.

3.6. Running time comparison

In this part, we compare the computational cost of different methods. For simplicity, we
only give the test results of one face image from the NUST-RWFR face database. The tests
are also performed 10 runs for each method. The average running time of each method is
listed in Fig. 10. We can see that the position-patch based super-resolution methods (i.e.,
LcBR, ISLcR, and TLcR) require similar running time since they both requires a few ma-
trix multiplications steps. The deep based methods (i.e., RPCN, DAlign, Centerloss, and
TDCNN) runs faster since the network can be trained offline. Due to the patch based repre-
sentation feature learning, our method requires much more time than deep based methods.
However, our method runs faster than super-resolution based methods since the scale weight
can be learned offline.

4. Conclusions

In this work, we present a new model named multi-scale patch based representation
feature learning (MSPRFL) for low-resolution face recognition purposes. In the proposed
method, the multi-level information of patches and the multi-scale outputs are thoroughly
utilized. More specially, the proposed MSPRFL takes full advantage of multi-level informa-
tion to learn more accurate resolution-robust representation features of each patch. More-
over, the recognition results of all patches are then combined by voting strategy. Finally, we
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Figure 10: The average running time of each method on NUST-RWFR face database.

further fuse the multi-scale outputs by taking full advantage of the complementary discrim-
inative information from different patch scales. Experiments on several public face datasets
have illustrated the effectiveness of our MSPRFL.
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Highlights

1. The paper focused on face recognition scenarios where the testing images have
low- resolutions.

2. The paper proposed  a multi-scale patch based representation feature learning
scheme to exploit multi-level information to learn more accurate resolution-
robust  representation  features  of  each  patch  for  low-resolution  face
recognition problem.

3. Experimental results demonstrate the effectiveness of our method.
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