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Highlights

• Efficient learning of local representations for RGB-D face recognition.

• Efficient high-level decision fusion scheme based on a sparse representa-

tion.

• Dynamic dictionary selection for a scalable RGB-D face recognition.
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Abstract

In this article we present a novel RGB-D learned local representations for face

recognition based on facial patch description and matching. The major con-

tribution of the proposed approach is an efficient learning and combination of

data-driven descriptors to characterize local patches extracted around image

reference points. We explored the complementarity between both of deep learn-

ing and statistical image features as data-driven descriptors. In addition, we

proposed an efficient high-level fusion scheme based on a sparse representation

algorithm to leverage the complementarity between image and depth modalities

and also the used data-driven features. Our approach was extensively evaluated

on four well-known benchmarks to prove its robustness against known challenges

in the case of face recognition. The obtained experimental results are compet-

itive with the state-of-the-art methods while providing a scalable and adaptive

RGB-D face recognition method.
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1. Introduction

Face recognition for an automated person identification has received great

attention over the years as it offers the most user-friendly and non-invasive

modality. Face recognition based on standard two dimensional (2-D) images

was extensively studied but it still suffers from problems related to imaging con-5

ditions and face pose variations. Thanks to the progress in three-dimensional

(3-D) technology, recent research has shifted from 2-D to 3-D (Abbad et al.,

2018). Indeed, 3-D face representation ensures a reliable surface shape descrip-

tion and adds geometric shape information to the face characterization. Most

recently, some researchers proposed to use image and depth data captured from10

cost-effective RGB-D sensors like MS Kinect or Intel RealSense instead of bulky

and expensive 3-D scanners. In addition to color images, RGB-D sensors provide

depth maps describing the scene 3-D shape by active vision or an alternative

technology. Driven by the emergence of this type of sensors and the latest ad-

vances in deep learning techniques, RGB-D face recognition is now becoming15

at the heart of several recent research studies. Indeed, it is nowadays crystal

clear that data-driven feature extraction, using Convolutional Neural Networks

(CNNs) for example, outperforms traditional hand-crafted features for many

computer vision tasks like object detection (Szegedy et al., 2013), image clas-

sification (Krizhevsky et al., 2012), etc. When it comes to the RGB-D face20

recognition, the observed challenges basically deal with face pose variations,

partial occlusions, imaging conditions, and discriminant feature extraction.

In this article, we proposed multimodal data-driven representation for RGB-

D face classification in a scalable manner to deal with typical issues like illumina-

tion variations, head pose variations, and disguise in controlled environments.25

Our contribution is many-fold. First, the proposed pipeline does not require

any prior knowledge on the face pose nor does it rely on a semantic analysis

of the face before performing the recognition. Typically, image interest points

(like SURF or SIFT) can be detected offering a repeatable, efficient and stable

results across different viewing conditions. These interest points are extracted30
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from facial images then RGB-D patches are simply extracted around to get local

facial regions rather than an entire face. Second, in contrast to hand-crafted fea-

tures, we proposed to learn discriminant local data-driven features based on deep

learning techniques and statistical binary features for an optimal face patches

representation. The effectiveness of combining these representations on both35

image and depth modalities was proved. Third, we suggested a patch matching

algorithm based on a Sparse Representation Classification (SRC) method in a

scalable way. Preliminary, the SRC algorithm had a dictionary that is filled

with the entire samples in the gallery; but this would slow down the matching

process of each patch to all patches in the gallery. A dynamic patch dictionary40

selection was then performed to pick only the closest patches from the gallery

to drastically speed-up patch matching process. Finally, we proposed a late-

fusion strategy leveraging the complementarity between image and depth data

representations.

The remaining sections of this article are structured as follows. First, Section45

2 gives an overview of the related work. Then, we detail the proposed RGB-D

face recognition approach in Section 3. Section 4 summarizes the performed

experiments and the obtained results to validate our approach. Finally, we

conclude this study in Section 5 with some observations and perspectives for

future work.50

2. Related Work

In this section, we provide an overview on the RGB-D face recognition meth-

ods closely related to our work. This discussion can be intuitively driven under

three categories. The first includes the initial efforts made to develop pose-

invariant solutions where the main contributions generally focused on the pre-55

processing part. This can be explained by the poor quality of the depth data

acquired with the first low-cost RGB-D sensors. In the second category, other

solutions explored the adaptation of standard hand-crafted image descriptors

to characterize RGB-D face data. Finally, as a last trend, RGB-D face recog-
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nition techniques recently shifted from using hand-crafted features to applying60

learned-features, grounding on deep learning techniques.

The method of (Li et al., 2013) is among the first methods proposed for

RGB-D face recognition. The pre-processing includes face data cropping from

the 3-D scan by centering a sphere on the nose tip which is manually selected

as the closest point to the sensor. Then, all the cropped facial scans are aligned65

with a generic face model using an Iterative Closest Point (ICP) algorithm to

generate a canonical frontal view for both image and depth data. A symmetric

filling process is then applied on the missing depth data caused by self-occlusion

in non-frontal poses. For image data, the Discriminant Color Space (DCS)

operator is used as a feature extractor. Then, the pre-processed depth map and70

the 2-D DCS features are classified separately by applying an SRC algorithm

before performing a late fusion to obtain the final identity of a given probe.

(Hsu et al., 2014) fit a 3-D face model to the face data to build a 3-D

textured face model for each person in the gallery. For a new probe, the face

pose is estimated based on facial landmarks detection (Zhu & Ramanan, 2012)75

to be able to apply it on all the 3-D textured models in the gallery. This allows

generating 2-D images corresponding to the probe facial pose by plan projection.

Then, a Local Binary Pattern (LBP) descriptor is applied on all the projected

2-D images to perform the classification using an SRC algorithm.

Similarly, (Sang et al., 2016) estimate the face pose from the probe samples80

by aligning a template face model to the depth data using an ICP algorithm

then the image data in the gallery can be rendered to the same view as the

probe. For feature extraction, the well-known Histograms of Oriented Gradients

(HOG) operator is applied on both image and depth data, then a Joint Bayesian

Classifier is used and the final decision is made by a weighted sum of similarity85

scores obtained from the image and depth classification.

It can be clearly observed that these previous approaches focused on pre-

processing especially when dealing with pose variation by aligning the probe to

the gallery samples. Although this kind of sequential processing may lead to

error propagation from pose estimation to the classification, it yielded promising90
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results (Hsu et al., 2014). Alternatively, to deal with pose variation, (Ciaccio

et al., 2013) propose to complete the gallery by generating a set of new images,

from a single RGB-D data, corresponding to a large range of predefined face

orientations. This is achieved in the following way. Firstly, all faces are cropped

then aligned based on a facial landmarks detector (Zhu & Ramanan, 2012).95

Then, each face is rotated around the Y axis every 5 degrees to render new im-

ages. Now, for all gallery samples, including both original and generated ones,

each face image is represented by a set of densely sampled patches of 10×10 pix-

els using a step size of 5 pixels. The patches corresponding to self-occluded parts

are identified and then discarded based on the estimated pose. The remaining100

patches are described by the LBP and co-variance descriptor computed from

pixel locations, intensity derivatives, and edge orientations. Then, the match-

ing part is performed using only the filtered patches of each gallery face image

based on the Euclidean distance in the feature space. The similarity measures

over the selected patches are integrated together and normalized to obtain the105

final similarity score between the probe and the gallery set. Finally, a combi-

nation with probabilistic integration of the resulting scores were made and a

Bayesian decision was performed.

In the second category of methods, this overview focused on those methods

mainly interested in the feature extraction part from RGB-D face data. In110

(Dai et al., 2015), an Enhanced Local Mixed Derivative Pattern descriptor is

separately applied on 2-D Gabor features extracted from image and depth data.

This descriptor is a mixed feature descriptor of different orders of local derivative

patterns and local binary patterns. To attribute an the identity of a given probe,

a nearest neighbor search algorithm is applied separately for each modality, and115

the final similarity score is produced by combining the scores computed for both

image and depth modalities. In (Goswami et al., 2014), faces are represented by

a set of texture features and geometric attributes computed from both image and

depth data. For texture features, the HOG operator is applied on saliency and

entropy maps obtained from both image and depth data. The set of geometric120

attributes are computed based on Euclidean distances between facial landmarks
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located on the depth maps. Finally, a random forest classifier is used for the

classification part. (Boutellaa et al., 2015) explored more feature combinations,

a bunch of hand-crafted features (e.g., LBP, Local Phase Quantization (LPQ),

and HOG) was applied respectively on RGB and depth face crops, and finally125

a Support Vector Machine (SVM) classifier was used for the classification.

(Kaashki et al., 2018) also explored the usage of similar feature extractors

like HOG, LBP, and 3DLBP. However, these descriptors were applied locally on

patches around located facial landmarks. An SVM classifier was also used for

the classification. In (Hayat et al., 2016) an image set classification is proposed130

for RGB-D face recognition. For a given set of images, the face regions and

the head poses are, firstly, detected using (Fanelli et al., 2011) then clustered

into multiple subsets according to the estimated pose. A block based covariance

matrix representation from the LBP features is applied to model each subsets

on the Riemannian manifold space. As classifier, an SVM is used for each subset135

for both modalities, and a final decision with a majority vote rule is made.

Unlike hand-crafted features, feature learning has started to draw increas-

ing interest for face recognition, initially, in 2-D image-based approaches and

currently on RGB-D data-based approaches. Recently, and for image set clas-

sification (Hayat et al., 2014, 2015) proposed a deep learning approach based140

on Auto-Encoder (AE) to learn a class-specific model called Deep Reconstruc-

tion Model (DRM) for each set of images. In the offline phase, Template Deep

Reconstruction Model (TDRM) weights are, firstly, initialized using Gaussian

Restricted Boltzmann Machines (GRBMs) and then fine-tuned for each class of

the training image sets.145

In the test phase, given a new probe, the face image and depth data are

encoded and decoded using all the learned class-specific models separately. The

underlying idea is to perform the classification based on the evaluation of the

residual error between the original face data and the reconstructed ones (i.e.,

output of the decoder network) for all the learned models. The major drawback150

of this approach is the lack of scalability as it requires to learn a class-specific

model for any new person to add to the gallery, and for the test phase, all the
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models should be run on the input set of data to evaluate the reconstruction

errors. This means that the run-time is linearly dependent on the number of

persons in the gallery.155

(Lee et al., 2016) proposed to learn deep features from both image and depth

data. The CNN model is, firstly, trained on color and gray-scale facial images.

Then, the obtained model is fine-tuned on depth face data for transfer learning.

A step of depth enhancement is performed to recover the facial depth image by

projecting the depth pixels onto the 3-D space and rendering back onto images160

again after a series of processing steps like noise reduction, depth fusion, hole

filling, pose estimation, frontalization, etc. For classification, an SVM is ap-

plied with probability estimation taking into consideration deep representation

similarities, head pose and database similarity standard deviation to estimate a

confidence score and make the final decision.165

(Zhang et al., 2018) introduced a novel method which processes the multi-

modal and the cross-modal matching allowing measuring the similarity between

image and depth data. In more details, a set of complimentary and common

features are learned from image and depth data. On the one hand, the authors

started with learning two modality-specific feature networks based on Inception-170

v2 (Ioffe & Szegedy, 2015), then they introduced a joint loss architecture taking

activation from both networks to enforce complementary feature learning. On

the other hand, for learning heterogeneous feature from image and depth data,

the modality-specific features are used again to obtain RGB-to-RGB and RGB-

to-depth matching scores. Finally, the resulting similarity scores are combined175

with a weighted sum rule.

(Neto et al., 2019) proposed a depth-based face recognition approach by

learning from 3D-LBP images. Firstly, two 3D-LBP variants are computed

from the depth image. Then, a shallow CNN is designed for classification. The

resulting scores in the last softmax layer for each descriptor image are combined180

with weighted sum rules to get the final decision.

The previous overview makes it clear that all of these approaches require

a pre-processing step to precisely localize the face, estimate its pose, or even
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accurately detect face landmarks which could be prone to error propagation

in a sequential processing and add further dependencies to the approach. For185

example, (Hsu et al., 2014; Li et al., 2013; Ciaccio et al., 2013; Sang et al.,

2016) aimed mainly to overcome pose variations either through pose correction

or gallery completion by generating new images in different views. For data rep-

resentation, the aforementioned works (Dai et al., 2015; Goswami et al., 2014;

Boutellaa et al., 2015; Kaashki et al., 2018) settle for the adaptation of the190

classic hand-crafted descriptors (i.e., HOG, LBP, etc.) while the extraction of

more appropriate features could be obtained by data-driven learning techniques.

Later and with the arrival of the new era of deep learning techniques, the al-

ternative approaches like those of (Lee et al., 2016; Hayat et al., 2015; Zhang

et al., 2018) started to take benefit from learning more appropriate features and195

boosted their RGB-D face recognition performances. Opposite to (Hayat et al.,

2015) who focused on intra-class compactness and did not consider the relation-

ship between classes with maximizing the inter-class separability, (Zhang et al.,

2018; Lee et al., 2016) proposed to learn discriminant features for a multi-modal

recognition taking the whole face as input. While only a few techniques apply200

local learned features for a RGB-D face recognition, our approach highlighted

how to learn a discriminant representation of local regions in the face data, and

showed an undeniable ability to compete with standard hand-crafted features

in the case of RGB-D face recognition. Compared to the global description of

the whole face images, local features have proven to be robust against many205

variations especially occlusion (Tan et al., 2006). Generally for local feature ex-

traction, feature detectors are applied to extract the face distinctive information

from local regions. These regions are cropped with sampling the input image

with fixed stride in grid or alternatively around detected landmarks. In our ap-

proach, we simply considered locating a set of image interest points on the face210

to get rid of facial landmarks detection or further facial analysis. A given face

is represented by a set of patches around salient detected image interest points.

Each of these patches is transformed using a selection of learned descriptors,

namely CNNs and the Binarized Statistical Image Features (BSIF) (Kannala
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Figure 1: Flowchart of the proposed RGB-D face recognition approach. The pipeline involves
online and offline stages sharing some processings grouped under the highlighted block like face
detection, patches extraction and CNNS and BSIF features computing. The offline phase is
outlined with dashed arrows to indicate the gallery construction and the descriptors training.
In the online phase, a dynamic dictionary selection is performed whenever a given feature
vector is matched to the gallery. The process of feature matching and classification generates
four vote vectors corresponding to the four applied descriptors. These vote vectors are then
combined to generate the final decision.

& Rahtu, 2012), before feeding the classification part. For CNNs, we propose215

an effective training algorithm leading to a discriminant space for face patches

representation. Additionally, although the majority of deep learning approaches

often rely on the deep architecture and on the availability of huge amounts of

data in order to achieve state-of-the art performance, we believe that building

a shallow deep model with fewer parameters can efficiently learn discriminant220

local features from small data and achieve a concurrent performance. BSIF is a

popular statistical descriptor used for several computer vision tasks. (Boutellaa

et al., 2015) proved the usefulness of low-resolution depth data in different face

analysis tasks compared to hand-crafted features and achieved prominent clas-

sification rates. Here, we demonstrated the effectiveness of combining statistical225

and CNNs features to properly describe facial local patches. Finally, the corre-

spondence between patches was performed based on the SRC algorithm with a

dynamic patch dictionary selection. The final classification decision is obtained

by a majority vote rule.

3. Proposed RGB-D face recognition approach230

The general pipeline of the proposed approach is outlined in Figure 1. It

involves online and offline phases sharing some processing blocks like raw data

pre-processing (i.e., median and bilateral filtering), face localization, patch ex-
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traction and feature vector computing. The offline phase is mainly dedicated to

train or update the data-driven descriptors and construct the gallery. Whereas235

the online phase is dedicated to the identity recognition given a face query.

This online phase follows the following steps. Firstly, the face is localized in the

image. It is then represented by a set of patches cropped around the image in-

terest points extracted on the face. We considered two data-driven descriptors,

namely CNN and BSIF, applied on both input and gallery patches. The input240

patches are matched to those of the gallery based on their feature vector and

using a sparse representation algorithm. The application of this algorithm on

each patch separately yields a set of votes. These are later combined to obtain

the final identity of the input face.

The remainder of this section detailed the main modules involved in our245

proposed approach.

3.1. Face pre-processing and patch extraction

The face pre-processing shared between the offline and online phases of our

system includes median and bilateral filtering for the depth maps and face lo-

calization (Zhu & Ramanan, 2012)1. The face detection is performed on the250

texture image then the obtained bounding box is mapped on the depth image.

The cropped face region is resized to 96× 96 pixels to ensure a normalized face

spatial resolution. To get rid of face landmarks localization, we only consider

the image interest points without any further semantic analysis and without loss

of generality. In other words, we do not try to catch specific facial landmarks.255

Although the use of facial landmarks may appear to be intuitive, we believe

that, overall the whole pipeline the use of image interest points is more suitable

and robust against all variations and challenges related to the facial recognition

in our context. Fundamentally, we believe that a precise facial landmarks lo-

calization is still challenging under head pose variations, facial expressions and260

is not robust enough under facial occlusions. Also, facial landmarks detection

1We used only the face localization, facial landmarks were not used.
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Figure 2: Illustration of extracted image interest points from image and depth data under
different angles of view.

is an independent research field, and we would like to get rid of an additional

dependency in our pipeline. This can be justified by the fact that imprecise

landmark detection errors could propagate to the rest of the pipeline and af-

fect the recognition performance. Instead, the image interest point detection265

does not need any advanced analysis of the face region. It is rather stable,

straightforward, and fast.

We used SURF detector (Bay et al., 2006) to extract image interest points

on the cropped and resized face images. SURF presents an efficient scale and

rotation invariant detector and descriptor which outperforms all other feature270

detection techniques in terms of repeatability, distinctiveness, robustness and

speed using the concept of integral image and Hessian approximation (Bay et al.,

2006, 2008). The coordinates of the detected SURF interest points are mapped

from image to depth data using the sensor calibration (see Figure 2 for an

example). Around each interest point, we extract two patches of 21× 21 pixels275

from both image and depth data. Again, the mapping between image and depth

data is ensured by the RGB-D sensor calibration.

3.2. RGB-D data-driven descriptor

This section details the data-driven descriptors used for an optimal facial

patch description. We first introduce our CNN architecture to learn discriminant280

patch features. Secondly, we present the BSIF descriptor and how it was adapted

for local face patch representation.
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3.2.1. CNN based features

Features based on deep learning are widely applied on 2-D face recognition

and has achieved promising results in many works like DeepFace (Taigman et al.,285

2014), DeepID2 (Sun et al., 2014), FaceNet (Schroff et al., 2015), VGG-DeepFace

(Parkhi et al., 2015), Center Loss (Wen et al., 2016), SphereFace (Liu et al.,

2017), Cosface (Wang et al., 2018), ArcFace (Deng et al., 2018). The success of

these methods is attributed to the ability of the CNN to learn rich features from

the whole face. In our case, the face is represented by a set of small patches290

(21×21 pixels), pre-trained networks, like VGG, for feature extraction can not

be applied. We rather designed a relatively shallow CNN architecture detailed in

Figure 3. We chose standard processing blocks instead of complex ones like skip

connections, residual, etc. due to the small input patches and the shallowness

of the network. It consists of four types of processing layers including 2-D295

Convolution, Normalization, Pooling, and Fully Connected Layer (FCL). This

architecture produces at the end a feature vector of 128 dimensions for a given

input patch. We separately trained the designed CNN for both image and depth

modalities. Many loss functions have been proposed to train the CNNs such

as contrastive and cross-entropy losses. In our case, we opted for the triplet300

loss (Schroff et al., 2015). It has the advantage of enforcing the inter-class

separability and in a same way the intra-class compactness. In other words,

triplet loss ensures a discriminant patch representation by enforcing the closest

patches to emanate from a same person. It takes a triplet of patches as input

in the form {A,P,N}, where A is the anchor patch, P is the positive patch,305

which is a different sample from the same class person as A, and N standing

for negative patch is a sample belonging to a different class. The objective of

the optimization process, is to update the network parameters in such way that

the patches A and P become closer in the embedded feature space, and A and

N are further apart in terms of their Euclidean distances as shown in Figure 4.310

The triplet loss formula is given in Equation (1) where f function stands for

13

                  



(1
8,

18
,6

)

(9
,9

,6
)

(7
,7

,3
2)

(3
,3

,3
2)

(1
,1

,1
28

)

MaxPooling

(2x2)BatchNorm

Sigmoid

conv (3x3) conv (3x3)

ReLU

MaxPooling

(2x2)

FCL

in
pu

t

ou
tp

ut

(2
1,

21
,1

)

Figure 3: The proposed CNN architecture to be trained separately on image and depth data.

triplet loss

embedding

space

CNN

tr
ip

le
t 

p
a
tc

h
e
s

anchor

positive

negative

Figure 4: Illustration of the triplet loss with facial patches images. (left) input patches
(A,P,N ), transformed by the CNN network into the embedding space (middle). In this
space, the objective of the triplet loss is to pull the representation of P inside the ω-radius
hypersphere centered on the representation of A and push the representation of N out of the
same hypersphere.

14

                  



the application of the CNN on a given input patch (A,P, or N ) to generate a

feature vector. The triplet loss equation involves an additional parameter called

the margin ω 2 defining how far away the dissimilarities should be.315

L =
∑

a,p,n∈{A,P,N}

(
||f(a)− f(p)||22−||f(a)− f(n)||22+ω

)
(1)

Minimizing L enforces the maximization of the Euclidean distance between

patches from different classes which should be greater than the distance between

anchor and positive features. For an efficient training, only the triplet patches

that independently verify the constraint L > 0 are online selected during the

optimization iteration as valid triplets. In practice, a single patch triplet is320

obtained following these 3 steps:

1. Randomly select one anchor patch from the pool of patches related to a

given person c.

2. Randomly select the positive patch from the remaining patches in the

same pool.325

3. Randomly select a negative patch from the patch pool related to other

persons ( 6= c)

3.2.2. BSIF based features

The BSIF descriptor was previously applied in (Boutellaa et al., 2015) to

prove the usefulness of low-resolution depth data in different face analysis tasks.330

It achieved the best classification rates when compared to the use of hand-crafted

features for the same purpose. The BSIF is a data-driven image descriptor that

aims to compute a binary code for each pixel in an input image to represent its

local structure. The value of each bit within the BSIF descriptor is computed

by quantizing the response of a linear filter. Each bit in the binary code is335

associated to a specific filter, and the desired length of the bit string determines

the number of filters used. In the original BSIF method, the authors used a pre-

2In our case ω is experimentally set to 0.2.

15

                  



defined number of convolution filters are learned from a set of training image

patches selected to maximize the statistical independence between the responses

of the convolutions of each individual filter and the given image patches (Kan-340

nala & Rahtu, 2012). A BSIF code of length M bits is computed for a given

image patch X through the following equation:

BSIFM =
M∑

m=1

bm × 2m−1 (2)

where bm =





1 if Wm ∗X > 0

0 otherwise

In Equation (2), ∗ is the convolution operator and Wm is the m-th filter

of the same size as the image patch X. The response of the application of a

filter (Wm ∗X) is thresholded at zero to obtain the m-th bit of the BSIF code345

corresponding to X. On a full image or a larger region, Equation (2) is applied

in exactly the same way at each position in the input image yielding a BSIF

code for each pixel of the input image.

Originally, the BSIF filters were learned for texture analysis purposes on a

bunch of patches extracted randomly from a set of natural images (e.g., land-350

scapes, grass, etc.). However, it could be trained for different applications and

contexts. In our case, we trained the BSIF filters on image and depth patches

separately. We consider different filter sizes {7, 9, 11, 13, 15, 17} combined to

different bit lengths {5, 6, 7, 8, 9, 10, 11, 12} resulting in a total of 48 filters to

be trained for each modality. The BSIF filters training consists mainly of three355

steps: 1) mean subtraction of each patch, 2) dimensionality reduction using

Principle Component Analysis, and 3) estimation of statistically independent

filters (or basis) using Independent Component Analysis. Figure 5 displays an

illustration of the learned BSIF filters applied to an image patch.
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 Visualization of BSIF filters BSIF Code

11x11

13x13

15x15

17x17

Filter size

Figure 5: Example of extracted BSIF features. Input patch (on the left) is transformed using
the learned BSIF filters (visualized in the middle) with different sizes 11 × 11, 13 × 13, 15 ×
15, 17 × 17 to obtain their corresponding BSIF codes (on the right). Please note that the
filters are resized only for the purpose of illustration.

3.3. Patch matching and classification360

Given a new RGB-D probe face, a set of K patches is extracted from both

image and depth data, and then transformed using their corresponding CNN

and BSIF descriptors to obtain a set of 2 feature vectors per extracted patch

and per modality, which yields a total of 4×K feature vectors representing the

input face. Let us define d ∈ [1, .., 4] as the index of descriptors that can take365

one of the 4 options; either CNN or BSIF descriptors applied on either image

or depth patches. We propose to match each feature vector separately to the

gallery before taking the final decision. The matching algorithm we propose is

based on a sparse representation technique where the main objective is to ap-

proximate an input feature vector by a sparse linear regression of a dictionary370

constructed from the feature vectors computed on dynamically selected gallery

patches. As described in Algorithm 1, the matching process is outlined in three

main steps repeated separately for each feature vector yk
d : 1) adaptive and dy-

namic dictionary selection; 2) sparse representation of yk
d ; and 3) prediction of

the person identity corresponding to the given feature vector. In more details375

and for a given feature vector yd
k, an adaptive dictionary D̂d

k is selected gath-

ering the nearest atoms in the putative full dictionary Dd
k corresponding to the

descriptor d (see Equation (3)). We used KD-Tree search algorithm following

our previous work (Grati et al., 2016). This allows us to substantially speed-up

the overall matching process and maintain a scalable classification with respect380
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to the gallery size. Afterward, we approximate yd
k by a sparse linear regression

of the selected dictionary D̂d
k (see Equation (4)). In Equation (4), xd

k ∈ RN̂

corresponds to the resulting sparse coefficient vector whose non-zero values are

related to the atoms in D̂d
k contributed to the reconstruction of yd

k, and N̂ is

experimentally fixed to 20. We used (Mairal et al., 2010) to solve the LASSO `1385

minimization problem in equation (4). The obtained sparse representation x̂d
k

is then used in Equation (5) to compute rdk vector gathering the reconstruction

error for each class in the gallery. In Equation (5), Md
k,i is a diagonal matrix

whose values take 1 for all atoms in D̂d
k emanating from the i-th class and

0 otherwise. Finally, the identity attributed to the current feature vector yd
k390

corresponds to the lowest reconstruction error in rdk (see Equation (6)) which

allows incrementing the associated vote in vd as shown in Equation (7).
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Algorithm 1: Sparse Representation based Matching.

Input:

• A set of query feature vectors {yd
k}k=1,..,K of the descriptor d computed

on K patches of a query face.

• Putative dictionary Dd corresponding to the descriptor d and consisting
of the set of feature vectors computed for the descriptor d on all the N
patches in the gallery.

• C is the number of classes.

Output: Vote vector vd corresponding to the descriptor d.
- Initialize vd values to zero.
for k = 1 to K do

Step 1:

- Select the dynamic dictionary D̂d
k from Dd gathering the nearest N̂

atoms to yd
k using KD-Tree algorithm, where N̂ � N :

D̂d
k = KD-Tree(yd

k,D
d) (3)

Step 2:

- Approximate yd
k by a sparse linear regression of the corresponding

dictionary D̂d
k (i.e., yd

k ≈ D̂d
k x̂d

k) by solving the LASSO `1 minimization
problem:

x̂d
k = arg min

xd
k

‖D̂d
kx

d
k − yd

k‖2 + λ‖xd
k‖1 (4)

Step 3:

- Calculate the reconstruction residual as:
for each class i = 1 to C do

rdk(i) = ‖yd
k − D̂d

k Md
k,i x̂

d
k)‖2 (5)

end

- Select the identity to attribute to the current feature vector yd
k

corresponding to the lowest reconstruction error:

c̃ = arg min
i

rdk(i) (6)

- Increment the number of votes associated to the selected class c̃:

vd(c̃)+ = 1 (7)

end
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3.4. Votes fusion and final decision395

After the application of the matching algorithm on all the set of feature

vectors, we end up with a set of four vote vectors {vd}d=1,..,4. These should be

combined into a single vote vector to deduce the final identity to attribute to

the face query. To this end, we simply sum all the resulting votes and apply a

majority vote rule to obtain the final decision, which corresponds to the index

of the highest vote over the elements of v̂ (see Equation (8)).

v̂ =
∑

d=1,..,4

vd (8)

It is worth noticing that two other fusion schemes were tested at two different

levels of our pipeline:

• raw data-level fusion: the corresponding image and depth patches are con-

catenated at the very beginning and fed as two-channels input tensors to a

single CNN network. In this case, the CNN leverages the complementarity400

between image and depth patches to output a single feature vector.

• feature-level fusion: two CNNs are applied separately on each modality

and combined via attention module to learn the most informative and dis-

criminant components of a pair of representations yielding a single feature

vector.405

The reader can find more details on these fusion schemes in the technical report

given in (Grati et al., 2020). Although the majority vote rule looks simple, it

outperforms the other elaborated fusion solutions and allows the approach to

be versatile and adaptive in case other local descriptors should be added or in

the case of missing modality (i.e., image or depth).410

4. Experimental results

We conducted a set of experiments to assess the performance of our proposed

RGB-D face recognition approach against known challenges in face recognition
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applications, including face pose variations, partial occlusions, and imaging con-

ditions. We keep the same experimental protocols followed by the state-of-the-415

art works using four well-known benchmark databases. The obtained results

are separately presented for each database to simplify the comparison with the

state-of-the-art results. In addition, we pushed further our experiments to deal

with large-scale and heterogeneous databases by combining all the four bench-

mark databases into a single, larger and more challenging database. Finally,420

we compared our patch-based approach to state-of-the-arts for CNN-based face

representation and recognition. All the reported results in all the conducted

experiments were obtained by averaging five runs with five separately trained

CNN models and BSIF filters.

The remaining of this section is organized as follows: we first start by in-425

troducing the four considered benchmark databases, then we detail the settings

of our descriptors training, and finally we provide and discussed the obtained

experimental results.

4.1. Evaluation databases

Four RGB-D face recognition benchmark databases were used for the valida-430

tion of our approach: CurtinFaces (Li et al., 2013), Eurecom (Min et al., 2014),

BIWI (Fanelli et al., 2011), and VAP (Hg et al., 2012).

• CurtinFaces database consists of 52 subjects, 10 females and 42 males.

Each subject has 97 images taken under different conditions: combina-

tions of 7 facial expressions, 7 poses, 5 illumination configurations, and 2435

occlusion situations. This database is considered as the most challenging

database as it offers different combinations in terms of variations of poses,

and expression and illumination.

• Eurecom database is also made up of 52 subjects, 14 females and 38 males.

Each person has a set of 9 images taken at two different time sessions440

(separated about half a month). Each session covers 9 settings: neutral,
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smiling, open mouth, illumination variation, left end right profile, occlu-

sion on the eyes, occlusion on the mouth, and finally occlusion with a

white paper-sheet.

• BIWI Kinect Head Pose database contains 24 sequence of 20 different445

persons (6 females and 14 males). We refered to it here as the BIWI

database for simplicity. This database is actually the least used database

for face recognition validation since it was originally released for head pose

estimation tasks.

This database brings more challenges to deal with face pose variations.450

Indeed, each person rolls his face at different orientations within ±75° in

yaw, ±60° in pitch, and ±50° in roll.

• VAP face database was initially proposed for testing a face detection al-

gorithm. It contains 1581 images taken for 31 persons (1 female and 30

males). The dataset has 51 images for each person captured under 17455

different variations in poses and expressions repeated three times. Thir-

teen points on a wall behind a Kinect sensor were chosen and each person

looked at these points sequentially to achieve roughly the same angles for

each person.

4.2. Settings of the descriptors training460

The BSIF filters training is relatively straightforward. In practice, we fol-

lowed the same training procedure described in (Hyvärinen et al., 2009) and we

used the original implementation3. Basically, there are only the filter sizes, the

bit lengths, and the input training data to be set for this training. We randomly

selected a set of 20 image and depth facial data. We set the patch size to the465

desired filter size, then each image is randomly sampled yielding a large set of

about 50000 extracted patches for each modality.

3http://www.naturalimagestatistics.net/
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Our CNN trainings, however, required parameters to tune. All the trainings

have been performed with a batch size of 64, a decay and momentum values of

0.0005 and 0.09 respectively, and an initial learning rate set to 0.001. We used470

PyTorch4 framework to implement and train the CNNs. For each database,

the training data were obtained from a classical train/validation split, and the

pool of patch triplets as needed for our loss calculation were generated from

all the persons equally and updated each succession of 10 optimization epochs.

We kept the same training settings for all the databases and experiments. The475

CNN model were trained exclusively on patches extracted from the gallery sets.

Firstly, the CurtinFaces database was used to obtain the first models; then, they

were fine-tuned separately on the other databases (i.e., EURECOM, BIWI and

VAP). The training patches were selected the same way for the four databases.

It consists in selecting all the patches in the gallery set which corresponds to 32480

patches in average per modality and per sample.

4.3. Experiments on CurtinFaces database

We followed the same protocol originally proposed in (Li et al., 2013) and

adopted by most of the works in the literature. It defines a bunch of evalua-

tion experiments to assess the face recognition methods performance in dealing485

with many challenges like head pose, illumination and facial expression varia-

tions and occlusion. Here the gallery for all the experiments contains 18 cap-

tures per person. Each of these captures involved only one kind of variation,

namely, illumination, pose or expression variations. CurtinFaces benchmark

is considered as the most challenging and representative database. We took490

advantage of the experiments performed on this database to evaluate the com-

plementarity between the image and depth modalities, and also between the

CNN and BSIF features. To this end, we derived four additional baselines from

our method, named Ourimage, Ourdepth, OurCNN , and OurBSIF . Ourimage and

Ourdepthcorresponded to our method and used either image or depth data as495

4https://pytorch.org/
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Figure 6: Sample of probe images of a smiling person under various poses. The frontal view is
at the center, on the left and right sides images corresponding to face yaw variations with ±30°,
±60°, and ±90°, and finally, the top and bottom images correspond to ±60°pitch variation.

input while OurCNN and OurBSIF corresponded to our method and considered

either CNNs or BSIF features for the patch description.

4.3.1. Experiments on CurtinFaces database under pose and facial expression

variations

These experiments were performed on the CurtinFaces section including non-500

occluded faces with frontal, left and right profile view added to 4 yaw and 2 pitch

distinct poses coupled to 6 different facial expressions. A total of 39 probes per

subject were considered for this experiment (see Figure 6 for a sample).

Table 1 summarizes and compares the obtained recognition rates to those

of the state-of-the-art methods. From a first glance, one could observe that all505

the results are very competitive for the frontal view, yaw pose angles ±30°and

±60°, and pitch pose angles ±60°. Our approach outperforms those of (Ciaccio

et al., 2013; Li et al., 2013; Kaashki et al., 2018).

For extreme yaw profile poses (±90°), (Hsu et al., 2014; Sang et al., 2016)

stands out as they rely on a specific processing to handle pose variation. They510

achieved 93.5% and 95.1%, respectively, while we obtained 86.55% without any

additional processing to deal with pose variation. In general, our approach

shows promising results compared to the state-of-the-art and the only drop in

the recognition rates is observed for yaw pose angles±90°. This can be explained

by the fact that CurtinFaces provides only one capture per person for this pose,515
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Table 1: Comparison of recognition rates on CurtinFaces database under pose and facial
expression variation.
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Proposed method

OurimageOurdepth Our

Frontal N/A 100% 100% 100% 100% 100% 100% 100%
Yaw±30° 94.2% 99.4% 99.4% 99.5% 90.3% 99.35% 99.35% 99.84%
Yaw±60° 84.6% 98.2% 98.2% 98.4% 58.6% 97.92% 95.67% 98.45%
Yaw±90° 75.0% 93.5% 84.6% 95.1% N/A 84.61% 78.85% 86.55%
Pitch±60° N/A N/A 92.8% 96.7% 97.6% 96.8% 97.2% 98.1%

which is that of the probe, and consequently, there are no patches corresponding

to this extreme profile pose in the gallery.

The second observation we can make from Table 1 is that the two baselines

Ourimage and Ourdepth achieved similar and relatively high recognition rates,

although they are still lower than those of our full pipeline. This highlights the520

complementarity between both image and depth modalities for our RGB-D face

recognition approach. Under this CurtinFaces section, we also evaluated and

compared the pipelines OurCNN and OurBSIF in order to study the combination

of the considered CNN and BSIF data-driven features. Figure 7 shows the

cumulative match curve (CMC) of OurCNN and OurBSIF in addition to our525

full pipeline. Roughly speaking, the curves of OurCNN and OurBSIF seem to

be similar, however the curve of the full pipeline is significantly higher, especially

for the first ranks (e.g., 99.73% against 98.1% and 97.52% at rank 1). These

results plead in favor of the combination of CNN and BSIF features for facial

RGB-D patches representation.530
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Figure 7: The CMC of our proposed method in comparison with the pipelines OurCNN and
OurBSIF .
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Figure 8: Examples from CurtinFaces of 15 probes images for the same person under simul-
taneous variation in lighting conditions (columns) and facial expressions (rows).

4.3.2. Experiments on CurtinFaces database under illumination condition vari-

ations

The actual experiments are conducted to evaluate the effectiveness of our

proposed approach under simultaneous variation in lighting condition and facial

expression. The validation protocol of CurtinFaces related to this experiment535

defines a probe set including 30 captures per subject covering five illumination

conditions combined with six different facial expressions (see the examples in

Figure 8).

Table 2 summarizes the obtained recognition rates for our approach and

compare them to the state-of-the-art methods with respect to each proposed540

illumination condition. We achieved an average recognition rate of 99.6% which

outperforms other results like those of (Li et al., 2013; Dai et al., 2015) who

obtained 98.4%, 97.4% respectively. In addition, our results was similar to that

of (Kaashki et al., 2018) in this challenging situation, who achieved an average

rate of 99.5%. Nevertheless, we have already outperformed this method in all545

pose and expression situations where no results are reported on the profile pose.

These results reflect the robustness of our approach against several illumination

condition changes.
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Table 2: Face recognition rates under simultaneous variation in lighting condition and facial
expression from brighter to darker degrees.

Situations
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Proposed method

Ourimage Ourdepth Our

Front 98.9% 99.5% N/A 99.3% 98.2% 99.7%
Back 98.6% 99.3% N/A 99.1% 97.8% 99.45%
Low Ambient 97.1% 99.7% N/A 99.2% 98.2% 99.65%
Average 98.4% 99.5% 97.4% 99.2% 98.1% 99.6 %

Figure 9: Examples of eye and mouth occlusion situations under various pose and illumination
variations in CurtinFaces database.

4.3.3. Experiments on CurtinFaces database with face occlusions

CurtinFaces database handles two separate occlusion situations; eyes oc-550

clusion with sunglasses and the mouth covered with a hand. These occlusion

situations include additionally both pose and illumination variations. Here the

original validation protocol of CurtinFaces provides a probe set containing 5

captures per subject and per occlusion situation. Figure 9 shows a few exam-

ples.555

The obtained recognition rates for our approach are detailed in Table 3. For

the eyes occlusion in the frontal view, we achieved a significant improvement

compared to (Li et al., 2013) (+6%) with a rate of 94.2%, while achieving similar

performances under pose variation. However, under illumination variations, we
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Table 3: Face recognition rates obtained for our approach with eyes and hand occlusion
situations.

Situations
Eyes Mouth

Ourimage Ourdepth Our Ourimage Ourdepth Our

Frontal view 100% 98.1% 100% 100% 96.2% 100%
Illumination 84.61% 83.7% 91.35% 94.3% 87.50% 96.2%
Pose 82.7% 76.95% 85.57% 88.5% 83.65% 92.3%
Average 86.92% 83.88% 90.77 93.1% 87.7% 95.4%

can observe that the face recognition rates under hand occlusion situations are560

higher than those obtained for eyes occlusion. Indeed, they decrease on average

from 96.2% to 91.35%. Also, we can observe that pose variation combined

to either eyes or mouth occlusion situations represents the most challenging

combination as it drops the performances down to 85.57% and 92.3%. Moreover,

our approach reached an overall average of 93.11% for all the combinations and565

occlusion situations, which outperforms (Dai et al., 2015) with only 88.9%.

These results prove the robustness of the proposed approach since the local

face description has an obvious advantage over the global ones in occlusion

situations. Although, the training set of CNN and BSIF descriptors did not

include any occluded images, we reported a promising RGB-D face recognition570

performance.

4.3.4. Image interest points vs facial landmarks

We conducted a set of experiments to highlight the benefits of using image

interest points over facial landmarks in our pipeline. We considered the Curt-

inFaces database as it involves the most representative challenges (i.e., pose575

and facial expression variations and occlusion situations). The obtained results

shown in Figure 4 prove that the image interest points are experimentally a bet-

ter choice than facial landmarks especially in the case of head pose variations
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Table 4: Comparison of the obtained recognition rates on CurtinFaces database under occlu-
sion situations and also joint pose and facial expression variations for our pipeline considering
image interest points and facial landmarks.

Situations Image interest points Facial landmarks
Ourimage Ourdepth Our Ourimage Ourdepth Our

Pose+Expression 97.45% 96.62% 98.25% 83.81% 81.60% 83.90%
Eyes Occlusion 86.92% 83.88% 90.77 75.35% 75.21% 79.25%
Mouth Occlusion 93.1% 87.7% 95.4% 77.95% 80.72% 82.32%

Figure 10: A sample from Eurecom database with 9 conditions going as follows: neutral, light
on, smile, left profile, open mouth, right profile, eyes, hand and paper occlusions.

and occlusion situations.

4.4. Experiments on Eurecom Database with pose, illumination and occlusion580

conditions:

In this experiment we evaluated our approach using the Eurecom database

with the proposed 9 challenging conditions as shown in Figure 10. We followed

the original protocol consisting in taking the first session data-set as a gallery

while the second session as the probe set. Each subject in the data-set has 9585

captures in the gallery set and 9 other captures in the probe set.

The recognition performances of our RGB-D face recognition approach based

on local learned features were compared to (Hsu et al., 2014) and (Sang et al.,

2016) methods and the reported results are displayed in Figure 11. We can

observe that our approach achieves a considerably higher performance in the590
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Figure 11: Comparison of the obtained recognition rates on the Eurecom database under the
9 different settings.

situations of open mouth, eyes, and paper occlusions. It is also obvious that

we achieved similar results as both referenced approaches, in neutral, light-on,

smile and left profile situations.

The only situations where the results obtained by (Hsu et al., 2014) and

(Sang et al., 2016) are better than ours where for the the mouth occlusion595

situation and the right profile view. In the profile view, Sang et al. results

are better than ours and those of Hsu et al. This can be explained by the

frontalization and the symmetric filling pre-process applied for the non-frontal

faces in order to overcome the self-occlusion caused by the large head rotation.

In the following, we compared our approach with the state-of-the-arts works600

based on learned features for face representation. For a fair comparison, we

followed the proposed protocol in (Lee et al., 2016; Neto et al., 2019) where

the profile images in the gallery set are discarded and the test set is differently

selected on each experiment as bellow:

• Experiment 1: the gallery and the probe set contain seven variations from605

session 1 and 2, respectively: neutral, smile, illumination, paper occlusion,

mouth occlusion, eyes occlusion, and open mouth.

• Experiment 2: the gallery set contains seven variations from session 1 and

31

                  



the probe set contains non occluded images (neutral, smile, illumination)

from session 2.610

• Experiment 3: the gallery and the probe set contain only the neutral faces

from both sessions.

Table 5: The obtained recognition rates on the Eurecom database in comparison with deep
learning-based approaches.

Experiments
(Lee et al., 2016)

(Neto
et al.,
2019)

Proposed method

image depth fusion OurimageOurdepth Our

1 99% 80.8% 99% 90.75% 96.1% 93.6% 100%
2 97% 78.8% 97.6% 98% 100% 99.35% 100%
3 N/A N/A N/A 91.1% 94.2% 90.2% 95.8%

Table 5 reports the obtained results in comparison with the aforementioned

works. For all the experiment settings, our recognition rates with the proposed

baselines outperform those achieved in Neto and in Lee works. Although they615

focus on generating and improving the quality of new depth images, Ourdepth

performances are better than the those of the two methods. Besides, the ob-

tained results also proved that our designed shallow architectures are able to

learn discriminant features instead of using a deep 12-layer architecture as in

(Lee et al., 2016). On the other hand, while we achieved an overall recognition620

rate of 95.5% (9 images vs 9 images), the recorded performance in (Zhang et al.,

2018) is still slightly better than ours with an average of 96,6% better. This

can be explained by the importance of learning multi-modal facial data in some

cases at an early stage to attain a more compact fusion strategy.

4.5. Experiment on BIWI Database625

The BIWI database was originally released for the 3-D head pose estimation.

Unfortunately, there is not an explicitly defined gallery/probe split for face

recognition purposes. In our experiments, the gallery contains 20 persons and

for each person, we randomly selected 30 captures covering a large range of
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L60 L45 L30 L15 R15 R30 R45 R60

Figure 12: Example of RGB-D images from the BIWI database under different yaw angles of
view.

face poses and the remaining captures as the probe set. Figure 12 shows few630

examples of image and depth captures for the same person under different facial

poses. Following (Hsu et al., 2014; Sang et al., 2016), the testing data consist

of a set of other 15 captures for each person and pose cluster (i.e., L60, L45,

L30, L15, frontal, R15, R30, R45, R60).

Figure 13 shows the obtained recognition rates for our approach alongside635

the results of (Hsu et al., 2014) and (Sang et al., 2016). Although their testing

protocol is different, we still provide their results as a reference. As expected,

the recognition rates for all the three approaches drop systematically when the

face shifts from a frontal pose towards R60 or L60. Indeed, our approach takes

advantage of a large number of captures to construct the gallery. In addition,640

it does not rely at all on facial landmarks detection which could be a source of

recognition errors especially in the case of large facial pose variations.

4.6. Experiment on VAP Database

For these experiments, we used one face image per pose in the gallery (17

images), and the remaining face images (34 images) as probe set. We achieved645

an overall recognition rate of 99.71% for the image data, 99.05% for depth data

and 99.80% after fusion, which outperforms the recognition rates obtained in

(Zhang et al., 2018) with an average of 90.8%. From Table 6 we proved once

again the complementarity between the modalities.

4.7. Experiments on a large database650

So far, the performed experiments have been conducted on separate bench-

marks covering different challenging situations. Now, we would like to evaluate
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Figure 13: Obtained recognition rates on the BIWI database under head pose variation from
left 60°to right 60°.Despite the difference of the testing protocol over Hsu et al. and Sang et
al. methods, we still plot their results as a reference.

Table 6: Face recognition rates on VAP database under pose and facial expression variation.

Situations
(Zhang
et al., 2018)

Proposed method

Ourimage Ourdepth Our

Pose N/A 99.87% 99.87% 100%
Expression N/A 99.2% 96.35% 99.2 %

Average 90.8% 99.71% 99.05% 99.80%

our approach on a larger and more challenging benchmark by concatenating the

four databases (i.e., CurtinFaces, Eurecom, BIWI, and VAP) into a single one.

The aim of this evaluation was twofold. The first is to access the performance of655

our approach in case of a larger and heterogeneous database and compare it to

the results already obtained for the four benchmarks separately. The second is

that we would like to investigate the effectiveness of training CNN and BSIF de-

scriptors in case of a gradually increasing size database. In particular, we would

like to check if there is a need to train or fine-tune our data-driven descriptors,660

especially the CNN, whenever a new subject is integrated in the database. This

was achieved in the following way: all the data from the four benchmarks were

concatenated and shuffled at the level of persons yielding a single database con-
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sisting of 156 persons. Here, the gallery set is simply constructed by combining

the gallery sets of each of the four involved benchmarks. The probe set is also665

constructed by combining all the probe sets from the involved benchmarks.

Table 7: Average recognition rates of our pipeline for CNN and BSIF descriptors training
data corresponding to different proportion values.

Portions
Proposed method

Ourimage Ourdepth Our

20% 93.26% ±0.38 91.43% ±0.48 94.30% ± 0.27
40% 94.40% ± 0.24 93.78% ± 0.26 95.33% ± 0.21
60% 96.15% ±0.21 95.06% ±0.22 96.72% ±0.19
80% 96.15% ±0.21 95.06% ±0.23 96.72% ±0.20
100% 96.15% ±0.19 95.06% ±0.21 96.72% ±0.19

We considered five scenarios depending on the proportion of persons ran-

domly selected for the training patches of CNN and BSIF descriptors. The

defined five data proportions represent 20%, 40%, 60%, 80%, and 100% of the

156 persons in the database. For each scenario, we train our CNN and BSIF670

descriptors as previously detailed, then we apply our face recognition pipeline

on all the probe set. As an example, the experiment related to the proportion

20% actually corresponds to the scenario of an extreme situation where we use

only 20% of the gallery for training our CNN models. This is different from

the other methods based on data-driven features, which require systematically675

an update of the network architecture and/or at least some iterations of fine-

tuning (Hayat et al., 2015; Lee et al., 2016) when a new person is added to the

database.

The obtained performances for the five scenarios are shown in Table 7. In

addition to the average recognition rates we reported also the related standard680

variation values since these particular experiments involved the largest amount

of data and the various training subsets (proportions) were randomly selected

from the gallery at each run. The low standard deviation values (less than 1%)

proved the stability of our model training procedure. In general, the obtained

recognition rate (96.72%) for the proportion 100% setting is comparable to the685
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results obtained for the smaller benchmarks. Also, as expected the highest

recognition rate is obtained for the proportion 100% setting and the lowest one

corresponds to proportion 20%, which means, the drop is relatively unsignificant

(i.e., from 94.30% to 96.72% respectively). Moreover, we may observe that the

recognition rates seems to be asymptotic starting from proportion 60%. In other690

words, it is not mandatory to update our data-driven descriptors when a new

person is inserted or inversely removed from the gallery.

4.8. Patch based vs whole face based

To highlight the benefits of considering patches instead of the whole face for

our pipeline especially in facial occlusion situations, we basically compared our695

pipeline to two other baselines using the whole face as input:

1. OurV GG: is a modified version of our method with a VGG architecture5

for CNN feature extraction representing the whole face region. Here the

facial region is cropped and resized to 224 × 224 pixels. We basically

used our CNN training mechanism to fine-tuned the pre-trained VGG-700

Face model (Parkhi et al., 2015) to extract 128 features representing the

whole face before performing the SRC algorithm yielding 4 vote vectors

(i.e., 2 vectors for CNNs and 2 others for BSIF descriptors), and the final

decision is made the same way as in our pipeline. The BSIF descriptor

is also trained following our method except of using face cropped images705

instead of local patches.

2. FaceNet: is a reference method for RGB face recognition (Schroff et al.,

2015) with its original implementation6 taking as input the RGB face

cropped images and respecting the original training protocol. This method

takes as input facial crops resized to 96 × 96 pixels and outputs a 128710

dimensional face representation fed to classification with linear SVM.

We can observe from the obtained recognition rates summarized in Table

5Only the last two layers were modified to output 128 features instead of 4096.
6https://github.com/davidsandberg/facenet hash:096ed77
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Table 8: Comparison of recognition rates between our patch-based approach and a state-of-
the-art whole-face based method.

Variations FaceNet OurV GG Our

Pose+Expression 95.7% 88.3% 97.1%
Illumination 94.6% 87.1 98.3%
Occlusion 85.2% 70.2% 92.1%
Average 94.5% 86.2% 96.72%

8 that our method provides a promising results and outperforms the FaceNet

and OurV GG baselines on different face challenges including pose, expression,

illumination variations and occlusion. These whole-face-based methods have715

difficulty in handling occlusion situations. They achieved 85.2% and 70.2%

respectively for Facenet and OurV GG while our method achieved 92.1%. In

general, considering the patches in our pipeline allows us to implicitly handle

partial occlusions since the intermediate classification results of most of the

patches located on visible facial regions will converge towards a same identity,720

meanwhile other patches located on occluded parts will almost be scattered on

different identities. At the end, the majority vote rule outputs the final decision

with the maximum of votes.

4.9. Run-time complexity

We evaluated our pipeline on an Intel Core i7 3 GHZ CPU with 16GB RAM725

and an 512GB SSD. We used a python binding of the SPAMS library (Mairal,

2014) for the sparse representation classification. We computed the average run-

time for the main processing blocks in our pipeline on CurtinFaces database

to identify one query RGB-D face image from 52 persons in the gallery (936

images). Also, we highlighted the benefit of the Dynamic Dictionary selection730

module in the run-time efficiency by carrying out an ablation study for this

module. Although run-times strictly depended on the implementation details

and the used machine or platform, we compared our method to the methods

that already shared their run-time performances (Li et al., 2013; Sang et al.,

2016).735
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Table 9: The average running time (in seconds) of our proposed approach in comparison with
the state-of-the-art approaches based on the CurtinFaces database.

Steps
SRC with
DD*

SRC with-
out DD

Li et al.
(2013)

Sang et al.
(2016)

Face Cropping 0.2380 0.2380 0.061 0.127
Specific pre-processing - - 4.933 8.426
Points detection 0.0042 0.0042 - -
Patch extraction 0.0092 0.0092 - -
Feature extraction 0.2655 0.2655 - -
Dynamic dictionary 1.2464 - - -
Image classification 0.0148 17.9931 0.084 0.057
Depth classification 0.0156 17.5947 0.026 0.036
Fusion 0.0002 0.0002 0.017 0.024

Total 3.0403 36.1049 5.114 8.748

* DD:Dynamic Dictionary.

From Table 9, we can see that our proposed method provides an acceptable

running time, around 3 seconds to recognize a single RGB-D query image com-

pared to 5 seconds and 9 seconds respectively for (Li et al., 2013) and (Sang

et al., 2016). In fact, the time consuming parts in their method seem to lay in

the pre-processing like symmetry filling, face registration, face rendering, etc.740

We can also notice the advantage of the Dynamic Dictionary selection in ac-

celerating the matching process (i.e., ≈ 1, 26 second instead of ≈ 18 seconds).

4.10. General observations

Several important observations can be made while considering the presented745

experiments and tests. The first is related to the usefulness of learning local

data-driven representations from image and depth data to recognize RGB-D

face recognition. Regarding fusion, we have not only proved the complementar-

ity between image and depth modalities, but also between deep learning and

statistical features ( i.e., CNN and BSIF respectively) for facial patch represen-750

tation.

Besides, we have demonstrated the robustness of the proposed pipeline under

different expression, illumination and pose variations. Meanwhile, compared to
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the frontal and half-profile poses, the extreme profile pose is still a challenging

condition for our pipeline whose results are outperformed by such solutions755

as (Hsu et al., 2014; Sang et al., 2016) including a pre-processing to handle

face pose variations. We observed that if the gallery includes a large range of

poses, as in the BIWI experiments, our pipeline allows handling implicitly the

facial pose variations even if the facial pose related to the query is not exactly

represented in the gallery. In this case, the gallery recording protocol, especially760

in a controlled environment, is very important to reduce the effect of facial pose

variations. Otherwise, and as a perspective, our pipeline could be extended with

a facial modelization as a pre-processing step for all faces in the gallery so that

they could be rendered in any point of view as in (Hsu et al., 2014). On another

side, these methods can also apply our data-driven representation even for the765

whole face instead of local patches.

Furthermore, the reported results on occlusion situations have proved the

robustness of the proposed approach especially with local face description which

is an obvious advantage over global face description in case of occlusion situ-

ations. This is also proved by comparing our approach to two other global770

state-of-the-art methods.

5. Conclusion

This research study detailed a new RGB-D face recognition approach based

on two data-driven representations for face patches description. The proposed

pipeline does not require any prior on the face pose or rely on a semantic analysis775

of the face. The RGB-D patches are simply extracted around some detected im-

age interest points. Each of these patches is transformed using a selected learned

descriptors, namely CNN and BSIF, before feeding the classification part. For

the CNN, we propose an effective training approach leading to a discriminant

embedding space for face patches representation. The learned local features780

fulfill the intra-class compactness and inter-class separability constraints with

applying a triplet-loss as learning metric. Finally, the correspondence between

patches is performed based on an SRC algorithm with a dynamic patch dic-
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tionary selection. The final classification decision is obtained by a score-level

fusion scheme. The experimental results performed on well-known RGB-D face785

benchmark databases support our claim of the effectiveness and robustness of

the proposed approach. Also, we obtained competitive results relative to the

state-of-the-art. As a future perspective, we would like to extend our pipeline

with learning a multi-modal representation to combine both image and depth

data within a more elaborated CNN architecture to leverage the complemen-790

tarity between both modalities. Also, we would like to explore dynamic patch

weighting to give more attention to representative and discriminant patches.

Finally, we would like to extend our pipeline with the 3D facial modelization of

all faces in the gallery to handle facial pose variations with less constraints on

the gallery recording.795
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