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Highlights

• The DFN handles pose variations by explicit feature-level alignment.

• The DCL loss enforces the learnt displacement field to be locally consis-

tent.

• The ICL and PTL loss functions further improve the face recognition

performance.

• The DFN outperforms the state-of-the-art methods on three large pose

face datasets.
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Abstract

Unconstrained face recognition still remains a challenging task due to various

factors such as pose, expression, illumination, partial occlusion, etc. In partic-

ular, the most significant appearance variations are stemmed from poses which

leads to severe performance degeneration. In this paper, we propose a novel

Deformable Face Net (DFN) to handle the pose variations for face recogni-

tion. The deformable convolution module attempts to simultaneously learn

face recognition oriented alignment and identity-preserving feature extraction.

The displacement consistency loss (DCL) is proposed as a regularization term

to enforce the learnt displacement fields for aligning faces to be locally consis-

tent both in the orientation and amplitude since faces possess strong structure.

Moreover, the identity consistency loss (ICL) and the pose-triplet loss (PTL)

are designed to minimize the intra-class feature variation caused by different

poses and maximize the inter-class feature distance under the same poses. The

proposed DFN can effectively handle pose invariant face recognition (PIFR).

Extensive experiments show that the proposed DFN outperforms the state-of-

the-art methods, especially on the datasets with large poses.

Keywords: pose-invariant face recognition, displacement consistency loss,

pose-triplet loss
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1. INTRODUCTION

Face recognition, as a fundamental problem in computer vision, has received

more and more attentions in recent years. Equipped with powerful convolutional

neural networks (CNNs), the accuracy has a rapid boost that face recognition

under controlled settings (i.e., near-frontal poses, neutral expressions, normal5

illuminations, etc.) seems to be solved. However, under the uncontrolled en-

vironment, a number of factors (e.g., pose, illumination, resolution, occlusion,

and expression) significantly affect the performance of face recognition system.

Among these factors, self-occlusion from out-plane poses brings about large

appearance variations. The misalignment problem heavily hurts the face recog-10

nition system. In this paper, we further push the frontier of this research area

by simultaneously considering face recognition oriented alignment and identity-

preserving feature extraction under deep neural networks, which aims at tackling

the pose-invariant face recognition (PIFR) problem.

The conventional deep face recognition system usually firstly aligns faces15

with simple affine transformations and then feeds the aligned faces into convo-

lutional neural networks to extract identity-preserving features. Since the affine

transformations can only remove in-plane pose variations, the intra-class appear-

ance variations from out-plane poses still exists, resulting in face misalignment

problem. As a consequence, the face recognition accuracy degenerates severely20

under large out-plane pose variations. To handle this problem, one can either

align the face images with extra technology, e.g., 3D based face alignment [1] or

improve the CNN’s capacity of extracting pose-invariant features. Since human

heads are nearly rigid 3D objects, following the former pipeline, many efforts

are devoted to synthesizing well-aligned frontal face image from non-frontal25

faces by using 3D rigid motion models [2, 3, 4, 5, 6, 7, 8]. However, 3D model

reconstruction with a single 2D image is an ill-conditioned problem and the

synthesized image needs high fidelity refinement to improve the reality of faces.

Since face recognition system extracts high-level feature to recognize identities,

it is unnecessary to generated frontal faces. Thus aligning high level features is30
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Figure 1: Illustration of our proposed Deformable Face Net (DFN). DFN attempts to learn
a pose-aware displacement field for the deformable convolution to extract pose-invariant fea-
tures for face recognition. This field is adaptively pose-aware, thus endowing the deformable
convolution the ability to align features in case of pose variations. For this purpose, these
displacement fields are learnt by introducing three loss functions, i.e., the displacement con-
sistency loss (DCL), the identity consistency loss (ICL) and the pose-triplet loss (PTL).

more convenient than aligning faces in pixel-level, leading to potentially more

effective recognition results. The approaches following the latter pipeline focus

on learning pose-invariant feature representations. Conventional approaches

such as multiview subspace learning or pose-directed multi-task leaning signif-

icantly improve the large pose face recognition. Unfortunately, such subspace35

projections and multi-tasks are learnt corresponding to several discrete poses,

it is difficult for those methods to handle face recognition under continuous

pose variations. Moreover, it may be non-trivial for those methods to obtain

pose-invariant feature robust to complex scenarios in no consideration of face

alignment.40

In this paper, we propose a feature-level alignment method to handle pose

variations in face recognition. In our approach, a convolution network, namely

deformable face net (DFN) is designed to simultaneously learn feature-level
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alignment and feature extraction for face recognition. It is more favorable for

CNNs to learn identity-relevant features after aligning faces, leading to bet-45

ter performance for face recognition under poses. Inspired by the deformable

convolution [9], we propose to achieve feature-level alignment by a deformable

convolution module which enables pose-aware spatial sampling based on dis-

placement fields for the subsequent feature extraction. It should be noted that

the conventional deformable convolution [9] is developed for detecting general50

objects which have diverse local and global non-rigid transformations, while

human faces are approximately rigid and the most salient transformations are

caused by the rigid pose change rather than other flexible variations. The differ-

ence in rigidness implies that the displacement field learnt for face recognition

should be more consistent. With this in mind, we propose the displacement con-55

sistency loss (DCL) to enforce the local consistency of the learnt displacement

field both in orientation and amplitude, leading to better alignment for face

recognition. Moreover, the identity consistency loss (ICL) and the pose-triplet

loss (PTL) are designed to minimize the intra-class feature variation caused by

different poses and maximize the inter-class feature distance under the same60

poses. Specifically, the ICL minimizes the intra-class feature variation caused

by different poses via taking two faces under different poses as input. The PTL

emphasizes on improving the network discriminative ability of distinguishing

faces with the same pose but from different identities. Besides, the DFN is

quite efficient and can be end-to-end trained without additional supervision.65

Compared to the existing pose-invariant feature extraction methods, e.g., the

PIM [10] and the p-CNN [11], the proposed DFN achieves better results for face

recognition under poses, especially on the datasets with large poses.

Briefly, the main contributions of this paper are summarized as follows:

• A novel Deformable Face Net (DFN) is proposed to handle pose variations70

in face recognition with explicitly considering the feature-level alignment.

• The displacement consistency loss (DCL) is proposed to enforce the learnt

displacement field to be locally consistent both in the orientation and
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Figure 2: Illustration of the offsets obtained with our displacement consistency loss (DCL).

amplitude, leading to better alignment for face recognition.

• The identity consistency loss (ICL) and the pose-triplet loss (PTL) are75

designed to minimize the intra-class feature variation caused by differ-

ent poses and maximize the inter-class feature distance under the similar

poses, leading to better performance for face recognition.

• DFN outperforms the state-of-the-art methods on MegaFace, MultiPIE

and CFP, especially on the MultiPIE dataset with large poses.80

The preliminary version of this work appears in [12].We extend it in a num-

ber of ways. (i) We propose a new loss function named pose-triplets loss (PTL)

for the Deformable Face Net (DFN). This new loss function improves the DFN’s

discriminative ability of distinguishing faces with the same pose but from dif-

ferent identities, leading to better results than the original DFN. (ii) Our pose-85

triplet loss (PTL) is evaluated together with our displacement consistency loss

(DCL) on MultiPIE dataset and it significantly outperforms the state-of-the-art

methods. (iii) Further experiments on the Celebrities in Frontal-Profile (CFP)

dataset are conducted to demonstrate the superiority of our DFN in a wild

setting.90

The remainder of the paper is organized as follows: The related works are
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briefly reviewed in Section 2. In Section 3, the proposed DFN and loss functions

are illustrated. Experimental results are detailed in Section 4. The conclusions

are summarized in Section 5.

2. Related works95

Recently, many efforts are devoted to exploring pose invariant face recogni-

tion (PIFR) methods, which can be roughly grouped into the following three

categories: face frontalization methods, non-frontal face augmentation methods

and pose-invariant feature learning methods. In this section, we give a brief

review of the recent works which are most relevant to this paper.100

2.1. Face Frontalization Methods

The face frontalization methods are essentially picture-level aligning method.

The key point of nearly all these methods is how to construct a well-aligned

frontal face from faces under diverse poses. In terms of the generation ways,

these methods are generally categorized into synthesizing frontal faces with 3D105

information [2, 3, 4, 5, 6, 7, 8] or 2D images [13, 14, 15, 16]. For the first cate-

gory, [2] proposes an effective face frontalization approach by using a single and

unchanged 3D shape to approximate the shape of all the input faces. In [3],

a high-fidelity pose and expression normalization method with 3D Morphable

Model (3DMM) is proposed to generate a frontal face under neutral expres-110

sion. Without using the 3D structure model, the promising image synthesis

approach Generative Adversarial Network (GAN) has also been used to frontal-

ize faces [15, 17, 16]. By modeling the face rotation process, DR-GAN [16] learns

a disentangled representation which can frontalize extreme poses in the wild.

The face frontalization methods above have shown promising results of trans-115

forming non-frontal faces to frontal ones. However, 3D model reconstruction

with a single 2D image is an ill-conditioned problem, so that the gap between the

real 3D shape and the reconstructed 3D shape always exists. Furthermore, since

the original non-frontal images have invisible face pixels due to self-occlusion,
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the details of the transformed faces highly rely on the invisible region filling120

approaches. Even though the facial structure is symmetrical, the symmetry of

illumination cannot always hold. Both the blurry details and the weird illumi-

nation may make the transformed images unreal under large poses. Although

current methods have improved the illumination trends and the texture details,

the quality of the geometric frontalized images is still far from avoiding degener-125

ation of face recognition performance. On the other side, the synthetic faces of

GAN based methods usually have better visual effects. However, as the pixels

are not directly collected from the input image, the major concern lies in how to

guarantee that the frontalized faces can well preserve the identity information.

2.2. Face Augmentation130

Enlarging the training datasets with faces under diversified poses may be

an effective way to obtain features robust to different poses. However, such

training sets of a mass of identities are extremely rare. Alternatively, data aug-

mentation methods become more practical. The works in [18, 19, 20] enrich

the diversity of poses by synthesizing massive images of sufficient pose vari-135

ability from a frontal face. [18] employs 3DMM to augment the training data

with faces of novel viewpoints. In [20], a multi-depth generic elastic model is

developed to synthesize facial images with varying poses. To some extent, these

methods relieve the poses influence, but the discrepancy between distributions

of the synthetic and real face images still limits the recognition performance im-140

provements. To improve the realism of synthetic training images, [19] proposes

a dual-agent generative adversarial network (DA-GAN) to refine the profile face

images generated by the 3D face model. The compelling perceptual results

improve the recognition significantly.

Although aforementioned augmentation methods enrich the training set with145

promising synthetic quality, but the misalignment issue inherited from the large

poses still remains. The enriched training set relieves such issue by enforcing

the feature extraction network to adapt to various poses. However, the final

performance heavily relies on the fitting capacity of CNN, which may lead to
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increased computation cost.150

2.3. Pose-Invariant Feature Learning Methods

These methods focus on learning pose-invariant feature representations for

face recognition in the wild. Conventional multiview subspace approaches learn

complex nonlinear transformations that respectively project images captured

under different poses to the common space, where the intra-class variation is155

minimized [21, 22, 23, 24, 25, 26, 27]. For instance, [25] presents a discriminant

coupled latent subspace framework for pose-invariant discriminative learning.

In [26], GMA extracts unified multiview features by optimizing view-specific

projections. In [27], MvDA is proposed to jointly solve the multiple linear

transforms and meanwhile minimizes the within-class variations, resulting in160

very encouraging performance.

Recently, more works resort to the deep learning to extract more powerful

pose-invariant features [28, 29, 30, 31, 32, 10, 11, 33, 34]. To address the above

mentioned problem, one may either group multiple pose-specific models or pose-

specific activations, i.e., each one corresponding to a specific pose [29, 30, 11, 34]165

or design a single pose-invariant model [33, 31, 32], which uniformly tackles all

poses. For the former category, [30] proposes a pose-directed multi-task CNN to

learn pose-specific identity features. Similarly, in [34], a face image is processed

by utilizing several pose-specific deep convolution neural networks. Although a

significant improvement in accuracy has been witnessed, the efficiency concern170

of such a multi-model framework needs to be further tackled. For the other

category, a unified model is exploited to extract pose-invariant features. For

instance, an analytic Gabor feedforward network is proposed in [33] to absorb

moderate changes caused by poses. In [10], a face frontalization sub-net (FFN)

and a discriminative learning sub-net (DLN) is aggregated at a pose invariant175

model (PIM) which generates both high fidelity frontalized face images and pose

invariant facial representations. The face synthesis in PIM makes it essentially

a pixel-level alignment method. In contrast, our method explicitly considers

feature-level alignments. Furthermore, comparing to subspace methods and
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multi-tasks methods, our method can tackle arbitrary poses rather than several180

specific poses.

3. Method

The proposed Deformable Face Net (DFN) attempts to simultaneously learn

feature-level alignment and feature extraction for face recognition via deformable

convolutions with a spatial displacement field. This field is adaptively pose-185

aware, thus endowing the deformable convolution the ability to align features in

case of pose variations. For this purpose, these displacement fields are learnt by

introducing three loss functions, i.e., the displacement consistency loss (DCL),

the identity consistency loss (ICL) and the pose-triplet loss (PTL). In this way,

the DFN is able to well tackle the feature misalignment issue caused by poses,190

resulting in performance improvement in face recognition.

3.1. Overview of DFN

As shown in Fig. 1, a displacement field generator learns displacement fields

at low-level features for face recognition oriented alignment. In consideration of

the strong structure in faces, the displacement consistency loss (DCL) is pro-195

posed to improve the local consistency of the displacement fields and therefore

assists the deformable convolution to well tackle the PIFR problem. Moreover,

the identity consistency loss (ICL) are proposed to minimize the intra-class

feature variation caused by different poses, so as to explicitly force the learnt

displacement fields to well align features under different poses. When employ-200

ing the ICL, the DFN takes paired images as input, of which each pair contains

two faces randomly sampled from the same person. It should be noted that

the two faces are not limited to one frontal image and one non-frontal image,

thus providing compatibility with various normal training datasets. When ex-

tra pose information of training set is available, the proposed pose-triplet loss205

(PTL) can jointly minimize the intra-class feature variation and further maxi-

mize the inter-class feature distance under the same poses, so as the extracted
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features become more robust to poses. Both the ICL and the PTL losses are

imposed on intermediate feature (i.e., the output feature of the deformable con-

volution) to supervise the learning of the displacement field generator, so that210

displacement fields are able to achieve the pose-aware feature alignment. The

whole network is end-to-end trained jointly by using the softmax classification

loss and the proposed loss functions recorded as DCL, ICL and PTL. The pro-

posed method can be integrated with the existing powerful CNN architectures,

e.g., the ResNet architecture [35, 36]. We note that introducing the pose-aware215

deformation modules at different layers of the network have significant differ-

ences in performance. Details will be discussed in Sec. 4. Next, we present each

component of the DFN in details.

3.2. Displacement Consistency Loss

Given an input feature map x, the kernels of the deformable convolution [9]220

samples irregular grids over the input x. For each gird i centered on location

pi
0, such irregular sampling locations are obtained by an addition of offsets

{∆pi
k = {∆pikx,∆piky}|k = 1, ...,K} (i.e., a displacement field) to a regular

sampling grid R. ∆pikx and ∆piky denote the x-axis and the y-axis component

of ∆pi
k respectively. The size ofR is K, e.g., K = 9 for 3×3 convolution kernels.225

Then, the output feature map f of the deformable convolution is computed as

below:

f(pi
0) =

K∑

k=1

w(pi
k)·x(pi

0 + pi
k + ∆pi

k), (1)

where R = {(−1,−1), (−1, 0), ..., (0, 1), (1, 1)} for a 3×3 kernel, pi
k enumerates

the locations in R and w denotes the convolution kernel. The offsets are rep-

resented as a h×w×2K tensor for a h×w input feature map with stride 1. The230

spatial dimension h×w corresponds to the sliding sampling grids of the convo-

lution operations and the channel dimension 2K corresponds to K offsets for

each sampling grid R.

To solve the PIFR problem, we expect that all the h×w×2K offsets to com-

pensate both rigid and non-rigid global geometric transformations, such as poses235
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and expressions. Since the general objects have diverse local and global trans-

formations in the wild, it is reasonable to learn those offsets without additional

constraints for conventional object detections. However, different faces share

the same structure and the most salient transformation is caused by the poses,

which means the deformation module should focus more on the distribution of240

the global displacement field along the spatial dimension of the input feature

maps. Moreover, redundant capacity of modeling the local transformations in-

creases the risk of over-fitting potentially, especially for the face images. To be

free from this, the displacement consistency loss (DCL) is proposed to learn the

displacement field within each grid towards a consistent direction, as shown in245

Fig. 2. The DCL is formulated in Eq. (2) as:

LDCL =
1

h× w ×K
h×w∑

i=1

K∑

k=1

‖∆pi
k −∆pi‖22, (2)

where ∆pi is the mean offset along k for i-th grid. By limiting the solution

searching space of the displacement field, the DCL makes the training process

more feasible, meanwhile the obtained displacement field drives the deformable

convolutions to well compensate the intra-class feature variation caused by250

poses.

3.3. Identity Consistency Loss

The final objective of PIFR is to learn robust features that the difference

across poses is minimized as much as possible. It is natural to introduce the

Euclidean distance loss such as the contrastive loss [37, 38], whose minimiza-255

tion can pull the features of the same identity under different conditions (e.g.,

poses) together. Moreover, the formulation of pair-wise Euclidean distance loss

is frequently applied to face recognition. However, due to the limited geomet-

ric transformation capacity of conventional CNN structures, the pair-wise loss

function is not always helpful. On the contrary, benefited from the pose-aware260

deformation modules, DFN can naturally handle this problem more efficiently.

In this paper, we reformulate the Euclidean distance loss as the identity con-
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sistency loss (ICL) by constraining the distance between features of the same

person from the deformable convolutions rather than final features from the

penultimate layer. In this way, the identity consistency loss has more profound265

supervision effects on learning the deformable offsets such that the PIFR can

be further improved.

Formally, to train the DFN, a training batch containing N images is ran-

domly chosen from N/2 identities, where two images for the identity j, namely

Ij1 and Ij2. The identity consistency loss minimizes the difference between the270

output deformable features f j1 and f j2 corresponding to the input images Ij1 and

Ij2 respectively, i.e.,

LICL =

N/2∑

j=1

‖f j1 − f j2‖22. (3)

It should be noted that the normalization of f j1 and f j2 is necessary, otherwise

the norm of features will implicitly affect the scale of the loss function, leading

to un-convergence. By employing the ICL, the deformable module is optimized275

to enforce features under varied poses to be well aligned.

3.4. Pose-Triplets Loss

The pose variation reduces the similarity of faces from the same identity.

In addition, it even surpasses the intrinsic appearance differences between in-

dividuals, i.e., the features extracted from different identities under the same280

poses are more similar than those from the same identity across different poses.

In this paper, we reformulate the triplet loss [39] as pose-triplets loss (PTL)

to improve the discriminative ability of separating images with same poses but

from different identities.

Formally, fai denotes the feature of the anchor face and fpi denotes the feature285

of positive sample from the same identity. The negative image is chosen from

any other identity which has the same pose with the anchor face. Here, we

want to ensure that the feature distance of the negative pair (recorded as fai

and fni ) is larger than the distance of the positive pair (recorded as fai and fpi ).

The pose-triplets loss aims to separate the positive pair from the negative by a290
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distance margin α. The PTL is formulated in Eq. (4) as:

LPTL =

N∑

i=1

[‖fai − fpi ‖22 − ‖fai − fni ‖22 + α]+. (4)

Additionally, similar to the aforementioned ICL, the features fai , fpi and fni are

normalized for better convergence. The Algorithm 1 summarizes the workflow

of training our DFN with the proposed loss functions.

Algorithm 1: Training Deformable Face Net

Input: A training batch containing N images and their labels.
while not converged do

Compute the input feature map x for the deformable convolution;
Compute the displacement field {∆pi

k|k = 1, ...,K};
Compute the displacement consistency loss LDCL;
Compute the output feature map f of the deformable convolution;
if training set contains pose information then

Compute the pose-triplets loss LPTL;
Compute the softmax loss Lsoftmax;
Compute the total loss Ltotal:

Ltotal = Lsoftmax + αLDCL + βLPTL;
else

Compute the identity consistency loss LICL;
Compute the softmax loss Lsoftmax;
Compute the total loss Ltotal:

Ltotal = Lsoftmax + αLDCL + βLICL;
end
Backpropagation and update the weights of the DFN

end
Output: The trained DFN.

3.5. Discussion295

3.5.1. Differences with the deformable convolution network

Both the deformable convolution network [9] and our DFN are feature-level

alignment methods that attempt to handle the geometric transformations. The

deformable convolution is firstly developed for detecting general objects which

have diverse local and global non-rigid transformations, e.g., the dogs shown in300

Fig. 3 have significantly different postures. In contrast, human faces are approxi-

14

                  



mately rigid objects and the most salient transformations are caused by the rigid

pose variations rather than the non-rigid expressions, which means the displace-

ment field learnt for face recognition should be more consistent in directions.

To this end, three addition loss functions DCL, ICL and PTL are embedded in305

DFN for better face alignment. As illustrated in Fig. 3, the displacement fields

of faces from our DFN are more consistent than those of dogs from deformable

convolution networks, which are more favorable for face recognition oriented

face alignment. Moreover, when both the deformable convolution network and

our DFN are applied to the human faces, the displacement fields of our DFN310

notably shows more structure consistency than those of the deformable con-

volution network, leading to better face alignment and further improved face

recognition performance. The significant improvements in face recognition fur-

ther demonstrate the effectiveness of our DFN, see details in Sec. 4.3.

3.5.2. Differences with the face frontalization methods315

The face frontalization methods [2, 3, 4, 5, 6, 7, 8, 13, 14, 15, 19, 17, 16] which

are image-level alignment attempt to generate frontal faces, while our DFN is

feature-level alignment that attempts to align features under different poses.

For face recognition, the generated frontal faces are further fed into CNNs for

feature extraction, resulting in a two-stage process (i.e., the face frontalizaition320

and the feature extraction). Differently, our method learns the pose invariant

features in a unified framework by designing an effective feature-level deformable

convolutional module, leading to better recognition results.

3.5.3. Differences with other pose-invariant feature learning methods

Different from most pose-invariant feature leaning methods [23, 24, 25, 26,325

27, 28, 29, 30, 31, 32, 10, 11, 33, 34] using multiple models in which each model

correspond to a specific pose, our DFN presents a unified model to handle

different poses. Besides, those subspace learning approaches [23, 24, 25, 26,

27] directly learn projections to achieve pose-invariant features. Since such

projections are learnt corresponding to several specific poses, those methods are330
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(a) Displacement fields of the deformable convolution network 

for dogs.

(c) Displacement fields of our DFN for faces.

(b) Displacement fields of the deformable convolution network 

for faces.

Figure 3: Illustration of the displacement fields. As seen, adjacent offsets share similar direc-
tion, meaning that local consistency inheres in the distribution of displacement field. Since
human heads are nearly rigid objects, the deformable transformations require more consis-
tency. However, as show in (b), when directly applying conventional deformable convolution
network for human faces, the generated displacement fields lack sufficient consistency, which
are not good enough for aligning faces across poses. In contrast, as shown in (c), the dis-
placement fields of our DFN are more consistent, which demonstrates the effectiveness of the
proposed method.

limited to handle these discrete poses. Besides, it may be non-trivial for those

methods to obtain features robust to more complex pose variations without

explicitly considering alignments. Differently, our method can tackle arbitrary

poses rather than several specific poses. Furthermore, our method learns pose-

invariant features in consideration of explicit feature-level alignments, resulting335

in significant improvement for face recognition across poses.
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4. Experiments

4.1. Experimental Setting

4.1.1. Dataset

To investigate the effectiveness of the proposed DFN, we evaluate our method340

on three main face recognition benchmarks, MegaFace [40], MultiPIE [41] and

CFP [42]. The MegaFace [40] benchmark is employed for the evaluations as

this challenging benchmark contains more than 1 million face images among

which more than 197K faces have yaw angles larger than ±40 degrees. In this

study, we evaluate the performance of our approach on the standard MegaFace345

challenge 1 (MF1) benchmark. This benchmark evaluates how face recognition

method performs with a very large number of distractors in the gallery. For this

purpose, the subjects in the MegaFace dataset [40] are used as the distractors,

while the probes are from the Facescrub dataset [43]. The MegaFace dataset

consists of more than 1 million face images from 690k different individuals and350

the Facescrub dataset contains 106,863 face images of 530 subjects. Specifically,

in one test, each of the images per subject in the Facescrub dataset is added into

the gallery, and each of the remaining images in the Facescrub of this subject is

exploited as a probe. It should be noted that the uncleaned MegaFace datasets

are used in evaluation for fair comparison.355

To systematically evaluate how our DFN handles various pose angles, we

conduct experiments on the MultiPIE dataset as it contains images captured

with varying poses. The MultiPIE dataset is recorded during four sessions and

contains images of 337 identities under 15 view points and 20 illumination levels.

To compare with state-of-the-arts, we employ the following setting since it is an360

extremely challenging setting with more pose variations. The setting follows the

protocol introduced in [31, 30], images of 250 identities in session one are used.

For training, we utilize the images of the first 150 identities with 20 illumination

levels and poses ranging from +90◦ to −90◦. For testing, one frontal image with

neutral expression and illumination is used as the gallery image for each of the365

remaining 100 identities and the other images are used as probes. The rank-1
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Table 1: Architecture details of DFN-ResNet-50 and DFN-ResNet-152 with DCL, PTL or
ICL.

Output size DFN-ResNet-50 DFN-ResNet-152

62×62 conv, 7 × 7, 64, stride 4

conv, 7 × 7, 64, stride 2

displacement field generator (conv, 3 × 3, 18)

DCL loss

deformable conv, 3×3, 64

PTL loss or ICL loss

max pool, 3 × 3, stride 2

stage 1

31×31

max pool, 3 × 3, stride 2[
conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

]
× 3

[
conv, 1 × 1, 64

conv, 3 × 3, 64

conv, 1 × 1, 256

]
× 3

stage 2

16×16

displacement field generator (conv, 3 × 3, 18)

DCL loss

deformable conv, 3×3, 64

PTL loss or ICL loss[
conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

]
× 4

[
conv, 1 × 1, 128

conv, 3 × 3, 128

conv, 1 × 1, 512

]
× 8

stage 3

8×8

[
conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

]
× 6

[
conv, 1 × 1, 256

conv, 3 × 3, 256

conv, 1 × 1, 1024

]
× 36

stage 4

1×1024

[
conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

]
× 3

avg pool, 4 × 4

fc, 1024

[
conv, 1 × 1, 512

conv, 3 × 3, 512

conv, 1 × 1, 2048

]
× 3

avg pool, 7 × 7

fc, 1024

1×1 fc, softmax loss

recognition rate is used as the measurement of the face recognition performance.

To evaluate how our DFN performs in a wild setting, we conduct experiments

on the Celebrities in Frontal-Profile (CFP) database [42]. The CFP contains

7000 images of subjects and each subject has 10 frontal and 4 profile face images.370

The images in CFP are organized into 10 splits and each split contains 350

frontal-frontal pairs and 350 frontal-profile pairs. The evaluation follows the

10 fold cross-validation protocol defined in [42] and the mean and standard

deviation of accuracy(ACC), Equal Error Rate (EER) and Area Under Curve

(AUC) are used as the measurement.375

4.1.2. Implementation Details

In our experiments, we use [44] for landmark detection and crop the face

images into size of 256 × 256 by affine transformations. Some examples of

the cropped images are shown in Fig. 4. The DFNs are constructed by in-

tegrating the deformable module between two adjacent original CNN blocks380

and trained with the softmax loss function. It is flexible to be directly ap-

plied to the standard CNNs so that we develop DFN-ResNets by stacking it
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Table 2: Architecture details of DFN-Light and DFN-ResNet-10 with DCL, PTL or ICL.
Output size DFN-Light DFN-ResNet-10

62×62 conv,7 × 7, 64, stride 4 conv, 7 × 7, 64, stride 4

stage 1

31×31

max pool, 3 × 3, stride 2

displacement field generator (conv, 3 × 3, 18)

DCL loss

deformable conv, 3×3, 64

PTL loss or ICL loss

max pool, 3 × 3, stride 2[
conv, 3 × 3, 256

conv, 3 × 3, 256

]
× 1

stage 2

16×16
conv, 3 × 3, 64, stride 2

displacement field generator (conv, 3 × 3, 18)

DCL loss

deformable conv, 3×3, 64

PTL loss or ICL loss[
conv, 3 × 3, 512

conv, 3 × 3, 512

]
× 1

stage 3

8×8
conv, 3 × 3, 128, stride 2

[
conv, 3 × 3, 1024

conv, 3 × 3, 1024

]
× 1

stage 4

1×1024

conv, 3 × 3, 128, stride 1

avg pool, 4 × 4

fc, 1024

[
conv, 3 × 3, 2048

conv, 3 × 3, 2048

]
× 1

avg pool, 4 × 4

fc, 1024

1×1 fc, softmax loss

into two adjacent residual blocks of the ResNets. Extensive experiments are

conducted to explore the impact of the deformable module integrated at dif-

ferent stages of the ResNet architectures. The DFN (DCL) and DFN (ICL)385

denote the DFN versions trained with the proposed DCL and ICL respectively.

The DFN (DCL&ICL) denotes the version trained with the two loss function

jointly. The DFN (DCL&PTL) denotes the version trained with the DCL loss

and PTL loss jointly. For the MegaFace evaluation, the conventional ResNet-50

and ResNet-152 are used as our baselines.390

We manually clean the MS-Celeb-1M [45] dataset and finally collect 3.7 Mil-

lion images from 50K identities. The revised dataset is used as our training

set for the evaluations on MegaFace challenge 1. For experiments on MultiPIE

dataset, the limited amount of training images may incur over-fitting issue for

deep networks like ResNet-50/152. To this end, we design a light CNN, namely,395

DFN-Light which is pre-trained on the cleaned MS-Celeb-1M dataset and then

fine-tuned on the MultiPIE training set. The baseline denotes the plain network

without the deformable modules and the proposed three losses. The architecture

details of the DFN-ResNet-50 and DFN-ResNet-152 are summarized in Table 1.

For experiments on CFP dataset, we modify the conventional ResNet-18, form-400

ing a lightweight ResNet-10 as our baseline. The DFN-10 is then constructed

by integrating the deformable module with ResNet-10. The architecture details

19

                  



Table 3: Rank-1 identification accuracy on MegaFace challenge 1 with deformable convolution
embedded at different stages.

Method MF1 Rank1
Baseline ResNet-50 74.76
DFN-50 with deformable conv embedded in stage 1 75.25
DFN-50 with deformable conv embedded in stage 2 75.02
DFN-50 with deformable conv embedded in stage 3 72.48
DFN-50 with deformable conv embedded in stage 4 58.88

of the DFN-Light and DFN-ResNet-10 are summarized in Table 2. Both the

baseline and DFN-10 are pre-trained on the cleaned MS-Celeb-1M dataset and

then fine-tuned on the CFP dataset following the 10 folds cross-validation pro-405

tocol [42]. We implement our method on the MXNet [46] platform and train all

the models using SGD with four NVIDIA TITAN XP GPUs. The loss weight

of the softmax loss is set to 1 and the loss weights of DCL, PTL and ICL are

0.001, 0.1 and 0.01 respectively.

4.2. Evaluations on the MegaFace Benchmark410

Since the stage where the deformable convolution is integrated plays an

important role in the resulting network architectures, we firstly conduct experi-

ments to investigate the best construction with only softmax loss. By integrating

the deformable convolution at four different stages of the plain ResNet-50 re-

spectively, we construct four versions of the DFN-ResNet-50 (DFN-50 for short415

in the following sections). Table 1 exhibits an example of integrating the de-

formable module in the stage 2. One significant difference between these four

versions is the size of the input feature map which varies from 62× 62 to 8× 8.

We train the four versions on the 3.7 Million images and test them on the

MegaFace challenge 1 benchmark. As illustrated in Table 3, the performance420

is gradually improved from stage 4 to stage 1, which means the deformable

convolution works better on larger input feature maps from the shallow stage.

Since the size of the receptive field in the shallow stage is much smaller than

that in the deep stage, the learnt displacement field of the shallow stage is more

elaborative, leading to better alignment for face recognition.425
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Table 4: Rank-1 identification accuracy on MegaFace challenge 1 with different loss functions.

Loss MF1 Rank1
DFN-50: softmax 75.02
DFN-50: softmax + contrastive 76.82
DFN-50: softmax + ICL 78.14
DFN-50: softmax + DCL 77.51
DFN-50: softmax + DCL + ICL 78.21

Furthermore, integrating the deformable module in shallow stage signifi-

cantly outperforms the baseline, indicating that the DFN is superior to its plain

version, i.e., the ResNet-50 baseline. Since models in Table 3 are trained only

with the softmax loss, the capability of DFN has not been fully excavated. Here,

we further explore the effectiveness of applying the DCL and ICL loss functions430

to DFN. Firstly, we train the DFN-50 integrated with the deformable module in

stage 2 with the DCL and ICL respectively. Then, we train the same network

structure with both the DCL and ICL.

Table 4 summarizes the rank-1 identification accuracy on MegaFace chal-

lenge 1 of our models trained with the proposed DCL and ICL loss functions.435

When the two loss functions are used separately, both of them can significantly

improve the performance, which demonstrates the effectiveness of the two pro-

posed loss functions. Specifically, when only using the DCL loss, the rank-1

accuracy is improved by 2.49%. We also compare the proposed ICL with the

contrastive loss function. As seen, both the ICL and the contrastive loss im-440

prove the rank-1 accuracy and our ICL outperforms the conventional contrastive

loss by 1.32%. It is reasonable that the conventional contrastive loss function

is usually applied at the penultimate layer, which may weaken the effect of the

loss function to well align faces under poses. Nevertheless our ICL is applied

directly after the deformable module, enforcing the transformed features to be445

well aligned for better face recognition. Furthermore, by employing the ICL

and DCL jointly, the performance of DFN is further improved to 78.21% which

outperforms the plain ResNet-50 by 3.45%.

We then evaluate the DFN with deeper architectures. The DFN-ResNet-
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Table 5: Rank-1 identification accuracy on MegaFace challenge 1 compared to the state-of-
the-art methods.

Method MF1 Rank1
SphereFace-Small [47] 75.76
CosFace [48] 82.72
ArcFace [49] 81.03
ResNet-152 80.60
DFN-152 80.99
DFN-152 (ICL) 81.85
DFN-152 (DCL) 81.53
DFN-152 (DCL&ICL) 82.11

152 (DFN-152 for short in the following sections) and its corresponding plain450

ResNet-152 are trained under the same optimization scheme. Table 5 shows the

results of different networks on MegaFace challenge 1. Similar to the observation

under the DFN-50, the performance of DFN-152 is consistently improved with

the proposed loss functions. Trained with only 50K identities, our DFN-152

(DCL&ICL) achieves result comparable to that of CosFace [48] trained with455

90K identities and that of ArcFace [49] trained with 85K identities. Moreover,

compared to the ResNet-152, our DFN-152 (DCL&ICL) improves the rank-1

accuracy by 1.51% with only 0.2M extra parameters.

4.3. Evaluations on the MultiPIE Benchmark

Table 6 summarizes the face recognition accuracy of our DFN-Light (DFN-L460

for short) on MultiPIE for different poses. The results of other state-of-the-arts

are directly quoted from [50, 2, 32, 15, 51, 31, 30, 11, 10]. As seen from Table 6,

the face frontalization method Hassner [2] performs better than CPF [50] since

3D facial shapes are utilized for the face synthesizing. Furthermore, benefitting

from the patch based reconstruction and occlusion detection, HPN [32] achieves465

better results than [50] and [2]. Attributed to the powerful generation ability

of GAN, the TP-GAN [15] outperforms all previous face frontalization meth-

ods. Differently, the methods of FV [51], FIP [31], c-CNN [30], p-CNN [11]

and PIM [10] focus on pose-invariant feature learning. Among them, the deep

methods FIP [31], c-CNN [30] and p-CNN [11] outperform the traditional fea-470
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Table 6: Rank-1 recognition rates (%) on MultiPIE for different poses

Method ±90◦ ±75◦ ±60◦ ±45◦ ±30◦ ±15◦

CPF [50] - - - 71.65 81.05 89.45
Hassner [2] - - 44.81 74.68 89.59 96.78

FV [51] 24.53 45.51 68.71 80.33 87.21 93.30
HPN [32] 29.82 47.57 61.24 72.77 78.26 84.23
FIP [31] 31.37 49.10 69.75 85.54 92.98 96.30

c-CNN [30] 47.26 60.66 74.38 89.02 94.05 96.97
TP-GAN [15] 64.03 84.10 92.93 98.58 99.85 99.78

PIM [10] 75.00 91.20 97.70 98.30 99.40 99.80
p-CNN [11] 76.96 87.83 92.07 90.34 98.01 99.19

Baseline 74.22 80.40 89.30 95.59 97.83 98.39
DFN-L 82.42 87.64 94.44 97.76 98.88 99.22

DFN-L(ICL) 83.65 88.62 94.97 98.00 99.12 99.51
DFN-L(DCL) 83.71 88.59 94.68 97.87 99.15 99.47

DFN-L(DCL&ICL) 84.07 88.97 95.16 98.05 99.23 99.58
DFN-L(DCL&PTL) 85.66 90.04 96.13 98.40 99.22 99.52

ture representations method FV [51]. Furthermore, owing to learning pose-

specific models or pose-specific adaptive routes, the c-CNN and p-CNN perform

much better than the unified model FIP. By integrating face frontalization and

discriminative feature learning, the PIM [10] achieves almost the best results

among the existing methods except the ±90◦. The reason is that as PIM is a475

face frontalization method, it may be hard for it to well maintain the realness

of synthesis, especially on the pose of ±90◦.

As seen, our DFN-L generally outperforms the p-CNN for all poses, demon-

strating the effectiveness of introducing deformable convolutions for face recog-

nition oriented alignment. Besides, attributed to the joint leaning with the480

proposed DCL and ICL loss functions, our DFN-L (DCL&ICL) achieves better

results than p-CNN [11] with an improvement up to 7.11% for ±90◦. As shown

in Fig. 4, the features extracted by our DFN have a similar pattern across all

poses, while obvious differences are witnessed between features extracted from

the baseline, which demonstrates the superiority of our DFN again. Moreover,485

the DFN-L (DCL&PTL) achieves the comparable results with PIM and sig-

nificantly outperforms PIM with an improvement up to 10.66% under faces of

±90◦. It is worth noting that the DFN-L has a very light network structure (as
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(a) Input images

(b) Features of the baseline 

(c) Features of our  DFN-L (DCL&ICL)

Figure 4: An example of pose-invariant features of DFN-L (DCL&ICL) with various poses
(−60◦ to +60◦). Even with the same identity, obvious differences are witnessed between fea-
tures extracted from the baseline method. In contrast, the features obtained by the proposed
DFN-L (DCL&ICL) show a similar pattern across all poses.

shown in Table 2), which is much more efficient than the GAN based PIM.

4.4. Evaluations on the CFP Benchmark490

Table 7 summarizes the Accuracy(ACC), Equal Error Rate (EER) and Area

Under the Curve (AUC) on CFP dataset. The results of the other state-of-

the-arts are directly quoted from [42, 52, 53, 16, 10, 18]. As seen from Ta-

ble 7, our DFN-10 (PTL&DCL) outperforms Peng, et al. [18], DR-GAN [16]

and PIM [10], reaching a higher accuracy of 94.01%. Besides, attributed to495

the joint leaning with the proposed DCL and PTL loss functions, our DFN-L

(PTL&DCL) achieves lower EER results than PIM [11] with an EER reduction

up to 2%. It is worth noting that, without the proposed loss functions, DFN-10

performs worse than the baseline ResNet-10. The reason is that without the

propose loss functions, it is non-trivial for the deformable module to learn ap-500

propriate pose-aware displacement fields for well face alignment. Moreover, it

also increases the risk of over-fitting potentially. To be free from this, the ex-

periments have illustrated that it is necessary to use the proposed loss functions

with the deformable module jointly. For instance, with the DCL loss, the accu-

racy of DFN-10 (DCL) is improved to 93.64% which further demonstrates the505

effectiveness of enforcing the learnt displacement field to be locally consistent.

24

                  



Table 7: Face recognition performance (%) comparison on CFP dataset. The results are
average ± standard deviation over the 10 folds.

Method
Frontal-Profile

ACC EER AUC
Sengupta et al. [42] 84.91±1.82 14.97±1.98 93.00±1.55
Sankarana et al. [52] 89.17±2.35 8.85±0.99 97.00±0.53
Chen et al. [53] 91.97±1.70 8.00±1.68 97.70±0.82
DR-GAN [16] 93.41±1.17 6.45±0.16 97.96±0.06
PIM [10] 93.10±1.01 7.69±1.29 97.65±0.62
Peng, et al. [18] 93.76 - -
Human 94.57±1.10 5.02±1.07 98.92±0.46
ResNet-10 92.89±1.42 6.69±1.43 97.90±0.58
DFN-10 92.72±1.57 7.03±1.14 97.87±0.50
DFN-10(ICL) 93.89±2.25 5.71±1.87 98.06±0.89
DFN-10(DCL) 93.64±2.39 5.69±1.94 98.09±0.87
DFN-10(ICL&DCL) 93.99±2.75 5.51±1.92 98.18±0.98
DFN-10(PTL&DCL) 94.01±2.79 5.40±2.03 98.24±1.02

5. CONCLUSIONS

To deal with the pose invariant face recognition problem, we proposed a

novel Deformable Face Net (DFN) to align features across different poses. To

achieve the feature-level alignments, the proposed method, DFN introduces de-510

formable convolution modules to simultaneously learn face recognition oriented

alignment and feature extraction. Besides, three loss functions, namely displace-

ment consistency loss (DCL), identity consistency loss (ICL) and pose-triplet

loss (PTL) are designed to learn pose-aware displacement fields for deformable

convolutions in DFN and consequently minimize the intra-class feature variation515

caused by different poses and maximize the inter-class feature distance under

the same poses. Extensive experiments show that the proposed DFN achieves

quite promising performance with relatively light network structure, especially

for those large poses.
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