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Abstract

Sparse representation based classification (SRC) has become a popular method-

ology in face recognition in recent years. One widely used manner is to enforce

minimum l1-norm on coding coefficient vector, which is considered as an unsu-

pervised sparsity constraint and usually requires high computational cost. On

the other hand, supervised sparsity representation based method (SSR) realizes

sparse representation classification with higher efficiency by multiple phases of

representing a probe. Nevertheless, since previous SSR methods only deal with

Gaussian noise, they cannot satisfy empirical face recognition application which

faces wide variations. In this paper, we propose a robust supervised sparse

representation (RSSR) model, which uses two-phase of robust representation to

compute a sparse coding vector. Huber loss is employed as the fidelity term in

the linear representation, which improves the competitiveness of correct class in

the first phase. Then training samples with weak competitiveness are removed

by supervised way. In the second phase, the competitiveness of correct class

is further boosted by Huber loss. We compare the RSSR with other state-of-

the-art methods under different conditions, including illumination variations,

gesture changes, expressions, corruptions, and occlusions. Comprehensive ex-
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periments on four open databases demonstrate the robustness of RSSR and

competitive performance is obtained in dealing with face images with occlusion

or not.

Keywords: face recognition, huber Loss, supervised sparse representation

1. introduction

Using biometric identification technology for verifying identity is gaining

more importance, and different techniques have been developed such as Palm-

print recognition[1][2] and face recognition(FR)[3][4]. FR[5][6][7]has been ex-

tensively studied for its broad application prospects in recent years, such as5

authentication and payment system. The primary task of FR consists of fea-

ture extraction and classification[8][9][10]. For many classifiers, feature extrac-

tion that tends to discover discriminative feature is very important, which has

great influence on recognition rate. Since there is rich redundancy in a face

image, low dimensional features are extracted to concisely represent the sam-10

ples in training set[11][12][13][14]. So that using these features can alleviate

the computational cost and improve the recognition performance of classifiers.

For empirical applications of FR, various changes including lighting, expression,

pose, and occlusion can be seen in a probe and which could not included in

training set, which leads to the consequence that the computed feature becomes15

inefficient. Image segmentation can be used to help the effective representation

of an image by retaining the informative parts of images[15][16]. Some methods

based on neural networks[17][18][19] can achieve good classification. However,

these methods always require a large number of training samples[20], and there

many unexplainable hyperparameters in the neural works[21]. Furthermore,20

some studies believe that feature extraction methods, such as principle com-

ponent analysis (PCA)[8][22], linear discriminate analysis (LDA)[4][23], and

independent component analysis (ICA)[24], have low effect on classifications,

which are built based on linear representation technique[14]. In this way, the

key importance of a FR system is to develop a classifier which makes the most25
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use of the discriminative information in a probe in variation and/or corruption

conditions[25][26].

To this end, methods based on linear regression (LR) are proposed recently

which show some promising results in FR[27][28][29][30]. The linear regression

based classification (LRC) is a typical method which represents a probe one class30

at a time[31]. The robust version of LRC is proposed in [32] which shows excel-

lent performance in dealing with illumination change. The sparse representation

based classification (SRC) is the first attempt to introduce sparse representa-

tion into FR research area which is able to enhance the discrimination and ro-

bustness of classification[33]. The follow-up works, including correntropy-based35

sparse representation (CESR)[34] and regularized robust coding with l1-norm

(RRC1)[35]. The CESR uses the conrrentropy-based Gaussian kernel function as

fidelity term, which has unsatisfactory performance in the case of scarf occlusion

and illumination change. The regularized robust coding (RRC)[35] is a com-

plex model which has some parameters to adjust as to obtain good performance40

under different situations. To implement sparse representation differently, Xu

et al. proposed a method called two-phase test sample sparse representation

(TPTSR)[36]. Besides, two similar works are proposed in [37][38] which use

different schemes to conduct supervised sparse representation, and some works

use l2,1-norm as penalty term combined with LDA[39].45

The basic assumption behind the aforementioned methods is that a probe

can be linearly represented by training samples from the same class of the

probe[40][41]. There are two critical points for these methods. First, since the

match error determines the final decision, mitigating the impact of corrupted

pixels of the probe can eliminate possible bias result from the corruption. Sec-50

ond, the model parameter, i.e. coefficient vector, should be properly estimated

in order to enhance discriminative capability of models. The first one has to do

with the fidelity term. If l2-norm is used as a fidelity term, the large values of

match error caused by pixel corruption or occlusion have great impact on the

fidelity term. When the number of these distorted pixels is large, the linear re-55

gression based method may fail. In this case, robust estimation function works
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better as fidelity term [42][43][44][45], since the impact of overly distorted pixels

is restrained. According to the second critical point, we can categorize linear

regression based methods into two groups. One is to estimate the coefficient

vector one class by one class[31]. Another one is to represent a probe collabo-60

ratively on the whole training set so that all coefficient vectors are estimated at

one time. In [27][33], it is suggested that the collaborative representation strat-

egy is helpful to improve recognition accuracy, in this way the sample space is

more complete and a probe can be represented better. In [33], the concept of

sparse collaborative representation is proposed, and a probe is collaboratively65

represented while the coefficient vector is subject to some sparseness constraint,

which increases the discriminative power of the regression

In this paper, we work towards the direction of developing a novel linear

regression based classification method mainly considering the above two points.

Hence a robust supervised sparse representation (RSSR) method is proposed70

for FR. The contributions of RSSR method are outlined as follows:

• RSSR method employs Huber loss as the fidelity term in the linear rep-

resentation. As the same as the squared loss, Huber loss is a minimum-

variance estimator of the mean. However, Huber loss is superior to l2-norm

based loss as a fidelity term when there are large outliers.75

• RSSR uses two-phase representation scheme to implement supervised sparse

representation. The first phase, referred to as the coarse representation,

uses all training samples to represent a probe; while in the second phase,

referred to as a fine supervised sparse representation, only training sam-

ples which have high contribution in the coarse representation are used80

and the coefficients for the rest training samples are set to zero.

The rest of the paper is organized as follows: Firstly, we briefly review some

existing relevant methods which use linear representation for robust FR and

discuss their limitations in the next section. In Section 3, we present the RSSR

model and the corresponding classification algorithm. The further discuss of85

the robustness and sparsity of the RSSR is shown in Section 4. In Section 5, we
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compare the RSSR with other related state-of-the-art methods by conducting

extensive experiments on different public available face databases.

2. Related works

To present a sparse representation face recognition scenario, we assume that90

a test image y can be approximately represented by the gallery of train images

A i.e.

y ≈ Ax (1)

where x is a coefficient vector. According to previous studies[33], it is safely

to assume that a test sample can be represented by the training samples from

the same class at least. Hence by conducting collaborative representation as95

Eq.(1), a likely solution of x is sparse because most entries equal zeros except

the entries associating with training samples form correct class. The collab-

orative representation problem can be recast as a sparse representation issue.

When a test sample contains noises or variations, the solution of x becomes no

longer sparse. To address this problem, methods have been proposed so far to100

add sparse constraint on x in linear representation procedure. These methods

could be divided into two groups in terms of the way to implement sparsity:

unsupervised sparse representation (USR) and supervised sparse representation

(SSR).

2.1. Unsupervised sparse representation105

Unsupervised sparse representation(USR) intends to incorporate collabora-

tive representation and sparse representation together into a single optimization.

Inspired by theory of compressed sensing[46][47][48], USR formulizes sparse rep-

resentation as the following optimization problem:

x∗ = arg min ‖x‖0 s.t. y = Ax (2)

where ‖·‖0 denotes the l0-norm of vector x which counts the number of nonzero110

entries in a vector. To directly solve Eq.(2) is a NP-hard problem, so that
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alternative approaches are used to approximate the sparse solution. Fortunately,

the l1-norm minimization problem is equal to the l0-norm minimization problem

under certain condition[47][48]. Therefore, the sparse representation vector is

computed by115

x∗ = arg min ‖x‖1 s.t. y = Ax (3)

where ||x||1 =
∑
||xi|| , x = [x1, x2, ..., xn]T . Further, Eq.(3) can be trans-

formed into the follow equivalent form:

x∗ = arg min g(e) + λ‖x‖1 (4)

where e = y−Ax = [e1, e2, · · · , em] which is called the match error vector, and

g(·) is an error function which uses the squared loss ‖·‖2 , and λ is a small positive

constant which balances the loss function and the regularization term. The120

above optimization problem Eq.(4) is also known as Lasso regression[49][50]. By

solving Eq.(4), the SRC uses the sparse representation vector x∗ to select which

class has the most significant contribution of representing the probe. According

to [33], this method obtains promising results in several FR scenarios. To further

improve the performance of SRC, some follow-up studies suggest replacing the125

squared loss function in Eq.(4) with robust estimation function because the

squared loss function could be affected severely by large entries of error vector.

Compared with the squared loss function, the robust estimation function assigns

weight to each entry of error vector according to its value. For example, a

Gaussian function is used as its weighting function in CESR and in RRC the130

weighting function is a logistic function. According to the robust statistical

theory[51], these methods reduce the influence of large outliers. Although l0-

norm is replaced by l1-norm in these sparse representation methods, to solve a

l1-norm problem is still computationally expensive.

2.2. Supervised sparse representation135

Supervised sparse representation (SSR) uses collaborative representation it-

self to supervise the sparsity of representation vector. The linear regression
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model of SSR uses l2-norm to regularize representation vector:

x∗ = arg min ‖e‖2 + λ‖x‖2 (5)

In this way, the solution can be computed with much lower time cost than l1-

norm based sparse regression model. In TPTSR [36], which uses a two-phase140

representation scheme to recognize a probe. The solution of the first-phase,

denoted by x∗1, severs as a supervisor to select a subset of training samples

which contains M � n samples associating with have the first M greatest con-

tributions in representation. Then in the second-phase the probe is represented

only on the selected subset. By this coarse-to-fine two-phase representation,145

a sparse representation vector is obtained since n − M entries of this vector

can be considered to be set to zeroes after the first phase. Compared to USR,

SSR acquires a true sparse representation vector while that of USR has many

non-zeroes although which may be very small.

3. Robust coding based supervised sparse representation150

3.1. Robust regression based on Huber loss

In a practical face recognition system, one needs to deal with the probe image

under non-ideal condition. Here, we consider two common non-ideal cases that

test images with occlusion or corruption. In both cases, the representation

model shown in Eq.(1) has to be transformed as:155

e = ȳ −Ax (6)

Since a portion of pixels of the probe image is randomly distorted, the distribu-

tion of the matching residual e in Eq.(6) becomes heavy tailed. Therefore the

loss function should be carefully chosen because only a few functions are feasible

to deal with heavy-tailed distribution. For example, if the quadratic functions

are used in this case to develop a regression model, which is known as ordinary160

least squares regression (OLSR), the regression result would be inefficient and

biased. The reason is that the least squares predictions are dragged towards
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the outliers. However, the absolute value function cannot perform minimum-

variance estimation while the OLSR can. It is well-know that the smaller vari-

ance of the estimator achieves, the better the performance of the estimator165

should be. So an ideal function used in this estimation scenario should com-

bine the two merits that the minimum-variance estimation (advantage of the

quadratic loss function) and the median-unbiased estimation (advantage of the

absolute value function). In statistics, the Huber loss is used in robust regres-

sion, which has the both merits. Huber loss is known as an unbiased estimator170

which remedies the disadvantage of square loss that the result has the tendency

to be dominated by some unexpected contaminated features of a probe sample.

In the even that a partial face image is occluded, the representation error shows

a heavy-tailed distribution which influences the estimation of the representing

accuracy and has an unpredictable effect on the classification stage. Fidelity175

term using Huber loss is much less sensitive to those outlying features and, at

the same time, is less likely to miss minima, which occurs when absolute loss

fidelity is used. Huber loss is defined as:

g(e) =

 1
2e

2

k|e| − 1
2k

2

if|e| ≤ k

if|e| > k
(7)

where k is a constant. As defined, Huber loss is a parabola in the vicinity of zero,

and increases linearly above a given level |e| > k. In other words, Huber loss is180

able to tolerate the residuals with great absolute values, caused by unexpected

pixel corruptions, which is superior to the quadratic loss function. Moreover,

Huber loss has the quadratic curve which its input variable is very small. So

that this estimator has the capability to correctly measure the small match error

between the test and the prediction in corresponding to the uncontaminated185

pixels of the test.

Therefore, we develop a linear representation-based FR method using Huber

loss as the error measure function, which is defined as:

G(e) =
∑
i

g(ei) (8)
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where g(.) is Huber loss, ei = yi − dix, yi ∈ y, di is the ith row of matrix A.

Unlike the OLSR problem, there is no close form solution for the regression190

problem using Huber loss. However, Eq.(8) can be recast as a weighted least

squares regression form[52]. Here, we denote the first order derivative function

of the Huber loss as ψ(p) = dg(p)
dp . So Eq.(8) becomes:∑

ψ(ei)
∂ei
∂x

= 0 (9)

where ψ(.) is called the influence function[51][52]. The influence function de-

scribes the extent that how match error affects the cost function and accordingly195

influences the estimation of coefficient vector. Next, we can define the weight

function:

ω(p) =
ψ(p)

p
(10)

which assigns a specific weight to a certain pixel. The weight function of Huber

loss is given by:

ω(ei) =

 1 |ei| ≤ k
1/|ei| |ei| > k

(11)

It is easy to see that if a pixel has a bigger value of residual (i.e.|ei| > k) it200

will be assigned with a smaller weight (i.e.1/|ei|). Although Huber loss and

the l1-norm fidelity employ a similar strategy (i.e. using same weighting func-

tion) to lower the influence of outliers in a probe, their weighting functions still

have large difference which is shown in Fig.1. From Fig.1, one can see that

the assigned weight by the l1-norm fidelity can be infinity when the residual205

approaches to zero, making the coding unstable. However, for small residual

(i.e.|ei| ≤ k), Huber loss views it as thermal noise, and its weighting strategy

is the same as the l2-norm fidelity, i.e. ω(ei) = 1. Hence, the estimated coef-

ficient vector by Huber loss is more stable. In addition, Huber loss follows the

i.i.d GaussianLaplacian distribution, and [53] provides more theoretical persua-210

sion. Integrating Eq.(8), Eq.(9), Eq.(10), and Eq.(11), Huber loss is able to be

transformed to the regression form of iterated reweighted-least-squares as:

min
∑
i

wiiei
2 (12)
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Fig. 1: Weight functions of the l1-norm fidelity and Huber loss.

where wii is the weight of ith pixel in ȳ which is obtained by Eq.(11). On the

one hand, if we assume that outlier pixels have errors greater than k, the weight

of these pixels should be as small weight as possible to ensure the estimator with215

median-unbiased. On the other hand, the estimator has an inherent advantage

that it can achieve minimum-variance estimation of coefficient vector for clean

pixels. There are many optional M-estimators, which have some good features

to deal with outliers. If an M-estimator can match the distribution of errors,

the coefficient vector can be estimated precisely[35]. However, face images are220

commonly involved in rich variations and unpredictable noises, which lead to a

inscrutable distribution of e. Considering the comprehensive performance of a

FR method, Huber loss is more suitable for robustly estimating residuals.

3.2. The Proposed Model

In this paper, the Huber loss is used to develop a supervised sparse repre-225

sentation model, which needs two phases of representing a probe. In the first

phase, a probe is represented collaboratively and the corresponding coding vec-

tor is computed by solving the following problem:

x = arg min
x

G(y −Ax) + λ
2 ||x||

2
2 (13)

where G(y−Ax) = G(e) =
m∑
i=1

g(ei) and g(.) is the Huber loss defined as Eq.(7).

λ is a parameter, which balances the fidelity term and the regularization term.230

Since the Huber loss is a piecewise function, we need to transform Eq.(13),
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so as to facilitate the computation[54]. First of all, we define a sign vector

s = [s1, s2, · · · , sj , · · · , sm]T by

sj =


−1

0

1

if

if

if

ej < −k

|ej | ≤ k

ej > k

(14)

and define a diagonal matrix W ∈ m×m with diagonal elements

wjj = 1− sj2 (15)

Now,by introducing W and s, G(e) can be rewritten as235

G(e, s,W) = 1
2eTWe + ksT(e− 1

2ks) (16)

If all residuals are small (their values are smaller than k ), the second term

of the right side of Eq.(16) will disappear and the fidelity term degrades to

quadratic function. Actually, in Eq.(16), the entries of s can be considered as

indicators of large residuals, which divide the residuals into two groups, i.e. The

small residuals and the large ones. These two groups of residuals are handled240

by first term and the second term of the right side of Eq.(16) respectively. The

second term of the right side of Eq.(16) actually plays the same role as l1-norm,

but with a different variant. By substituting the fidelity term of Eq.(13) with

Eq.(16), the optimization function now is reformed as

_
x = arg min

x

1
2eTWe + ksT(e− 1

2ks) + λ
2 ||x||

2
2 (17)

where s and W are defined in Eq.(14) and Eq.(15) respectively, and
_
x is esti-245

mated coding vector. Each entry in
_
x represents the contribution of the corre-

sponding training sample for representing the test sample, i.e. the large absolute

value of an entry means great influence in the representation. It is very com-

mon that some contaminated pixels exist in a test image, which results in more

dense representation due to the compensation of the contaminated pixels. It250

is well known that sparse representation is helpful to improve the recognition

accuracy. The concept of supervised sparse representation is that the training
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samples without significant contribution in the first stage should be removed,

so as to enforcing the sparsity of the coding vector.

To implement supervised sparse representation, we need to remove the train-255

ing samples with low contribution from the next phase representation. We notice

the fact that some entries in
_
x are equal or closed to zeros, which means the

corresponding training samples have very low contribution to represent the test

sample. Hence these training samples are to be removed. Here, we assume there

are M training samples, which have the M greatest contribution, are retained260

after the first phase of representation. Hence the training sample set becomes

Ã ∈ Rm×M (Ã is a subset of A and M � n).

In the second phase, the test sample is represented anew over the retained

M candidate samples,i.e. y ≈ Ãx′. Due to this second phase of representation

involves less gallery samples, noises in test sample are less likely to be com-265

pensated. It is beneficial for Huber loss to find polluted pixels. Moreover, the

final Huber loss
_
x
′
∈ RM of the coding vector can be obtained by Eq.(17).

Due to the interferential samples are removed after the first phase, the correct

samples, training samples belong to the same class as a test sample, tend to

have the greater contributions to represent the test sample in second phase[36].270

Therefore, the coefficients of correct samples are highlighted significantly in
_
x
′
.

3.3. Algorithm of RSSR

In both two phases of representation, we need to solve the robust regression

optimization problem as given in Eq.(17). However, this optimization objective

function has no close form solution. In order to improving the optimization275

efficiency of RSSR, two extra variables s and W are introduced into the objective

function. That is, s and W make the function and its derivative to become

more concise. Therefore, the objective function Eq.(17) can be transformed to

following:

ATWAx−ATWy + kAT s + λx = 0 (18)

The coefficient vector is represented by the follow formula:280

x = (ATWA + λI)−1(ATWy − kAT s) (19)
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where I is an identity matrix. In this paper, the final coding vector x is solved

the by the iteratively re-weighting technique. The positive-weight matrix W

and the passive-weight vector s can be computed by the following formula

st = s(xt−1) (20)

Wt = W(st) (21)

where t is the number of iteration, and s(.) and W(.) represent Eq.(14) and285

Eq.(15), respectively. In this paper, the initial vector x0 uses the result of

Ridge regression, i.e. x0 = (ATA + λI)−1ATy. And the formula of the coding

vector x with tth iteration as

xt = xt−1 + uth(Wt, st) (22)

where h(Wt, st) = (ATWtA + λI)−1(ATWty−kAT st)−xt−1, and 0 < ut ≤ 1,

which is a step size that makes the loss value of the t-th iteration less than that290

of the last. In this paper, ut is determined via the golden section search if

t > 1 (u1 = 1). The detailed estimated procedure of coding vector of RSSR is

summarized in the Algorithm 1.

After computing the coding vector of a test sample, we use a typical clas-

sification rule for collaborative representation to make the decision. The test295

sample is classified by the following strategy:

indentity(y) = argmin
c
dc (23)

And

dc = G(y − Ãcx̂c, ŝ,Ŵ)
/
||x̂c||

2
(24)

where Ãc is a sub-dictionary that contains samples of class c, and xc is the

associated coding coefficient vector of class c.

3.4. Time Complexity of the proposed Algorithm300

The main computational consumption of RSSR is spent on calculating of

the coding vector, by Eq.(19). To simplify the analysis of time complexity, we

14



Algorithm 1

Input: test image , and training samples A

Output: x̂

1: repeat

2: Compute residual et = y −Axt

3: Update st, Wt and xt by Eq.(20), Eq.(21) and Eq.(22), respectively.

4: until maximum iterations or convergence.

5: Selecting candidate samples

6: repeat

7: Compute x̂l = (ÃT Ã + λĨ)−1ÃTy

8: Compute residual êl = y − Ãx̂l

9: Update ŝl,Ŵl,and x̂l via Eq.(20) , Eq.(21), and Eq.(22), respectively.

10: until maximum iterations or convergence.

transform it into

(ATWA + λI)x = (ATWy − kAT s) (25)

Note that W only contains two kinds of elements, i.e. 0 and 1. Therefore, the

Eq.(22) can be converted into305

(AW
TAW + λI)x = (AW

TyW − kAT s) (26)

The solution of Eq.(22) can be obtained by conjugate gradient method, whose

time complexity is O(kmwn) [55], where k is the iteration number in conjugate

gradient method, mw is the dimensionality of face feature, and n is the number

of training samples. The main time complexity of the coding process in the first

phase is about O(t1k1mwn) if the algorithm needs t1 iterations to converge.310

Analogously, the time complexity is about O(t2k2mwM) in the second phase of

RSSR. Due to M � n and t1 is usual less than 10, the final time complexity

of our algorithm is O(mwn) . In addition, the time complexity of our methods

is less than RRC1 (i.e.O(m2n)) and regularized robust coding with l2-norm

(RRC2) [35] (i.e.O(mn)) due to mw is usually less than m.315
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4. Sparsity and robustness of our model

In this section, we analyze the effectiveness of the two terms in object func-

tion, i.e. the fidelity term and the regularization term, of RSSR when dealing

with distorted facial images. Our aim is to demonstrate that the robustness

and the sparseness of RSSR with comparison to SRC and TPTSR methods.320

Here, we adopt examples that two probe faces, i.e. one is clean and another

is contaminated with 30% random pixel corruption. Both images are used as

tests to compare three methods which are shown in Fig.2(a) and Fig.2(b) re-

spectively. And the experiment setting on AR dataset is the same as[33], i.e.

facial images without occlusion in session 1 are used for training and test im-325

ages belongs to session 2. More experiments were reported in section 5. As

(a) (b)

Fig. 2: (a)A face image from the first class. (b)The corrupted test sample of AR data base.

we known, linear representation based FR methods have an assumption that

the test sample y and these samples Ai of the i-th class should lie in the same

subspace if y belongs to the i-th class[31]. Therefore, the training samples from

the correct class can provide a compact representation of the test sample. In330

Fig.3, three sparse representation based classifiers, including SRC, TPTSR, and

the proposed RSSR, show very similar results that the samples from the cor-

rect class have great coefficient values, which means the test sample can be well

represented by only a few training samples. If we consider the sparse represen-

tation as a competition among training samples, correct samples will make the335

major contribution in the representation. According to the typical decision rule

for these linear representation based approaches, a test sample is very likely
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to be classified to the class whose training samples have high representation

contributions[33]. From Fig.3, Fig.4, and Fig.5, we can observe clearly that the

representation residuals in RSSR are smaller than SRC and TPTSR, because340

the classifier in RSSR uses Huber loss rather than l2-norm in SRC and TPTSR

to calculate the distance between the test image and a certain class.

(a) (b) (c)

Fig. 3: (a)-(c) Top: the representation coefficients for SRC, TPTSR, and RSSR in which the

coefficients associating with the training samples from class 1 are marked with red, Bottom:

the corresponding representation residuals (for TPTSR and RSSR, classes which have none

training samples involved in the second representation step are not shown).

In practice, empirical application of a face recognition system should toler-

ate some common variations. Here the noise caused by pixel corruption is used

as an example. The test sample y′ (Fig.2 (b)) we used now is the same one as345

Fig.2(a) but with pixel corrupted up to 30% and we compare the representa-

tion results with same experiment set as Fig.3. In the image feature, the noisy

probe y′ can deviate greatly from y, so that the spatial relation between y and

A1 can be distorted, which leads to a bad representation of y′ by the correct

class A1. That is to say, distorted samples violate the mentioned assumption350

of linear representation. It is the key to employ good residual measurement

to reduce the influence brought by noises. The previews TPTSR and SRC use

Euclidean distance ‖.‖2 to measure the similarity between two images, which

is very sensitive to pixel corruption. In our method, Hubers loss function sup-

presses the distortion caused by corrupted pixels to distance measurement. Let355

us check the comparison shown in Fig.4: For SRC, with the help of l1-norm

restriction on the coefficient vector, the representation is very sparse, which is

helpful to tolerate noises . But the samples from class 1 are not only ones which
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have high representation contribution and the training sample having the high-

est contribution is from class 31 so that the noisy probe could be misclassified.360

For TPTSR, since no mechanism is used to deal with the strong noise, training

samples from class 1 are not competitive at all. Actually TPTSR is designed to

perform highly efficient supervised sparse representation but does not consider

serious variations. For our RSSR, the training samples associating with very

large coefficients all comes from class 1 which means y′ can be identified cor-365

rectly. In other words, we make the supervised sparse representation possible

to recognize a very noisy probe.

(a) (b) (c)

Fig. 4: The representation results for corrupted image shown in Fig. 2 (b). (a)-(c) Top: the

representation coefficients for SRC, TPTSR, and RSSR in which the coefficients associating

with the training samples from class 1 are marked with red; Bottom: the corresponding

representation residuals ( for TPTSR and RSSR, classes which have none training samples

involved in the second representation step are not shown).

Next, we give a detailed demonstration of the efficiency of the proposed

method in dealing with noisy image by comparing with the previous supervised

sparse representation based method. We can see in Fig.5 that in the first phase370

of representing a probe the previous TPTSR has very dense coefficients while our

RSSR produces an approximate sparse coefficient vector. More importantly, for

RSSR samples from the correct class have the major contribution to represent

the probe so that the residual bar of the first class is lower than that of others,

however, for TPTSR no class shows significant competitiveness over others.375

It means the noises hinder collaboration representation used in both phases of

TPTSR from sparsely coding the probe. As shown in Fig.4, even after removing

some low contribution samples in the first phase, TPTSR still cannot highlight
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the representation load of samples from correct class, which means by enforcing

the supervised sparsity on coefficients TPTSR not able to class a noisy face.380

While we can see that RSSR further reduces the residual of correct class in the

second phase, which mean in this noisy case supervised sparsity works well to

improve the efficiency of representation. In summary, RSSR introduces Huber

loss into supervised sparse representation based classification solves the problem

that noisy face images could invalidate the previous TPTSR.

(a) (b)

Fig. 5: Comparison of coding efficiency of two supervised sparse methods in the first phase of

representation (i.e. top: TPTSR and bottom: RSSR).

385

5. Experiment results

In this section, the performance of RSSR is evaluated via extensive experi-

ments. We compare RSSR with six state-of-the-art methods, including SRC[33],

CESR[34], RRC1[35], RRC2[35], CRC[27], LRC[31], and TPTSR (for TPTSR

the candidate set is set to 10 percent of training set)[36], ProCRC[56], NMR[57].390

And all compared methods except LRC are collaborative representation based,

while LRC is to represent a probe one class at a time. All used gray-scale images

are normalized to unit vectors. Experiments were implemented on MATLAB

using a desktop with 3.30GHz Intel CPU and 16G RAM.

5.1. Parameter Setting395

There are three parameters in RSSR, i.e. the Huber threshold k, the sparse

factor M , and the Lagrangian multiplier λ. k is important to Huber loss which
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determines which part of Huber loss is used to handle the regression error,

i.e. the quadratic function or absolute value function. The empirical value of

k can be obtained in many ways[58][59]. However, according to our extensive400

experiments, the value of k is set to 0.001. As discussed in[36][60], the supervised

representation based methods have good performance when the sparse factor is

in arrange from 0.1 to 0.2. Therefore, we set the parameter M to 0.1. For

λ which is used to balance the fidelity term and regulation term, it is set to

0.001 in all the experiments. The value of λ is selected on the validation set by405

multiple iterations of cross-validation.

5.2. Face Recognition without occlusion

We first evaluate the performance with facial images with variations, such

as illumination, posture changes and expression changes but without occlusion.

And the experiments are performed on four public available face recognition410

databases, namely, AR[61], Extended Yale B[62][63], Feret[64], and ORL[52].

Extended Yale B Database. We used 31 subjects in the dataset each of which

has 64 frontal facial images under various lighting conditions[62][63] According

to different lighting intensities, the database can be divided into five subsets.

The degree of lighting interference is increasing from subset 1 to subset 5. Im-415

ages from the subset 1, normal-to-moderate lighting conditions (shown in Fig.6

top), were used for training samples and the subset 4 with more extreme lighting

conditions (shown in Fig.6 bottom) was used for test. Table 1 shows that other

robust regression based methods such as CESR, RRC1, and RRC2 perform

poorly in dealing with illumination variations, and their corresponding recogni-420

tion rates are only 16.1%, 68.4%, 63.8%, respectively. These methods enforce

too strong constraint on some non-noise pixels by the weighting function, which

destroys the illumination model. Although our proposed RSSR belongs to ro-

bust regression based method, it greatly outperforms the other three and the

recognition rate reaches 87.6%. This is because Huber loss can assign a better425

weight to pixels with large residual values. In the illumination condition, the
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coding vector might contains some the negative elements, but those samples

with negative coefficients are very likely to have been removed in the first step

of TPTSR, which leads to the poor performance of TPTSR that is 55.8%. The

recognition rate of SRC only reaches 15.9%, which indicates that SRC cannot430

deal with too intense lightening changes. Moreover, LRC, ProCRC, and CRC

obtain good recognition rate, i.e. 88.7%, 77.0% , and 85.9%, respectively.

Fig. 6: Some images from the Extended Yale B database. Top: sample images from subset 1.

Bottom: sample images from subset 4.

Table 1: Results for the Extended Yale B database

Method CESR RRC1 RRC2 LRC SRC CRC TPTSR ProCRC NMR RSSR

Recognition rate(%) 16.1 68.4 63.8 88.7 15.9 85.9 55.8 77.0 43.8 87.6

AR Database. The AR database consists of more than 4000 frontal facial images

from 126 subjects (70 men and 56 women)[61]. For each subject, 26 images were

taken in two separate sessions (i.e. session 1 and session 2). And these images435

included different facial variations, such as expressions changes, illumination

variations, and different disguises (sunglass and scarf). As in [35], we choose a

subset from AR database which contained 50 male and 50 female subjects. For

each individual, the used training set included first seven images from session

1 with expression variations and illumination variations (Fig.7 top), the other440

seven images from session 2 were used for test (Fig.7 bottom). In addition, all

images were downsampled to 50×40 . The comparison results of the several

methods are listed in Table 2. The recognition rates of LRC (76.1%), NMR

(71.6%) and SRC (75.7%) are the lowest among all of methods. Besides SRC,
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the recognition rates of these methods based on collaborative representation are445

over 90%. TPTSR (91.9%), CRC (92.7%), and CESR (91.3%) obtained similar

results. RRC1 (96.7%), RRC2 (96.2%), and RSSR (95.0%) perform better.

Fig. 7: The part of images of one subject in AR. Top: these facial images from session 1.

Bottom: these images from session 2.

Table 2: Results for the AR database

Method CESR RRC1 RRC2 LRC SRC CRC TPTSR ProCRC NMR RSSR

Recognition rate(%) 91.3 96.7 96.3 76.1 75.7 92.7 91.9 74.6 71.6 95.0

FERET Database. As in ([36]), a subset that contains 200 subjects were used450

from the FERET database[64]. Each individual had 7 images (i.e.Fig.8) from b

series of FERET database whose names are marked with two-character strings:

ba, bj, bk, be, bf, bd, and bg. We used three images: the first, third, and

fourth facial of each subject, as training and the other four facial images were

used as test. These images were downsampled to 40×40. From Table 3, we455

can see the recognition rate of RSSR (78.1%) is highest among all of methods.

Note that that TPTSR (69.0%) and ProCRC (64.2%) outperform CRC (54.0%),

which shows that in this case the supervised sparse constraint is conducive

to classification. RRC1, CESR, and SRC both using l1-norm constraint in

their regularization obtain recognition rates up to 77.0%, 75.0%, and 73.4%460

respectively. RRC2 lags RRC1 by 14% for not using sparse constraint. In

addition LRC obtains recognition rate of 72.6%.
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Fig. 8: The part of images of the first subject in FERET.

Table 3: Results for the FERET database

Method CESR RRC1 RRC2 LRC SRC CRC TPTSR ProCRC NMR RSSR

Recognition rate(%) 75.0 77.0 63.0 72.6 73.4 54.0 69.0 64.2 63.3 78.1

ORL Database. ORL database contains 40 subjects and each individual pro-

vides 10 face images[65]. This database includes rich gesture variations, the

samples in first class are shown in Fig.9. We used first three images for train-465

ing and the rest for test. Moreover, all images were downsampled to 50×40 .

Table 4 shows all comparison results. The recognition rate of RSSR is the high-

est among these methods which reaches 91.1% and is the only method whose

recognition rate is over 90%. The other supervised spares method, TPTSR, has

the second highest recognition accuracy 89.6%. All robust regression methods,470

RRC1, RRC2, ProCRC, NMR, and CESR, show similar performance.

Fig. 9: Sample images of the first subject in ORL.

Discussions. It can be concluded that the performance of some methods is not

consistent. For instance, LRC is adept at dealing with illumination variations,

but it performs poorly with expression changes and posture changes; the recog-

nition rate of RRC1 is the highest on AR database, but falls significantly if the475

facial images include illumination changes and posture variations. In contrast,

RSSR shows good generalization performance that it always shows top recogni-

tion accuracy among the compared eight methods (the respective rankings are

2nd, 3rd, 1st, and 1st in the four experiments). In practical, FR applications,

the merit of RSSR is very important because the variations on facial image are480
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Table 4: Results for the ORL database

Method CESR RRC1 RRC2 LRC SRC CRC TPTSR ProCRC NMR RSSR

Recognition rate(%) 87.1 87.5 85.4 83.2 86.8 83.9 89.6 88.2 88.6 91.1

very hard to predict, which requires consistent good performance.

5.3. Face recognition with corruption and occlusion

It is well known that face pictures are susceptible to two kinds of noise: occlu-

sions and corruptions. In this case, face recognition becomes a more challenging

problem due to the occlusion and corruption are very varied. In the experi-485

ments, we verified the robustness of RSSR against to two typical facial image

contaminations, namely random pixel corruption and random block occlusion.

FR with pixel corruption. As in [35], we evaluated the performance of RSSR in

FR with random pixel corruption on Extended Yale B. To implement a more

challenging experiment, we used less training samples, i.e. only samples from490

subset 1, and the test samples were from subset 3. We resized the images to

50×40. On each test image, a certain percentage of randomly selected pixels

were replaced by corruption pixels whose values were uniformly chosen from 0

or twice as the biggest pixel value of the test image.

A representative example of RSSR with random corruption is presented in495

Fig.10.The test image Fig.10(b) was produced by adding random corrupted

60% pixels on the original facial shown in Fig.10(a). In this case, Fig.10(b)

is very hard to recognize by human eyes. The prediction of RSSR is shown in

Fig.10(e) which is rather satisfying. We can observe that not only these random

noises on this image were eliminated, but also the illumination variations were500

mitigated. Fig.10(c) is a match residual image between the test facial image

and the reconstructed image, which indicates that corruptions were separated

effectively by RSSR. The coding coefficients (Fig.10(d)) shown that coefficients

belonging to the correct subject had very large contribution in the representation

while the coefficient vector was quite sparse.505
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Fig. 10: Recognition under 60% random corruptions.(a) Original image for test from subset 3

on Extended Yale B database.(b) The test image with corruption.(c) Estimated error image.(d)

Estimated representation coefficients by RSSR.(e) Reconstructed prediction images of RSSR.

Fig. 11: The comparison of robustness of several algorithms against random pixel corruptions.
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In Fig.11, the recognition rates of CESR, RRC1, RRC2, ESRC (Extended

SRC), LRC, CRC, TPTSP, ProCRC, NMR and RSSR versus different percent-

ages of corrupted pixels are plotted. The performance of CESR under illumi-

nation conditions is the lowest when the corruption is not serious, but it drops

very late, which shows its good robustness but poor accuracy. RRC1 and RRC2510

show some robustness which obtain 100% accuracy before 50% corruption level,

but their performance degenerate severely after that. The ESRC, which incor-

porated an extended matrix into the original SRC to rectify the severe noises,

kept high accuracy until corruption level exceeded 60%. For our RSSR, the

curve of recognition rate keeps straight at 100% correct rate and only starts515

to bend until 70% pixels are corrupted which indicates the best robustness of

RSSR among all the compared methods. In addition, the performance of LRC,

CRC, and TPTSR sharply drops when corrupted pixels exceed 10%.

FR with block occlusion. In this section, the performance of RSSR dealing with

random block occlusion was evaluated on Extended Yale B. Fig.12 presents520

an example (the first subject) to demonstrate the robustness of RSSR in this

case. Fig.12(a) is a sample image and Fig.12(b) is its corresponding occluded

counterpart for test. We used RSSR regression to produce the prediction of

Fig.12(b). We can see that the block noise on the test image is eliminated by

RSSR quite well, which is simultaneously proved by the error image Fig.12(c) in525

which the block occlusion is detected and highlighted clearly. From Fig.12(d),

the correct class contributed mainly to represent the occluded face image which

insures the correctness of the final decision.

To compare RSSR with other methods, we plot the recognition rate of CESR,

RRC1, RRC2, ESRC, LRC, CRC, TPTSP, ProCRC, NMR, and RSSR under530

size of the occlusion from 0% to 50% in Fig.13. Except CESR, these methods

acquire 100% recognition rate without block occlusion. With increase of size of

the occlusion, the recognition rates of LRC, CRC, and TPTSR go down sharply,

while the recognition rates of RRC1, RRC2, ESRC, and RSSR maintain 100%

up to 20% occlusion. From 30% to 50% occlusion, the recognition rates of RSSR,535
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Fig. 12: Recognition of RSSR under 30% block occlusion.(a) Original image from subset 1 on

Extended Yale B database. (b) Test image with occlusion. (c) Estimated error image. (d)

Estimated representation coefficients of RSSR. (e) Reconstructed images by RSSR.

Fig. 13: Recognition rates of these methods under different levels of block occlusion

RRC1, and RRC2 preform more stable than ESRC.

6. Conclusions

A novel robust linear representation based model, RSSR, is proposed for ro-

bust face recognition in this paper. RSSR uses a two-phase collaborative repre-

sentation to implement supervised sparse representation. As to tolerate possible540

variations on probe images, we use Huber loss as fidelity term in cost function

for linear representation, which is capable of reserving more samples of correct

class into the candidate set for the latter representation. Then the second phase

of representation highlights the contribution of the correct class representing the

probe, which is another key point that underlies the high performance of RSSR.545

Moreover, to solve the RSSR regression function we introduce two variables

which can simplify the object function of RSSR in the process of optimiza-
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tion. As shown in experiments, we compare RSSR classification method with

the other state-of-the-art methods (e.g. SRC, LRC, TPTSR, CESR, RRC1,

RRC2, ProCRC, NMR) under different conditions, including illumination vari-550

ations, gesture changes, expression changes, corruptions, and occlusions. The

performance of RSSR always ranks in the forefront of different comparisons and

especially RSSR surpasses TPTSR, the original supervised sparse method, in

all cases.
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