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Abstract

Despite great progress in face recognition tasks achieved by deep convolu-
tion neural networks (CNNs), these models often face challenges in real world
tasks where training images gathered from Internet are different from test images
because of different lighting condition, pose and image quality. These factors in-
crease domain discrepancy between training (source domain) and testing (target
domain) database and make the learnt models degenerate in application. Mean-
while, due to lack of labeled target data, directly fine-tuning the pre-learnt models
becomes intractable and impractical. In this paper, we propose a new clustering-
based domain adaptation method designed for face recognition task in which the
source and target domain do not share any classes. Our method effectively learns
the discriminative target feature by aligning the feature domain globally, and, at
the meantime, distinguishing the target clusters locally. Specifically, it first learns
a more reliable representation for clustering by minimizing global domain dis-
crepancy to reduce domain gaps, and then applies simplified spectral clustering
method to generate pseudo-labels in the domain-invariant feature space, and fi-
nally learns discriminative target representation. Comprehensive experiments on
widely-used GBU, IJB-A/B/C and RFW databases clearly demonstrate the effec-
tiveness of our newly proposed approach. State-of-the-art performance of GBU
data set is achieved by only unsupervised adaptation from the target training data.

Key words: Face recognition, Unsupervised domain adaptation, Pseudo-label,
Face clustering.
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1. Introduction

Benefiting from convolutional neural networks (CNNs) [1, 2, 3, 4, 5], deep
face recognition (FR) has been the most efficient biometric technique for identity
authentication and has been widely used in enormous areas such as military, fi-
nance, public security as well as our daily life. However, deep networks which
perform perfectly on benchmark datasets may fail badly on real world applica-
tions. This is because the set of real world images is infinitely large and so it is
hard for any dataset, no matter how big, to be representative of the complexity
of the real world. One persuasive evidence is presented by P.J. Phillips’ study
[6] which conducted a cross benchmark assessment of VGG model [7] for face
recognition. The VGG model, trained on over 2.6 million face images of celebri-
ties from the Web, is a typical FR systems and achieves 98.95% on LFW [8] and
97.30% on YTF [9]. However, It only obtains 26%, 52% and 85% on Ugly, Bad
and Good partition of GBU database, even if all of images in GBU are nominally
frontal.

The main reason is a different distribution between training data (source do-
main) and testing data (target domain), referred to as domain or covariate shift.
Visual examples of this domain shift are shown in Fig. 1. Each dataset in Fig.
1 displays a unique “signature” and thus one can easily distinguish them only
by these signatures, which proves the existence of significant discrepancies. The
images in CASIA-WebFace [10] are collected from Internet under unconstrained
environment and most of the figures are celebrities and public taken in ambient
lighting; The GBU [11] contains still frontal facial images and is taken outdoors
or indoors in atriums and hallways with digital camera; IJB-A [12] covers large
pose variations and contains many blurry video frames. Sometimes, the images
of GBU and IJB-A datasets may be closer to the ones in real life which are taken
with digital camera under different shooting environments and contain larger vari-
ations.

To alleviate the problems caused by domain shift, the most popular approach
is to fine-tune a pre-trained deep network’s parameter on testing scenario with the
supervision of data label. This straightforward strategy turns out to be problematic
because it can be expensive or even infeasible to obtain required amount of labeled
data in all possible testing scenarios. Moreover, more and more concerns on pri-
vacy may make the collection and human-annotation of the application-collected
data become illegal in the future. Fortunately, unsupervised domain adaptation
(UDA) is a promising technique aiming to address this problem, which learns
a good predictive model for the target (testing) domain using labeled examples
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(a) CASIA-Webface (b) GBU (c) IJB-A

Figure 1: Several sample images of three face databases. From left to right: (a) CASIA-Webface
[10], (b) GBU [11] and (c) IJB-A [12]. Compared with CASIA-Webface, GBU is taken outdoors
or indoors in atriums and hallways with different lighting conditions; IJB-A covers large pose
variations and contains many blurry video frames.

from the source (training) domain but only unlabeled examples from the target
domain. Recently, many deep UDA methods [13] try to learn more transferable
representations through mapping both domains into a domain-invariant feature
space, and then directly apply the classifier learned from only source labels to tar-
get domain, which produce boosted accuracy in various object recognition tasks
[14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].

In non-deep era, UDA was used for face recognition [29, 30] in which the
distributions of the two datasets are matched by learning a common shared space.
In deep era, there have been many well-established deep UDA methods [13] for
object classification and other computer vision applications. However, most of
these methods are not applicable for the face recognition task at all. In particular,
face recognition poses two unique challenges for deep UDA different from that
in object classification. First, popular methods by the global alignment of source
and target domain are no longer sufficient to acquire the discriminating power
for classification in deep FR. Second, the face identities (classes) of source and
target domain are non-overlapping, so that many skills developed in deep UDA
which are used to further improve target performance based on sharing classes
are inapplicable. In this sense, designing suitable adaptation method is the key
to apply deep face recognition technique in ubiquitous scenes, but few research
works has been done in this community.
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In this paper, we propose a clustering-based domain adaptation (CDA) method
for unconstrained face recognition. In order to address non-overlapping iden-
tities between domains, we introduce clustering algorithms into target domain
to obtain pseudo-labels, by which the pre-learned model is adapted and the en-
hanced discriminative representations are learned. Specifically, CDA applies a
simplified spectral clustering algorithm which requires neither overlapping classes
nor the number of target classes. It generates pseudo-labels through a clustering
graph where the nodes represent images and edges signify two images have larger
cosine-similarity, and each connected component with at least three nodes in
graph is saved as a cluster (identity). This scheme for domain adaptation is funda-
mentally different from the state-of-the-art methods which generate target pseudo-
labels by maximum posterior probability of source classifier [31, 24, 32, 33], these
methods can not be utilized in FR due to non-overlapping classes of two domains.

To enhance the quality of clustering-based pseudo-labels, the proposed CDA
method applies deep domain confusion network (DDC) [14] and deep adapta-
tion networks (DAN) [15] to conduct global domain alignment before clustering,
which optimize the learned representations by minimizing a measure of domain
discrepancy, i.e. maximum mean discrepancy (MMD). The hidden representa-
tions of images of different domain are embedded in a reproducing kernel Hilbert
space, and the mean embeddings of distributions cross domains can be explic-
itly matched. Through utilizing MMD to optimize pre-learned model, DDC and
DAN both alleviate the discrepancy between source and target face database and
enhance model performance on target test data. Besides, with more transferable
and generalized feature extracted from DDC and DAN, the calculated cosine-
similarity of any two target images in our clustering algorithm is more accurate
leading to higher quality of pseudo-labels. Comprehensive experiments are car-
ried out in the GBU [11], IJB-A/B/C [12, 34, 35] and RFW [36] databases, sig-
nificant performance gains are reached which indicates the competency of the
proposed approach.

Our contributions can be summarized into three aspects.
1) We present a comprehensive study of scene adaptation in face recognition

task, and empirically validate the necessity to perform deep domain adaptation.
Even the deep models trained by large-scale training Web-collected data still fail
to generalize well in many realistic scenes, such as those defined by Ugly data of
GBU [11] and the low-quality data of IJB-A dataset [12]. This is caused by the
mismatched distribution of training and testing data due to different illuminations,
image quality, and shooting angles.

2) We propose a new clustering-based domain adaptation method to address
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a special domain adaptation task for face recognition where the training (source)
and test (target) subjects are non-overlapping. CDA effectively learns the discrim-
inative target feature by aligning the feature domain globally, and, at the mean-
time, distinguishing the target clusters locally. It first jointly applies DDC and
DAN to reduce domain gap and learn domain-invariant representations, and thus
provides more reliable underlying face representation for clustering. Then, a sim-
plified spectral clustering method is proposed to generate pseudo-labels in the
aligned feature space, and target discriminative representations are learned.

3) We perform extensive face recognition experiments by using the Web-
collected dataset [10] as source domain, and GBU [11], IJB-A/B/C databases
[12, 34, 35] as the target domains, and experimental results demonstrate the supe-
riority of the proposed method. In particular, our method outperforms the state-
of-the-art counterparts by a large margin on the GBU dataset, although it is only
based on the unsupervised adaptation from the target training data. Moreover, we
also utilize our method to perform adaptation across races, and our CDA obtains
promising performance on different races of RFW dataset [36].

The remainder of this paper is structured as follows. In the next section, we
briefly review related work on deep FR and deep UDA. Then, we introduce the
details of MMD and pseudo-labels in Section III. In Section IV, we introduce our
clustering based domain adaptation algorithm in detail. Additionally, experimen-
tal results are shown and analyzed in Section V. Finally, we conclude and discuss
future work.

2. Related work

2.1. Deep face recognition

In 2014, DeepFace [37] achieved the state-of-the-art accuracy on the famous
LFW benchmark [8], approaching human performance on the unconstrained con-
dition for the first time, by training a 9-layer model on 4 million facial images.
Since then, research of FR focus has shifted to deep-learning-based approaches.
More powerful loss functions are explored to learn deep discriminative features
and are categorized into Euclidean distance based loss, angular/cosine margin
based loss as well as softmax loss and its variations [38]. Euclidean distance
based loss reduces intra-variance and enlarges inter-variance based on Euclidean
distance. DeepID series [39, 40, 41] combined the face identification (softmax)
and verification (contrastive loss) supervisory signals to learn a discriminative
representation, and joint Bayesian (JB) was applied to obtain a robust embedding
space. They trained 50 networks using a private dataset of 202,595 images and

5

                  



10,117 subjects. FaceNet [42] used a triplet loss function aiming to separate the
positive pair from the negative one by a distance margin and achieves good per-
formance (99.63%) on LFW. VGG model [7] is a typical application based on
VGGNet architectures [2]. It was trained on a large scale dataset of 2.6M images
of 2622 subjects. Wen et al. [43] proposed a center loss to reduce the intra-class
features variations. To separate samples more strictly and avoid misclassifying the
difficult samples, angular/cosine margin based loss is proposed to make learned
features potentially separable with a larger angular/cosine distance on a hyper-
sphere manifold, such as Sphereface [44], L-softmax [45], Cosface [46], AMS
[47] and Arcface [48]. In addition to Euclidean distance based loss and angu-
lar/cosine margin based loss, there are also many works taking effort to normalize
feature or weight in softmax loss, e.g. L2-softmax [49] enforced all the features to
have the same L2-norm, so that similar attention is given to good quality frontal
faces and blurry faces with extreme pose; Ring loss [50] encouraged norm of sam-
ples being value R (a learned parameter) rather than explicit enforcing through a
hard normalization operation.

Although these CNN based methods have achieved ultimate accuracy in LFW
benchmark, they only focus on utilizing a massive amount of labeled facial images
to train a CNN with strong generalization ability and testing on common bench-
marks with same distribution. When there is domain shift and it is impossible to
obtain labeled data in testing scenarios, the CNN pre-trained on the source data
may not generalize well to target data.

2.2. Deep unsupervised domain adaptation

Mimicking the human vision system, domain adaptation is a particular case of
transfer learning (TL) that utilizes labeled data in one or more relevant source do-
mains to execute new tasks in a target domain [13]. Basically, the main challenge
in domain adaptation is the domain shift between the source domain and the tar-
get domain. To address this issue, in close-set DA where the images of the source
and target domain are from the same set of categories, many UDA approaches
are proposed and explore domain-invariant feature spaces by minimizing some
measures of domain discrepancy such as statistic loss [14, 15, 16, 51, 17, 18],
adversarial loss [21, 22, 23, 24, 25, 26]. MMD is a commonly-used statistic loss
for UDA. The DDC proposed by Tzeng et al. [14] is optimized for classification
loss in the source domain, while domain difference is minimized by one adapta-
tion layer with the MMD metric. Long et al. [15] proposed DAN that matches
the shift in marginal distributions across domains by adding multiple adaptation
layers and exploring multiple kernels. Adversarial loss makes the distribution of
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both domains similar enough through domain classifier such that the network is
fooled and can be directly used in the target domain. The domain-adversarial
neural network (DANN) [22] integrated a gradient reversal layer (GRL) to train
a feature extractor by maximizing the domain classifier loss and simultaneously
minimizing the label predictor loss.

Besides, [31, 24, 32, 33, 52] utilize the pseudo-labels to compensate the lack
of categorical information and learn discriminative representations in the target
domain. In [31], the idea of tri-training [53] was incorporated into domain adap-
tation. Two different networks assign pseudo-labels to unlabeled samples, another
network is trained by these pseudo-labels to obtain target discriminative represen-
tations. Zhang et al. [24] iteratively selected pseudo-labeled target samples based
on the classifier from the previous training epoch and re-trained the model by
using the enlarged training set.

However, the assumption of close-set DA may not hold in real world appli-
cation, and the source and target domain may not always share label space. Cur-
rently, open-set DA [54, 55, 56, 57, 58] is proposed to address this problem. In
open-set DA, different domains only share partial classes and further contain their
specific classes. Therefore, the key issue of open-set DA is to separate samples
into shared and specific classes and align domains in shared label space. Cao
et al. introduced a selective adversarial network (SAN) [54] to promote positive
transfer by matching the data distributions in the shared label space via splitting
the domain discriminator into many class-wise domain discriminators. Separate
to Adapt (STA) [57] adopted a coarse-to-fine weighting mechanism to progres-
sively separate the samples of unknown and known classes, and used instance-
level weights to reject samples of unknown classes in adversarial domain adapta-
tion. Zhang et al. [55] proposed a two domain classifier strategy to identify the
importance score of source samples. Satio et al. [58] proposed a new adversarial
learning method in which the feature generator can decrease or increase the prob-
ability for specific classes in order to align shared classes or reject specific classes.
However, in face recognition, there is no shared class between source and target
domain, which is a more complex and realistic setting compared to open-set DA.
Domain shift in face recognition can not be addressed through simply aligning
domains in shared label space.

2.3. Unsupervised domain adaptation for face recognition

In shallow face recognition, many UDA methods [59, 30, 29, 60, 61] were
utilized to match the distributions of training and testing datasets. Yang et al.
[59] developed a domain-shared group-sparse dictionary learning model to learn
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domain-shared representations with aligned joint distributions. Kan et al. [30]
directly converted the source domain data to the target domain in the image space
with the help of sparse reconstruction coefficients learnt in the common subspace.
Zong et al. [62] learned a domain regenerator to regenerate the source and target
samples by subspace learning and MMD, such that they can abide by the same or
similar feature distributions. Ni et al. [29] sampled several intermediate domains
between the source and target domains, and represented each intermediate domain
using a dictionary, then they applied invariant sparse codes across these domains
to provide a shared feature representation which can be utilized for cross domain
recognition. In deep learning era, deeper networks and larger unconstrained im-
ages are used to improve the performance of face recognition systems. However,
deep FR is still affected by domain shift. Due to the unique challenges of deep
FR, very few studies have focused on UDA for deep FR. Luo et al. [63] integrated
the maximum mean discrepancies (MMD) estimator to CNN to decrease domain
discrepancy. Sohn et al. [64] proposed an UDA method for video FR using large-
scale unlabeled videos and labeled still images. They synthesized video frames
from images by a set of transformations and utilized images, synthesized images,
and unlabeled videos for domain adversarial training. A bi-shifting auto-encoder
network (BAE) [65] is proposed to enforce the shifted source domain and target
domain to share similar distribution, in which each sample of one domain can
be sparsely reconstructed by several local neighbors from the other domain. Due
to lack of labeled target data, these deep methods only align the feature domain
globally, but ignoring the demand of discriminative ability on target domain. It
is insufficient for deep FR, which is a fine-grained classification problem. We
suggest that pseudo-labels are suitable to address this problem. However, pseudo-
label based methods for object classification can not be used in FR because they
all assume that there are shared classes between source and target domains and
generate target pseudo-labels by maximum posterior probability of source classi-
fier. In this paper, we propose a new clustering-based domain adaptation method
to address this unique challenge.

3. Preliminary

In our case, we are given a set of labeled data from the source domain, and
denote them as Ds = {xsi , ysi }Mi=1, where xsi is the i-th source sample, ysi is its
category label, and M is the number of source images. A set of unlabeled data
from the target domain is given as well and is denoted asDt = {xti}Ni=1, where xti is
the i-th target sample andN is the number of target images. The data distributions
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of two domains are different, P (Xs, Ys) 6= P (Xt, Yt).
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Figure 2: The overall structure of the proposed method. Left: The clustering based domain
adaptation network. Source classification loss supervises learning proceeds for source domain;
MMD loss aims at minimizing the distribution discrepancy of two domains; target pseudo clas-
sification loss aims to learn discriminative target representations on pseudo-labels generated by
clustering algorithms. Only using the first two losses to optimize networks is denoted as MMD-
based networks. We first train a MMD-based network using labeled source data and unlabeled
target data, then utilize target pseudo classification loss to further adapt target CNN after obtaining
target pseudo-labels. Right: The simplified spectral clustering algorithm. With the target repre-
sentations extracted by MMD-based network, a clustering graph is constructed where the nodes
represent images and edges signify two images have larger cosine-similarity. Each connected
component with at least three nodes is saved as a cluster (identity). Then, we can annotate the
clustered nodes with pseudo labels and adapt the target CNN with them.

3.1. Maximum mean discrepancy
In the field of UDA, MMD [14, 15] has been widely adopted as a standard

distribution distance metric to measure the discrepancy between source and target
domains. Given two distributions s and t, the MMD between them is defined as:

LM(s, t) = sup
‖φ‖H≤1

∥∥Exs∼s[φ(xs)]− Ext∼t[φ(xt)]
∥∥2

H (1)

whereE represents the expectation with regard to the distribution. φ represents the
function that maps the original data to a reproducing kernel Hilbert space (RKHS).
We have MMD2(s, t) = 0 when s and t share the same distribution based on the
statistic tests defined by MMD. The kernel functions which are associated with
this mapping, k(xs, xt) = 〈φ(xs), φ(xt)〉, is defined as the convex combination of
m PSD kernels ku,

K =

{
k =

m∑

u=1

βuku :
m∑

u=1

βu = 1, βu ≥ 0,∀u
}

(2)
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where βu is the coefficient of u-th kernel and the commonly-used kernel is the

Gaussian kernel ku(xs, xt) = e−‖xs−xt‖
2
/γ . Denote by Ds = {xsi}Mi=1 and Dt =

{xti}Ni=1 drawn from the distributions s and t, respectively, an empirical estimate
of MMD is given as:

LM(Ds, Dt) =

∥∥∥∥∥
1

M

M∑

i=1

φ(xsi )−
1

N

N∑

j=1

φ(xtj)

∥∥∥∥∥

2

H

(3)

The main idea of MMD-based network, i.e. DDC [14] and DAN [15], is to
integrate MMD estimator to the CNN error so that the domain divergence is min-
imized. However, the formulation of MMD in Eq. (3) is computed in quadratic
time complexity, it is prohibitively time-consuming for deep UDA. Gretton et al.
[66] further suggested an unbiased approximation to MMD with linear complexity
and it is suitable for gradient computation in a mini-batch manner:

LM(Ds, Dt) =
1

M(M − 1)

M∑

i 6=j
k(xsi , x

s
j)

+
1

N(N − 1)

N∑

i 6=j
k(xti, x

t
j)

− 2

MN

M,N∑

i,j=1

k(xsi , x
t
j)

(4)

Through optimizing networks by MMD, the final classification decisions are
made based on features that are invariant to the change of domains, i.e., have the
same or very similar distributions in the source and the target domains, thus, the
models trained on source data can generalize to target data.

3.2. Pseudo label

Pseudo-label is an alternative method for deep UDA in object classification as-
suming that source and target domain share the same classes [31, 24, 32, 33, 52].
CNN is trained supervised with source labeled data and is fine-tuned with tar-
get pseudo-labeled data that can be obtained by following steps. We denote
{pc(xti)|mc

c=1} as the output from the Softmax layer of the source classifier in CNN,
where each pc(x

t
i) is the probability that target sample xti belongs to the c-th
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classes, and mc is the total number of classes. Then, the pseudo-label of xti can be
obtained by choosing the class with the maximum posterior probability:

ŷti = argmax
c

pc(x
t
i) (5)

After that, the network is fine-tuned on pseudo-labeled target data with supervi-
sion of Softmax loss.

Furthermore, to suppress the negative influence of falsely-labeled samples,
some studies are explored modified strategies which progressively select reliable
pseudo-labels from the most confident predictions and re-train the model by using
the enlarged training set. It can be formulated as follow:

∀xti ∈ Dt
k|mc
k=1, ωi =

{
1, if pk(x

t
i) > η

0, otherwise
(6)

where Dt
k|mc
k=1 denotes the unlabeled target samples Dt are partitioned into mc

classes. ωi = 1 indicates xti to be selected in current training process; otherwise,
xti is not to be selected. η is a threshold which constrains the maximum posterior
probability (confidence) of selected samples. η can be a constant, or a variable of
the training step [32, 52], or a variable of the classification accuracy of the current
classifier measured by the labeled source data [24].

4. Clustering based domain adaptation

Due to the absence of labeled target samples, most deep DA methods for ob-
ject classification, such as MMD, only align source and target domain globally.
It is not effective enough and cannot ensure accuracy on the target domain in FR
tasks where discriminative target representations are required. When lacking of
target categorical information, we suggest that pseudo-labels [67] are suitable to
address this problem, which encourages a low-density separation between classes
in the target domain. However, adopting UDA in face recognition is a special
domain adaptation task where the training (source) and test (target) subjects are
non-overlapping, which means that traditional pseudo-labels based UDA meth-
ods relying on shared categories are inapplicable. To address this problem, we
propose to introduce clustering algorithms into UDA. Many clustering algorithms
are feasible for generating pseudo-labels in our clustering-based domain adap-
tation (CDA) network, and we design a simplified spectral clustering algorithm
which is simple but effective for clustering faces in deep feature space. It clus-
ters faces through connected subgraphs and can be adopted even if the number
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of target classes is large but unknown. The overall architecture of our method is
depicted in Fig. 2.

4.1. Clustering algorithm

In this section, we formally introduce the detailed steps of simplified spectral
clustering algorithm:

Compute similarity matrix. We feed unlabeled target data Xt into a deep
model as input and extract deep features F(Xt). As we know, the clustering re-
sults depend not only on the choice of clustering algorithm, but also on the quality
of the underlying face representation. Considering domain shift, the underlying
target representation will not be perfect even using a strong source model. There-
fore, the deep model here is pre-trained on source samples and further optimized
by MMD to improve performance in target domain as much as possible. Then,
with these deep presentations, we construct a N ×N similarity matrix, where N
is the number of faces in target domain and entry at (i, j), i.e. s(i, j), is the cosine
similarity between target representations F(xti) and F(xtj).

Build clustering graphs. We consider two faces belonging to one identity
if their cosine similarity is large. Thus, we can build a clustering graph G(n, e)
according to similarity matrix, where the node ni represents i-th target image and
edge e(ni, nj) signifies these two target images have larger cosine-similarity:

e(ni, nj) =

{
1, if s(i, j) > α
0, otherwise

(7)

where α is the threshold for edges. Then, we simply save each connected compo-
nent with at least p nodes as a cluster (identity) and the remaining images will be
treated as scattered points. We choose a minimum component size p = 3. Because
the connected components with only one or two nodes may be the ones clustered
incorrectly; even if this cluster is correct, low-shot class would deteriorate the
long tail distribution of data. Furthermore, the threshold α is vital for clustering.
If α is set to be lower, more faces of different identities will be clustered together
which contains severe intra-class noise; otherwise, faces of one identity will split
into more scattered points and be discarded, or they will split into smaller clusters
leading to severe inter-class noise.

Pick up scattered points. Due to large variations, some images can not be
clustered and be treated as scattered points. We pick up these scattered points by
assuming that all samples of a given identity can be clustered around its corre-
sponding prototype. The prototypes are computed by the average representation
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µtk of all target samples in one cluster k obtained by connected component:

µtk =
1

|Dt
k|
∑

xti∈Dt
k

F(xti) (8)

where Dt
k is the set of all target images in k-th cluster. Then, for each scattered

point xti(scatter), we compute its cosine similarities with all prototypes, and add
it to corresponding prototype with the largest cosine similarity. To obtain the
samples with high confidence, we constrain that the similarity scores should above
a certain threshold β:

ŷti =

{
argmax

k
sk, if max

k
sk > β

∞, otherwise

where, sk = cos
(
F(xti(scatter)), µ

t
k

)
(9)

So, we only cluster images with higher confidence to alleviate negative in-
fluence caused by falsely-labeled samples. Finally, we can annotate all clustered
nodes with pseudo label ŷti , and adapt the network with supervision of Softmax
loss.

4.2. Adaptation networks

We extend the VGGNet [2] and RseNet [4] architecture to our CDA network.
As shown in Fig. 2, the architecture of our CDA consists of a source and target
CNN, with shared weights. MMD estimators are adopted on higher layers of
network which are called adaptation layers. We simply use a fork at the top of
the network, after the adaptation layer. The inputs of source CNN are source
labeled images while those of target CNN are target unlabeled data. The goal of
our approach is to minimize the following loss function:

L = LS(Xs, ys) + λ
∑

l∈L
LM(Dl

s, D
l
t) + LT (Xt, ŷt) (10)

where the hyperparameter λ is a penalty parameter. Dl∗ is the l-th layer hidden
representation for the source and target examples, and LM(Dl

s, D
l
t) (Eqn. 4) is the

MMD between the source and target evaluated on the l-th layer representation.
MMD loss makes the distributions of the source and target similar under the hid-
den representations. Selecting suitable adaptation layers can significantly enhance
the transfer efficiency. According to the observation of [68], the transfer ability
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drops in higher layers with increasing domain discrepancy and transfer learning
method would obtain better performance when transferring higher layers of the
deep neural network. In CDA, we adopt multi-kernel MMD on the last two lay-
ers. LS(Xs, ys) denotes source classification loss on the source data Xs and the
ground truth labels ys, which guarantees the performance of deep network. The
third term, i.e. LT (Xt, ŷt), is our target pseudo classification loss on the target data
Xt and the pseudo-labels ŷt, which learns more discriminative representations for
target domain:

LS(Xs, ys) = − 1

M

M∑

i=1

mc∑

c=1

1[c = ysi ]logpc(x
s
i )

LT (Xt, ŷt) = − 1

N̂

N̂∑

i=1

n̂c∑

c=1

1[c = ŷti ]logpc(x
t
i)

(11)

Here, we utilize Softmax loss (Arcface loss [48]) as our classification loss for
source and target domain. In source classification loss LS(Xs, ys), 1[c = ysi ] is
1 when c = ysi , otherwise, it is 0; pc(xti) is the probability that source sample
xsi belongs to the c-th classes, and mc is the total number of source classes. The
definition of target pseudo classification loss LT (Xt, ŷt) is similar to that of source
classification loss where n̂c is the total number of target clusters and N̂ is the
number of target samples clustered successfully.

4.3. Clustering based domain adaptation algorithm

The entire procedure of our method is depicted in Algorithm 1. In the first
stage, the baseline model is trained with our source data, i.e. CASIA-Webface
[10], so that we can use it as our source CNN. In the second stage, source clas-
sification loss and MMD loss are used to optimize MMD-based networks (i.e.
DDC [14] and DAN [15]). MMD-based network is conducted by source CNN and
weight-shared target CNN and is trained with the unlabeled target data and labeled
source data so that the deep features are invariant to the change of domains, i.e.,
have the same or very similar distributions in the source and the target domains,
and the performance of target domain is preliminarily improved. In the third
stage, we extract deep features of target samples by MMD-based network, then
adopt our clustering algorithms to generate pseudo-labels. Benefiting from better
performance of MMD-based networks on target domain, the calculated cosine-
similarity of any two target images in our clustering algorithm is more accurate
leading to higher quality of pseudo-labels. In the forth stage, we adapt the target
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Algorithm 1 Clustering based domain adaptation algorithms.
Input:

Source domain labeled samples {xsi , ysi }Mi=1, and target domain unlabeled
samples {xti}Ni=1. Network learning rate µ, hyper parameter λ, α, β and p,
network layer parameters Θ.

Output:
Network layer parameters Θ.

1: Stage-1: // Pre-train
2: Train the baseline model on source labeled data;
3: Stage-2: // MMD-adaptation

Adapt the network with MMD loss and source classification loss to learn
domain-invariant representations and provide more reliable underlying face
representation for clustering

4: Repeat:
5: j = j + 1
6: Update the backpropagation error for xi:

∂Lj

∂xsi
(j) =

∂Lj
S

∂xsi
(j) + λ

∂Lj
M

∂xsi
(j)

∂Lj

∂xti
(j) = λ

∂Lj
M

∂xti
(j)

7: Update the network layer parameters Θ:
Θj+1 = Θj − µj ∂Lj

∂Θj

= Θj − µj
(∑M

i=1
∂Lj

∂xsi
(j)

∂xsi
(j)

∂Θj +
∑N

i=1
∂Lj

∂xti
(j)

∂xti
(j)

∂Θj

)

8: Until convergence
9: Stage-3: // generate target pseudo labels by clustering algorithm

10: Extract deep features of target unlabeled data and compute similarity matrix;
11: Build clustering graphs according to Eqn. (7) and save each connected com-

ponent with at least p nodes as a cluster;
12: Add scattered points to corresponding clusters according to Eqn. (9);
13: Annotate all clustered nodes with pseudo label ŷti .
14: Stage-4: // Pseudo-adaptation

Adapt the network with target pseudo-labels using target pseudo classification
loss to learn more discriminative target representations

15: Repeat:
16: j = j + 1
17: Update the network layer parameters Θ:

Θj+1 = Θj − µj ∂L
j
T

∂Θj = Θj − µj
(∑N

i=1

∂Lj
T

∂xti
(j)

∂xti
(j)

∂Θj

)

18: Until convergence
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CNN on these pseudo-labeled target data with supervision of target pseudo clas-
sification loss. MMD-based networks address huge domain discrepancy to learn
transferable representations for FR tasks and provide more reliable underlying
face representation for clustering; while pseudo-labels encourage a low-density
separation between target classes to learn more discriminative representations for
FR tasks.

5. Experiments

In this section, we evaluate our CDA method on five face recognition bench-
marks, i.e. GBU [11], IJB-A/B/C [12, 34, 35] and RFW [36]. We will begin
with introducing the detailed information and evaluation protocol of the datasets
we utilized, followed by illustrating the training details of our experiments and
presenting results and analyses.

5.1. Datasets and Evaluation Protocols

CASIA-WebFace: CASIA-WebFace dataset [10] is a large scale face dataset
gathered from Internet. It contains 10,575 subjects and 494,414 images. The large
scale of labeled facial data does great help to train CNNs. In our experiments, we
adopt this dataset as the source domain data for training the classification network.

GBU: Its full name is The Good, the Bad, and the Ugly Face Challenge [11].
This dataset consists of three partitions, and different partitions contain pairs of
images with different difficulty levels based on the performance of three top per-
formers in the FRVT 2006. The Good partition consists of images which are easy
to match; the Bad one contains pairs of average difficulty to recognize; the Ugly
one contains pairs considered difficult. Fig. 3 shows three pairs of images of each
person, sampled from the Good (left), Bad (middle), and Ugly (right) partition.
This figure illustrates the variations in the appearance of a person across frontal
images, e.g. different settings, expression and hairstyle. Each partition consists
of a target set and a query set, and both them contain 1085 images of 437 dis-
tinct people. Following the evaluation protocol of [11], we use receiver operating
characteristics (ROC) curve and the verification rate (VR) at a false positive rates
(FAR) of 0.001 for each partition to compare the performances of different algo-
rithms. In order to ensure that the subjects in target training set do not appear in
target testing set, we utilize part of images from FRGC [69] (without label infor-
mation) as the target training data, which consists of 19270 still front faces.

IJB-A: IJB-A database [12] contains 5,397 images and 2,042 videos of 500
subjects, which are split into 20,412 frames, 11.4 images and 4.2 videos per sub-
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Figure 3: Two example identities of the Good, Bad, and Ugly partition of GBU database. The
top two rows show three pairs of images of the same person, sampled from the Good (left), Bad
(middle), and Ugly (right) performance conditions. The second two rows show the same type of
sample for a second person.

ject. It is a joint face detection and FR dataset, in which both face detection and
facial feature point detection are accomplished manually. The key characteristics
of IJB-A are that it contains a mixture of images and videos in the wild and covers
a full range of pose variations. IJB-A provides 10-split evaluations with two stan-
dard protocols, namely, face verification (1:1 comparison) and face identification
(1:N search). The performance of verification is reported using the true accept
rates (TAR) vs. false positive rates (FAR) (i.e. ROC curve). The performance
of identification is reported using the Rank-N (i.e. the cumulative match char-
acteristic (CMC) curve) and the true positive identification rate (TPIR) vs. false
positive identification rate (FPIR). There are ten random training (333 subjects)
and testing (167 subjects) splits which occur at subject level, using all 500 IJB-
A subjects. For each split, we adopt our CDA method by using its training data
(without label information) as our target training data and using its testing data as
our target testing data. The results are averaged over 10 testing splits.

IJB-B: The IJB-B dataset [34] is an extension of IJB-A [12], having 1,845
subjects with 21.8K still images (including 11,754 face and 10,044 non-face) and
55K frames from 7, 011 videos. The dataset is more challenging and diverse than
IJB-A, with protocols designed to test detection, identification, verification and
clustering of faces. Unlike the IJB-A dataset, it does not contain any training
splits. We use images of IJB-A (without label information) as our target training
data and use images of IJB-B as our target testing data.
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IJB-C: The IJB-C dataset [35] is a further extension of IJB-B, having 3,531
subjects with 31.3K still images and 117.5K frames from 11,779 videos. In to-
tal, there are 23,124 templates with 19,557 genuine matches and 15,639K impos-
tor matches. Similar to IJB-B dataset, the protocols are designed to test detec-
tion, identification, verification and clustering of faces. The dataset also contains
end-to-end protocols to evaluate the algorithms ability to perform end-to-end face
recognition. We use images of IJB-A (without label information) as our target
training data and use images of IJB-C as our target testing data.

RFW: Racial Faces in-the-Wild (RFW) dataset [36] is a testing database for
studying racial bias in face recognition. Four testing subsets, namely Caucasian,
Asian, Indian and African, are constructed, and each contains about 3000 indi-
viduals with 6000 image pairs for face verification. They can be used to fairly
evaluate and compare the recognition ability of the algorithm on different races.
We use RFW dataset to validate the effectiveness of our CDA method on transfer-
ring knowledge across races. In order to perform adaptation experiment, we uti-
lize BUPT-Transferface dataset [36] to train our CDA model and test it on RFW.
BUPT-Transferface dataset is a training dataset with four race subsets and is re-
leased with RFW. One training subset consists of about 500K labeled images of
10K Caucasians and three other subsets contain 50K unlabeled images of non-
Caucasians, respectively. We use Caucasian as source domain and other races as
target domains in our experiments.

5.2. Implementation details

For the baseline network, we employ the widely used VGGNet [2] and ResNet-
34 [4] architecture. We finetune the VGG model [7] with the guidance of Soft-
max loss on the CAISA-Webface, and is called VGG(finetune) model in our pa-
per; while the ResNet-34 is trained with the guidance of Arcface loss [48] on the
CAISA-Webface, and is called Arcface model in our paper.

For data processing of VGG, all the images of different datasets are aligned
to the same reference point using three facial landmarks (left eye, right eye and
center of mouth). The images are firstly resized to 250×250 and are then randomly
cropped to 224 × 224. We also augment the data by flipping it horizontally with
50% probability. And for data processing of ResNet, we use five facial landmarks
for similarity transformation, then crop and resize the faces to 112×112. Each
pixel ([0, 255]) in RGB images is normalized by subtracting 127.5 and then being
divided by 128.

For training CDA(vgg-soft) model, we select VGG model [7] which uses VG-
GNet [2] and is trained on VGGface dataset [7] and reports excellent results on
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LFW and YTF benchmarks. However, we know nothing about the face aligned
method in VGG model which may cause inconsistent alignment methods between
training data and test data and thus results in a poor performance. To address
this issue, We use the fine-tuning architecture similar to [14, 15] where CASIA-
WebFace dataset [10] is utilized as source data to fine-tune the VGG model. The
CASIA-WebFace dataset and other target datasets share the uniform alignment
methods as we mentioned before. The based learning rate is fixed at 10−4. As the
last classifier is trained from scratch, we set its learning rate to be 10 times that of
the lower layers. The batch size is set to 32 and the network is trained for 2× 104

iterations.
After fine-tuning the VGG model with our source data, we utilize the unla-

beled target data and labeled source data to adapt the baseline network by MMD.
Our network architecture is comprised of two basic CNNs which are identical in
structure and shared by parameters. One is for classification on source data and
the other is for representation learning on target data. We use Softmax loss as
source classification loss and fix the learning rate of all layers to 10−4. The hyper-
parameter λ in Eq. 11 is fixed at 0.5. The kernel in MMD is Gaussian kernel

k(xs, xt) = e−‖xs−xt‖
2
/γ where γ donates the bandwidth. In our experiments,

DAN(vgg-soft) [15] applies multi-kernel MMD on both fc6 and fc7 layer. Five
Gaussian kernels are utilized by setting bandwidth to γm · (1, 21, 22, 23, 24) where
γm is set to the median pairwise distances [70] on training data. DDC(vgg-soft)
[14] adopts single-kernel MMD on fc7 layer, and it only utilizes one Gaussian
kernel in which bandwidth is set to γm. To evaluate the effectiveness of multi-
layer and multi-kernel adaptation more comprehensively, we further make several
variants of MMD-based network, namely single-kernel MMD on both fc6 and
fc7 layer and multi-kernel MMD on fc7 layer. We denote them as DDCml(vgg-
soft) and DDCmk(vgg-soft), respectively.

For our clustering methods, the hyper-parameter p is set to be 3. We set the
parameter α and β in Eq. 7 and Eq. 9 as 0.675 and 0.8 in CASIA→GBU task, and
set them as 0.65 and 0.8 in CASIA→IJB-A/IJB-B/IJB-C task. After obtaining the
pseudo-labels, we further fine-tune the target network with them. We use Softmax
loss as target pseudo classification loss. The learning rate is started from 1e−4 and
decreased twice with a factor of 10 when errors plateau. The network is trained
for 2× 104 iterations. We set the batch size, momentum, and weight decay as 64,
0.9 and 5e− 4, respectively.

For training CDA(res-arc) model, we first train a Arcface model with the guid-
ance of Arcface loss [48] on the CAISA-Webface. We set the batch size, momen-
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tum, and weight decay as 200, 0.9 and 5e-4, respectively. The learning rate is
started from 0.1 and decreased twice with a factor of 10 when errors plateau.
After that, we utilize the unlabeled target data and labeled source data to adapt
Arcface model by MMD. We use Arcface loss as source classification loss and fix
the learning rate of all layers to 1e-3. The hyper-parameter λ in Eq. 11 is fixed
at 5. DAN(res-arc) [15] applies multi-kernel MMD on last two fully-connected
layers. For our clustering methods, we set the parameter α and β in Eq. 7 and
Eq. 9 as 0.8 and 0.85 in CASIA→GBU task, and set them as 0.7 and 0.85 in
CASIA→IJB-A/IJB-B/IJB-C task. After obtaining the pseudo-labels, we further
fine-tune the target network with them. We use Softmax loss as target pseudo
classification loss. The learning rate is 1e-3. We set the batch size, momentum,
and weight decay as 200, 0.9 and 5e-4, respectively. Other experimental settings
are similar to CDA(vgg-soft).

Method Ugly Bad Good

LRPCA-face [11] 7.00% 24.00% 64.0%
Fusion [6] 15.00% 80.00% 98.00%
VGG [6] 26.00% 52.00% 85.00%
Arcface1[48] 75.00% 90.32% 96.21 %
VGG(finetune)2 48.80% 73.55% 95.57%
DDC(vgg-soft)3[14] 60.90% 86.68% 98.24%
DDCml(vgg-soft)3 63.42% 87.08% 98.54%
DDCmk(vgg-soft)3 68.42% 87.68% 98.67%
DAN (vgg-soft)3[15] 69.42% 88.87% 98.93%
CDA(vgg-soft) (ours) 73.58% 92.93% 99.18%
CDA(res-arc) (ours) 83.96% 94.84% 97.81%

1 Arcface is one of our baseline networks. It uses ResNet-34 architecture
and is trained with the guidance of Arcface loss [48] on the CAISA-
Webface.

2 VGG(finetune) is one of our baseline networks. It finetunes the VGG
model [7] supervised with Softmax on CASIA-WebFace dataset.

3 DDC, DDCml, DDCmk and DAN represent the variants of MMD-
based network.

Table 1: VR at FAR of 0.001 for GBU partitions [11].
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Figure 4: The ROC curves on (a) Good, (b) Bad and (c) Ugly partition of GBU database. Black
lines are ROC curves of VGG(finetune) model; Green lines are those of DDC(vgg-soft) model;
Blue lines are those of DAN(vgg-soft) model; Red lines are those of our CDA(vgg-soft) model.
The verification rate for each partition at a FAR of 0.001 is highlighted by the vertical lines at
FAR=0.001.

5.3. Experiment Results

CASIA→GBU. In the experiment of GBU dataset [11], we report the verifi-
cation rate at a FAR of 0.001 and ROC curve for three partitions, i.e. the Good,
the Bad and the Ugly. Fusion method in [6] denotes the FRVT 2006 fusion algo-
rithm and the result VGG was reported in [6] by utilizing the VGG model [7]. The
LRPCA-face model is a baseline algorithm in GBU dataset [11] which is a refined
implementation of the standard PCA-based FR algorithm. The VGG(finetune)
represents one of our baseline networks which finetunes the VGG model with
CASIA-WebFace dataset [10]; and Arcface is the other baseline network which
uses ResNet-34 architecture and is trained with the guidance of Arcface loss [48]
on the CAISA-Webface. The exact results are shown in Table 1 and Fig. 4.

From the results, we can see several important observations. (1) For Ugly
partition, all the models give the accuracies of less than 84% and specially an ex-
tremely low total accuracy of 15% with Fusion model, showing face verification
on Ugly partition is a very challenging task despite of its frontal faces. Signifi-
cantly, the performance of deep models is unsatisfactory as well and VGG only
achieves 26% on Ugly partition, which illustrates the limitation of existing deep
models trained with Web-collected dataset and the necessity of adopting UDA
in FR tasks. (2) Compared with the results of VGG reported in [6], our base-
line model fine-tuned VGG with CASIA-WebFace [10] obtains much better per-
formance, which improves the accuracy to 48.80%, 73.55%, 95.57% on Ugly,
Bad and Good partition. The results suggest that the uniform face aligned al-
gorithm of training and testing data is the key to ensure performance in the FR
problem. (3) MMD-based networks, i.e. DDC(vgg-soft)[14], DDCml(vgg-soft),
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DDCmk(vgg-soft)andDAN (vgg-soft) [15], substantially outperform VGG(finetune)
model on target dataset. This confirms that incorporating MMD to deep networks
and minimizing the domain discrepancy are really helpful. (4) Single-kernel
MMD models (DDC(vgg-soft) and DDCml(vgg-soft)) obtain a little bit worse
results compared with multi-kernel MMD (DDCmk(vgg-soft) and DAN (vgg-
soft)). It is because multiple kernels with different bandwidths can match both
the low-order moments and high-order moments resulting in a better alignment of
distribution of source and target domain. (5) The DAN(vgg-soft) obtains the best
performances compared with other MMD-based networks, which superior to our
VGG(finetune) by about 20.62% on the Ugly, 14.13% on the Bad and 3.1% on
the Good. In addition to multi-kernel adaptation, DAN(vgg-soft) is also benefited
from multi-layer adaptation. In deep networks, representations of different layers
correspond to different levels of abstraction, changing from low-level primary el-
ements to multifarious facial attributes. Hence the hidden representations of all
the task-specific layers need to be matched to consolidate the adaptation quality
at all levels. (6) When introducing clustering algorithms and pseudo-labels into
DAN(vgg-soft) models, the performances of our CDA(vgg-soft) method further
improve and obtain the best performances with 73.58%, 92.93% and 99.18% for
Ugly, Bad and Good set. We can draw conclusions that only aligning the fea-
ture space through MMD is not enough for FR and that further learning target
discriminative representations using pseudo-labels is an effective way to boost
the performance. Moreover, the results quantificationally prove the good qual-
ity of pseudo-labels generated by our clustering method. (7) Without adaptation,
Arcface [48], which published in CVPR’19 and reported SOTA performance on
the LFW and MegaFace challenges, can not obtain perfect performance on GBU
due to domain gap. Our CDA(res-arc) can outperform Arcface method and even
achieve about 3% gains on Ugly partition.

CASIA→IJB-A. We perform experiments in two settings on the IJB-A bench-
mark dataset [12]: the TAR at different FAR of 0.1, 0.01, and 0.001 for verifica-
tion; the TPIR at different FPIR of 0.1, 0.01 and the rank-1, rank-10 accuracy
for identification. Table 2 and Fig. 5 report the results of face verification and
identification. We can observe that the VGG model does not perform well on
IJB-A benchmarks. Benefiting from the same aligned method of training and
testing data, VGG(finetune) model obtains a little promotion compared to VGG
model, but its performance is still imperfect. The images and video frames in
IJB-A dataset [12] contains full pose variation and a wide variation in imaging
conditions and geographic origin. It is challenging for models trained with VG-
Gface database [7] or CASIA-Webface databases [10] due to large domain gap.
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For example, video frames in IJB-A database are likely to be degraded for mo-
tion or out-of-focus blur, compression noise or scale variations. When we reduce
their domain gap using MMD-based networks, the improvement becomes more
significant. Especially, DAN(vgg-soft) boosts around 9% TAR@FAR=0.001 for
verification, and around 15% FNIR@FPIR=0.01 for identification compared with
VGG model. It proves that the source networks trained with frontal and high-
definition faces can adapt to recognize the blur images of large pose variations to
a certain extent through domain adaptation. Similar to the experiments on GBU,
multi-layer MMD also attains higher accuracy than single-layer MMD in most
cases, which confirms the capability of multi-layers for distribution adaptation.
After introducing clustering algorithms and pseudo-labels into DAN(vgg-soft), the
CDA(vgg-soft) model surpasses other methods and outperforms DAN(vgg-soft) by
about 2-4% on all metrics, which further demonstrates the advantage of our clus-
tering algorithms. Further, when compared with the SOTA methods, i.e. Arcface,
our CDA(res-arc) can still obtain better performance.

Method
IJB-A Verification TAR IJB-A Identification TPIR

FAR=0.001 FAR=0.01 FAR=0.1 FPIR=0.01 FPIR=0.1 Rank-1 Rank-10
Bilinear-CNN [71] - - - 14.20% 34.10% 58.80% -
Face-Search [72] - 73.30% - 38.30% 61.30% 82.00% -
Deep-Multipose [73] - 78.70% - 52.00% 75.00% 84.60% 94.70%
Triplet-Similarity [74] - 79.00% - 55.60% 75.41% 88.01% 97.38%
Joint Bayesian [75] - 83.80% - 57.68% 78.97% 90.30% 97.70%
VGG [7] 64.19% 84.02% 96.09% 47.37% 74.30% 91.11% 98.25%
Arcface1[48] 74.19% 87.11% 94.87% 65.36% 80.71% 90.68% 96.07%
VGG(finetune)2 67.96% 84.78% 95.80% 56.36% 76.05% 92.61% 98.54%
DDC(vgg-soft) [14] 72.78% 86.80% 96.34% 61.71% 80.02% 92.93% 98.81%
DDCml(vgg-soft)3 72.97% 87.74% 96.70% 62.82% 81.30% 92.91% 98.62%
DDCmk(vgg-soft)3 72.53% 87.13% 96.54% 61.58% 82.33% 92.54% 98.52%
DAN (vgg-soft) [15] 72.88% 87.20% 96.34% 62.81% 81.54% 92.47% 98.33%
CDA(vgg-soft)(ours) 74.76% 89.76% 98.19% 66.85% 85.32% 94.89% 99.23%
CDA(res-arc) (ours) 82.45% 91.11% 96.96% 75.49% 87.76% 93.61% 97.62%

1 Arcface is one of our baseline networks. It uses ResNet-34 architecture and is trained with the
guidance of Arcface loss [48] on the CAISA-Webface.

2 VGG(finetune) is one of our baseline networks. It finetunes the VGG model [7] supervised with
Softmax on CASIA-WebFace dataset.

3 DDCml adopts single-kernel MMD on both fc6 and fc7 layer and DDCmk adopts multi-kernel
MMD on fc7 layer.

Table 2: Performance evaluation on the IJB-A dataset [12]. The results are averaged over 10
testing splits.
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Figure 5: Results on the IJB-A dataset (average over 10 splits). (a) ROC curve for the compare
protocol (higher is better). (b) DET curve for the search protocol (lower is better). (c) CMC curve
for the search protocol (higher is better).

CASIA→IJB-B/C. We perform experiments in two settings on the IJB-B and
IJB-C benchmark dataset [34, 35]: the TAR at different FAR of 0.1, 0.01, and
0.001 for verification; the rank-1 and rank-10 accuracy for identification. Table
3 reports the results of face verification and identification. We compare our pro-
posed method with Government-off-the-shelf (GOTS-1 [34]), Bodla et al. [76],
VGG [7] and Arcface [48] on IJB-B dataset; and compare our method with GOTS-
2 [35], FaceNet [42], DR-GAN [77], Yin et al. [78], VGG [7] and Arcface [48]
on IJB-C dataset. From the results, we can see that our CDA(res-arc) achieves im-
provement over the previous SOTA methods, i.e. Arcface, with TAR of 87.35% at
FAR = 10e-3 on IJB-B; while on IJB-C, it achieves a Rank1 accuracy of 88.19%
in face identification. In our CDA, MMD-based networks address huge domain
discrepancy to learn transferable representations and provide more reliable under-
lying face representation for clustering; while pseudo-labels further learn more
discriminative representations for FR tasks. Actually, in our experiments, we just
utilized limited number of images in IJB-A as target training data to achieve such
improvement on these two challenging benchmarks. If more target training data
are used to adapt source model, more significant improvement can be obtained.

Caucasian→Non-Caucasian. Some papers [36, 79] have proved that exist-
ing face recognition algorithms indeed suffer from racial bias. Due to the domain
gap among different races, training and testing on different races results in se-
vere performance drop. To validate the effectiveness of our domain adaptation
method, we adopt CDA to transfer knowledge among different races. We use
BUPT-Transferface as training data, and use RFW [36] as testing data. Labeled
Caucasians are utilized as source domain and unlabeled Indians/Asians/Africans
are utilized as target domains in our experiments. The results are given in Table
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Method
IJB-B IJB-C

Verification TAR@FAR Identification Verification TAR@FAR Identification
0.001 0.01 0.1 Rank-1 Rank-10 0.001 0.01 0.1 Rank-1 Rank-10

GOTS-1 [34] 33.00% 60.00% 78.00% 42.00% 62.00% - - - - -
GOTS-2 [35] - - - - - 32.00% 62.00% 80.00% - -
FaceNet [42] - - - - - 66.00% 82.00% 92.00% - -
DR-GAN [77] - - - - - 66.10% 82.40% - 70.80% 82.80%
VGG [7] 72.00% 86.00% - 78.00% 89.00% 75.00% 86.00% 95.00% - -
Bodla et al. [76] 83.00% 92.50% - - - - - - - -
Yin et al. [78] - - - - - 75.60% 89.20% - 77.60% 86.10%
Arcface1[48] 86.11% 93.40% 97.66% 86.43% 93.33% 88.88% 94.76% 98.10% 88.05% 93.56%
CDA(res-arc) (ours) 87.35% 94.55% 98.08% 86.22% 93.33% 88.06% 94.85% 98.33% 88.19% 93.70%

1 Arcface here is our baseline network which uses ResNet-34 architecture and is trained with the guidance of Arcface
loss [48] on the CAISA-Webface.

Table 3: Performance evaluation on the IJB-B [34] and IJB-C [35] dataset.

4 and we have the following observations. (1) The Softmax and Arcface model
which are trained on Caucasians perform well on Caucasian testing subset, but
the accuracy drops on Asian and African because of domain gap. For example,
the accuracy of the ArcFace model on Caucasian testing subset reaches 94.78%,
but its accuracy dramatically decreases to less than 85.13% on Asian subset. (2)
DDC(res-soft) [14] and DAN(res-soft) [15] align Caucasian domain and other race
domain with help of MMD. But they are only superior to baseline by about 1-2%
which confirms our thought that only aligning domains globally is not enough
for face recognition. (3) When adopting clustering algorithms and pseudo-labels,
our CDA(res-soft) and CDA(res-arc) model outperform the baseline models, es-
pecially CDA(res-arc) obtains the best performances with 92.08%, 88.80% and
88.12% on Indian, Asian and African set.

5.4. Empirical analysis

Feature visualization. To demonstrate the transferability of the MMD learned
features, the visualization comparisons are conducted at feature level. First, we
randomly extract the deep features of 5000 source and 5000 target images in task
CASIA→GBU (Ugly) with VGG(finetune) model and DAN(vgg-soft) model, re-
spectively. The features are visualized using t-distributed stochastic neighbor em-
bedding (t-SNE) [80], as shown in Fig. 6. Fig. 6(a) shows the representations
without any adapt. As we can see, the distributions are separated between do-
mains, which visually proves that there is domain gap between images of CASIA-
Webface [10] and GBU database [11]. Fig. 6(b) shows the result for DAN(vgg-
soft) method where features are aligned to some extent. More source and target
data begin to mix in feature space so that there is not a clear boundary between
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Methods Caucasian Indian Asian African

Softmax1 94.12% 88.33% 84.60% 83.47%
DDC(res-soft) [14] - 90.53% 86.32% 84.95%
DAN (res-soft [15] - 89.98% 85.53% 84.10%

CDA(res-soft) (ours) - 90.73% 88.88% 87.42%
Arcface1[48] 94.78% 90.48% 86.27% 85.13%

DDC(res-arc) [14] - 91.63% 87.55% 86.28%
DAN (res-arc) [15] - 91.78% 87.78% 86.30%

CDA(res-arc) (ours) - 92.08% 88.80% 88.12%
1 Softmax and Arcface here are our baseline networks which use

ResNet-34 architecture trained on the CAISA-Webface.

Table 4: Verification accuracy (%) on 6000 pairs of RFW dataset [36]. “(res-soft)” represents the
ResNet-34 methods using Softmax as source classification loss; while “(res-arc)” represents the
ones using Arcface.

them. Therefore, we conclude that the MMD does help our CDA(vgg-soft) to min-
imize domain discrepancy and align feature space between source and target do-
main so that the performance of target domain improves. However, due to the par-
ticularity of face data, e.g. a larger number of identities as well as non-overlapping
identities of source and target domain, misalignment still exists even after adap-
tation. It also verifies that MMD-adaptation is not enough for face recognition.

(a) before adaptation (b) after adaptation

Figure 6: Feature visualization. We confirm the effects of MMD through a visualization of the
learned representations using t-distributed stochastic neighbor embedding (t-SNE) [80]. Blue
points are source samples and red are target samples. (a) are trained without any adaptation, (b)
are trained with MMD method. As we can see, compared to non-adapted method, MMD method
can help our CDA to align the source features and target features to a certain extent and improve
the performance of target domain.
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Parameter Sensitivity. Besides the MMD penalty parameter λ, our clustering
method involves another vital parameter α in Eqn. (7) which controls the connec-
tion of edges in graph. Two target nodes will be connected to each other in our
graph only if their cosine-similarity is larger than α. To have a closer look at this
parameter, we perform sensitivity analysis for it in transfer tasks CASIA→GBU
(Ugly) by varying the parameter of interest in {0.6, 0.625, 0.65, 0.675, 0.7}. We
generate different target pseudo-labels according to different parameter α, then
fine-tune the target CNN with them respectively. The fine-tuning results are shown
in Fig. 7, with the results of DAN(vgg-soft) shown as dashed lines. We observe
that the accuracy first increases and then decreases as α varies and demonstrates
a desirable bell-shaped curve. This justifies our assumption that the parameter
α in Eqn. (7) makes a tradeoff between intra-noise and inter-noise of generated
pseudo-labels. If α is set to be lower, more faces of different identities will be
clustered together which contains severe intra-class noise; otherwise, faces of one
identity will split into more scattered points and be discarded, or they will split
into smaller clusters leading to severe inter-class noise.

Figure 7: Parameter sensitivity of α (dashed lines show best DAN(vgg-soft) results).

Examples of clustering. As we know, the results of adaptation depend on the
quality of pseudo-labels generated by our clustering algorithms. To visually eval-
uate our clustering method, we show some example clusters on our target training
set of GBU in Fig. 8-10. Fig. 8 shows “pure” clusters which contain neither
intra-noise nor inter-noise, that is to say, all images of one identity are grouped
into one cluster together perfectly even if there are variations in expression, light-
ing, hairstyle, etc. In Fig. 9, examples of “split” clusters are presented. Although
reliable cluster, e.g. cluster2, is formed with partial images of one identity, re-
maining images are treated as scattered points or are split into another different
clusters, e.g. cluster3, which results in inter-noise. This phenomenon usually oc-
curs due to large variations. Fig. 10 shows example of “impure” cluster in terms
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Identity A 

(groundtruth)

Identity B 

(groundtruth)

Identity C 

(groundtruth)

Figure 8: Three examples of “pure” clusters generated by clustering method on our target training
set of GBU. In top two rows, each row shows the images of one identity; the bottom two rows are
images belong to the third identity. For each identity, all images in training set are grouped into
one cluster together perfectly.

Cluster 4 Cluster 5 Scattered points

Identity A 

(groundtruth)

Identity B 

(groundtruth)

Identity C 

(groundtruth)

Cluster 1 Scattered points

Cluster 2 Cluster 3 Scattered points

Figure 9: Three examples of “split” clusters generated by clustering method on our target training
set of GBU. In top two rows, each row shows the images of one identity; the bottom two rows are
images belong to the third identity. For the first identity, partial images are clustered together, i.e.
cluster1, but remaining images are treated as scattered points and are discarded. For the second
and third identity, the images are split into some scattered points and two clusters, which leads to
inter-noise.
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Identity A 

(groundtruth)

Identity B 

(groundtruth)

Identity C

(groundtruth)

Identity D 

(groundtruth)

Identity E 

(groundtruth)

Figure 10: One example of “impure” cluster generated by clustering method on our target training
set of GBU. Each row shows the images of one identity but all images of these five identities are
clustered together incorrectly.

of subject identity. Five different individuals are grouped into one cluster leading
to serious intra-noise. When going deep into this type of clusters, we find that it
usually happens to the identities whose images’ number is quite large. We give the
explanation of this phenomenon in Fig. 11. A larger number of images per iden-
tity increase the probability of connectivity of different people in our clustering
algorithms. Among massive images of two people, there happen to be two or more
images of different identities looked like each other and their cosine-similarities
are larger than the parameter α. Even if two similar images, they will be con-
nected in our clustering graph so the images of these people are grouped into one
cluster when pseudo-labels are generated through connected component.

Figure 11: The explanation of the existence of “impure” cluster. The green and pink points denote
the images of two different identities in one cluster. When there happen to be two or more images
of different identities looked like each other, they will be connected in our clustering graph, i.e.
the red line, so the images of these people are grouped into one cluster when we generate pseudo-
labels through connected component.
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6. Conclusion

In this paper, we focus on the issue of domain discrepancy between source
training data and target testing data in face recognition scenario. We address it in
the viewpoint of unsupervised domain adaptation. First, considering the special
problems of non-overlapping classes between two domains in FR, we further pro-
pose to introduce clustering algorithms into UDA to obtain pseudo-labels in the
deep feature space, and design a simplified spectral clustering algorithm which
requires neither overlapping classes between two domains nor the number of tar-
get classes. Second, to minimize domain discrepancy and enhance the quality of
clustering-based pseudo-labels, we introduce deep UDA methods, namely DDC
and DAN. Our CDA method effectively learns the discriminative target feature by
aligning the feature domain globally, and, at the meantime, distinguishing the tar-
get clusters locally. Comprehensive experiments are carried out in the GBU and
IJB-A/B/C databases, significant performance gains are reached which indicates
the competency of the proposed approach.

In terms of future work, (1) while the underlying face representation we em-
ploy in clustering method works reasonably well for unconstrained face images, it
could still be improved in a number of ways (e.g., selecting more reliable source
training sets, or improving the transferability of deep model). (2) While we were
able to boost the performance of target testing data, the quality of pseudo-labels
still needs to be improved. So designing a better clustering method for UDA is
a vital problem to be done in FR task. (3) We consider to use the “easy-to-hard”
scheme which progressively selects reliable pseudo-labeled target samples from
the most confident predictions or utilize the training skills of noisy data to alleviate
the negative influence of falsely-labeled samples.
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