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Highlights 

 Propose a three-stage multi-structure filter learning approach inspired from advances in 

convolutional layers of convolutional neural networks 

 Analyze the linear combination between obtained filters and convolution kernels in 

convolutional neural networks for filter selection 

 Build a network for feature representation based on learned filters 

 Competitive face recognition performance with less computational cost and high 

robustness to facial expression and illumination compared to other deep learning-based 

methods 
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Abstract 

Training deep convolutional neural networks (CNNs) often requires high computational cost and a large number 

of learnable parameters. To overcome this limitation, one solution is computing predefined convolution kernels from 

training data. In this paper, we propose a novel three-stage approach for filter learning alternatively. It learns filters 

in multiple structures including standard filters, channel-wise filters and point-wise filters which are inspired from 

variations of CNNs’ convolution operations. By analyzing the linear combination between learned filters and 

original convolution kernels in pre-trained CNNs, the reconstruction error is minimized to determine the most 

representative filters from the filter bank. These filters are used to build a network followed by HOG-based feature 

extraction for feature representation. The proposed approach shows competitive performance on color face 

recognition compared with other deep CNNs-based methods. Besides, it provides a perspective of interpreting 

CNNs by introducing the concepts of advanced convolutional layers to unsupervised filter learning.  

Keywords: Deep eigen-filters; Convolution kernels; Face recognition; Convolutional neural networks; Feature 

representation 

 
 

 

* Corresponding author. 

E-mail address: mzhang367-c@my.cityu.edu.hk (M. Zhang), sheheryarkhan@cuhk.edu.hk (S. Khan), 

h.yan@cityu.edu.hk (H. Yan). 

                  



3 

 

1. Introduction 

With the development of deep learning in recent years, deep neural networks, especially deep convolutional 

neural networks (CNNs) have achieved state-of-the-art performance in many image-based applications [1], e.g., 

image classification [2, 3], face recognition [4, 5], fine-grained image categorization [6, 7] and depth estimation [8, 

9]. Compared with traditional visual recognition methods, CNNs have the advantage of learning both low-level and 

high-level feature representations automatically instead of designing hand-crafted feature descriptors [10, 11]. Due 

to these powerful features, CNNs have revolutionized the computer vision community and become one of the most 

popular tools in many visual recognition tasks [7, 12, 13].  

Generally, CNNs are made up of three types of layers, i.e. convolutional layers, pooling layers, and fully-

connected layers. The features are extracted by stacking many convolutional layers on top of each other, and 

backpropagation starts from the loss function and goes back to the input in order to learn the weights and biases 

contained in the layers. However, how this kind of mechanism works on images remains an open question and yet 

needs to be explored. Besides, learning powerful feature representations requires a large amount of labeled training 

data otherwise the performance may deteriorate [14, 15], whereas training data in practical applications are often not 

readily available. To solve these problems, some researchers propose learning convolutional layers alternatively 

independent of training data. In [16], ScatNet was proposed by using wavelet transforms to represent convolutional 

filters. These predefined wavelet transforms are cascaded with nonlinear and pooling operations to build a multi-

layer convolutional network. Therefore, no learning is needed in computing image representation. Different from 

ScatNet, researchers in [17] introduced a structured receptive field network that combines the flexible learning 

property of CNNs and the fixed basis filters. The receptive fields can be expressed as a weighted sum of the fixed 

basis filters, the coefficient of which can be tuned by the users. Similarly, Takumi in [14] applied the orthonormal 

steerable filters as base filters for re-parameterizing the convolutional filters in CNNs. The reformulated filters are 

reported to improve the classification performance and reduce the model size on various architectures of CNNs.  

Recently, many generalized and improved modules from conventional CNNs were introduced to build new deep 

learning frameworks. One existing direction is integrating the information in multiple channels to capture more 

comprehensive features. In [18], Hong et al. applied multitask learning on face-pose estimation to combine different 

views of face representations. In [19], a multimodal approach on click prediction was proposed for ranking web 
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images. It constructed multiple hypergraph Laplacians and preformed sparse coding on integrated features. Another 

promising direction is learning filter banks in advance from training data and the learned filters are fixed during the 

test to get feature representations of input data. A typical example was Principal Component Analysis Network 

(PCANet) [20] where the filter banks appearing as convolutional layers are obtained by principal component 

analysis (PCA). The nonlinear layers and pooling layers of PCANet are simulated by binarization and block-wise 

histogram respectively. By stacking two stages of filter banks, it can achieve promising results in many 

classification tasks. Inspired by PCANet, many generalized versions were presented more recently. For example, 

Sun et al. [21] proposed combing Fisher Linear Discriminant Analysis (LDA) with PCANet to learn features with 

more discriminative information. Yu and Wu [22] introduced a two-dimensional PCANet, where 2D-PCA is applied 

to the image patch matrix to learn the basic filter components. Basically, the unsupervised idea of these variations is 

analogous to Auto-encoders (AEs) [23] which are the most representative unsupervised deep learning methods. 

Distinguished from CNNs, AEs aim to learn low-dimensional feature embeddings which can perfectly reconstruct 

the original data. This mechanism is similar to traditional dimensional reduction methods like PCA.  

The other direction from improving CNNs in terms of efficiency and accuracy is convolutional layer designing 

[1]. The general trend of CNNs in past years has made the networks going deeper with a significant increase in the 

number of learnable parameters and computation operations. Consequently, the training of CNNs requires a large 

space of parameter storage. For example, a standard VGG-16 [2] network takes the storage of parameters with more 

than 500Mb which brings a heavy burden to embedded devices where the computation and storage capability are 

both limited. Another leading problem is, a deep CNN becomes hard to converge and vulnerable to overfitting [12, 

15, 24]. To solve these problems, variations of CNNs’ convolutional layers are developed. The typical examples 

among them are     convolution introduced in [25], the depth-wise separable convolution conducted in 

MobileNets [26] and a series of Inception modules introduced in [24, 27, 28]. These newly invented convolutional 

layers not only contribute to develop deeper networks with better generalization ability but also reduce the number 

of learned parameters significantly.  

For CNNs, generally, the first layer is a convolutional layer followed by stacked layers on top of each other. It 

means all the information has been extracted within the output of first layer while the following layers apply various 

types of transformations, e.g. convolution, nonlinearity, pooling to map the features further. If the convolution 

kernels of first layer in CNNs can be obtained alternatively instead of learning by backpropagation, then, on one 
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hand, it provides the understanding of CNNs’ behavior from another view. On the other hand, the obtained kernels 

can be employed for learning feature representation directly. Moreover, one can expect competitive performance by 

building consecutive stages to learn kernels in multi-layers. In this paper, by analyzing the characteristic of 

convolutional layers in CNNs, we propose a novel filter leaning approach. Note we only consider the kernels 

contained in the convolutional layer. Since the number of parameters of biases is much fewer than that of kernels, 

biases are known to have little influence on a deep CNN which can be eliminated during training.  

The main contributions of this study are three-fold: (1) We propose a three-stage approach to learn multi-

structure convolution filters alternatively called eigen-filters. Using these eigen-filters, a network with three 

convolutional layers can be built followed by HOG based feature extraction for image representation. We call it 

Deep Eigen-filters Net (DEFNet). (2) The origin convolution kernels of CNNs can be re-parameterized as the linear 

combination of learned eigen-filters. A threshold-based filter selection method is proposed to minimize the 

reconstruction error and select a minimal number of top filters from the initial filter bank. (3) From face recognition 

experiments, our proposed DEFNet is highly superior on small size datasets or extreme cases with several images 

per class. The training of our network is computation-efficient while it performs better than other compared deep 

learning-based methods on several subsets of public databases [13, 29]. 

The rest of the paper is organized as follows. In Section 2, we first review the standard convolutional layer with 

their two variations in structure and then introduce some works on learning predefined convolution kernels of CNNs. 

In Section 3, the methodology of our proposed filter learning approach is described in detail. Then, DEFNet is 

proposed for feature representation based on learned multi-structure eigen-filters. In Section 4, we first show the 

intermediate results of filter selection, filter visualization, and face representation. Then face recognition tests on 

several popular datasets including VGGFace [13], FaceScrub [29], AR [30], color FERET [31] and LFW [32] are 

presented. In Section 5, we justify our proposed approach theoretically from two aspects. Finally, we conclude this 

work in Section 6 and discuss important directions for future research. 

2. Related work 

In this section, we start by reviewing the convolutional layer of CNNs and their variations. Then, we discuss 

some important studies related to the relationship between the convolution kernels of CNNs and prefixed filters. 
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2.1. Design of CNNs’ convolutional layers 

2.1.1. Standard convolutional layer 

Given a square 3-dimensional input   with shape        , a conventional convolutional layer will produce a 

        feature map  , where    is the spatial height and width of  ,   is the number of input channels,    is 

the spatial height and width of output   and   is the number of output channels. Denote the kernel contained within 

the convolutional layer as a 4-dimensional tensor   with shape           and the elements of   as          , 

where    is the spatial size of a square kernel which is odd (       ,    ) and          indicates the weights 

connecting the channel   of output and channel   of input with the offsets of   rows and   columns between the 

output receptive field and input receptive field [15]. 

When using stride     and padding, the relationship between the output size    and input size    can be 

formulated as:              , where   is the padding size along each of the axis. Choosing   ⌊    ⌋ 

will result in    and    with the same size which is a good property sometimes. In the general case, for no-unit 

stride   (   ), the relation between the input size and output size is extended as:    ⌊  
 
         ⌋   .  

In the case of unit-stride and zero-padding, the standard convolution operation [15] can be parameterized as: 

       ∑                                                                                     (1) 

From Eq. (1), the number of multiplications required for a standard convolution is 

                                                                                (2) 

The number of learnable parameters required within the convolution kernel   is   
   . The computational cost lies 

on the product of the square kernel size      , number of input channels  , number of output channels   and the 

output feature map size      . Since the channel number of activations increases significantly when going deeper 

in CNNs, the required multiplications in Eq. (2) is computationally expensive.  

2.1.2. Convolutional layer of 1 1 convolution 

The use of     convolutions was first proposed by Lin et. al. in Network in Network [25],  the idea of which 

has been widely adopted in many later proposed CNNs architectures, like Inception [28], GoogLeNet [24], and 

ResNet [12]. The basic idea of     convolutions is straightforward, the convolution operation is convolved on the 

unit spatial size of the input along the channel-axis. Given a square input feature map   with shape        , 
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where   is the number of input channels,    is the height and width of the input feature map. A     convolution 

kernel    with shape         will produce an output feature map V with shape         where       

is the spatial size of output feature map and   is the number of output channels. The     convolution can be 

parameterized as follow: 

       ∑         
 

                                                                          (3) 

The motivation behind this     convolution is to reduce (when     ) or increase the dimension (when   

  ) along the channel-axis. Compared with Eq. (2), the number of multiplications required for a convolution 

operation is greatly reduced from                 to           , which is extremely useful when 

dealing with large channel number of deep activations. Moreover, the number of learnable parameters contained 

within the convolution kernel is dropped from   
    to   . Another benefit of 1 1 convolution is it helps to 

enhance the nonlinearity of CNNs without any spatial information loss by cross-channel linear combination 

meanwhile keeping the spatial height and width of the input unchanged after convolution. 

2.1.3. Convolutional layer using depth-wise separable convolution 

Depth-wise separable convolution was initially proposed in [33] and subsequently applied in Xception [27] and 

MobileNets [26]. Generally, the conventional convolutional layers first convolve on each channel of the input 

feature map, then combine the filtered outputs of each channel simultaneously to produce a new representation. 

Different from that, the characteristic of depth-wise separable convolution is it factorizes the conventional 

convolution into two independent steps, i.e. depth-wise convolutions and point-wise convolutions, each step of 

which deals with the corresponding convolution. Specifically, in depth-wise step, each channel of input feature maps 

is filtered with a single convolution kernel in horizontal and vertical direction individually, so the dimension of input 

feature maps in channel-axis remains unchanged in this step. The depth-wise convolution can be formulated as: 

       ∑  ̂                                                                               (4) 

where  ̂ is the convolution kernel in shape         and the  th channel of  ̂ is applied to the  th channel of 

input feature map   to generate the  th channel of output feature map  .  

While in point-wise step, the     convolution implemented in the same manner as in Eq. (3) is used to produce 

the linear combination of output feature maps of depth-wise convolution. The total computation cost required for a 
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depth-wise separable convolution is the sum of computation costs of depth-wise and point-wise convolution, which 

is calculated as: 

                                                                         (5) 

The ratio of Eq. (2) and Eq. (5) is equal to   ⁄     
 ⁄  which indicates a decrease of computation cost from 

standard convolution to depth-wise separable convolution. And the ratio of number of learnable parameters between 

two types of convolution operations is  (  
     )   

   ⁄    ⁄     
 ⁄  , which is the same times of reduction 

as that of computation cost.  

2.2. The relationship between convolution kernels of CNNs and prefixed filters 

By analyzing the composition of convolution kernels learned from CNNs’ training procedure, alternative filters 

can be designed to replace or simplify the parameterization of original kernels. This section briefly summarizes two 

main streams of existing works: one is learning predefined filters independent of data [14, 16, 17], the other is 

computing training-fixed filter banks from task-dependent datasets extending unsupervised methods like PCA [20, 

22] or supervised methods like LDA [20, 21].  

2.2.1. Reconstruct the convolution kernels by prefixed filters independent of data 

Within this scope, predefined wavelet filters [16] and Gaussian derivative filters [14, 17] have been explored to 

reconstruct the original convolution kernels. Consider a convolution kernel   in   channels,              . 

Introduce a set of   learned basis filters               , then each channel of the convolution kernel    can be 

expressed as the linear combination of   and a set of basis weights                      . Denote the  -channel 

input as  , the convolution over   based on   can be reformulated as: 

 

     ∑     

 

   

 ∑ ∑      

 

   

 

    

    (6) 

where    is the  -th channel of   and {    }     

   
 is a set of trainable coefficients of the convolution kernel  .  

Since basis filters   are precomputed, the number of learnable parameters is equal to the number of coefficients, 

i.e.   . This approach brings dual advantages. Firstly, it greatly reduces the training cost of convolutional layers and 

improves the robustness of the network to overfitting. Secondly, it still lefts parameters to be tuned by users. 
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However, the discriminative performance of these predefined filters generated by Gaussian derivative, wavelet 

transformation [14, 16, 17] may be worse if the applied dataset is far from the domain of the pre-trained dataset. 

2.2.2. Learn the filter bank from training sets based on PCA or LDA 

The most popular work belonging to this scope was PCANet [20], and some generalized versions such as 

2DPCANet [22] and FPCANet [21] were proposed recently. The basic idea of PCANet is learning two filter banks 

by PCA in two consecutive stages respectively. Given a set of training images             with the same size    . 

The first stage of PCANet is briefly summarized as followings: (1) Split each image    into patches with size 

 
 
  

 
, unit stride and no zero-padding referring to standard convolution operation. The valid region of the input 

image has the shape of  ̃   ̃      
 
        

 
   ; (2) Flatten each patch of    to a patch vector with 

dimension  
 
 

 
, concatenate them to obtain the matrix    [                ̃ ̃]         ̃ ̃, where      is the  th 

patch vector of   ; (3) Subtract the patch-mean of each patch vector of    to obtain the patch-mean removed image 

matrix  ̅ , concatenate all the patch-mean removed  ̅  to form  ̅  [ ̅   ̅    ̅  ]          ̃ ̃; (4) Finally, PCANet 

adopts minimizing the reconstruction error in Frobenius norm as following: 

    ‖ ̅      ̅‖
 

 
                                                               (7) 

where            is the optimum projection matrix and   is the number of filters in the first stage. The solution of 

Eq. (7) is a matrix containing column vectors of    ( ̅ ̅
 
)    

  where   ( ̅ ̅
 
)  is the  th eigenvector of the 

covariance matrix  ̅ ̅
 
. Convert each column vector    to the matrix    with shape  

 
  

 
, then the obtained filter 

bank with   filters can be formulated as                       . 

The second stage of PCANet is analogous to the first stage, whereas the inputs of the second stage are the output 

feature maps of the first stage based on   filters. Although these two simple stages of PCANet are reported to obtain 

satisfactory results on many datasets, it does not utilize advanced structures of current CNNs, and the filter banks are 

selected mainly based on empirical experiences. Hence, the relationship between CNNs’ convolution kernels and 

computed filter banks is not well established.  
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3. Deep eigen-filters and DEFNet for feature representation 

Our proposed approach consists of three stages for learning filters. We first introduce our filter learning 

procedure stage by stage. Then, the pipeline of building a network based on the obtained filter banks for feature 

representations is given. The overall diagram of the filter learning approach is illustrated in Fig. 1. 

 

Fig. 1. Overall diagram of proposed multi-structure filter learning approach. 

3.1. Problem definition and preparation 

Assuming we are given the training set with   images        
 . Following the general case of CNNs,    is three-

channel RGB image with the same shape      , where   and   are the spatial height and spatial width of    

respectively. The task of proposed three-stage approach is to learn filter banks        
  and corresponding statistical 

moment, i.e. filter-mean   
 
    

  in each stage. To facilitate the description of formulation, the patch size, stride and 

zero-padding size keep the same in all the stages. Specifically, the patch referred to the convolution kernel in CNNs 

is fixed with square shape    , where   is an odd number           . The stride   is applied in patch-

unfold with zero-padding size   ⌊   ⌋   , which ensures the same size of inputs and outputs when    .  

3.2. The first stage of filter learning 

We start with learning filter bank and filter-mean from the data augmented training set, then the analysis between 

the initial filter bank and convolution kernels in the first layer of CNNs is provided to select the final    filters. 

Finally, apply the learned    filters to obtain the output feature maps of the first stage. 
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3.2.1. Learning standard eigen-filters and filter-mean 

Data augmentation is applied first on        
  to obtain the augmented data {  

 }
     

   
. It is realized by flipping the 

image in horizontal direction with a 50% probability and cropping the image into a specific size each time it is 

sampled. In practice, the procedure is conducted online in   epochs to make the number of processed images 

growing to   . Generally, it helps to increase the number of training images and one can expect learning more 

representative filter banks from the augmented data. We divide each image   
  into patches with zero-padding size  , 

patch size   and stride  . This will give a number of      patches, where    ⌊          ⌋    and    

⌊          ⌋    are the expected output size in vertical and horizontal directions. Flatten each patch image 

into a    -dimensional vector and concatenate them to obtain: 

  
  [  

      
        

      ]                                                            (8) 

where   
   

 is the  th patch vector of image   
 . The final patch matrix containing all the images {  

 }
     

   
 can be 

denoted as 

   [  
    

     
    

      
      

 ]                                          (9) 

Then, compute the filter-mean  
 
 of  .   

 
 is the mean along the second axis of  , which is distinguished from 

the mean along the first axis, known as patch-mean in [20]. As the second dimension of matrix   is tremendous, 

alternatively, the filter-mean vector  
 
 can be calculated as  

  
 
 

 

      
∑   

 

   

     

     
 (10) 

where      
       is a vector of ones. Thus, subtracting the filter-mean from image matrix   

  to obtain 

 ̅ 
 
   

   
 
                                                                        (11) 

the substituted patch matrix  ̅ including all the filter-mean removed images is  

 ̅  * ̅ 
 
  ̅ 

 
   ̅ 

 
  ̅ 

 
    ̅ 

 
    ̅ 

 
+                                           (12) 

Finally, compute the covariance matrix   of  ̅ and solve the eigenvalues decomposition of  . Similarly, we 

compute the covariance matrix in an alternative way, which is formulated as 
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∑  ̅ 

 
 ̅ 

  
   

     

         
 (13) 

The eigendecomposition of   is defined as        , where           
 is a square matrix. Each column of   

denoted as    is an eigenvector of  . We sort all the eigenvectors      
   

 and corresponding eigenvalues      
   

 

based on the value of    in decreasing order. The initial     eigen-filters {  
 }

 

   

 is obtained by 

  
                                                                               (14) 

where operator     means reshaping the vector into a matrix with the corresponding dimension in each axis. 

3.2.2. Filter selection and reconstruction towards comparing with CNNs 

Consider a pre-trained CNN with the same convolution configurations of kernel size, stride and zero-padding as 

in Section 3.1. The CNN is trained on the same dataset        
  with data augmentation. Denote the convolution 

kernels contained in the first layer of CNN as                        , where   is the number of output 

channels. Assuming for each convolution kernel, it can be described as a linear combination between all of the 

initial eigen-filters {  
 }

 

   

 and coefficients            
     

, which is formulated as: 

                ∑    

   

   

  
   ̂   (15) 

where  ̂ is the matrix each column of which corresponds to the vectorized   
  and    [                 ]  is the 

coefficient vector of  th kernel of CNN.    can be efficiently obtained by solving the linear system equation of Eq. 

(15). Since  ̂ is orthonormal, the solution is nontrivial. To select the top   eigen-filters out of total     filters, we 

define the following criterion to evaluate how well the selected eigen-filters can explain the convolution kernels in 

the pre-trained CNNs: 

 

          
∑ ‖    ∑       

   
   ‖

 

 

 

∑ ‖       ‖ 
 

 

 (16) 

where the operator     represents vectorizing the matrix (filter) to a row vector. From Eq. (16),         is the 

reconstruction error between the selected   eigen-filters and total filter energy ∑ ‖       ‖ 
 

  of the convolution 

kernel  . Thus, the optimum    is found by: 
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                                                                            (17) 

where   is a tolerance found from experiment results. It is set to 0.02 in this paper in terms of the tradeoff between 

the reconstruction error and the minimum number of covered filters. 

The top    eigen-filters selected from initial filter bank can explain most of the convolution kernels of pre-trained 

CNN. To make full use of the eigen components, a reconstructed filter   
  is additionally built as a weighted sum of 

the remaining unselected filters {  
 }

      

   

, which is formulated as:  

  
  ∑   

  
 

    

                                                                          (18) 

where   
     ∑   

   

       are normalized eigenvalues of            
   

. Finally, the eigen-filters of first stage are 

parameterized as    [  
    

       
    

 ] with shape             . For simplicity, denote         

as the number of filters in the first stage. 

3.2.3. Outputs of the first stage 

Note the training images are only augmented for filter learning, and the outputs of first stage are based on the 

original training set        
 . Provided the filter bank    and filter-mean  

 
 of the first stage, the  th feature map of 

   is formulated as 

       
             

[   (  
 ) ̅ ]                                            (19) 

where  ̅  is the filter-mean subtracted patch vector matrix of    according to Eq. (8) and Eq. (11). Note the most 

right-hand side of the Eq. (19) follows the essence of the convolution operation, i.e. unfold-multiplication-fold, 

which is more practical to use in the implementation. Here, we first fold the image into a patch vectorized matrix 

and subtract the filter-mean, then it is multiplied by a vectorized filter to produce a row vector. Finally, the result is 

reshaped to the expected size of the output feature map.  

To provide the local translation invariance of the output feature maps as well as reducing the computational cost 

in training, pooling layers are employed in CNNs [2, 3, 15]. Inspired by these, in the case of stride    , the 

outputs of the first stage are followed by an average pooling layer with pooling size     and pooling stride  . This 

operation produces a halved output spatial size in both vertical and horizontal directions. 
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3.3. The second stage of filter learning 

Given the output feature maps   
  [    

      
         

 ]            of each training image    from the first stage, 

concatenate the outputs of all the images to obtain    [  
    

      
 ]             . Split    into    groups 

       
  : 

        
      

        
                                                                 (20) 

where    collects the feature maps produced by the same eigen-filter   
  of each training image. The task of the 

second stage is learning the filter banks {  
 }

   

  
 and filter-mean  

   
 of each group    .  

3.3.1. Learning channel-wise filter banks and filter-mean 

We first split each two-dimensional feature map     
         of    into patches following the configurations of 

patch size  , zero-padding   and stride  . Different from the first stage where the patch image is three-dimensional 

of      , now it becomes two-dimensional of    . Denote the shape of expected output feature maps as 

     . Flatten each patch images into a vector of dimension    and concatenate each vector into a matrix: 

     [    
      

        
    ]                                                       (21) 

where     
 

 is the  th patch vector in the  th feature map produced in the first stage of image   .  

Then, calculate the filter-mean of    with the same approach as in Eq. (10): 

  
   

 
 

     
∑    

 

   

     
   (22) 

where      
       is a vector of ones. Analogous to Eq. (11), subtract the filter-mean from each      and 

concatenate them to obtain the filter-mean removed patch matrix of group   : 

 ̅  [ ̅     ̅      ̅   ]                                                      (23) 

Finally, the covariance matrix    of  ̅  is formulated as  

    
 

     
∑ ̅    ̅   

 

 

   

       
 (24) 
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Solve the eigenvalues decomposition of    and sort all the eigenvectors {    }   

  

 regarding the corresponding 

eigenvalues in the decreasing order. Denote the number of selected filters of each group as   . Then, for each group 

  , the    eigen-filters of the second stage are 

  
  {    

 }
   

  
                                                                (25) 

where     
                 . Note there are    groups of output feature maps in the first stage, repeat the above 

procedure for all the groups of  , which gives the final filter banks and filter-mean:  

   {  
    

       
 }               

 
 , 

   
  

   
    

    
-                   (26) 

3.3.2. Outputs of second stage based on multi-outputs channel-wise convolution 

Given the feature maps    from the first stage, learned filter banks   
  and filter-mean  

   
 of each channel-wise 

group, the output feature map of    at the second stage is formulated as: 

  
  {  

      
 }

   

  
                                                             (27) 

The part inside the braces of Eq. (27) can be extended as: 

  
      

  {    
      

 }  
   

  
{        

[   (    
 ) ̅   ]}

   

  
                      (28) 

where  ̅          
   

. From Eq. (27) and Eq. (28), each filter bank   
  is applied to the  th feature map     

  of 

image    to produce    feature maps in second stage, aggregate all the feature maps produced by    groups of filter 

banks to obtain the total number of      feature maps for   .  

Different from the depth-wise convolution used in [26] where each kernel convolved with a single channel of 

input only generates one feature map. Here, each filter contained in the filter bank will convolve with a single-

channel feature map     
 , which produces    feature maps per filter bank. There are    filter banks leading to a     -

channel output per image. In this paper, we simply choose      . Hence, the outputs of second stage can be 

represented as a four-dimension tensor    with shape     
       .  

3.4. The final stage of filter learning 

Given the output feature maps       
     

  from the second stage with depth   
 
, the task of the final stage is 

learning a series of filters    
     

   with shape   
    and the filter-mean  

 
, where    is the number of filters 
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selected for the final stage. This method is inspired by the     convolution [25] which is widely employed for 

reducing the channel dimension of deep activations.  

3.4.1. Learning point-wise filters and filter-mean 

For each output   
     

       , unfold   
  around each pixel along the channel dimension to obtain: 

   {                
                 

        
      

        
}     

            (29) 

where         
 

 is a vector containing all the pixels located at the  th row and  th column of each channel in   
 . 

Repeat the same procedure for all the   training images to build   [          ] and calculate the mean of 

  along the second dimension as following 

  
 
 

 

     
∑  

 

   

     
    

 

 (30) 

where      
       is a vector of ones. Note when applying pointwise patch-unfold, each entry of  

 
 is equal to 

the mean of the corresponding channel of all the outputs, described as 

 
   

     {    
 }

   

 
                                                                (31) 

where     
  is the  th channel of the second stage output of   . Subtract  

 
 from each    and concatenate them to 

obtain  ̅  [ ̅   ̅    ̅ ]     
       .  

Follow the same approach as in Eq. (24), the covariance matrix      
    

 

 is calculated from  ̅. Solve the 

eigenvalue decomposition of   to find the sorted eigenvectors        

  
 

 regarding the corresponding eigenvalues in 

descending order. The obtained eigen-filters of the final stage are 

   ,   
  
   

  -
   

  
       

                                                        (32) 

In our work,    is chosen to be twice of    following the convention of doubling the number of channels in sequential 

modules of CNNs. In summary,           .  

3.4.2. Outputs of final stage based on 1 1 convolution 

Provided learned filters    {  
 }

   

  
, the filter-mean  

 
 and the output   

 
 of image    from the second stage, 

the output of the final stage can be parameterized as 
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  {  

    
 }  {        

[   (  
 ) ̅ ]}

   

  

   

  
                                     (33) 

The middle part of Eq. (33) represents the     convolution, which can be reformulated as the combined operation 

of unfold-multiplication-fold shown in the most right-hand side of Eq. (33). Thus, each feature map   
 
 is convolved 

with    filters in     convolution to generate    feature maps. When       , the output of the final stage can be 

denoted as a tensor    with shape            .  

In the case of unit stride,    is followed by an average pooling layer with pooling size     and pooling stride   

which results in halving the height and the width of each feature map. In conclusion, the spatial size of feature maps 

is reduced twice during the whole three-stage procedure. It is realized either by non-unit stride during the first stage 

and second stage or average pooling on the outputs of the first stage and final stage.  

3.5. Feature representation based on DEFNet 

Given the learned filter banks        
  and corresponding filter-mean   

 
    

  of each stage, each training sample 

   is processed through the three stages to obtain the final output denoted as the tensor   
  with shape         , 

where    and    are the spatial height and width of   
  in final stage. We integrate this three-stage procedure into a 

network called DEFNet which connects all the output steps without filter learning according to Eq. (19), Eq. (28) 

and Eq. (33).  

Based on    feature maps of each image, we apply the histogram of oriented gradients (HOG) introduced in [11] 

to extract features from each feature map. HOG is a popular hand-crafted image descriptor widely employed in 

human detection and face recognition [11, 34]. The advantage of applying HOG in our approach is dual. First, it 

introduces translation invariance in some degree. Second, it can be computed efficiently due to the twice down-

sampling on the spatial size of outputs. Different from conventional HOG where all the cell histograms within a 

block are normalized and concatenated to form an extended HOG vector, we adopt a modified HOG-based feature 

extraction. Specifically, all the histograms within each block are aggregated, which leads to one histogram per block 

with the same dimension  

as the original histogram. We find this modification is important for improving the performance on face recognition. 

The detail implementation of our HOG feature extraction is given as followings. Assume the square cell size is    , 

we apply the block size     which means each block contains 4 cells. The number of bins of each cell histogram is 
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set to 18 with signed gradients, which means the gradient is evaluated on 18 orientations ranging from 0 degrees to 

360 degrees. Suppose the number of overlapped blocks generated by HOG in one feature map is  , concatenate all 

the histograms of a feature map and flatten them into a row vector denoted as          , where      represents 

HOG-based feature vector extracted from the  th feature map of image   . Concatenate all the feature vectors      of 

   feature maps, the final feature representation of    is formulated as 

   [                 
]                                                               (34) 

The architecture of the proposed DEFNet is illustrated in Fig. 2 and the overall training procedure of obtaining 

feature representations is demonstrated in Algorithm 1.  

The extracted feature representations      
  can be directly fed as inputs to train a linear SVM or   -Nearest 

Neighbor ( -NN) classifier for the purpose of classification. Since the dimension of    maybe too high, it’s 

recommended to use    followed by PCA and LDA for dimension reduction as reported in many HOG features-

based works [34, 44]. 

 

Fig. 2. The architecture of DEFNet based on learned deep-eigen filters. 

Algorithm 1 The overall training procedure for feature representation 

Input: 

Training dataset        
 ; Learned filter banks        

  and filter-mean        
 ; 

Outputs: 

Feature representations of training set  

1:   for       do 

2:       Patch-unfold of    and subtraction of filter-mean    
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3:       Convolution with    to obtain {    
 }

   

  
using Eq. (19) 

4:   end for (obtain feature maps    of training set at first stage) 

5:   if stride     : 

6:        Average pooling on    

7:   for       do 

8:        for        do 

9:              Patch-unfold of      
  and subtraction of filter-mean      

10:            Depth-wise convolution with   
  to obtain {    

 }
           

   
 using Eq. (28) 

11:      end for (obtain each feature map   
  of   ) 

12:  end for (obtain feature maps    of training set at second stage) 

13:  for       do 

14:      Pointwise patch-unfold of   
  and subtraction of filter-mean    

15:          convolution with    to obtain {    
 }

   

  
 using Eq. (33) 

16:  end for (obtain feature maps    of training set at final stage) 

17:  if stride     : 

18:      Average pooling on    

19:  for       do 

20:      Feature extraction using HOG descriptor on all the feature maps of   
  

21:  end for  

22:  return feature representation of training set      
  

4. Experiments and results 

In this section, we examine the performance of our proposed deep eigen-filters approach. We first conduct 

experiments on the procedures of filter learning and feature representation. Then, we test the face recognition 

performance of our DEFNet on VGGFace [13], FaceScrub [29], AR [30], color FERET [31] and LFW [32] 

respectively. The experiments on computational cost are provided finally. 

4.1. Experiments on filter learning and feature representation 

The generic training set for learning filters of our approach is a subset of VGGFace [13] dataset. The images 

contained in the dataset are all taken under unconstraint conditions. To ensure the purity of the dataset, we manually 

remove some low-quality and mislabeled images of each identity from the original dataset and eliminate the 

identities with too fewer images remained (typically less than 100 images). This contributes to a final dataset with 

around 36000 images of 240 identities, and each identity has around 150 images with one face per image. For each 
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image, face detection is applied to obtain a loosely-cropped face image, then it is further processed with 2D 

alignment. Both the face detection and face alignment are based on the implementation of Dlib [35]. Finally, each 

face image is resized to the size of        . The processed dataset is split into 80% for training, 10% for 

validation and 10% for testing. The example faces from the employed subset of VGGFace are shown on Fig. 3. We 

can see the dataset containing face images in variations of pose angle, facial expression, lighting and disguise, which 

are the common factors considering the real-world applications.  

To observe the effects of different patch sizes in our approach, we compare three configurations, i.e. patch size 

    with unit stride, patch size     with unit stride and patch size     with stride    . Denote the number of 

filters in the first stage as   , number of filters in each channel-wise group in second stage as    and number of filters 

in the third stage as   . The summary of three filter-learning configurations is shown in Table 1. 

Table1 Summary of three filter learning configurations. 

Convolution configuration          

Patch size    , stride = 1 8 8 16 

Patch size    , stride = 1 24 24 48 

Patch size    , stride = 2 34 34 68 

The comparative trained CNN employs the same network architecture and optimization method as in [13], known 

as VGGFace CNN, except that the last two fully-connected layers are replaced with a global average pooling layer 

in order to reduce overfitting. The network extensively employs     convolution kernels which is the same with 

our     filter learning approach. For the     approach, since the functionality of two consecutive     

convolution layers is equal to a     layer [28], we train the network replacing the first two     layers with a 

    layer. For the patch size     with stride 2, we use the network architecture introduced in [12], known as 

ResNet-50. Specifically, it employs convolution kernel     with stride 2 in the first layer. Note all the employed 

CNNs have 64 convolution kernels contained in the first layer and they are all trained from scratch on the 

aforementioned dataset using an NVIDIA RTX 2080Ti GPU.  

Fig. 4 illustrates the reconstruction error from Eq. (16) against different numbers of initial filters under three filter 

learning configurations. Reconstruction error evaluates the fitting performance between selected filters and 

pretrained CNN. From left to right in Fig. 4, the first indexes along x-axis under the threshold 0.02 are 7, 23 and 33 

respectively for three configurations. Hence, we select 7 out of 27 filters, 23 out of 75 filters and 33 out of 147 
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filters for the case of    ,     and     respectively. Adding the reconstructed filter according to Eq. (18),     

is equal to 8, 24 and 34 for three cases respectively. This provides a quantitative analysis of the results established 

shown in Table 1.  

      

Fig. 3. Example faces from the used training dataset. 

Each column of the images belongs to the same identity. 

Fig. 4. Reconstruction error between eigen-filters and 

convolution kernels of the trained CNNs. Indexes of markers 

shown in filled black are used to establish Table 1. 

The qualitative analysis of the     approach is achieved by visualizing the coefficient matrix from Eq. (17). 

Given initial 27 filters of the first stage and 64 convolution kernels contained in the first layer of CNN, we can 

calculate the coefficient matrix   [          ]. The coefficient matrix indicates the importance of each eigen-

filter when reconstructing the convolution kernels of CNNs. The visualization of   is illustrated in Fig. 5. Here, each 

column of   represents a vector of coefficients for a corresponding convolution kernel and each row of   represents 

all the coefficients from a specific eigen-filter constituting all the convolution kernels. Each entry of   shown in 

color represents a coefficient ranging from [    ]. The darker the color, the larger the absolute value of the entry. 

From Fig. 5, the first seven eigen-filters take a dominant role in constructing all the convolution kernels of CNN, 

which corresponds with the leftmost black marker shown in Fig. 4. 

The visualization of parts of the convolution kernels and the filter bank of the first stage is shown in Fig. 6. (a). 

Here, the first row illustrates the first eight     convolution kernels contained in the first layer of the trained CNN, 

and the second row illustrates eight eigen-filters learned in the first stage. For visualization convenience, weights of 

each kernel/filter are rescaled to the range [        ] shown in pseudo-color. The eight-channel outputs produced at 

the first stage, are first given to the average pooling layer to halve the spatial height and width. Then, each channel-

wise group of filters in the second stage will convolve with each channel of the feature map, which generates a 64-
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channel output feature map for each image at the second stage. The channel dimension of outputs is reduced to 16 

by propagating to the point-wise filter at final stage. One example image and its 16 output feature maps generated at 

the final stage are shown in Fig. 6. (b) and Fig. 6. (c) respectively.  

 
Fig. 5. Visualization of coefficient matrix constituting CNN’s convolution kernels 

 
Fig. 6. (a) Visualization of first eight convolution kernels of CNN (first row) and eight eigen-filters (second row). 

(b) Original image. (c) Output feature maps produced by the final stage. The filter outputs are scaled and mapped to pseudocolors.  

4.2. Experiments on face recognition 

4.2.1. Face recognition test on VGGFace database 

We learn our proposed DEFNet on the training partition of employed dataset aforementioned in Section 4.1, then 

evaluate and test the performance on the other two partitions respectively. For all the comparative methods in the 

experiment, they are trained using the exact same split dataset. We compare our approach with other six methods, i.e. 

LBP [10], PCANet [20], VGG-CNN [13], CenterFace [5], SphereFace [36] and CosFace [4]. Among them, LBP is a 

traditional approach based on the hand-crafted feature descriptor. PCANet is served as a baseline of predefined-filter 

learning. SphereFace and CosFace are two state-of-the-art deep CNNs with carefully designed loss functions. The 

implementation details are given as followings: (1) for CNN-based methods, the network of VGG-CNN is the same 

as described in Section 4.1, and it is trained with classical softmax loss. In CenterFace, we apply the same VGG-

CNN architecture as a backbone but changing the softmax loss to the introduced center loss in [5]. For SphereFace 
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and CosFace, we follow the network backbone introduced in [38], which is a modified ResNet [12] with 20 layers. 

(2) for our approach, we adopt the     patch configuration. Considering the final output of size      , we use 

the HOG cell size     and the block size    . It finally generates 36 blocks per feature map. The concatenated 

HOG features are further processed by PCA and LDA for dimension reduction. Then, the dimension-reduced feature 

vector is fed into a  -NN classifier with Euclidean distance measurement for recognition. The comparison of the 

recognition rates between seven approaches is given in Table 2.  

Table 2 Recognition results (%) on the subset of VGGFace dataset. 

Methods Validation 
 Testing 

Recall-avg Recall-min Recall-max 

LBP [10] 92.52 91.83 74.28 95.61 

PCANet [20] 94.85 94.43 76.92 100.00 

VGG-CNN [13] 96.61 96.47 81.82 100.00 

CenterFace [5] 97.79 98.05 84.62 100.00 

SphereFace [36] 98.30 98.17 81.82 100.00 

CosFace [4] 97.67 97.93 84.62 100.00 

Proposed DEFNet  98.10 98.39 86.17 100.00 

From Table 2, our DEFNet achieves superior average recall to other methods on the dataset where the filters are 

learned from. Note the minimum recall score is drastically improved to 86.17%. From the validation result, our 

approach is on par with several state-of-the-art methods like CosFace and SphereFace which utilize well-designed 

loss function for deep metric learning. One of the reasons why our DEFNet outperforms these compared deep metric 

learning-based methods may be the relatively small size of our training set. Besides, the proposed filter selection 

method effectively minimizes the reconstruction error between pre-trained CNN’s convolution kernels and our 

eigen-filters, which promises the performance of DEFNet not inferior to a standard CNN like VGG-CNN. Note our 

approach is not trained in an end-to-end manner, the validation accuracy could still be enhanced by finetuning some 

hyper-parameters like the number of components of PCA.  

4.2.2. Face recognition test on FaceScrub dataset 

To observe the generalization ability of our deep eigen-filters, we directly apply the filters learned from the 

previous VGGFace dataset on the FaceScrub [29] dataset without filter learning. FaceScrub is similar to VGGFace, 

which collects color images of celebrities under unconstraint conditions. Here, we use a subset of FaceScrub. We 

first select 240 subjects including 120 females and 120 males from the original FaceScrub. Then, the same 
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preprocessing as in Section 4.1 is manipulated on the original images to build a dataset with around 150 images per 

subject. For the fair comparison, we ensure that no subjects used in FaceScrub appear in the employed VGGFace 

dataset. Follow the same face detection and alignment procedure, each loosely-cropped face image is resized to the 

size        . The dataset is further split into two partitions, i.e. 80% for training and 20% for test.  

We compare the generalization performance of our approach with other deep learning-based trained models from 

the last experiment. The implementation details are given as followings: (1) for VGG-CNN and CenterFace, we 

directly extract the features from the layer before the last fully-connected layer, which gives a 516-dimensional 

feature vector for each image. The extracted feature vector is sequentially processed with LDA for dimension 

reduction and a linear SVM for classification. While for CosFace and SphereFace, to make the most of the 

advantages of the model, we freeze all the learned parameters before the last block of the network and apply fine-

tuning from the last block to the end. (2) for the PCANet, the two-stage filters are prefixed from the previous 

experiment. (3) for our approach, we follow the same configuration as in the last experiment. Besides, a linear SVM 

classifier is tested additionally; (4) for all SVM or  -NN based methods, 10-fold cross-validation is applied to find 

the best group of hyperparameters of the classifier.  

Table 3 Recognition results (%) on the subset of FaceScrub database. 

Method Recall-avg Precision-avg F1-avg Recall-min 

PCANet [20] 94.28 94.73 94.60 78.57 

VGG-CNN [13] + SVM 96.55 96.69 96.57 80.25 

CenterFace [5] + SVM 97.67 97.84 97.84 78.57 

CosFace [4] finetuning 97.54 97.77 97.57 83.33 

SphereFace [36] finetuning 97.88 98.25 97.90 84.62 

DEFNet +  -NN 98.50 98.17 98.17 85.71 

DEFNet + SVM 96.84 97.26 97.02 80.25 

Table 3 provides the recognition results of average recall, average precision, average f1-score, and minimum 

recall. It is clear our DEFNet based on prefixed filters generalizes best on the new dataset in terms of average recall, 

average f1-score, and minimum recall. Compared to PCANet, the better performance may owe to the proposed 

multi-structure filters in filters learning, which contributes to learning more robust and discriminative 

representations than simply stacking multi-layer standard filters. One observation from Table 3 is, all pre-trained 

CNN models deteriorate on the recall scores of new dataset. While for DEFNet, it is slightly improved to 98.50. We 

can infer since the layers in CNNs are much deeper than that of DEFNet, the features directly extracted from the last 
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layer or fine-tuned from the last several layers may still be too specific to be applied in a new dataset. Another 

observation from Table 3 is  -NN based approach is superior to a linear SVM based approach. Hence, we always 

select  -NN classifier as the first choice in the rest experiments unless special statements. 

4.2.3. Face recognition test on AR dataset 

To further investigate the face recognition performance of our approach in terms of individual factors, like facial 

expression, illumination and occlusion, we carry out the experiments on the AR dataset [30]. The dataset contains 

color images in size         of 70 men and 56 women, with 26 images per subject. Each image of the subject is 

taken with one of the features including neural expression, non-neural expression, frontal lighting, side illumination, 

wear scarf/glasses only and wear scarf/glasses with side illumination. Some sample images of AR are shown in Fig. 

7. Following the same experimental protocol in [20], we select a subset of the AR dataset consisting of 50 males and 

50 females. Each face image is cropped by Dlib [35] face detector and then resized to the size of        . For 

each subject, we choose the images featured with neural expression and frontal illumination as training gallery, 

while the other images are used for testing. This leads to a dataset with 400 images for training and 2200 images for 

testing. Test images are further categorized into four subtypes according to their features, i.e. illumination, 

expressions, occlusion and occlusion with illumination. We compare our approach with RSC [37] and four other 

pre-trained model-based methods i.e. PCANet, VGG-CNN, CenterFace, and SphereFace. All the compared pre-

trained models are trained on the previous VGGFace dataset and they are used to extract features followed by PCA 

and LDA before fed into an NN classifier with cosine distance measurement. Note we choose to not fine-tune the 

models for all CNN-based methods because the training set here is too small to train promising CNNs. In proposed 

DEFNet, specifically, we employ the configuration of patch size     with two types of cell sizes for HOG feature 

extraction respectively, i.e.     and      . We learn the LDA and PCA projections on the feature 

representations of the training set. The final NN classifier uses a Euclidean distance measurement.  

The recognition results on AR dataset are summarized in Table 4. For the illumination factor, our approach 

achieves full scores which is on par with SphereFace. Besides, the recognition rate under variations of facial 

expressions also outperforms other methods with 96.53%. To the best of our knowledge, we obtain state-of-the-art 

result on the overall performance on illumination and facial expression. The impressive performance on expression 

may benefit from the multiple edge-like output feature maps, which greatly improve the robustness to variations of 
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expression. One can infer the prefect score obtained on the illumination factor owes to our filter-mean subtraction in 

each stage. Under the occlusion case, we also achieve the best recognition rate with 96.50%. While under the case of 

occlusion with illumination, the recognition rate drops under 95%, one possible reason can be our training set where 

the filters learned from contains few blocked samples with severe illumination. It’s clear all the deep CNN-based 

models do not generalize well on AR dataset which is much different from the VGGFace in terms of background 

and image quality. However, the proposed DEFNet is highly adaptive to these changes. 

 

 

Fig. 7. Example images of AR for a subject. 

Table 4 Recognition results (%) of face recognition on AR dataset 

Method Illum. Exps. Occlu. Occlu.&Illum. 

RSC [37] 94.00 94.82 95.56 95.35 

PCANet [20] 98.75 85.41 96.32 94.47 

VGG-CNN [13] 99.25 78.83 88.20 87.88 

CenterFace [5] 99.50 82.50 91.50 84.13 

SphereFace [36] 100.00 85.33 91.00 77.13 

DEFNet_    100.00 96.53 94.50 94.68 

DEFNet_      100.00 95.20 96.50 94.43 

To observe how different sizes of patches influence the recognition rate, we test three patch configurations listed 

in Table 1 individually. Here, we apply a fixed       cell size for HOG descriptor. The grouped bar chart 

summarizing the recognition rates under three configurations is illustrated in Fig. 8. One can see each configuration 

in our approach achieves 100% recognition accuracy under variations of illumination. For the expression variations, 

the     approach performs best and the smaller the convolution size, the better the performance. Under occlusion, 

the     approach performs most robust while the     approach is most sensitive to blocking. In the case of 

occlusion with illumination, the     and     approach achieve the same accuracy while the     approach is 

most vulnerable to the adverse impacts.  

To further observe how the square cell size of HOG influences the recognition rate, we test six types of cell sizes 

from 4 to 18 under three patch configurations and plot the curves regarding expression, occlusion only and occlusion 

with illumination individually in Fig. 9. One can see the influence of HOG cell size is more significant in occlusion 

than facial expression. In the case of expression, with the increase of the cell size, all three lines first rise then 

descend. The smaller the convolution size, the larger the HOG cell size when the best performance is achieved. In 

the case of occlusion only, the results follow the common sense that the bigger the cell size, the more robust it 
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performs. This is because the occluded area is eliminated with features in a larger local region. In the case of 

occlusion with illumination, all three lines first arise then drop with the increase of the cell size and the best size 

ranges between 8 to 10. 

      

Fig. 8. Comparison on recognition rates under three 

different patch configurations. 

Fig. 9. Results of using different sizes of HOG cells under 

three convolution configurations. 

4.2.4. Face recognition test on color FERET dataset 

We further conduct the experiments on the popular color FERET [31] dataset. We follow the recommendation to 

examine the standard test subsets which constitute a gallery set fa for training and three probe sets fb, dup1 and 

dup2 for testing. All the images of standard testing sets are frontal images. The gallery set contains 994 images with 

one image per subject and the fb set contains 992 images taken a few seconds after the gallery image, which is used 

for testing the facial expression performance. The dup1 set consists of all the rest 736 frontal images of the subjects 

captured with glasses or alternative hairstyle at later sessions. The dup2 set is a subset of dup1 which contains 228 

images taken at least 540 days later after the gallery image of the subject.  

The implementation details are described as followings. We first crop each image into shape         using 

Dlib face detector. Then we employ the     patch configuration to obtain feature representations for the gallery 

set and all three probe sets. Note we adopt a combined HOG cell size strategy to extract the HOG features from the 

outputs. Specifically, for the first half feature maps produced from the final stage, a cell size of     is applied to 

extract the dense features. On the other half feature maps, we adopt the normal     cell to extract more sparse 

features. We find this strategy helps to improve the recognition performance with few training samples per subject. 

The dimension of extracted HOG features is reduced by whiten PCA where the projection matrix is learned from the 
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gallery set and is fixed on all probe sets. The number of selected components is 993. We conduct the experiments 

with two sets of learned filter banks. One is learned from the original VGGFace subset, denoted as DEFNet 

followed by origin in parentheses. The other is learned from the 994 gallery images of color FERET, denoted as 

DEFNet followed by feret in parentheses. For the compared deep CNN-based methods, we deploy the pre-trained 

models in previous experiments to extract 512-dimensional feature representations of all the images. The dimension 

of feature representations is further reduced by PCA. Then, the reduced features are given to a NN classifier with 

cosine distance metric. Here, the inputs of all the methods are color images without gray-scale conversion. The 

recognition results compared with five other methods are presented in Table 5.  

Table 5 Recognition rates (%) on color FERET dataset 

Method Fb Dup1 Dup2  Avg. 

CID [38] 98.50 88.80 86.40 91.23 

RSC [37] 98.75 90.30 89.64 92.90 

PCANet [20] 99.20 90.25 90.02 93.16 

CenterFace [5] 96.88 77.68 87.72 87.43 

SphereFace [36] 98.39 82.16 90.79 90.45 

DEFNet (origin) 99.80 88.79 87.15 91.91 

DEFNet (feret) 99.80 91.84 90.60 94.08 

 

 

Table 6 Verification rates (%) on 

LFW using the unsupervised setting 

Method Accuracy 

POEM [39] 82.70 0.59 

High-dim. LE [40] 84.58 

PCANet [20] 85.20 1.46 

OCLBP [41] 86.66 0.30 

DEFNet 84.60 0.95 

DEFNet (fusion) 86.55 1.72 

4.2.5. Face verification on LFW dataset 

Finally, we apply the proposed DEFNet on the benchmark LFW [32] dataset for face verification. The LFW 

dataset contains 13233 images of 5749 people, all of which are under unconstraint environment. We follow the 

“unsupervised setting”, which is most appropriate for our approach. Under the view 2, there are 10 subsets of pairs 

of images, and each subset contains 300 matched pairs and 300 unmatched pairs. We evaluate DEFNet with other 

unsupervised methods using 10-fold cross-validation. Specifically, each time, 9 partitions of them are used for 

training and the best threshold is determined on those 5400 pairs of images. The rest partition of image pairs is only 

used for testing. We repeat the procedure 10 times and report the mean verification accuracy. The images used are 

aligned by deep funneling, provided in [42] and they are cropped and resized to         pixels.  

Our approach is implemented as followings. We apply the pre-trained model on VGGFace dataset with patch size 

    to obtain feature representations. For HOG part, we choose the non-overlapped blocks, i.e.     cell per 
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block. The cell size is chosen to    , which makes 30 blocks per feature map in our case. A fusion of local HOG 

features and global HOG features is used to calculate the distance of each pair of images. Specifically, denote the 

outputs of image   produced by DEFNet as , 
   

-
   

  
, where    is the number of filters in the final stage. Suppose the 

number of blocks of each feature map is  , the correspond HOG feature vectors of  
   

 are {    
 }

   

 
. we gather all 

the HOG feature vectors with the same block index   of each feature map, then we can obtain 

  
  [    

      
       

 ]. We call   
  as one local HOG feature vector of image  . By grouping the local feature 

vectors with index   of all the training images, PCA is applied to project   
  into  ̅ 

 
. Concatenate all the reduced 

local HOG feature vectors , ̅ 
 
-

   

 

 to obtain local HOG representation   
      of image  . Denote the PCA-projected 

HOG feature in Eq. (34) as global HOG representation   
      

. The final distance of one pair of images       is the 

weighted sum of global distance and local distance, formulated as          
                      

         , where   

is the fusion weight and        
         is the cosine distance between   

      and   
     . The concatenated   

      and 

  
       in our experiment are 2769 and 349 dimensions, respectively. And the optimal fusion weight   is set to 0.65 

from experimental results. 

The results on LFW are listed in Table 6. Note the DEFNet with fusion in parentheses represents the DEFNet 

applying the fusion strategy on local features and global features to calculate pair-wise distance. One can find the 

fusion-DEFNet outperforms the original DEFNet. This boost on performance may owe to the utilization of local 

HOG features of each region of multiple feature maps. Since the fusion weight of local distance is larger than that of 

global distance, it means local HOG representations take a more important role than global HOG representations in 

face verification. One can also observe fusion-DEFNet achieves an accuracy of 86.55%, which is competitive to the 

state-of-the-art method on LFW based on the unsupervised setting. It proves that the proposed DEFNet can learn 

invariant and discriminative features under unconstraint environment.  

4.3.   Experiments on computational cost 

One highlight feature of our proposed approach is it can be efficiently implemented on GPU which utilizes the 

batch matrix multiplication for acceleration. The implementations of our approach are based on PyTorch with one 

NVIDIA 2080Ti GPU. We compare the computational cost of training phase and test phase in our approach with 
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two other deep CNNs architectures used in previous experiments, i.e. VGGNet and SphereNet. The experiment 

configurations are exactly the same as in Section 4.2.1. In training, all the methods are run on GPU. In the testing 

mode, our DEFNet is tested on CPU while other methods are tested on GPU. We consider the total prediction time 

on all the test samples as testing computational time. For a fair comparison, the applied batch size of each method is 

selected to make full use of the GPU memory individually. Specifically, we divide the training phase of our method 

into three parts i.e. learning filter banks (L), obtaining feature representations (R) and building classifier (C), and we  

record the computational time of each part separately. The mean computational time of 10-time experiments is used 

as a result given in Table 7. 

 

Table 7 Results of computational time (s) on training and test  

Methods 
Training 

Test 
L R C Total 

     306 725 217 1248 1.9 

DEFNet     568 1816 357   2741 2.5 

      506 2418 518   3442 3.2 

VGGNet [13] — — — 5437 8.1 

SphereNet [36] — — —  2796 4.0 

Fig. 10. Comparison on cumulative explained 

variance ratio between two mean removal method. 

From Table 7, we can see when using patch size    , the proposed approach is most efficient among all the 

compared methods. Besides, considering our approach is tested on CPU, the testing cost is quite tiny compared with 

other deep CNNs. In terms of training cost, the computation expenses mainly come from propagating the network to 

compute feature representations. Note the expense on filter learning of case     is slightly larger than that of case 

    in our approach. The reason is the stride in the latter is 2 which reduces the spatial dimension of all activations 

by half in the intermediate stage. This reduction on spatial dimension helps to offset the increase in channel 

dimension of outputs, thus a larger batch size of inputs can be fed to GPU compared to the     case. Overall, the 

total training cost and testing cost of our approach is competitive to those of deep CNNs, especially when adopting 

small patch size in training. 
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5. Analysis on the strategy of proposed deep eigen-filters approach 

In this section, we provide theatrical analysis to justify the strategy used in the proposed approach. The analysis 

includes two aspects, i.e. filter-mean subtraction and multi-structure filters learning.  

5.1. Filter-mean vs patch-mean 

Filter-mean subtraction is employed during the whole procedure of learning filters and obtaining feature 

representations. In our work, filter-mean subtraction is opposite to the patch-mean subtraction introduced in [20]. 

From Eq. (10), filter-mean is the statistics moment along the second axis of the patch vector matrix, whereas the 

patch mean is the average of each patch vector, formulated as              
 , where      is the  th patch vector of 

image    and   is a vector of ones with the dimension of patch size   squared. When obtaining feature representation, 

filter-mean is prefixed from filter learning while the patch-mean removal is implemented online for each sample.  

Consider the case when applying     convolution, filter-mean removal represents subtracting the mean of each 

channel of outputs estimated from the training dataset, which corresponds to the batch normalization [43] applied in 

CNNs.  However, the patch mean is equal to the average output along the channel dimension. We adopt the filter-

mean following the idea in PCA where training samples are centered along the feature dimension for computing 

covariance matrix before projected into a lower-dimensional space. In the case of     configuration, in the first 

stage, we select top   components from the total 27 components of the covariance matrix. The cumulative explained 

variance can be defined as    ∑   
 
    ∑   

  
   , where    is the eigenvalue of the  th component calculated from Eq. 

(13). Fig. 10 shows the comparison of    between filter-mean subtraction and patch-mean subtraction against the 

increasing number of components. One can see the filter-mean removed covariance matrix owns more dominant 

information from the first component than that of the patch-mean removed case. Hence, it takes fewer filters to 

reach a higher cumulative variance ratio in filter selection. 

5.2. Why learning multiple stacked layers with multi-structure filters 

In [20], researchers observed that the performance of stacking two PCA layers on the input is better than merging 

two layers into a single layer with an equivalent number of PCA filters. In our work, we also apply a three-stage 

deep architecture to learn the filter banks. Regarding why using deep architectures, the advantages can be 

summarized from two perspectives theoretically. From the view of computation, assume a single-stage eigen-filters 
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approach producing      outputs per image with patch size    . Given one RGB image as input, it requires 

learning filters with a total number of          parameters. Whereas, by stacking two layers with standard filters, the 

number of parameters required is reduced to           . When applying our proposed approach, it requires 

learning two-stage filter banks with          
    parameters. Compared with the single-stage case, we can prove 

both two approaches of stacking multiple layers have a reduction on the number of learned parameters when     , 

i.e. when the second stage makes sense. This reduction may contribute to a lower chance of overfitting the dataset. 

One can also see the advantage from the view of computational cost. For simplicity, assume the     -channel output 

has the same spatial size       as input. The number of multiplications required for single-layer approach is 

           . While for approaches with two stacked layers, the number of multiplications required is shown in Eq. 

(35):  

                                                                            (35) 

The most right-hand side of Eq. (35) is smaller than             if only     . In summary, stacking multiple 

layers helps to learn the same channel dimension of output with less number of learnable parameters and lower 

computational cost.  

The other benefit of stacking multiple layers is the larger receptive field. For example, when applying the 

convolution with kernel size    , padding size     and stride     on a         input. For a single layer 

PCA, the receptive field of the center point on the output feature map is 3. In the case of two stacked standard layers, 

the receptive field of that grows to 5. While in our approach, since a max-pooling layer with kernel     and stride 

  is added between two stages, the receptive field is extended to 8. It’s well known that the larger receptive field 

effectively captures more holistic observations of the object, which results in learning more semantically-related 

feature representations [15, 28].  

In our approach, we novelly extend the stacked multi-layer of standard filters to multi-structure filters including 

channel-wise filters and point-wise filters. One may wonder why using multi-structure filters. We denote the outputs 

of the first stage as {    }       

    
, where      is the  th feature map of image   .      is produced from the convolution of 

  
  and   , where   

  is the  th eigen-filter in first stage constructed from the eigenvector    given in Eq. (14). For 

each feature map with index  , there is a corresponding eigenvector   . The eigenvectors are sorted in descending 

order regarding its eigenvalues and each eigenvector focuses on specific regions with different weights. We consider 
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the second layer with standard filters as a suboptimal choice. The reason is some features produced by low-ranking 

eigenvectors in the first stage may fade out when eigen-decomposition is applied to all the feature maps of each 

image. The channel-wise filters are proposed in order to preserve the discriminant information between different 

channels of outputs while resisting the redundancy among the training samples. To achieve this, we split        
  into 

   groups corresponding to the channel index. Each group contains feature maps with the same index from all the 

training samples. Then, we learn    filters from each group separately.  

Based on the concatenated output feature maps   
  (filter-mean removed) with      channels per image, the point-

wise eigen-filters are proposed to reduce the channel dimension without any spatial information loss. By    filters of 

final stage and the condition        , the channel dimension of outputs in second stage is reduced from      to    

following the same characteristic as     convolution in CNNs. We denote the learned point-wise filters in final 

stage as {  
 }

   

  
. The convolution of each filter   

  and   
  can be viewed as a weighted sum of   

  across the 

channel dimension, where the weight      is the  th value in the vectorized   
  assigned to  th channel of   

  . 

Moreover, the number of learned parameters required by point-wise filters is only       , which is much smaller than 

the    
 
     parameters required by standard filters.  

6. Conclusion 

The traditional deep CNNs suffer the drawbacks of a large number of learnable parameters and expensive 

computational cost. Based on these problems, we propose a novel three-stage approach to learn multi-structure 

filters from training data alternatively. Inspired from variations of standard convolution in CNNs i.e.     

convolution and depth-wise separable convolution, different structures of filters are designed for filter learning in 

each stage, then followed by eigendecomposition to obtain the eigen-filters. We observe the linear relation between 

our learned filters and convolution kernels of pre-trained CNNs. Then a reconstruction error-based criterion is 

proposed to select and determine the most representative eigen-filers. Based on learned three-stage filters, we build a 

network (DEFNet) followed by HOG-based feature extraction for feature representation. The proposed DEFNet 

shows competitive performance with superior computational cost on face recognition. It outperforms other deep 

CNNs-based methods on subsets of unconstrained datasets including VGGFace and FaceScrub. The pre-trained 

model generalizes well on the controlled datasets including AR and color FERET and it shows great robustness to 
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facial expression and illumination. For unconstraint face verification, it also achieves a promising result on LFW. 

Consider the unsupervised setting of our approach, it provides a perspective connecting deep CNNs and traditional 

feature descriptors, which is highly encouraging to apply especially the cases with small size training sets. 

In the future, we will work on integrating our learned multi-structure filters with conventional deep CNNs. In this 

case, we may additionally consider the functionalities and effect of other units of CNNs, e.g. non-linear activation 

functions and fully-connected layers. Besides, when viewing the proposed three-stage layers as a module, whether it 

benefits from stacking multiple modules for building a much deeper architecture is thought-provoking.  
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