

Journal Pre-proof

Deep eigen-filters for face recognition: feature representation via
unsupervised multi-structure filter learning

Ming Zhang , Sheheryar Khan , Hong Yan

PII: S0031-3203(19)30476-5
DOI: https://doi.org/10.1016/j.patcog.2019.107176
Reference: PR 107176

To appear in: Pattern Recognition

Received date: 3 September 2019
Revised date: 28 November 2019
Accepted date: 15 December 2019

Please cite this article as: Ming Zhang , Sheheryar Khan , Hong Yan , Deep eigen-filters for face
recognition: feature representation via unsupervised multi-structure filter learning, Pattern Recognition
(2019), doi: https://doi.org/10.1016/j.patcog.2019.107176

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.patcog.2019.107176
https://doi.org/10.1016/j.patcog.2019.107176

Highlights

 Propose a three-stage multi-structure filter learning approach inspired from advances in

convolutional layers of convolutional neural networks

 Analyze the linear combination between obtained filters and convolution kernels in

convolutional neural networks for filter selection

 Build a network for feature representation based on learned filters

 Competitive face recognition performance with less computational cost and high

robustness to facial expression and illumination compared to other deep learning-based

methods

2

Deep eigen-filters for face recognition: feature representation via unsupervised

multi-structure filter learning

Ming Zhang a,*, Sheheryar Khan b, Hong Yan a

a Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China

b Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong,

China

Abstract

Training deep convolutional neural networks (CNNs) often requires high computational cost and a large number

of learnable parameters. To overcome this limitation, one solution is computing predefined convolution kernels from

training data. In this paper, we propose a novel three-stage approach for filter learning alternatively. It learns filters

in multiple structures including standard filters, channel-wise filters and point-wise filters which are inspired from

variations of CNNs’ convolution operations. By analyzing the linear combination between learned filters and

original convolution kernels in pre-trained CNNs, the reconstruction error is minimized to determine the most

representative filters from the filter bank. These filters are used to build a network followed by HOG-based feature

extraction for feature representation. The proposed approach shows competitive performance on color face

recognition compared with other deep CNNs-based methods. Besides, it provides a perspective of interpreting

CNNs by introducing the concepts of advanced convolutional layers to unsupervised filter learning.

Keywords: Deep eigen-filters; Convolution kernels; Face recognition; Convolutional neural networks; Feature

representation

* Corresponding author.

E-mail address: mzhang367-c@my.cityu.edu.hk (M. Zhang), sheheryarkhan@cuhk.edu.hk (S. Khan),

h.yan@cityu.edu.hk (H. Yan).

3

1. Introduction

With the development of deep learning in recent years, deep neural networks, especially deep convolutional

neural networks (CNNs) have achieved state-of-the-art performance in many image-based applications [1], e.g.,

image classification [2, 3], face recognition [4, 5], fine-grained image categorization [6, 7] and depth estimation [8,

9]. Compared with traditional visual recognition methods, CNNs have the advantage of learning both low-level and

high-level feature representations automatically instead of designing hand-crafted feature descriptors [10, 11]. Due

to these powerful features, CNNs have revolutionized the computer vision community and become one of the most

popular tools in many visual recognition tasks [7, 12, 13].

Generally, CNNs are made up of three types of layers, i.e. convolutional layers, pooling layers, and fully-

connected layers. The features are extracted by stacking many convolutional layers on top of each other, and

backpropagation starts from the loss function and goes back to the input in order to learn the weights and biases

contained in the layers. However, how this kind of mechanism works on images remains an open question and yet

needs to be explored. Besides, learning powerful feature representations requires a large amount of labeled training

data otherwise the performance may deteriorate [14, 15], whereas training data in practical applications are often not

readily available. To solve these problems, some researchers propose learning convolutional layers alternatively

independent of training data. In [16], ScatNet was proposed by using wavelet transforms to represent convolutional

filters. These predefined wavelet transforms are cascaded with nonlinear and pooling operations to build a multi-

layer convolutional network. Therefore, no learning is needed in computing image representation. Different from

ScatNet, researchers in [17] introduced a structured receptive field network that combines the flexible learning

property of CNNs and the fixed basis filters. The receptive fields can be expressed as a weighted sum of the fixed

basis filters, the coefficient of which can be tuned by the users. Similarly, Takumi in [14] applied the orthonormal

steerable filters as base filters for re-parameterizing the convolutional filters in CNNs. The reformulated filters are

reported to improve the classification performance and reduce the model size on various architectures of CNNs.

Recently, many generalized and improved modules from conventional CNNs were introduced to build new deep

learning frameworks. One existing direction is integrating the information in multiple channels to capture more

comprehensive features. In [18], Hong et al. applied multitask learning on face-pose estimation to combine different

views of face representations. In [19], a multimodal approach on click prediction was proposed for ranking web

4

images. It constructed multiple hypergraph Laplacians and preformed sparse coding on integrated features. Another

promising direction is learning filter banks in advance from training data and the learned filters are fixed during the

test to get feature representations of input data. A typical example was Principal Component Analysis Network

(PCANet) [20] where the filter banks appearing as convolutional layers are obtained by principal component

analysis (PCA). The nonlinear layers and pooling layers of PCANet are simulated by binarization and block-wise

histogram respectively. By stacking two stages of filter banks, it can achieve promising results in many

classification tasks. Inspired by PCANet, many generalized versions were presented more recently. For example,

Sun et al. [21] proposed combing Fisher Linear Discriminant Analysis (LDA) with PCANet to learn features with

more discriminative information. Yu and Wu [22] introduced a two-dimensional PCANet, where 2D-PCA is applied

to the image patch matrix to learn the basic filter components. Basically, the unsupervised idea of these variations is

analogous to Auto-encoders (AEs) [23] which are the most representative unsupervised deep learning methods.

Distinguished from CNNs, AEs aim to learn low-dimensional feature embeddings which can perfectly reconstruct

the original data. This mechanism is similar to traditional dimensional reduction methods like PCA.

The other direction from improving CNNs in terms of efficiency and accuracy is convolutional layer designing

[1]. The general trend of CNNs in past years has made the networks going deeper with a significant increase in the

number of learnable parameters and computation operations. Consequently, the training of CNNs requires a large

space of parameter storage. For example, a standard VGG-16 [2] network takes the storage of parameters with more

than 500Mb which brings a heavy burden to embedded devices where the computation and storage capability are

both limited. Another leading problem is, a deep CNN becomes hard to converge and vulnerable to overfitting [12,

15, 24]. To solve these problems, variations of CNNs’ convolutional layers are developed. The typical examples

among them are convolution introduced in [25], the depth-wise separable convolution conducted in

MobileNets [26] and a series of Inception modules introduced in [24, 27, 28]. These newly invented convolutional

layers not only contribute to develop deeper networks with better generalization ability but also reduce the number

of learned parameters significantly.

For CNNs, generally, the first layer is a convolutional layer followed by stacked layers on top of each other. It

means all the information has been extracted within the output of first layer while the following layers apply various

types of transformations, e.g. convolution, nonlinearity, pooling to map the features further. If the convolution

kernels of first layer in CNNs can be obtained alternatively instead of learning by backpropagation, then, on one

5

hand, it provides the understanding of CNNs’ behavior from another view. On the other hand, the obtained kernels

can be employed for learning feature representation directly. Moreover, one can expect competitive performance by

building consecutive stages to learn kernels in multi-layers. In this paper, by analyzing the characteristic of

convolutional layers in CNNs, we propose a novel filter leaning approach. Note we only consider the kernels

contained in the convolutional layer. Since the number of parameters of biases is much fewer than that of kernels,

biases are known to have little influence on a deep CNN which can be eliminated during training.

The main contributions of this study are three-fold: (1) We propose a three-stage approach to learn multi-

structure convolution filters alternatively called eigen-filters. Using these eigen-filters, a network with three

convolutional layers can be built followed by HOG based feature extraction for image representation. We call it

Deep Eigen-filters Net (DEFNet). (2) The origin convolution kernels of CNNs can be re-parameterized as the linear

combination of learned eigen-filters. A threshold-based filter selection method is proposed to minimize the

reconstruction error and select a minimal number of top filters from the initial filter bank. (3) From face recognition

experiments, our proposed DEFNet is highly superior on small size datasets or extreme cases with several images

per class. The training of our network is computation-efficient while it performs better than other compared deep

learning-based methods on several subsets of public databases [13, 29].

The rest of the paper is organized as follows. In Section 2, we first review the standard convolutional layer with

their two variations in structure and then introduce some works on learning predefined convolution kernels of CNNs.

In Section 3, the methodology of our proposed filter learning approach is described in detail. Then, DEFNet is

proposed for feature representation based on learned multi-structure eigen-filters. In Section 4, we first show the

intermediate results of filter selection, filter visualization, and face representation. Then face recognition tests on

several popular datasets including VGGFace [13], FaceScrub [29], AR [30], color FERET [31] and LFW [32] are

presented. In Section 5, we justify our proposed approach theoretically from two aspects. Finally, we conclude this

work in Section 6 and discuss important directions for future research.

2. Related work

In this section, we start by reviewing the convolutional layer of CNNs and their variations. Then, we discuss

some important studies related to the relationship between the convolution kernels of CNNs and prefixed filters.

6

2.1. Design of CNNs’ convolutional layers

2.1.1. Standard convolutional layer

Given a square 3-dimensional input with shape , a conventional convolutional layer will produce a

 feature map , where is the spatial height and width of , is the number of input channels, is

the spatial height and width of output and is the number of output channels. Denote the kernel contained within

the convolutional layer as a 4-dimensional tensor with shape and the elements of as ,

where is the spatial size of a square kernel which is odd (,) and indicates the weights

connecting the channel of output and channel of input with the offsets of rows and columns between the

output receptive field and input receptive field [15].

When using stride and padding, the relationship between the output size and input size can be

formulated as: , where is the padding size along each of the axis. Choosing ⌊ ⌋

will result in and with the same size which is a good property sometimes. In the general case, for no-unit

stride (), the relation between the input size and output size is extended as: ⌊

 ⌋ .

In the case of unit-stride and zero-padding, the standard convolution operation [15] can be parameterized as:

 ∑ (1)

From Eq. (1), the number of multiplications required for a standard convolution is

 (2)

The number of learnable parameters required within the convolution kernel is
 . The computational cost lies

on the product of the square kernel size , number of input channels , number of output channels and the

output feature map size . Since the channel number of activations increases significantly when going deeper

in CNNs, the required multiplications in Eq. (2) is computationally expensive.

2.1.2. Convolutional layer of 1 1 convolution

The use of convolutions was first proposed by Lin et. al. in Network in Network [25], the idea of which

has been widely adopted in many later proposed CNNs architectures, like Inception [28], GoogLeNet [24], and

ResNet [12]. The basic idea of convolutions is straightforward, the convolution operation is convolved on the

unit spatial size of the input along the channel-axis. Given a square input feature map with shape ,

7

where is the number of input channels, is the height and width of the input feature map. A convolution

kernel with shape will produce an output feature map V with shape where

is the spatial size of output feature map and is the number of output channels. The convolution can be

parameterized as follow:

 ∑

 (3)

The motivation behind this convolution is to reduce (when) or increase the dimension (when

) along the channel-axis. Compared with Eq. (2), the number of multiplications required for a convolution

operation is greatly reduced from to , which is extremely useful when

dealing with large channel number of deep activations. Moreover, the number of learnable parameters contained

within the convolution kernel is dropped from
 to . Another benefit of 1 1 convolution is it helps to

enhance the nonlinearity of CNNs without any spatial information loss by cross-channel linear combination

meanwhile keeping the spatial height and width of the input unchanged after convolution.

2.1.3. Convolutional layer using depth-wise separable convolution

Depth-wise separable convolution was initially proposed in [33] and subsequently applied in Xception [27] and

MobileNets [26]. Generally, the conventional convolutional layers first convolve on each channel of the input

feature map, then combine the filtered outputs of each channel simultaneously to produce a new representation.

Different from that, the characteristic of depth-wise separable convolution is it factorizes the conventional

convolution into two independent steps, i.e. depth-wise convolutions and point-wise convolutions, each step of

which deals with the corresponding convolution. Specifically, in depth-wise step, each channel of input feature maps

is filtered with a single convolution kernel in horizontal and vertical direction individually, so the dimension of input

feature maps in channel-axis remains unchanged in this step. The depth-wise convolution can be formulated as:

 ∑ ̂ (4)

where ̂ is the convolution kernel in shape and the th channel of ̂ is applied to the th channel of

input feature map to generate the th channel of output feature map .

While in point-wise step, the convolution implemented in the same manner as in Eq. (3) is used to produce

the linear combination of output feature maps of depth-wise convolution. The total computation cost required for a

8

depth-wise separable convolution is the sum of computation costs of depth-wise and point-wise convolution, which

is calculated as:

 (5)

The ratio of Eq. (2) and Eq. (5) is equal to ⁄
 ⁄ which indicates a decrease of computation cost from

standard convolution to depth-wise separable convolution. And the ratio of number of learnable parameters between

two types of convolution operations is (
)

 ⁄ ⁄
 ⁄ , which is the same times of reduction

as that of computation cost.

2.2. The relationship between convolution kernels of CNNs and prefixed filters

By analyzing the composition of convolution kernels learned from CNNs’ training procedure, alternative filters

can be designed to replace or simplify the parameterization of original kernels. This section briefly summarizes two

main streams of existing works: one is learning predefined filters independent of data [14, 16, 17], the other is

computing training-fixed filter banks from task-dependent datasets extending unsupervised methods like PCA [20,

22] or supervised methods like LDA [20, 21].

2.2.1. Reconstruct the convolution kernels by prefixed filters independent of data

Within this scope, predefined wavelet filters [16] and Gaussian derivative filters [14, 17] have been explored to

reconstruct the original convolution kernels. Consider a convolution kernel in channels, .

Introduce a set of learned basis filters , then each channel of the convolution kernel can be

expressed as the linear combination of and a set of basis weights . Denote the -channel

input as , the convolution over based on can be reformulated as:

 ∑

 ∑ ∑

 (6)

where is the -th channel of and { }

 is a set of trainable coefficients of the convolution kernel .

Since basis filters are precomputed, the number of learnable parameters is equal to the number of coefficients,

i.e. . This approach brings dual advantages. Firstly, it greatly reduces the training cost of convolutional layers and

improves the robustness of the network to overfitting. Secondly, it still lefts parameters to be tuned by users.

9

However, the discriminative performance of these predefined filters generated by Gaussian derivative, wavelet

transformation [14, 16, 17] may be worse if the applied dataset is far from the domain of the pre-trained dataset.

2.2.2. Learn the filter bank from training sets based on PCA or LDA

The most popular work belonging to this scope was PCANet [20], and some generalized versions such as

2DPCANet [22] and FPCANet [21] were proposed recently. The basic idea of PCANet is learning two filter banks

by PCA in two consecutive stages respectively. Given a set of training images with the same size .

The first stage of PCANet is briefly summarized as followings: (1) Split each image into patches with size

, unit stride and no zero-padding referring to standard convolution operation. The valid region of the input

image has the shape of ̃ ̃

 ; (2) Flatten each patch of to a patch vector with

dimension

, concatenate them to obtain the matrix [̃ ̃] ̃ ̃, where is the th

patch vector of ; (3) Subtract the patch-mean of each patch vector of to obtain the patch-mean removed image

matrix ̅ , concatenate all the patch-mean removed ̅ to form ̅ [̅ ̅ ̅] ̃ ̃; (4) Finally, PCANet

adopts minimizing the reconstruction error in Frobenius norm as following:

 ‖ ̅ ̅‖

 (7)

where is the optimum projection matrix and is the number of filters in the first stage. The solution of

Eq. (7) is a matrix containing column vectors of (̅ ̅

)

 where (̅ ̅

) is the th eigenvector of the

covariance matrix ̅ ̅

. Convert each column vector to the matrix with shape

, then the obtained filter

bank with filters can be formulated as .

The second stage of PCANet is analogous to the first stage, whereas the inputs of the second stage are the output

feature maps of the first stage based on filters. Although these two simple stages of PCANet are reported to obtain

satisfactory results on many datasets, it does not utilize advanced structures of current CNNs, and the filter banks are

selected mainly based on empirical experiences. Hence, the relationship between CNNs’ convolution kernels and

computed filter banks is not well established.

10

3. Deep eigen-filters and DEFNet for feature representation

Our proposed approach consists of three stages for learning filters. We first introduce our filter learning

procedure stage by stage. Then, the pipeline of building a network based on the obtained filter banks for feature

representations is given. The overall diagram of the filter learning approach is illustrated in Fig. 1.

Fig. 1. Overall diagram of proposed multi-structure filter learning approach.

3.1. Problem definition and preparation

Assuming we are given the training set with images
 . Following the general case of CNNs, is three-

channel RGB image with the same shape , where and are the spatial height and spatial width of

respectively. The task of proposed three-stage approach is to learn filter banks
 and corresponding statistical

moment, i.e. filter-mean

 in each stage. To facilitate the description of formulation, the patch size, stride and

zero-padding size keep the same in all the stages. Specifically, the patch referred to the convolution kernel in CNNs

is fixed with square shape , where is an odd number . The stride is applied in patch-

unfold with zero-padding size ⌊ ⌋ , which ensures the same size of inputs and outputs when .

3.2. The first stage of filter learning

We start with learning filter bank and filter-mean from the data augmented training set, then the analysis between

the initial filter bank and convolution kernels in the first layer of CNNs is provided to select the final filters.

Finally, apply the learned filters to obtain the output feature maps of the first stage.

11

3.2.1. Learning standard eigen-filters and filter-mean

Data augmentation is applied first on
 to obtain the augmented data {

 }

. It is realized by flipping the

image in horizontal direction with a 50% probability and cropping the image into a specific size each time it is

sampled. In practice, the procedure is conducted online in epochs to make the number of processed images

growing to . Generally, it helps to increase the number of training images and one can expect learning more

representative filter banks from the augmented data. We divide each image
 into patches with zero-padding size ,

patch size and stride . This will give a number of patches, where ⌊ ⌋ and

⌊ ⌋ are the expected output size in vertical and horizontal directions. Flatten each patch image

into a -dimensional vector and concatenate them to obtain:

 [

] (8)

where

 is the th patch vector of image
 . The final patch matrix containing all the images {

 }

 can be

denoted as

 [

] (9)

Then, compute the filter-mean

 of .

 is the mean along the second axis of , which is distinguished from

the mean along the first axis, known as patch-mean in [20]. As the second dimension of matrix is tremendous,

alternatively, the filter-mean vector

 can be calculated as

∑

 (10)

where
 is a vector of ones. Thus, subtracting the filter-mean from image matrix

 to obtain

 ̅

 (11)

the substituted patch matrix ̅ including all the filter-mean removed images is

 ̅ * ̅

 ̅

 ̅

 ̅

 ̅

 ̅

+ (12)

Finally, compute the covariance matrix of ̅ and solve the eigenvalues decomposition of . Similarly, we

compute the covariance matrix in an alternative way, which is formulated as

12

∑ ̅

 ̅

 (13)

The eigendecomposition of is defined as , where
 is a square matrix. Each column of

denoted as is an eigenvector of . We sort all the eigenvectors

 and corresponding eigenvalues

based on the value of in decreasing order. The initial eigen-filters {
 }

 is obtained by

 (14)

where operator means reshaping the vector into a matrix with the corresponding dimension in each axis.

3.2.2. Filter selection and reconstruction towards comparing with CNNs

Consider a pre-trained CNN with the same convolution configurations of kernel size, stride and zero-padding as

in Section 3.1. The CNN is trained on the same dataset
 with data augmentation. Denote the convolution

kernels contained in the first layer of CNN as , where is the number of output

channels. Assuming for each convolution kernel, it can be described as a linear combination between all of the

initial eigen-filters {
 }

 and coefficients

, which is formulated as:

 ∑

 ̂ (15)

where ̂ is the matrix each column of which corresponds to the vectorized
 and [] is the

coefficient vector of th kernel of CNN. can be efficiently obtained by solving the linear system equation of Eq.

(15). Since ̂ is orthonormal, the solution is nontrivial. To select the top eigen-filters out of total filters, we

define the following criterion to evaluate how well the selected eigen-filters can explain the convolution kernels in

the pre-trained CNNs:

∑ ‖ ∑

 ‖

∑ ‖ ‖

 (16)

where the operator represents vectorizing the matrix (filter) to a row vector. From Eq. (16), is the

reconstruction error between the selected eigen-filters and total filter energy ∑ ‖ ‖

 of the convolution

kernel . Thus, the optimum is found by:

13

 (17)

where is a tolerance found from experiment results. It is set to 0.02 in this paper in terms of the tradeoff between

the reconstruction error and the minimum number of covered filters.

The top eigen-filters selected from initial filter bank can explain most of the convolution kernels of pre-trained

CNN. To make full use of the eigen components, a reconstructed filter
 is additionally built as a weighted sum of

the remaining unselected filters {
 }

, which is formulated as:

 ∑

 (18)

where
 ∑

 are normalized eigenvalues of

. Finally, the eigen-filters of first stage are

parameterized as [

] with shape . For simplicity, denote

as the number of filters in the first stage.

3.2.3. Outputs of the first stage

Note the training images are only augmented for filter learning, and the outputs of first stage are based on the

original training set
 . Provided the filter bank and filter-mean

 of the first stage, the th feature map of

 is formulated as

[(
) ̅] (19)

where ̅ is the filter-mean subtracted patch vector matrix of according to Eq. (8) and Eq. (11). Note the most

right-hand side of the Eq. (19) follows the essence of the convolution operation, i.e. unfold-multiplication-fold,

which is more practical to use in the implementation. Here, we first fold the image into a patch vectorized matrix

and subtract the filter-mean, then it is multiplied by a vectorized filter to produce a row vector. Finally, the result is

reshaped to the expected size of the output feature map.

To provide the local translation invariance of the output feature maps as well as reducing the computational cost

in training, pooling layers are employed in CNNs [2, 3, 15]. Inspired by these, in the case of stride , the

outputs of the first stage are followed by an average pooling layer with pooling size and pooling stride . This

operation produces a halved output spatial size in both vertical and horizontal directions.

14

3.3. The second stage of filter learning

Given the output feature maps
 [

] of each training image from the first stage,

concatenate the outputs of all the images to obtain [

] . Split into groups

 :

 (20)

where collects the feature maps produced by the same eigen-filter
 of each training image. The task of the

second stage is learning the filter banks {
 }

 and filter-mean

 of each group .

3.3.1. Learning channel-wise filter banks and filter-mean

We first split each two-dimensional feature map
 of into patches following the configurations of

patch size , zero-padding and stride . Different from the first stage where the patch image is three-dimensional

of , now it becomes two-dimensional of . Denote the shape of expected output feature maps as

 . Flatten each patch images into a vector of dimension and concatenate each vector into a matrix:

 [

] (21)

where

 is the th patch vector in the th feature map produced in the first stage of image .

Then, calculate the filter-mean of with the same approach as in Eq. (10):

∑

 (22)

where
 is a vector of ones. Analogous to Eq. (11), subtract the filter-mean from each and

concatenate them to obtain the filter-mean removed patch matrix of group :

 ̅ [̅ ̅ ̅] (23)

Finally, the covariance matrix of ̅ is formulated as

∑ ̅ ̅

 (24)

15

Solve the eigenvalues decomposition of and sort all the eigenvectors { }

 regarding the corresponding

eigenvalues in the decreasing order. Denote the number of selected filters of each group as . Then, for each group

 , the eigen-filters of the second stage are

 {

 }

 (25)

where
 . Note there are groups of output feature maps in the first stage, repeat the above

procedure for all the groups of , which gives the final filter banks and filter-mean:

 {

 }

 ,

- (26)

3.3.2. Outputs of second stage based on multi-outputs channel-wise convolution

Given the feature maps from the first stage, learned filter banks
 and filter-mean

 of each channel-wise

group, the output feature map of at the second stage is formulated as:

 {

 }

 (27)

The part inside the braces of Eq. (27) can be extended as:

 {

 }

{

[(
) ̅]}

 (28)

where ̅

. From Eq. (27) and Eq. (28), each filter bank
 is applied to the th feature map

 of

image to produce feature maps in second stage, aggregate all the feature maps produced by groups of filter

banks to obtain the total number of feature maps for .

Different from the depth-wise convolution used in [26] where each kernel convolved with a single channel of

input only generates one feature map. Here, each filter contained in the filter bank will convolve with a single-

channel feature map
 , which produces feature maps per filter bank. There are filter banks leading to a -

channel output per image. In this paper, we simply choose . Hence, the outputs of second stage can be

represented as a four-dimension tensor with shape
 .

3.4. The final stage of filter learning

Given the output feature maps

 from the second stage with depth

, the task of the final stage is

learning a series of filters

 with shape
 and the filter-mean

, where is the number of filters

16

selected for the final stage. This method is inspired by the convolution [25] which is widely employed for

reducing the channel dimension of deep activations.

3.4.1. Learning point-wise filters and filter-mean

For each output

 , unfold
 around each pixel along the channel dimension to obtain:

 {

}

 (29)

where

 is a vector containing all the pixels located at the th row and th column of each channel in
 .

Repeat the same procedure for all the training images to build [] and calculate the mean of

 along the second dimension as following

∑

 (30)

where
 is a vector of ones. Note when applying pointwise patch-unfold, each entry of

 is equal to

the mean of the corresponding channel of all the outputs, described as

 {
 }

 (31)

where
 is the th channel of the second stage output of . Subtract

 from each and concatenate them to

obtain ̅ [̅ ̅ ̅]
 .

Follow the same approach as in Eq. (24), the covariance matrix

 is calculated from ̅. Solve the

eigenvalue decomposition of to find the sorted eigenvectors

 regarding the corresponding eigenvalues in

descending order. The obtained eigen-filters of the final stage are

 ,

 -

 (32)

In our work, is chosen to be twice of following the convention of doubling the number of channels in sequential

modules of CNNs. In summary, .

3.4.2. Outputs of final stage based on 1 1 convolution

Provided learned filters {
 }

, the filter-mean

 and the output

 of image from the second stage,

the output of the final stage can be parameterized as

17

 {

 } {

[(
) ̅]}

 (33)

The middle part of Eq. (33) represents the convolution, which can be reformulated as the combined operation

of unfold-multiplication-fold shown in the most right-hand side of Eq. (33). Thus, each feature map

 is convolved

with filters in convolution to generate feature maps. When , the output of the final stage can be

denoted as a tensor with shape .

In the case of unit stride, is followed by an average pooling layer with pooling size and pooling stride

which results in halving the height and the width of each feature map. In conclusion, the spatial size of feature maps

is reduced twice during the whole three-stage procedure. It is realized either by non-unit stride during the first stage

and second stage or average pooling on the outputs of the first stage and final stage.

3.5. Feature representation based on DEFNet

Given the learned filter banks
 and corresponding filter-mean

 of each stage, each training sample

 is processed through the three stages to obtain the final output denoted as the tensor
 with shape ,

where and are the spatial height and width of
 in final stage. We integrate this three-stage procedure into a

network called DEFNet which connects all the output steps without filter learning according to Eq. (19), Eq. (28)

and Eq. (33).

Based on feature maps of each image, we apply the histogram of oriented gradients (HOG) introduced in [11]

to extract features from each feature map. HOG is a popular hand-crafted image descriptor widely employed in

human detection and face recognition [11, 34]. The advantage of applying HOG in our approach is dual. First, it

introduces translation invariance in some degree. Second, it can be computed efficiently due to the twice down-

sampling on the spatial size of outputs. Different from conventional HOG where all the cell histograms within a

block are normalized and concatenated to form an extended HOG vector, we adopt a modified HOG-based feature

extraction. Specifically, all the histograms within each block are aggregated, which leads to one histogram per block

with the same dimension

as the original histogram. We find this modification is important for improving the performance on face recognition.

The detail implementation of our HOG feature extraction is given as followings. Assume the square cell size is ,

we apply the block size which means each block contains 4 cells. The number of bins of each cell histogram is

18

set to 18 with signed gradients, which means the gradient is evaluated on 18 orientations ranging from 0 degrees to

360 degrees. Suppose the number of overlapped blocks generated by HOG in one feature map is , concatenate all

the histograms of a feature map and flatten them into a row vector denoted as , where represents

HOG-based feature vector extracted from the th feature map of image . Concatenate all the feature vectors of

 feature maps, the final feature representation of is formulated as

 [
] (34)

The architecture of the proposed DEFNet is illustrated in Fig. 2 and the overall training procedure of obtaining

feature representations is demonstrated in Algorithm 1.

The extracted feature representations
 can be directly fed as inputs to train a linear SVM or -Nearest

Neighbor (-NN) classifier for the purpose of classification. Since the dimension of maybe too high, it’s

recommended to use followed by PCA and LDA for dimension reduction as reported in many HOG features-

based works [34, 44].

Fig. 2. The architecture of DEFNet based on learned deep-eigen filters.

Algorithm 1 The overall training procedure for feature representation

Input:

Training dataset
 ; Learned filter banks

 and filter-mean
 ;

Outputs:

Feature representations of training set

1: for do

2: Patch-unfold of and subtraction of filter-mean

19

3: Convolution with to obtain {
 }

using Eq. (19)

4: end for (obtain feature maps of training set at first stage)

5: if stride :

6: Average pooling on

7: for do

8: for do

9: Patch-unfold of
 and subtraction of filter-mean

10: Depth-wise convolution with
 to obtain {

 }

 using Eq. (28)

11: end for (obtain each feature map
 of)

12: end for (obtain feature maps of training set at second stage)

13: for do

14: Pointwise patch-unfold of
 and subtraction of filter-mean

15: convolution with to obtain {
 }

 using Eq. (33)

16: end for (obtain feature maps of training set at final stage)

17: if stride :

18: Average pooling on

19: for do

20: Feature extraction using HOG descriptor on all the feature maps of

21: end for

22: return feature representation of training set

4. Experiments and results

In this section, we examine the performance of our proposed deep eigen-filters approach. We first conduct

experiments on the procedures of filter learning and feature representation. Then, we test the face recognition

performance of our DEFNet on VGGFace [13], FaceScrub [29], AR [30], color FERET [31] and LFW [32]

respectively. The experiments on computational cost are provided finally.

4.1. Experiments on filter learning and feature representation

The generic training set for learning filters of our approach is a subset of VGGFace [13] dataset. The images

contained in the dataset are all taken under unconstraint conditions. To ensure the purity of the dataset, we manually

remove some low-quality and mislabeled images of each identity from the original dataset and eliminate the

identities with too fewer images remained (typically less than 100 images). This contributes to a final dataset with

around 36000 images of 240 identities, and each identity has around 150 images with one face per image. For each

20

image, face detection is applied to obtain a loosely-cropped face image, then it is further processed with 2D

alignment. Both the face detection and face alignment are based on the implementation of Dlib [35]. Finally, each

face image is resized to the size of . The processed dataset is split into 80% for training, 10% for

validation and 10% for testing. The example faces from the employed subset of VGGFace are shown on Fig. 3. We

can see the dataset containing face images in variations of pose angle, facial expression, lighting and disguise, which

are the common factors considering the real-world applications.

To observe the effects of different patch sizes in our approach, we compare three configurations, i.e. patch size

 with unit stride, patch size with unit stride and patch size with stride . Denote the number of

filters in the first stage as , number of filters in each channel-wise group in second stage as and number of filters

in the third stage as . The summary of three filter-learning configurations is shown in Table 1.

Table1 Summary of three filter learning configurations.

Convolution configuration

Patch size , stride = 1 8 8 16

Patch size , stride = 1 24 24 48

Patch size , stride = 2 34 34 68

The comparative trained CNN employs the same network architecture and optimization method as in [13], known

as VGGFace CNN, except that the last two fully-connected layers are replaced with a global average pooling layer

in order to reduce overfitting. The network extensively employs convolution kernels which is the same with

our filter learning approach. For the approach, since the functionality of two consecutive

convolution layers is equal to a layer [28], we train the network replacing the first two layers with a

 layer. For the patch size with stride 2, we use the network architecture introduced in [12], known as

ResNet-50. Specifically, it employs convolution kernel with stride 2 in the first layer. Note all the employed

CNNs have 64 convolution kernels contained in the first layer and they are all trained from scratch on the

aforementioned dataset using an NVIDIA RTX 2080Ti GPU.

Fig. 4 illustrates the reconstruction error from Eq. (16) against different numbers of initial filters under three filter

learning configurations. Reconstruction error evaluates the fitting performance between selected filters and

pretrained CNN. From left to right in Fig. 4, the first indexes along x-axis under the threshold 0.02 are 7, 23 and 33

respectively for three configurations. Hence, we select 7 out of 27 filters, 23 out of 75 filters and 33 out of 147

21

filters for the case of , and respectively. Adding the reconstructed filter according to Eq. (18),

is equal to 8, 24 and 34 for three cases respectively. This provides a quantitative analysis of the results established

shown in Table 1.

Fig. 3. Example faces from the used training dataset.

Each column of the images belongs to the same identity.

Fig. 4. Reconstruction error between eigen-filters and

convolution kernels of the trained CNNs. Indexes of markers

shown in filled black are used to establish Table 1.

The qualitative analysis of the approach is achieved by visualizing the coefficient matrix from Eq. (17).

Given initial 27 filters of the first stage and 64 convolution kernels contained in the first layer of CNN, we can

calculate the coefficient matrix []. The coefficient matrix indicates the importance of each eigen-

filter when reconstructing the convolution kernels of CNNs. The visualization of is illustrated in Fig. 5. Here, each

column of represents a vector of coefficients for a corresponding convolution kernel and each row of represents

all the coefficients from a specific eigen-filter constituting all the convolution kernels. Each entry of shown in

color represents a coefficient ranging from []. The darker the color, the larger the absolute value of the entry.

From Fig. 5, the first seven eigen-filters take a dominant role in constructing all the convolution kernels of CNN,

which corresponds with the leftmost black marker shown in Fig. 4.

The visualization of parts of the convolution kernels and the filter bank of the first stage is shown in Fig. 6. (a).

Here, the first row illustrates the first eight convolution kernels contained in the first layer of the trained CNN,

and the second row illustrates eight eigen-filters learned in the first stage. For visualization convenience, weights of

each kernel/filter are rescaled to the range [] shown in pseudo-color. The eight-channel outputs produced at

the first stage, are first given to the average pooling layer to halve the spatial height and width. Then, each channel-

wise group of filters in the second stage will convolve with each channel of the feature map, which generates a 64-

22

channel output feature map for each image at the second stage. The channel dimension of outputs is reduced to 16

by propagating to the point-wise filter at final stage. One example image and its 16 output feature maps generated at

the final stage are shown in Fig. 6. (b) and Fig. 6. (c) respectively.

Fig. 5. Visualization of coefficient matrix constituting CNN’s convolution kernels

Fig. 6. (a) Visualization of first eight convolution kernels of CNN (first row) and eight eigen-filters (second row).

(b) Original image. (c) Output feature maps produced by the final stage. The filter outputs are scaled and mapped to pseudocolors.

4.2. Experiments on face recognition

4.2.1. Face recognition test on VGGFace database

We learn our proposed DEFNet on the training partition of employed dataset aforementioned in Section 4.1, then

evaluate and test the performance on the other two partitions respectively. For all the comparative methods in the

experiment, they are trained using the exact same split dataset. We compare our approach with other six methods, i.e.

LBP [10], PCANet [20], VGG-CNN [13], CenterFace [5], SphereFace [36] and CosFace [4]. Among them, LBP is a

traditional approach based on the hand-crafted feature descriptor. PCANet is served as a baseline of predefined-filter

learning. SphereFace and CosFace are two state-of-the-art deep CNNs with carefully designed loss functions. The

implementation details are given as followings: (1) for CNN-based methods, the network of VGG-CNN is the same

as described in Section 4.1, and it is trained with classical softmax loss. In CenterFace, we apply the same VGG-

CNN architecture as a backbone but changing the softmax loss to the introduced center loss in [5]. For SphereFace

23

and CosFace, we follow the network backbone introduced in [38], which is a modified ResNet [12] with 20 layers.

(2) for our approach, we adopt the patch configuration. Considering the final output of size , we use

the HOG cell size and the block size . It finally generates 36 blocks per feature map. The concatenated

HOG features are further processed by PCA and LDA for dimension reduction. Then, the dimension-reduced feature

vector is fed into a -NN classifier with Euclidean distance measurement for recognition. The comparison of the

recognition rates between seven approaches is given in Table 2.

Table 2 Recognition results (%) on the subset of VGGFace dataset.

Methods Validation
 Testing

Recall-avg Recall-min Recall-max

LBP [10] 92.52 91.83 74.28 95.61

PCANet [20] 94.85 94.43 76.92 100.00

VGG-CNN [13] 96.61 96.47 81.82 100.00

CenterFace [5] 97.79 98.05 84.62 100.00

SphereFace [36] 98.30 98.17 81.82 100.00

CosFace [4] 97.67 97.93 84.62 100.00

Proposed DEFNet 98.10 98.39 86.17 100.00

From Table 2, our DEFNet achieves superior average recall to other methods on the dataset where the filters are

learned from. Note the minimum recall score is drastically improved to 86.17%. From the validation result, our

approach is on par with several state-of-the-art methods like CosFace and SphereFace which utilize well-designed

loss function for deep metric learning. One of the reasons why our DEFNet outperforms these compared deep metric

learning-based methods may be the relatively small size of our training set. Besides, the proposed filter selection

method effectively minimizes the reconstruction error between pre-trained CNN’s convolution kernels and our

eigen-filters, which promises the performance of DEFNet not inferior to a standard CNN like VGG-CNN. Note our

approach is not trained in an end-to-end manner, the validation accuracy could still be enhanced by finetuning some

hyper-parameters like the number of components of PCA.

4.2.2. Face recognition test on FaceScrub dataset

To observe the generalization ability of our deep eigen-filters, we directly apply the filters learned from the

previous VGGFace dataset on the FaceScrub [29] dataset without filter learning. FaceScrub is similar to VGGFace,

which collects color images of celebrities under unconstraint conditions. Here, we use a subset of FaceScrub. We

first select 240 subjects including 120 females and 120 males from the original FaceScrub. Then, the same

24

preprocessing as in Section 4.1 is manipulated on the original images to build a dataset with around 150 images per

subject. For the fair comparison, we ensure that no subjects used in FaceScrub appear in the employed VGGFace

dataset. Follow the same face detection and alignment procedure, each loosely-cropped face image is resized to the

size . The dataset is further split into two partitions, i.e. 80% for training and 20% for test.

We compare the generalization performance of our approach with other deep learning-based trained models from

the last experiment. The implementation details are given as followings: (1) for VGG-CNN and CenterFace, we

directly extract the features from the layer before the last fully-connected layer, which gives a 516-dimensional

feature vector for each image. The extracted feature vector is sequentially processed with LDA for dimension

reduction and a linear SVM for classification. While for CosFace and SphereFace, to make the most of the

advantages of the model, we freeze all the learned parameters before the last block of the network and apply fine-

tuning from the last block to the end. (2) for the PCANet, the two-stage filters are prefixed from the previous

experiment. (3) for our approach, we follow the same configuration as in the last experiment. Besides, a linear SVM

classifier is tested additionally; (4) for all SVM or -NN based methods, 10-fold cross-validation is applied to find

the best group of hyperparameters of the classifier.

Table 3 Recognition results (%) on the subset of FaceScrub database.

Method Recall-avg Precision-avg F1-avg Recall-min

PCANet [20] 94.28 94.73 94.60 78.57

VGG-CNN [13] + SVM 96.55 96.69 96.57 80.25

CenterFace [5] + SVM 97.67 97.84 97.84 78.57

CosFace [4] finetuning 97.54 97.77 97.57 83.33

SphereFace [36] finetuning 97.88 98.25 97.90 84.62

DEFNet + -NN 98.50 98.17 98.17 85.71

DEFNet + SVM 96.84 97.26 97.02 80.25

Table 3 provides the recognition results of average recall, average precision, average f1-score, and minimum

recall. It is clear our DEFNet based on prefixed filters generalizes best on the new dataset in terms of average recall,

average f1-score, and minimum recall. Compared to PCANet, the better performance may owe to the proposed

multi-structure filters in filters learning, which contributes to learning more robust and discriminative

representations than simply stacking multi-layer standard filters. One observation from Table 3 is, all pre-trained

CNN models deteriorate on the recall scores of new dataset. While for DEFNet, it is slightly improved to 98.50. We

can infer since the layers in CNNs are much deeper than that of DEFNet, the features directly extracted from the last

25

layer or fine-tuned from the last several layers may still be too specific to be applied in a new dataset. Another

observation from Table 3 is -NN based approach is superior to a linear SVM based approach. Hence, we always

select -NN classifier as the first choice in the rest experiments unless special statements.

4.2.3. Face recognition test on AR dataset

To further investigate the face recognition performance of our approach in terms of individual factors, like facial

expression, illumination and occlusion, we carry out the experiments on the AR dataset [30]. The dataset contains

color images in size of 70 men and 56 women, with 26 images per subject. Each image of the subject is

taken with one of the features including neural expression, non-neural expression, frontal lighting, side illumination,

wear scarf/glasses only and wear scarf/glasses with side illumination. Some sample images of AR are shown in Fig.

7. Following the same experimental protocol in [20], we select a subset of the AR dataset consisting of 50 males and

50 females. Each face image is cropped by Dlib [35] face detector and then resized to the size of . For

each subject, we choose the images featured with neural expression and frontal illumination as training gallery,

while the other images are used for testing. This leads to a dataset with 400 images for training and 2200 images for

testing. Test images are further categorized into four subtypes according to their features, i.e. illumination,

expressions, occlusion and occlusion with illumination. We compare our approach with RSC [37] and four other

pre-trained model-based methods i.e. PCANet, VGG-CNN, CenterFace, and SphereFace. All the compared pre-

trained models are trained on the previous VGGFace dataset and they are used to extract features followed by PCA

and LDA before fed into an NN classifier with cosine distance measurement. Note we choose to not fine-tune the

models for all CNN-based methods because the training set here is too small to train promising CNNs. In proposed

DEFNet, specifically, we employ the configuration of patch size with two types of cell sizes for HOG feature

extraction respectively, i.e. and . We learn the LDA and PCA projections on the feature

representations of the training set. The final NN classifier uses a Euclidean distance measurement.

The recognition results on AR dataset are summarized in Table 4. For the illumination factor, our approach

achieves full scores which is on par with SphereFace. Besides, the recognition rate under variations of facial

expressions also outperforms other methods with 96.53%. To the best of our knowledge, we obtain state-of-the-art

result on the overall performance on illumination and facial expression. The impressive performance on expression

may benefit from the multiple edge-like output feature maps, which greatly improve the robustness to variations of

26

expression. One can infer the prefect score obtained on the illumination factor owes to our filter-mean subtraction in

each stage. Under the occlusion case, we also achieve the best recognition rate with 96.50%. While under the case of

occlusion with illumination, the recognition rate drops under 95%, one possible reason can be our training set where

the filters learned from contains few blocked samples with severe illumination. It’s clear all the deep CNN-based

models do not generalize well on AR dataset which is much different from the VGGFace in terms of background

and image quality. However, the proposed DEFNet is highly adaptive to these changes.

Fig. 7. Example images of AR for a subject.

Table 4 Recognition results (%) of face recognition on AR dataset

Method Illum. Exps. Occlu. Occlu.&Illum.

RSC [37] 94.00 94.82 95.56 95.35

PCANet [20] 98.75 85.41 96.32 94.47

VGG-CNN [13] 99.25 78.83 88.20 87.88

CenterFace [5] 99.50 82.50 91.50 84.13

SphereFace [36] 100.00 85.33 91.00 77.13

DEFNet_ 100.00 96.53 94.50 94.68

DEFNet_ 100.00 95.20 96.50 94.43

To observe how different sizes of patches influence the recognition rate, we test three patch configurations listed

in Table 1 individually. Here, we apply a fixed cell size for HOG descriptor. The grouped bar chart

summarizing the recognition rates under three configurations is illustrated in Fig. 8. One can see each configuration

in our approach achieves 100% recognition accuracy under variations of illumination. For the expression variations,

the approach performs best and the smaller the convolution size, the better the performance. Under occlusion,

the approach performs most robust while the approach is most sensitive to blocking. In the case of

occlusion with illumination, the and approach achieve the same accuracy while the approach is

most vulnerable to the adverse impacts.

To further observe how the square cell size of HOG influences the recognition rate, we test six types of cell sizes

from 4 to 18 under three patch configurations and plot the curves regarding expression, occlusion only and occlusion

with illumination individually in Fig. 9. One can see the influence of HOG cell size is more significant in occlusion

than facial expression. In the case of expression, with the increase of the cell size, all three lines first rise then

descend. The smaller the convolution size, the larger the HOG cell size when the best performance is achieved. In

the case of occlusion only, the results follow the common sense that the bigger the cell size, the more robust it

27

performs. This is because the occluded area is eliminated with features in a larger local region. In the case of

occlusion with illumination, all three lines first arise then drop with the increase of the cell size and the best size

ranges between 8 to 10.

Fig. 8. Comparison on recognition rates under three

different patch configurations.

Fig. 9. Results of using different sizes of HOG cells under

three convolution configurations.

4.2.4. Face recognition test on color FERET dataset

We further conduct the experiments on the popular color FERET [31] dataset. We follow the recommendation to

examine the standard test subsets which constitute a gallery set fa for training and three probe sets fb, dup1 and

dup2 for testing. All the images of standard testing sets are frontal images. The gallery set contains 994 images with

one image per subject and the fb set contains 992 images taken a few seconds after the gallery image, which is used

for testing the facial expression performance. The dup1 set consists of all the rest 736 frontal images of the subjects

captured with glasses or alternative hairstyle at later sessions. The dup2 set is a subset of dup1 which contains 228

images taken at least 540 days later after the gallery image of the subject.

The implementation details are described as followings. We first crop each image into shape using

Dlib face detector. Then we employ the patch configuration to obtain feature representations for the gallery

set and all three probe sets. Note we adopt a combined HOG cell size strategy to extract the HOG features from the

outputs. Specifically, for the first half feature maps produced from the final stage, a cell size of is applied to

extract the dense features. On the other half feature maps, we adopt the normal cell to extract more sparse

features. We find this strategy helps to improve the recognition performance with few training samples per subject.

The dimension of extracted HOG features is reduced by whiten PCA where the projection matrix is learned from the

28

gallery set and is fixed on all probe sets. The number of selected components is 993. We conduct the experiments

with two sets of learned filter banks. One is learned from the original VGGFace subset, denoted as DEFNet

followed by origin in parentheses. The other is learned from the 994 gallery images of color FERET, denoted as

DEFNet followed by feret in parentheses. For the compared deep CNN-based methods, we deploy the pre-trained

models in previous experiments to extract 512-dimensional feature representations of all the images. The dimension

of feature representations is further reduced by PCA. Then, the reduced features are given to a NN classifier with

cosine distance metric. Here, the inputs of all the methods are color images without gray-scale conversion. The

recognition results compared with five other methods are presented in Table 5.

Table 5 Recognition rates (%) on color FERET dataset

Method Fb Dup1 Dup2 Avg.

CID [38] 98.50 88.80 86.40 91.23

RSC [37] 98.75 90.30 89.64 92.90

PCANet [20] 99.20 90.25 90.02 93.16

CenterFace [5] 96.88 77.68 87.72 87.43

SphereFace [36] 98.39 82.16 90.79 90.45

DEFNet (origin) 99.80 88.79 87.15 91.91

DEFNet (feret) 99.80 91.84 90.60 94.08

Table 6 Verification rates (%) on

LFW using the unsupervised setting

Method Accuracy

POEM [39] 82.70 0.59

High-dim. LE [40] 84.58

PCANet [20] 85.20 1.46

OCLBP [41] 86.66 0.30

DEFNet 84.60 0.95

DEFNet (fusion) 86.55 1.72

4.2.5. Face verification on LFW dataset

Finally, we apply the proposed DEFNet on the benchmark LFW [32] dataset for face verification. The LFW

dataset contains 13233 images of 5749 people, all of which are under unconstraint environment. We follow the

“unsupervised setting”, which is most appropriate for our approach. Under the view 2, there are 10 subsets of pairs

of images, and each subset contains 300 matched pairs and 300 unmatched pairs. We evaluate DEFNet with other

unsupervised methods using 10-fold cross-validation. Specifically, each time, 9 partitions of them are used for

training and the best threshold is determined on those 5400 pairs of images. The rest partition of image pairs is only

used for testing. We repeat the procedure 10 times and report the mean verification accuracy. The images used are

aligned by deep funneling, provided in [42] and they are cropped and resized to pixels.

Our approach is implemented as followings. We apply the pre-trained model on VGGFace dataset with patch size

 to obtain feature representations. For HOG part, we choose the non-overlapped blocks, i.e. cell per

29

block. The cell size is chosen to , which makes 30 blocks per feature map in our case. A fusion of local HOG

features and global HOG features is used to calculate the distance of each pair of images. Specifically, denote the

outputs of image produced by DEFNet as ,

-

, where is the number of filters in the final stage. Suppose the

number of blocks of each feature map is , the correspond HOG feature vectors of

 are {
 }

. we gather all

the HOG feature vectors with the same block index of each feature map, then we can obtain

 [

]. We call
 as one local HOG feature vector of image . By grouping the local feature

vectors with index of all the training images, PCA is applied to project
 into ̅

. Concatenate all the reduced

local HOG feature vectors , ̅

-

 to obtain local HOG representation
 of image . Denote the PCA-projected

HOG feature in Eq. (34) as global HOG representation

. The final distance of one pair of images is the

weighted sum of global distance and local distance, formulated as

 , where

is the fusion weight and
 is the cosine distance between

 and
 . The concatenated

 and

 in our experiment are 2769 and 349 dimensions, respectively. And the optimal fusion weight is set to 0.65

from experimental results.

The results on LFW are listed in Table 6. Note the DEFNet with fusion in parentheses represents the DEFNet

applying the fusion strategy on local features and global features to calculate pair-wise distance. One can find the

fusion-DEFNet outperforms the original DEFNet. This boost on performance may owe to the utilization of local

HOG features of each region of multiple feature maps. Since the fusion weight of local distance is larger than that of

global distance, it means local HOG representations take a more important role than global HOG representations in

face verification. One can also observe fusion-DEFNet achieves an accuracy of 86.55%, which is competitive to the

state-of-the-art method on LFW based on the unsupervised setting. It proves that the proposed DEFNet can learn

invariant and discriminative features under unconstraint environment.

4.3. Experiments on computational cost

One highlight feature of our proposed approach is it can be efficiently implemented on GPU which utilizes the

batch matrix multiplication for acceleration. The implementations of our approach are based on PyTorch with one

NVIDIA 2080Ti GPU. We compare the computational cost of training phase and test phase in our approach with

30

two other deep CNNs architectures used in previous experiments, i.e. VGGNet and SphereNet. The experiment

configurations are exactly the same as in Section 4.2.1. In training, all the methods are run on GPU. In the testing

mode, our DEFNet is tested on CPU while other methods are tested on GPU. We consider the total prediction time

on all the test samples as testing computational time. For a fair comparison, the applied batch size of each method is

selected to make full use of the GPU memory individually. Specifically, we divide the training phase of our method

into three parts i.e. learning filter banks (L), obtaining feature representations (R) and building classifier (C), and we

record the computational time of each part separately. The mean computational time of 10-time experiments is used

as a result given in Table 7.

Table 7 Results of computational time (s) on training and test

Methods
Training

Test
L R C Total

 306 725 217 1248 1.9

DEFNet 568 1816 357 2741 2.5

 506 2418 518 3442 3.2

VGGNet [13] — — — 5437 8.1

SphereNet [36] — — — 2796 4.0

Fig. 10. Comparison on cumulative explained

variance ratio between two mean removal method.

From Table 7, we can see when using patch size , the proposed approach is most efficient among all the

compared methods. Besides, considering our approach is tested on CPU, the testing cost is quite tiny compared with

other deep CNNs. In terms of training cost, the computation expenses mainly come from propagating the network to

compute feature representations. Note the expense on filter learning of case is slightly larger than that of case

 in our approach. The reason is the stride in the latter is 2 which reduces the spatial dimension of all activations

by half in the intermediate stage. This reduction on spatial dimension helps to offset the increase in channel

dimension of outputs, thus a larger batch size of inputs can be fed to GPU compared to the case. Overall, the

total training cost and testing cost of our approach is competitive to those of deep CNNs, especially when adopting

small patch size in training.

31

5. Analysis on the strategy of proposed deep eigen-filters approach

In this section, we provide theatrical analysis to justify the strategy used in the proposed approach. The analysis

includes two aspects, i.e. filter-mean subtraction and multi-structure filters learning.

5.1. Filter-mean vs patch-mean

Filter-mean subtraction is employed during the whole procedure of learning filters and obtaining feature

representations. In our work, filter-mean subtraction is opposite to the patch-mean subtraction introduced in [20].

From Eq. (10), filter-mean is the statistics moment along the second axis of the patch vector matrix, whereas the

patch mean is the average of each patch vector, formulated as
 , where is the th patch vector of

image and is a vector of ones with the dimension of patch size squared. When obtaining feature representation,

filter-mean is prefixed from filter learning while the patch-mean removal is implemented online for each sample.

Consider the case when applying convolution, filter-mean removal represents subtracting the mean of each

channel of outputs estimated from the training dataset, which corresponds to the batch normalization [43] applied in

CNNs. However, the patch mean is equal to the average output along the channel dimension. We adopt the filter-

mean following the idea in PCA where training samples are centered along the feature dimension for computing

covariance matrix before projected into a lower-dimensional space. In the case of configuration, in the first

stage, we select top components from the total 27 components of the covariance matrix. The cumulative explained

variance can be defined as ∑

 ∑

 , where is the eigenvalue of the th component calculated from Eq.

(13). Fig. 10 shows the comparison of between filter-mean subtraction and patch-mean subtraction against the

increasing number of components. One can see the filter-mean removed covariance matrix owns more dominant

information from the first component than that of the patch-mean removed case. Hence, it takes fewer filters to

reach a higher cumulative variance ratio in filter selection.

5.2. Why learning multiple stacked layers with multi-structure filters

In [20], researchers observed that the performance of stacking two PCA layers on the input is better than merging

two layers into a single layer with an equivalent number of PCA filters. In our work, we also apply a three-stage

deep architecture to learn the filter banks. Regarding why using deep architectures, the advantages can be

summarized from two perspectives theoretically. From the view of computation, assume a single-stage eigen-filters

32

approach producing outputs per image with patch size . Given one RGB image as input, it requires

learning filters with a total number of parameters. Whereas, by stacking two layers with standard filters, the

number of parameters required is reduced to . When applying our proposed approach, it requires

learning two-stage filter banks with
 parameters. Compared with the single-stage case, we can prove

both two approaches of stacking multiple layers have a reduction on the number of learned parameters when ,

i.e. when the second stage makes sense. This reduction may contribute to a lower chance of overfitting the dataset.

One can also see the advantage from the view of computational cost. For simplicity, assume the -channel output

has the same spatial size as input. The number of multiplications required for single-layer approach is

 . While for approaches with two stacked layers, the number of multiplications required is shown in Eq.

(35):

 (35)

The most right-hand side of Eq. (35) is smaller than if only . In summary, stacking multiple

layers helps to learn the same channel dimension of output with less number of learnable parameters and lower

computational cost.

The other benefit of stacking multiple layers is the larger receptive field. For example, when applying the

convolution with kernel size , padding size and stride on a input. For a single layer

PCA, the receptive field of the center point on the output feature map is 3. In the case of two stacked standard layers,

the receptive field of that grows to 5. While in our approach, since a max-pooling layer with kernel and stride

 is added between two stages, the receptive field is extended to 8. It’s well known that the larger receptive field

effectively captures more holistic observations of the object, which results in learning more semantically-related

feature representations [15, 28].

In our approach, we novelly extend the stacked multi-layer of standard filters to multi-structure filters including

channel-wise filters and point-wise filters. One may wonder why using multi-structure filters. We denote the outputs

of the first stage as { }

, where is the th feature map of image . is produced from the convolution of

 and , where

 is the th eigen-filter in first stage constructed from the eigenvector given in Eq. (14). For

each feature map with index , there is a corresponding eigenvector . The eigenvectors are sorted in descending

order regarding its eigenvalues and each eigenvector focuses on specific regions with different weights. We consider

33

the second layer with standard filters as a suboptimal choice. The reason is some features produced by low-ranking

eigenvectors in the first stage may fade out when eigen-decomposition is applied to all the feature maps of each

image. The channel-wise filters are proposed in order to preserve the discriminant information between different

channels of outputs while resisting the redundancy among the training samples. To achieve this, we split
 into

 groups corresponding to the channel index. Each group contains feature maps with the same index from all the

training samples. Then, we learn filters from each group separately.

Based on the concatenated output feature maps
 (filter-mean removed) with channels per image, the point-

wise eigen-filters are proposed to reduce the channel dimension without any spatial information loss. By filters of

final stage and the condition , the channel dimension of outputs in second stage is reduced from to

following the same characteristic as convolution in CNNs. We denote the learned point-wise filters in final

stage as {
 }

. The convolution of each filter

 and
 can be viewed as a weighted sum of

 across the

channel dimension, where the weight is the th value in the vectorized
 assigned to th channel of

 .

Moreover, the number of learned parameters required by point-wise filters is only , which is much smaller than

the

 parameters required by standard filters.

6. Conclusion

The traditional deep CNNs suffer the drawbacks of a large number of learnable parameters and expensive

computational cost. Based on these problems, we propose a novel three-stage approach to learn multi-structure

filters from training data alternatively. Inspired from variations of standard convolution in CNNs i.e.

convolution and depth-wise separable convolution, different structures of filters are designed for filter learning in

each stage, then followed by eigendecomposition to obtain the eigen-filters. We observe the linear relation between

our learned filters and convolution kernels of pre-trained CNNs. Then a reconstruction error-based criterion is

proposed to select and determine the most representative eigen-filers. Based on learned three-stage filters, we build a

network (DEFNet) followed by HOG-based feature extraction for feature representation. The proposed DEFNet

shows competitive performance with superior computational cost on face recognition. It outperforms other deep

CNNs-based methods on subsets of unconstrained datasets including VGGFace and FaceScrub. The pre-trained

model generalizes well on the controlled datasets including AR and color FERET and it shows great robustness to

34

facial expression and illumination. For unconstraint face verification, it also achieves a promising result on LFW.

Consider the unsupervised setting of our approach, it provides a perspective connecting deep CNNs and traditional

feature descriptors, which is highly encouraging to apply especially the cases with small size training sets.

In the future, we will work on integrating our learned multi-structure filters with conventional deep CNNs. In this

case, we may additionally consider the functionalities and effect of other units of CNNs, e.g. non-linear activation

functions and fully-connected layers. Besides, when viewing the proposed three-stage layers as a module, whether it

benefits from stacking multiple modules for building a much deeper architecture is thought-provoking.

Acknowledgments

This work is supported by Hong Kong Research Grants Council (Project C1007-15G) and City University of

Hong Kong (Projects 9610034 and 9610460). The authors would like to thank Dr. Xuefei Zhe for his valuable

suggestion.

Ming Zhang received his B.Eng. degree in Automation from Nanjing

Normal University, Nanjing, China in 2017, and MSc. degree in Electronic

Information Engineering with Distinction from City University of Hong Kong,

Hong Kong, China in 2018. Currently, he is working towards the Ph.D. degree

in the Department of Electrical Engineering, City University of Hong Kong.

His research interests include machine learning and computer vision.

Sheheryar Khan is currently a Postdoctoral fellow at CUHK lab of AI in

radiology (CLAIR) in Department of Imaging and Interventional Radiology,

The Chinese University of Hong Kong. He received his Ph.D. degree in

Electrical Engineering from City University of Hong Kong and MSc degree in

Signal Processing from Lancaster University, UK with distinction in 2010. He

also served as a lecturer in COMSATS University Islamabad, Pakistan. His

research interests include computer vision, medical imaging and machine

learning.

Hong Yan received his Ph.D. degree from Yale University. He was

Professor of Imaging Science at the University of Sydney and is currently

Chair Professor of Computer Engineering at City University of Hong Kong.

His research interests include image processing, pattern recognition and

bioinformatics, and he has over 600 journal and conference publications in

these areas. Professor Yan is an IEEE Fellow and IAPR Fellow, and he

received the 2016 Norbert Wiener Award from the IEEE SMC Society for

35

contributions to image and biomolecular pattern recognition techniques.

Author declaration

No conflict of interest exists.

We wish to confirm that there are no known conflicts of interest associated with this

publication and there has been no significant financial support for this work that could have

influenced its outcome.

References

[1] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang, J. Cai, T. Chen, Recent advances in

convolutional neural networks, Pattern Recognition, 77 (2018) 354-377.

[2] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014 arXiv:1409.1556.

[3] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in: NIPS, pp.

1097-1105.

[4] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, Cosface: Large margin cosine loss for deep face

recognition, in: CVPR, 2018, pp. 5265-5274.

[5] Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for deep face recognition, in: EECV, 2016,

pp. 499-515.

[6] X. Zhe, S. Chen, H. Yan, Directional statistics-based deep metric learning for image classification and retrieval, Pattern

Recognition, 93 (2019) 113-123.

[7] J. Yu, M. Tan, H. Zhang, D. Tao, Y. Rui, Hierarchical Deep Click Feature Prediction for Fine-grained Image Recognition,

IEEE Trans. Pattern Anal. Mach. Intell. (2019).

[8] Z. Zhang, C. Xu, J. Yang, Y. Tai, L. Chen, Deep hierarchical guidance and regularization learning for end-to-end depth

estimation, Pattern Recognition, 83 (2018) 430-442.

[9] B. Li, Y. Dai, M. He, Monocular depth estimation with hierarchical fusion of dilated cnns and soft-weighted-sum inference,

Pattern Recognition, 83 (2018) 328-339.

[10] T. Ahonen, A. Hadid, M. Pietikainen, Face description with local binary patterns: Application to face recognition, IEEE

Trans. Pattern Anal. Mach. Intell., (2006) 2037-2041.

[11] N. Danal, Histgram of Oriented Gradients for Human Detection, in: CVPR, 2005, pp. 886-893.

36

[12] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: CVPR, 2016, pp. 770-778.

[13] O.M. Parkhi, A. Vedaldi, A. Zisserman, Deep face recognition, in: BMVC, 2015, pp. 6.

[14] T. Kobayashi, Analyzing Filters Toward Efficient ConvNet, in: CVPR, 2018, pp. 5619-5628.

[15] I. Goodfellow, Y. Bengio, A. Courville, Deep learning, MIT press, 2016.

[16] J. Bruna, S. Mallat, Invariant scattering convolution networks, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013) 1872-

1886.

[17] J.-H. Jacobsen, J. van Gemert, Z. Lou, A.W. Smeulders, Structured receptive fields in cnns, in: CVPR, 2016, pp. 2610-

2619.

[18] C. Hong, J. Yu, J. Zhang, X. Jin, K.-H. Lee, Multi-modal face pose estimation with multi-task manifold deep learning,

IEEE Transactions on Industrial Informatics, (2018).

[19] J. Yu, Y. Rui, D. Tao, Click prediction for web image reranking using multimodal sparse coding, IEEE Trans. Image

Process. 23 (2014) 2019-2032.

[20] T.-H. Chan, K. Jia, S. Gao, J. Lu, Z. Zeng, Y. Ma, PCANet: A simple deep learning baseline for image classification?,

IEEE Trans. Image Process. 24 (2015) 5017-5032.

[21] K. Sun, J. Zhang, H. Yong, J. Liu, FPCANet: Fisher discrimination for Principal Component Analysis Network,

Knowledge-Based Systems, 166 (2019) 108-117.

[22] D. Yu, X.-J. Wu, 2DPCANet: a deep leaning network for face recognition, Multimedia Tools and Applications, 77 (2018)

12919-12934.

[23] J. Zhang, J. Yu, D. Tao, Local deep-feature alignment for unsupervised dimension reduction, IEEE Trans. Image Process.

27 (2018) 2420-2432.

[24] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, Going deeper

with convolutions, in: CVPR, 2015, pp. 1-9.

[25] M. Lin, Q. Chen, S. Yan, Network in network, 2013, arXiv:1312.4400.

[26] A.G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, H. Adam, Mobilenets: Efficient

convolutional neural networks for mobile vision applications, 2017, arXiv:1704.04861.

[27] F. Chollet, Xception: Deep learning with depthwise separable convolutions, in: CVPR, 2017, pp. 1251-1258.

[28] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in:

CVPR, 2016, pp. 2818-2826.

[29] H.-W. Ng, S. Winkler, A data-driven approach to cleaning large face datasets, in: ICIP, 2014, pp. 343-347.

[30] Martinez, A. M, The AR face database, CVC Technical Report 24 (1998).

37

[31] P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, The FERET evaluation methodology for face-recognition algorithms, IEEE

Trans. Pattern Anal. Mach. Intell. 22 (2000) 1090-1104.

[32] G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database for studying face recognition in

unconstrained environments, Technical Report, University of Massachusetts, Amherst, 2007, pp. 07-49.

[33] L. Sifre, S. Mallat, Rigid-motion scattering for image classification, Ph. D. dissertation, (2014).

[34] O. Déniz, G. Bueno, J. Salido, F. De la Torre, Face recognition using histograms of oriented gradients, Pattern Recognition

Letters, 32 (2011) 1598-1603.

[35] D.E. King, Dlib-ml: A machine learning toolkit, Journal of Machine Learning Research, 10 (2009) 1755-1758.

[36] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, Sphereface: Deep hypersphere embedding for face recognition, in: CVPR,

2017, pp. 212-220.

[37] M. Yang, L. Zhang, J. Yang, D. Zhang, Robust sparse coding for face recognition, in: CVPR, 2011, pp. 625-632.

[38] Z. Liu, J. Yang, C. Liu, Extracting multiple features in the CID color space for face recognition, IEEE Trans. Image

Process. 19 (2010) 2502-2509.

[39] N.-S. Vu, A. Caplier, Enhanced patterns of oriented edge magnitudes for face recognition and image matching, IEEE

Trans. Image Process. 21 (2011) 1352-1365.

[40] D. Chen, X. Cao, F. Wen, J. Sun, Blessing of dimensionality: High-dimensional feature and its efficient compression for

face verification, in: CVPR, 2013, pp. 3025-3032.

[41] O. Barkan, J. Weill, L. Wolf, H. Aronowitz, Fast high dimensional vector multiplication face recognition, in: CVPR, 2013,

pp. 1960-1967.

[42] G. Huang, M. Mattar, H. Lee, E.G. Learned-Miller, Learning to align from scratch, in: NIPS, 2012, pp. 764-772.

[43] S. Ioffe, C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, in:

ICML, 2015, pp. 448-456.

[44] Shu Chang, Xiaoqing Ding, Chi Fang, Histogram of the oriented gradient for face recognition, Tsinghua Science and

Technology 16.2 (2011): 216-224.

