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a b s t r a c t

China has implemented its carbon emission trading system (ETS) in seven pilots since 2013. Many
methods have been used to evaluate the effect and efficiency of the ETS in reducing carbon emissions.
Evaluating the carbon ETS to determine whether it has co-benefited the economy and environment in
the seven pilots is crucial for the development of China. Moreover, different methods of measurement
reveal different results on how efficient the seven carbon emission trading markets (ETMs) are. We use
the difference-in-differences (DID) method to evaluate the impact of carbon emissions and economic
growth following ETS implementation. Based on the data of industrial carbon emissions in 30 provinces
of China from 2008 to 2016, the impact of ETS on the carbon emission reduction and economic growth of
enterprises is empirically tested. Data envelopment analysis (DEA) evaluates the operating efficiency of
the carbon ETMs. Based on the seven carbon emission trading pilots conducted in China in 2014e2016,
the carbon ETMs differentiation system in the pilot area is taken as the input index and the ETS
implementation effect is used as the output index to construct the full DEA evaluation model for gauging
the operation efficiency of the carbon ETMs. The results show that the implementation of the carbon
trading policy increases the economic dividend (13.6%) generated by the gross industrial output value,
but significantly reduces the emission (24.2%) of industrial CO2 in all seven carbon emission trading
pilots. The average DEA efficiency of the seven carbon ETMs operations in China have increased annually.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

To realize the international carbon emission reduction target,
the National Development and Reform Commission promulgated
the Notice on Carbon Emission Rights Pilot Work in October 2011.
Seven provinces and cities, including Beijing, Tianjin, Shanghai,
Guangdong, Shenzhen, Hubei, and Chongqing, were selected to
conduct the pilot work of the carbon ETS. Each pilot had covered
more than 20 industries and nearly 3000 key emission enterprises
by the end of September 2017. The market operation has been
generally stable, with an accumulated turnover of 200 Mt of CO2.
The industrial sector is the main carbon emitter. Therefore, the
industrial CO2 emissions and gross industrial output value are the
er.
key data to evaluate the effect of the carbon ETS. In addition,
exploring the operating efficiency of the seven carbon ETMs is a
powerful illustration of the ETS.

The effect of carbon ETS implementation and its operating ef-
ficiency at home and abroad in recent years are reported in this
study. A large corpus of literature has explored the impact of the
carbon ETS on economic growth and environment. P. et al. [1] used
the energy-saving and emission-reduction investment data of 29
provinces and cities in China from 1996 to 2005, based on the
allocation of five regional emission reduction targets, such as car-
bon emissions, energy consumption, population, GDP, and per
capita GDP. The study found that emission reduction targets based
on carbon emissions and populations are more equitable in terms
of abatement cost savings across regions. Hübler et al. [2] used the
computable general equilibrium model to evaluate the carbon
trading policy in China. Model simulations reveal that climate
policy can result in a GDP loss of around 1% in 2020 and a welfare
loss of around 2% by 2030. Wang et al. [3] examined the abatement
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costs of the electricity, smelting, cement, and steel sectors in
Guangdong under the carbon trading policy based on the Copen-
hagen climate target. Y. et al. [4] inspected the technology invest-
ment of Shenzhen thermal power industry for emission reduction
under the carbon trading policy. K. et al. [5,6] used DEA to simulate
the economic potential and emission reduction costs of 30 prov-
inces in China during 2006e2010 under the three policies of
command control, space transaction, and inter-period and space
transactions. The results indicate that the market transaction policy
can enhance the economic and emission reduction potential more
than the command control policy can. Zhang et al. [7] used China’s
provincial panel data for a study revealing how ETS could reduce
the carbon intensity by 20.06% under the unconstrained situation
by keeping the total GDP of the country unchanged. If the rigid
constraints on the total GDP of the country were relaxed and the
realistic constraints on economic growth and environmental pro-
tection were imposed on various regions, the implementation of
ETS could reduce the carbon intensity by 22.15%. Li et al. [8] used
the industrial carbon emission data of 30 provinces in China, using
DID and propensity score matchingeDID (PSM-DID) methods, to
investigate the impact of ETS on industrial carbon emissions and
carbon intensity.

There are only a few studies that have evaluated the efficiency of
ETMs operation in China. Different conclusions were reported.
Milunovich and Joyeux [9] conducted an empirical test on the
market efficiency of European Union Allowances futures through
the holding cost pricing model. Dasklakis et al. [10] conducted an
empirical study to spot the futures market data of Powernext, ECX,
and Nord Pool exchanges through sequence correlation analysis,
variance ratio test, and income comparison of different trading
strategies. Vinokur [11] and Charles [12] conducted a routine
effectiveness test on the European Union Carbon Emissions Trading
System (EU ETS). Montagnoli and de Vries [13] empirically tested
the effectiveness of the ETM using the variance ratio, believing that
only some markets had achieved weak effectiveness in the past.
Feng et al. [14] conducted research on the spot price of the EU
carbon emission quota, its yield sequence neither shows the char-
acteristics of random walk, nor meets the conditions of efficient
market hypothesis. Ibikunle et al. [15] and Xing Yang et al. [16]
studied the ETMs efficiency and liquidity of the European Climate
Exchange. Wang et al. [17] used the C2GS2 model to construct a DEA
model that would evaluate the management efficiency of the ETMs.
Liu et al. [18] used traditional dynamic financial analysis (DFA) and
Fig. 1. The overall flow di
sliding window DFA to study the EU carbon emission quota and
certified carbon emission reduction. Wang et al. [19], using the data
of Beijing’s ETM, conducted an R/S test of the carbon asset return
rate through the R/S test method under fractal market theory.Wang
et al. [20] conducted variance ratio tests on the ETMs of Guangdong,
Shanghai, and Shenzhen. None had not been effective. Zhang et al.
[21] conducted a research on the efficiency of ETMs using the data
of China’s pilot from 2013 to 2016. They established a single index
and multiple Herost indexes, and then used rolling window tech-
nology to conduct a dynamic research on the changes of multiple
Herost indexes. Cheng et al. [22] constructed a DEA evaluation
model based on the panel data of the ETMs from 2014 to 2015. The
indexes included the weighted carbon price, price stability, trading
activity, quota tightness, market participation, and other evaluation
indicators. Yang et al. [23] compared the operating efficiency of
ETMs for market operation efficiency, energy consumption emis-
sion control, as well as economic, social, and environmental
benefits.

At present, as far as the research object is concerned, it can be
seen that scholars have more research on the economy impact than
on the environmental impact about the carbon ETS. Since China’s
CO2 emissions are largely derived from industry, and themain body
of carbon emissions trading is mainly in the industrial sector, and in
the current literature, there is relatively little literature on the
impact of China’s carbon trading on the industrial sector. Therefore,
we will study the real carbon emission reduction effect of the ETS
and the efficiency of the carbon ETMs comprehensively. According
to the relevant data of industrial carbon emissions from 30 prov-
inces in China, DID is used to explore the impact of the ETS on CO2
emissions and total industrial output value. DID has been chosen in
this study as it can model the net impact of the carbon ETS. This
study uses the carbon ETM differentiation system in the pilots as
input indexes and the implementation effect of the ETS as output
indexes. The operation efficiency of the seven ETMs is evaluated
using DEA model. The overall diagram of this study is shown in
Fig. 1.

The main contributions of this paper are as follows. First of all,
using the DID model empirically test the environmental and eco-
nomic effects of China’s carbon emission trading policy, thus
making up for the vacancy in empirical research in this field. Sec-
ondly, this paper not only examines the policy effects of the carbon
ETS, but also further analyzes the efficiency of the carbon ETMs to
examine the operation of the ETS. Finally, the conclusions of this
agram for this article.
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paper can provide empirical support and policy recommendations
for China to improve the carbon ETS and implement the national
unified carbon ETMs.

2. Methods and data

2.1. Model design

2.1.1. Evaluation of policy effect using DID model
There are many factors affecting CO2 emissions, such as mac-

roeconomic policies [24], climate change, resource dependency
[25,26], foreign direct investment [27]. Previous scholars did not
rule out these factors during the research, so the results did not
reflect the net impact of carbon emission reduction of ETS in China.
It is challenging to judge whether carbon emissions trading policy
is successful solely based on the changes in the CO2 emissions. The
DID model could be applied to examine whether ETS inhibits the
growth of CO2 emissions. In fact, the pilot policy for industrial
carbon emissions trading since 2012 can be considered a quasi-
natural experiment.

To study whether the ETS reduces industrial CO2 emissions, it is
necessary to compare the changes of CO2 emissions during the two
time periods in the seven carbon ETMs in China (i.e., Beijing,
Tianjin, Shanghai, Guangdong, Shenzhen, Hubei, and Chongqing).
These seven pilot provinces and cities are the treatment groups,
and the remaining 24 provinces are the control group before and
after the implementation of the policy. Before and after the year of
2012 are the non-pilot and pilot periods.

This work distinguishes the four sub-samples by setting the
treatment and period. Treatment at 1 represents the pilot of carbon
trading, treatment at 0 represents other provinces, period at
0 represents the year before the carbon trading pilot, and period at
1 represents the year after the carbon trading pilot (including that
year). The DID models constructed are shown in Eq. (1) and Eq. (2).

ln CEjt ¼ b0 þ b1treatedj þ b2periodt þ b3treatedj � periodt þ vjt

(1)

lnYjt¼b0þb1tredtedjþb2periodt þb3treatedj�periodt þ vjt (2)

lnCEjt and lnYjt represent the logarithmic value of industrial CO2
emissions and logarithmic value of the gross industrial output
value in the t year of province j. Taking Eq. (1) as an example, the
meaning of each parameter in the DID model is shown in Table 1.

In regions where the ETS is implemented (treated ¼ 1), the CO2
emissions before and after the carbon trading pilot are b0þb1 and
b0þb1þb2þb3, respectively. The change of CO2 emissions before and
after the pilot is DY0¼b2þb3. Among them, DY0 includes the role of
carbon emissions trading policies. Similarly, for other provinces
(treated ¼ 0), CO2 emissions before the carbon trading pilot are b0
and after the carbon trading pilot are b0þb2. The change of CO2
emissions before and after the pilot not affected by carbon emis-
sions trading policies is DY1 ¼ b2, and DY1 does not include the
impact of carbon emissions trading policies on regional CO2 emis-
sions. Therefore, by subtracting DY1 from DY0 before and after the
policy in the treatment group, the net effect of the carbon emissions
Table 1
Parameters in the DID model.

Before becoming the
carbon trading pilot (per

Carbon trading pilot (treatment group, treated ¼ 1) b0þb1
Other provinces (control group, treated ¼ 0) b0
DID
trading policy on CO2 emissions can be obtained, that is, DDY ¼ b3.
This is the focus of the current study’s DID estimation. If the carbon
emissions trading policy inhibits the growth of CO2 emissions, then
the b3 coefficient should be significantly negative. After this treat-
ment, the general factors affecting China’s CO2 emissions, such as
macroeconomic policies and climate change, will be eliminated to
estimate the impact of ETS more accurately.

Eq. (1) examines the impact of carbon emissions trading policies
on local industrial CO2 emissions and Eq. (2) examines the impact of
carbon emissions trading on the industrial output. The b3 coeffi-
cient represents the net effect of the policy, that is, the impact of
ETS on both the industrial CO2 emissions and gross industrial
output value. Since the pilot provinces and cities are not randomly
selected, the basic requirements for quasi-natural experiments to
randomly select the treatment group will not be met. Therefore,
control variables need to be added.

For Eq. (1), the control variables (cv), including population size
(lnpop), economic scale (lngdp), living standard (lnpgdp), technical
level (ei), economic structure (industry), and the number of heavy
industry enterprises (lnhcount), are introduced to investigate the
impact of the ETS on the gross industrial output value and CO2

emissions. The basic model Eq. (1) is revised as Eq. (3):

lnCEjt¼b0þb1treatedjt þb2periodjtþb3treatedjt�periodjt

þ
X
i

aicv
i
jt þ vjt (3)

For Eq. (2), it is necessary to introduce three major production
factor variablesdcapital (K), labor (L), and energy consumption (E).
Eq. (2) becomes Eq. (4):

lnYjt¼b0þb1treatedjt þb2periodjtþb3treatedjt �periodjt

þ
X
i

aicv
i
jt þ vjt (4)

2.1.2. Evaluation of ETMs efficiency using DEA model
According to the point of view of Jiayu Wang et al. [28], the DEA

method can be used for efficiency evaluation of multiple inputs and
multiple outputs. Previous efficiency assessment methods could
only handle the individual outputs. In contrast, the DEA approach
reported in this study could deal with multiple inputs and multiple
outputs. This method does not need a production function to es-
timate the parameters. At present, the most representative DEA
models are the Charnes-Cooper-Rhodes (CCR) and the Banker-
Charnes-Cooper (BCC) models. The BCC model decomposes the
comprehensive technical efficiency in the CCR model into pure
technical efficiency (PTE) and scale efficiency (SE). It can be divided
into input-oriented and output-oriented types. The input-oriented
refers to minimizing resource input to improve efficiency when
output is constant, while the output-oriented refers to increasing
output under the condition of unchanged input factors. This study
selects an input-oriented BCC model to measure the operational
efficiency of ETMs.

Learn from the model of Yujiao Xian et al. [29] and KeyingWang
et al. [30], suppose there are n decision making units (DMUs),
iod ¼ 0)
After becoming the carbon trading
pilot (including that year) (period ¼ 1)

Difference

b0þb1þb2þb3 DY0 ¼ b2þb3
b0þb2 DY1 ¼ b2

DDY ¼ b3



W. Zhang et al. / Energy 196 (2020) 1171174
where each DMU has m inputs (representing the consumption of
resources) and s kinds of outputs (results of resource consumption).
Xij represents the ith input of the jth DMUj, Yrj represents the rth
output of the jth DMUj, and lj is the index weight of n DMU.Pn

j¼1
xijlj indicate the inputs of the DMU after weighting and

Pn
j¼1

yijlj, the outputs of the DMU after weighting. The specific model

of BCC is shown in Eq. (5).

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

min

"
q� ε

 Xm
i¼1

S�i þ
Xm
i¼1

Sþi

!#

Xn
j¼1

xijlj þ S�i ¼ qxij; i2

0
@1;2;/;mÞ

s,t,
Xn
j¼1

yrjlj � Sþi ¼ yrj; r2

0
@1;2;/; sÞ

Xn
j¼1

lj ¼ 1

q; lj; S
�
i ; S

þ
i � 0

j ¼ 1;2;/;n

(5)

q is the relative efficiency; s�i and sþi are the slack variables; ε is the
non-Archimedean infinitesimal, generally ε ¼ 0.000001. Assume

that the optimal solution of the model is q* , s* þ
, s* �

, and l
*, where:

(1) If q* ¼ 1, the DMU is at least weak DEA effective.
(2) If q* ¼ 1 and s* þ ¼ s* � ¼ 0, the DMU is DEA effective.
(3) If q*<1 or s* þs0, s* �s0, the corresponding DMU is non

DEA efficient. The larger the q*, the higher the relative effi-
ciency of the DMU.

(4) The optimal solution is used to analyze the corresponding
status of the scale return of the DMU. If

Pn
j¼1

lj ¼ 1, the scale
returns remain unchanged; and if

Pn
j¼1

lj<1, the scale returns
are increased; and if

Pn
j¼1

lj>1, the scale returns are
decremented.

2.2. Data source and variable selection

2.2.1. Data source and selection of policy evaluation model
variables

The sample data were collected from the industrial enterprises
above designated size in 30 provinces and cities in China from 2008
to 2016. Because there aremissing data in Tibet, this article does not
use its data. The data are mainly from China’s Statistical Yearbook,
from 2008 to 2016; China’s Energy Statistical Yearbook, from 2008 to
2016; China’s Industrial Statistical Yearbook, from 2008 to 2016; and
the 2008e2016 statistical yearbooks of 30 provinces and cities.

The ETS was officially approved in October 2011. However, the
carbon emissions trading pilot project only began in June 2013. It
was likely that the companies exhibited forward-looking charac-
teristics in decision-making. Thus, they have responded accord-
ingly to the carbon emissions trading policy in 2012. Therefore, this
study uses the data from 2012 to 2016 as the post-pilot period, and
the data from 2008 to 2011 as the pre-pilot period.

For model (3), the regional GDP (lngdp), per capita GDP (lnpgdp),
and gross industrial output value of each province (lnY) are reduced
by the regional GDP index, per capita GDP index, and producer ex-
factory price index in 2008 (China’s Statistical Yearbook, 2009). The
CO2 emissions factor (CE) is calculated using Eq. (6) (Inter-
governmental Panel on Climate Change or IPCC Carbon Emissions
Calculation Guide, 2009) [31].

CE¼
X17
i¼1

Ei � Ci (6)

Ei is the energy i consumption, based on standard coal. Ci is the
energy i carbon emission coefficient, where i is a type of energy
from 17 categories (mainly including raw coal, refined coal, coke,
crude oil, gasoline, kerosene, diesel, fuel oil, liquefied petroleum
gas, refinery dry gas, other petroleum products, other coking
products, heat, electricity, coke oven gas, other gas, and natural
gas).

The carbon emission factor of the main energy consumption is
derived from the default value of the IPCC Carbon Emissions
Calculation Guide, and the original data is in standard units of J. To
be consistent with the statistics, the energy units need to be con-
verted to standard coal. The value refers to the carbon emission
coefficient of various energy sources calculated by Zhao et al. [32].

Formodel (4), the net value of the industrial fixed assets is K. The
average annual number of employees in the industry is L and the
industrial energy consumption in the sub-region is taken as E.
2.2.2. Data source and selection of ETMs efficiency evaluation
model variables

Carbon trading policy, as an important governance tool for the
government to deal with environmental issues such as global
warming, is mainly achieved through system design and policy
promulgation. It affects by establishing a carbon trading market
first, and then by administrative intervention. Governments
participating in the operation of the market mechanism make
behavioral decisions to achieve control of regional carbon emis-
sions and thus achieve regional emission reduction targets. Refer to
indicators used by Yongwei Cheng et al. [22] to evaluate the oper-
ating efficiency of the carbon ETMs, this research collect policy
documents issued by the pilots (including the implementation
rules of carbon emission quota management and implementation
plan of the pilot work). Therefore, the ETMs differentiation system
design in the pilots is the input index and the implementation ef-
fect of the ETS (i.e., transaction results, economic benefits, and
environmental benefits) comprise the output indicators to
construct the ETMs efficiency evaluation index system. Specific
input and output indicators are shown in Table 2. The data are taken
from the relevant transaction data published by The World Bank
Report: Current Situation and Trend of Carbon Market, China’s Carbon
Market Survey Report from 2015 to 2017, China’s Carbon Emission
Trading Network and the seven pilots of the Carbon Emission
Trading Network. Part of the data is calculated according to the data
collected on the Internet.
3. Analysis of empirical results

3.1. Estimation of policy effect results

3.1.1. Applicability test of the DID
The hypothesis of the DID application is that the differences

between the treatment group and the control group are fixed. Ac-
cording to the statistics, the trend of the average CO2 emissions and
average gross industrial output value of the treatment and control
groups from 2008 to 2016 are shown in Figs. 1 and 2. The treatment
and control groups follow a similar trend before the year of 2012.
The average CO2 emission of the control group is higher than that of
the treatment group between the year of 2008 and 2016 (Fig. 2).
The average gross industrial output value of the treatment group



Table 2
The efficiency rating indicator system for the ETS operation market.

Primary indicator Secondary indicators Indicator interpretation

Input
indicator

Distribution system Total quota: X1 (102 Mt) Consists of initial and reserve quotas
Controlled coverage Number of controlled enterprises: X2 Disclosure data of official trading platform of each transaction
Reporting and verification
system

Number of verification agencies: X3 Disclosure data of official trading platform of each transaction

Legal System Number of policy documents: X4 Disclosure data of official trading platform of each transaction
Output

indicator
Trading situation Total trading volume: Y1 (104 t) Carbon Emissions Trading Online Data Calculation
Economic benefit Regional industrial production growth rate: Y2 (%) Organized by China’S Statistical Yearbook and regional statistical

yearbooks
Environmental benefits Rate of decline in energy consumption per unit of

GDP: Y3 (%)
Organized by China’S Energy Statistics Yearbook and regional statistical
yearbooks

Fig. 2. Trends in CO2 emissions from treatment and control groups in 2008e2016. Fig. 3. Trends in the average gross industrial output value of the treatment and control
groups in 2008e2016.

Table 3
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over the years is higher than that of the control group (Fig. 3). These
results validate the use of the DID method.
The regression results of ETS on CO2 emissions and economic growth.

Variable lnCEit (1) lnY (2)

treated*period �0.24*** (0.08) 0.14** (0.07)
treated �0.03 (0.06) �0.18*** (0.06)
period 0.08* (0.04) 0.05 (0.07)
lnpgdp �0.09 (0.33)
lnpop 0.19 (0.34)
lngdp 0.80** (0.34)
industry 1.66*** (0.26)
lnhcount 0.03 (0.03)
ei 0.72*** (0.04)
lnK 0.58*** (0.11)
lnL 0.52*** (0.04)
lnE �0.01 (0.10)
_cons �0.80 (3.10) 0.90*** (0.36)
N 270 270
R-squared 0.92 0.89

Note: The parentheses are the standard error of the regression coefficient. ***,**, and
* indicate significance at 1%, 5%, and 10%, respectively.
3.1.2. Statistical analysis of main variables
Supplementary Information (Table S1) lists the results of the

descriptive statistical analysis. The logarithm of the industrial CO2

emissions in 30 provinces is 8.14 and the standard deviation is 0.80.
The average value of the gross industrial output value of 30 prov-
inces is 8.56 and the standard deviation is 0.99. Thus, there is no
significant difference between the CO2 emissions and gross in-
dustrial output value in each province.

The average value of lnhcount is 8.46 and the standard deviation
is 1.23, revealing that the number of heavy industry enterprises
varies from province to province, and there is a large gap. The
carbon trading pilot provinces accounted for 20%, indicating that
they are too small compared with the total provinces in China. The
period of carbon trading policy implementation accounts for 50%,
indicating that it is just in the middle of the sample period.
3.1.3. Regression results and analyses
The results of the regression on models (3) and (4) are shown in

Table 3.
lnCE (column 1) and lnY (column 2) in Table 4 examine the

impact of the ETS on carbon emissions and economic growth,
respectively. Column (1) shows that the coefficient of treated*period
is �0.24, which is significant at the 1% level. Thus, the ETS has
evident carbon inhibition. Column (2) shows that the coefficient of
treated*period is 0.14, which is significant at the 5% level. Thus, the
ETS has a positive effect on economic growth. The results indicate
that the ETS significantly achieves the effects of economic growth
alongwith energy conservation and emission reduction. The results
of this study are similar to those of Guangming Li et al. [8]. They
have empirically tested that carbon ETS can significantly suppress
the increase in carbon emissions and increase the total industrial



Table 4
Input and output data after treatment in the carbon pilots in 2014e2016.

Year DMU Input indicator Output indicator

F1 F2 P1

Year 2014 Beijing 0.82 0.87 0.19
Tianjin 0.25 0.37 0.13
Shanghai 0.41 0.73 0.10
Hubei 0.1 0.1 1
Guangdong 0.29 0.41 0.17
Chongqing 0.50 1 0.64
Shenzhen 1 0.91 0.92

Year 2015 Beijing 0.89 0.11 0.58
Tianjin 0.25 0.15 0.10
Shanghai 0.51 1 0.35
Hubei 0.10 0.20 1
Guangdong 0.35 0.57 0.60
Chongqing 0.51 0.40 0.57
Shenzhen 1 0.1 0.95

Year 2016 Beijing 1 0.49 0.62
Tianjin 0.24 0.35 0.10
Shanghai 0.32 1 0.66
Hubei 0.10 0.19 0.73
Guangdong 0.12 0.18 0.97
Chongqing 0.42 0.21 0.50
Shenzhen 0.93 0.10 1
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output value.
The regression results of the CV (Table 3) indicate that economic

scale (lngdp), industrial structure (industry), and energy intensity
(ei) in column (1) have a significant positive impact on carbon
emissions. The results show that China is a society with high energy
consumption and the increase of regional GDP will inevitably lead
to an increase in CO2 emissions. As Pan, X. et al. [33e36] advocate,
China should improve energy efficiency. Capital (lnK) and labor
(lnL) in column (2) have a positive impact on the significance level
of the gross industrial output value at 1%, while energy consump-
tion (lnE) has no obvious effect on the gross industrial output value
(lnY), but may even reduce it.
Fig. 4. The DEA evaluation value of the carbon ETMs efficiency in 2014.
3.2. Analysis of operational efficiency in the ETMs

3.2.1. Principal component analysis
The number of DEA evaluation units should be more than twice

the input and output indicators. To solve this problem, this study
first uses the factor analysis method (FAM) to compress the input
and output indicators separately.

After SPSS 23.0 analysis, the KMO value of the input index is 0.53
(>0.5) and of the output index is 0.51 (>0.5). The significant
probability of the Cartesian statistical value of the Bartlett test is
0.00. The value of each input index in the indicator system is
correlated, in line with the requirements for the FAM for data
analyses.

FAM is applied to four input indicators and three output in-
dicators, respectively, and the analysis results are shown in Sup-
plementary Information (Table S2). According to the principle that
the cumulative contribution rate of principal component is � 70%
and the eigenvalue is � 1, two principal components and one
principal component are respectively extracted for the input and
output indices. The maximum variance method rotates each index
to obtain the rotated factor load matrix. This matrix shows that, in
the input index, the common factor F1 has a greater influence on
the indicators X1, X2, and X3, defined as the quota allocation, con-
trol, and verification factors. The common factor F2 has a greater
impact on indicator X4, defined as the legal system factor. The
output indicator only proposes one component, so it cannot be
rotated. It is named the trading, environmental benefit, and
economic benefit factor.
According to the input and output index component score co-

efficient matrix, the score of each sample on each principal
component from 2014 to 2016 is calculated. To smoothen the data
and meet the input and output data requirements of the DEA
model, the input and output factor scores calculated herein are
processed forward with the maximum standard model as follows:

Assume that Fij and F’ij are the principal component values
before and after the transformation, and max Fij and min Fij are the
maximum and minimum values in each index. Eq. (7) is used to
change the data to a positive value:

F’ij ¼0:1þ 0:9�ðFij �min FijÞ=ðmax Fij �min Fij
�

(7)

The transformation of data can make the transformed data all in
[0.1, 1], without changing the original relationship. After the
dimensionless processing, the DEA model data with two input in-
dicators and one output indicator are obtained. The specific data are
shown in Table 4.
3.2.2. Analysis of the DEA results
DEAP 2.1 software is used as the analysis tool, a range of effi-

ciency coefficients, comprehensive technical efficiency (crste), pure
technical efficiency (vrste), and scale efficiency (scale) of the seven
ETMs in China from 2014 to 2016 were computed and shown in
Supplementary Information (Table S3) and Figs. 4e7.

The operation efficiency of ETMs in 2014e2016 are analyzed
year by year below. In Figs. 4e6 and Supplementary Information
(Table S3), only Hubei is DEA efficient in 2014. That means the crste,
the vrste, and the scale are all 1, and the relaxation variables are 0.
In addition, the scale returns remain unchanged. Except for Hubei,
the scale returns of all other ETMs (Beijing, Tianjin, Shanghai,
Guangdong, Chongqing, and Shenzhen) decreased in 2014. This
shows that in these places’ economic development, there are
extensive production methods that rely on expanding input of
production factors to increase economic output. Thus, the Beijing,
Tianjin, Shanghai, Guangdong, Chongqing, and Shenzhen pilots can
optimize the operation efficiency of the ETMs by increasing the
output or reducing the input factors. Hubei and Shenzhen’s ETMs
were DEA efficient in 2015. Although the crste in Tianjin did not
reach the effective value, its pure technical efficiency value was 1
and the scale returns increased in 2015, indicating that the level of
the technical input was too rigid. The scale of Tianjin should thus be
enlarged to make it effective. Guangdong and Shenzhen’s ETMs



Fig. 5. The DEA evaluation value of the carbon ETMs efficiency in 2015.

Fig. 6. The DEA evaluation value of the carbon ETMs efficiency in 2016.

Fig. 7. Trends in the comprehensive technical efficiency of the carbon ETMs in
2014e2016.

Fig. 8. China’s carbon ETMs efficiency and its decomposition.
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were DEA efficient in 2016. Hubei’s vrste value was 1, but it was not
DEA efficient in 2016, indicating that its ETM should also be
expanded in scale. It is worthmentioning that compared to the year
of 2014 and 2015, the changes in the ETM in Hubei Province are
related to changes in the entry threshold of the carbon trading. It
can be seen that the changes in Hubei’s policy have a greater impact
on ETM efficiency.

The operation efficiency of ETMs in 2014e2016 are analyzed
market by market below. In Fig. 7 and Supplementary Information
(Table S3), the crste value of Shanghai, Guangdong, Chongqing, and
Shenzhen gradually rose from 2013 to 2016. The crste value of
Guangdong in 2016 and Shenzhen in 2015e2016 was 1, indicating
that Guangdong and Shenzhen’s ETMs have gradually developed
and matured in recent years. Shenzhen, as the provincial munici-
pality that took the lead in implementing carbon trading policy, is
advancing with Guangdong in ETS implementation. Although the
crste of Shanghai and Chongqing’s ETMs have improved yearly, the
efficiency value is generally low. Chongqing, as a municipality
directly under the jurisdiction of the latest carbon trading pilot, has
great potential in the development of the ETMs. The crste value of
Hubei’s ETM in 2014e2015 was 1. Although its crste value in 2016
did not reach 1, it was higher than other pilots, indicating that its
ETM development momentum is stronger despite the pilot imple-
menting later than other pilots did. The ETMs efficiency of Beijing
and Tianjin were relatively low, indicating room for improvement.
Generally speaking, the average annual value of ETMs in China rose
annually from 2014 to 2016, indicating improving operation
efficiency.

Use the average method to conduct an overall assessment of the
carbon ETMs. As can be seen from Fig. 8, the characteristics of the
vrste and the crste of the carbon ETMs are basically the same, and
have the same inflection point, showing a significant correlation.
The change trend of the scale is slightly the same as the change
trend of the crste, but the fluctuation range is quite different. In
general, the scale score > the vrste score > crste score. It can be seen
that the level of the vrste score has a greater impact on the crste
score. The results of this research are further discussed on the basis
of the research of Yongwei Cheng, Yang Ye et al. [22,23]. It is
empirically tested that vrste is the main factor affecting the oper-
ation efficiency of the carbon ETMs.
4. Conclusions and policy implications

This study used carbon ETS as a quasi-natural experiment in
China. The DID method tested the impact of the implementation of
the ETS on the carbon emission reduction at industrial scale. Then,
according to the actual operation of the seven ETMs in China, the
distribution system as well as coverage, reporting, and verification
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system evaluation indicators were constructed using the BCCeDEA
method for evaluating the efficiency of ETMs. The main conclusions
are as follows:

The implementation of ETS can reduce the carbon emissions
(24.2%) of the pilot provinces and increase the gross industrial
output value (13.6%). The ETS is still important for achieving carbon
emission reduction. The economic scale, industrial structure, and
energy intensity have a significant positive impact on the industrial
CO2 emissions. China is still a high energy consumption society, the
increase of GDP will inevitably lead to the greater CO2 emissions. If
the proportion of high energy consumption industries and demand
for energy consumption are too high, CO2 emissions will increase.
Meanwhile, the overall efficiency of the ETMs increased annually in
the seven ETMs of China from 2014 to 2016. In 2014, only the ETM
in Hubei was DEA efficient. In 2015 and 2016, the carbonmarkets in
Guangdong and Shenzhen also gradually matured, with a crste
value of 1. Although the crste values of Shanghai and Chongqing did
not reach DEA efficiency, their carbon markets efficiency gradually
increased every year. The efficiency of Beijing and Tianjin carbon
markets were not high, which reflected the lack of activity of car-
bon trading markets. The level of the vrste score has a greater
impact on the crste score.

On the basis of the research, this paper puts forward the
following suggestions. Firstly, China should establish a national
unified ETMs, so that the markets play a leading role in carbon
emission reduction. Through the experimental results, we can
clearly see that carbon trading policy can well inhibit carbon
emissions, while improving the total industrial output value. So it is
necessary to unify the systems and rules of ETS, and then build
nationwide registration, trading, clearing, and settlement systems
to develop a technical foundation for the national unified carbon
market. Moreover, China should optimize the energy structure.
Based on the above results, it can be seen that industrial institutions
and energy structure have a significant positive impact on indus-
trial CO2 emissions. Therefore, various industries should strive to
improve energy efficiency, reduce coal consumption, and develop
new clean energy sources, such as solar energy and wind energy, so
as to reduce the proportion of coal consumption in energy con-
sumption. The government should also vigorously support the
development of new energy sources and providemore subsidies for
research funding and related supporting measures. Finally, China
should change the mode of economic development. Among the
factors examined above for the efficiency of the carbon ETMs, the
vrste factor has a greater ability to restrict the final result than the
scale factor. Therefore, to improve the efficiency score of the carbon
ETMs, under the condition that both economic development and
environmental benefits must be considered, it is possible to
consider changing the economic development mode by changing
production technologies and optimizing the production process.
Ultimately improve resource utilization and reduce carbon dioxide
emissions. China should activate the carbonmarkets by fostering an
intermediary structure and strengthening financial innovation. In
order to develop the carbon markets, China must vigorously culti-
vate intermediaries, including commercial banks, carbon emission
rights valuation agencies, carbon asset management institutions,
etc. They can provide financing services to both parties to the
transaction. At present, it is necessary to guide commercial banks to
develop carbon financial derivatives, such as carbon funds, carbon
mortgages, carbon trusts, etc., which can not only provide oppor-
tunities for financial institutions to open up markets, but also
facilitate the participation of related companies in carbon trading.

However, there are still some shortcomings in the research of
this paper. First, it only considers the impact of carbon trading
policies on the industrial sector. In the future, we should consider
the impact of carbon trading policies on all sectors in order to get
more convincing conclusions, such as household carbon emissions
[37]. Then, when evaluating the efficiency of the carbon markets,
other input indicators, such as carbon price researched by Qiang Ji
ea al. [38], can be added to see if the changes in the input indicators
will affect the operational efficiency of each carbon market.
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