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Exploring Supply Chain Network Resilience in the Presence of the Ripple
Effect

Abstract

This study aims to investigate overall supply chaétwork resilience (SCNR) in the presence of gppl
effect, or risk propagation, i.e. the phenomenat tlisruptions at a few firms in a supply chainwgek
(SCN) can spread to their neighboring firms, thean¢ually spread to other firms in the SCN. We begi
by developing a multi-dimensional quantitative femork to measure SCNR, which includes three
resilience dimensions based on three different oitywerformance indicators. Given this framework, w
then systematically explore the determining factwfrSCNR and present a comprehensive analysis of
how network structure and node risk capacity inflree different aspects of SCNR. Our results clearly
indicate the following important implications foramagers. First, the influence of network type oiNEC
tends to be more significant in the short-term thasin the longer-term, given the ripple effe@econd,
SCNR can be improved more effectively by enhaneinge risk capacity than by adjusting network
structure. Third, tradeoffs exist between the rtotess of the network against a disruption andhitfitya

to recover from that disruption. Fourth, differemdtwork performance indicators can provide différen
perspectives on SCNR. Together these help shawhbanulti-dimensional framework enables a better
characterization of the complexity of SCNR, andsththat it provides support for more informed
managerial decision-making about investing in imprg resilience. The paper concludes the discussion
by addressing opportunities for further extendimg tesearch effort.

Keywords: Supply chain network resilience; risk propagatioetwork structure; node risk capacity

1. Introduction

Modern supply chains are complex networks thaeaposed to supply chain disruptions, which are
operational shutdowns directly or indirectly caubgdrarious risks such as natural disasters, palitind
economic factors, labor strikes, and material stym$ (Bode and Wagner 2015; Craighead et al. 2007,
Scheibe and Blackhurst 2017). A supply chain ndtw(&CN) is vulnerable to disruptions not only
because of the direct impacts of those disruptibasalso because of the ripple effect (also knaa/misk
propagation) - the phenomenon that a sudden disrugt a few nodes in a SCN can spread to

neighboring nodes, and eventually adversely impdcer firms (Dolgui, Ivanov, and Sokolov 2018;



Scheibe and Blackhurst 2017; Li et al. 2019). Thesequence of what is initially a local disruptizan
thus be substantial and long-lasting.

As an example of this behavior, the hard disk d(dBD) manufacturer Western Digital, which has
a number of local factories in Thailand, sufferefi0& slump in HDD sales in the last quarter of 2011
because of major flooding in that country. Thessés then affected a number of other firms wittsn i
extended supply chain. One of these firms was Héwlackard, a customer of Western Digital, which
subsequently reported a 7% drop in revenues amdelolahe HDD shortage for more than half of this
decline (HP 2011). Intel, a supplier for HP, alssted a decrease iff Quarter revenues of $346 million
as a result of lower demand following the floodt€lr2011). Such results are common, as indicated by
recent study showing that 42% of supply chain ¢isoms originate below the tier one suppliers
(Business Continuity Institute 2013).

Both the inherent complexity of supply chain netkgrand the associated effects of dynamic risk
propagation make disruptions difficult to predintlananage. For example, to what extent will a stiik
Shenzhen eventually influence HP's production? Wivéh Ford's production be impacted after an
earthquake in Japan? The unavoidable and unprbificteture of such disruptions (Ponomarov and
Holcomb 2009; Pettit, Croxton, and Fiksel 2013; édlob and Blackhurst 2017) requires a successful
supply chain to have the ability to resist the iotpaf unanticipated disruptions and to quickly nemo
from them (Pettit, Fiksel, and Croxton 2010; Pe@itoxton, and Fiksel 2013; Brusset and Teller 2017
This has led to widespread interest in supply chedilience (SCR) — the capability of a supply ohai
prepare for, to respond to, and to recover fronseudtion (Jittner and Maklan 2011; Pettit, Fikseld
Croxton 2010; Ponomarov and Holcomb 2009).

Supply chain resilience, as a concept, can beesiufddm a number of different perspectives, and we
focus here on measuring the resilience of the dvaugply chain network (Borgatti and Li, 2009k.i.
supply chain network resilience (SCNR). By chanaziteg the resilience of the network as a whole, we
may provide each firm inside the network with adidation of the systematic risk in their business
environment (Wu, Blackhurst, and O'Grady 2007; Rlagst, Dunn, and Craighead 2011). This
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improved understanding of the environment shouldwathese firms to prepare more effectively for
potential disruptions.

In practice, building resilience involves makingrivas resource allocation decisions based on a
limited budget. Such resilience investments incluné are not limited to, activities such as insieg
safety stock, contracting with multiple supplieogtimizing network structures, establishing supplie
development programs, and increasing supply chiaihilty (lvanov 2018a). Some types of investments
such as adding a new node to the network for axhditiwarehouse capacity, may be most effective for
resisting the initial impacts of a disruption, vehibther types of investments, such as adding teampor
links to represent contracts with alternate supplienay be more appropriate for addressing longer-
lasting impacts. In order to determine the mostrampate types of investment, therefore, it is imipot
to understand different aspects of resilient bedravi the face of unexpected disruptions (Simchiilet
al. 2015).

Although the practical and theoretical importanténeestigating SCNR is well-recognized, recent
studies fall short in two ways: The first is thaick studies mainly focus on SCNR in the context of
robustness the ability of a supply chain to maintain functidtyaduring a disruption (Brandon-
Jones et al. 2014). Robustness is often measurtstnis of the ability to resist the immediate
impacts of a disruptio(Kim, Chen, and Linderman 2015; Zhao et al. 201th little emphasis being
placed on longer-lasting impacts due to the rigffect (Basole and Bellamy 2014; Dolgui, lvanovdan
Sokolov 2018). It is common, however, for localrdjgtions to cause significant and lengthy impacts
across a SCN. For example, a major fire experiebgdderidian Magnesium Products in 2018 impacted
its ability to provide necessary parts and resuilieslibsequent production impacts at Fiat Chry&idd,
Daimler, BMW, and Ford (White and Lienert 2018).isThlearly shows that underestimating the effects
of risk propagation can lead to misunderstandindisauption’s potential impacts and result in less
effective decision-making. We are thus motivatedni@stigate SCNR considering risk propagation, in

order to fill this literature gap.



The second way in which recent studies also terfiditshort is that they fail to take a comprehgasi
and systemic view of SCNR and its determining fect®&CNR is dependent on many factors, such as
disruption severity — the severity of initial diption impact (Craighead et al. 2007; Li et al. 2019
supply chain network structure — the interconndgtigattern among firms inside the SCN (Basole and
Bellamy 2014; Kim et al. 2011), and node risk cdtyae the individual firm’s capability to against a
potential disruption and to recover from an exigtitisruption (Li et al. 2019). Recent studies, hosve
typically focus only on specific aspects of SCNRgts as the interaction between network structute an
different mitigation strategies (Basole and BellaB814; Mari, Lee, and Memon 2015), rather than
considering network behavior more holistically. dtigh these studies provide valuable insights,
practical application of these insights could barfedm a broader, more comprehensive understanaling
SCNR. For example, if one were able to increase BQdth by improving a firm's inherent
recoverability from a disruption and by improvingtwork structure through establishing addition&iin
firm relationships, which one would be more effeetl Similarly, if one wished to invest in protectia
network to maintain its basic functionality, what &he potential tradeoffs with prolonging the tota
recovery time? Answers to these questions can kEingll by developing a more complete picture of
SCNR and the relationship between its determiragstbfs.

Being thus motivated, we seek to answer the folhgwiesearch questions.

* What are the characteristics of a comprehensivesgstmatic measure of SCNR that can
capture both the short-term and long-term impatcgsdisruption?

What are the determinants of supply chain netwedilience and what are their relative
effects on the different characteristics of SCNR?

» What are some of the potential tradeoffs betweeortd¢hrm and long-term resilience

investments into SCNR?

The objective of this study is to provide a gerieeal, foundational approach for characterizing and

assessing SCNR that future efforts can then eadidypt to a variety of other contexts. In this wavk,



thus perform a comprehensive and systematic imgastn of SCNR in the presence of risk propagation.
Specifically, we provide a quantitative framewookaissess overall SCNR that considers both the-short
term and long-term impacts of a disruption. Aswimle SCN is composed of individual firms (nodes)
and their supply relationships (links) (Borgattddr 2009), investments to improve SCNR can affect
either the network structure (i.e., adding, detptin rewiring links) (Zhao, Zuo, and Blackhurst 201
Craighead et al. 2007) or individual firm risk caipg (i.e., strengthening nodes against a disrmptio
(Craighead et al. 2007); we therefore investigate these factors influence the overall SCNR, and

derive corresponding managerial implications.

The analyses below show that significant trade-efist between short-term and long-term resilience
investments. They also show that actions which medaode-level risk capacity are more effectivetha
structural changes to the network for improving &;nd that network type has a larger influence on
short-term impacts than it does on longer-term tgdn addition, the results indicate that theichof

performance indicator by which resilience is ass@ss critical for interpreting SCNR.

The remainder of the paper is organized as foll@&estion 2 provides the literature review. Sec8on
proposes the analytical network resilience framéwvard illustrates the calculation of SCNR. Sectdon
conducts an in-depth analysis of how different ioipfactors influence SCNR, and Section 5 then
provides some broader practical implications basedhe analytical results. Finally, the discussi®n

summarized and conclusions are presented in Segtion

2. Literaturereview

2.1 Supply Chain Network Resilience (SCNR)

The concept of supply chain resilience (SCR) odtgs from the supply chain risk management
(SCRM) field (Christopher and Peck 2004; Ponomaemd Holcomb 2009). Traditional SCRM
emphasizes managing risks along the supply chaihcawers a wide range of topics, such as risk
identification (Stephan M. Wagner and Bode 2006eikdorfer and Saad 2005), risk mitigation
(Blackhurst et al. 2005; Tang 2006; Craighead €2@07), and supply chain recoverability (Kleinduorf

5



and Saad 2005; Tomlin 2006). With supply chainsob#ng more complex and global in nature, the
impact of regional disruptions can be far-reachimgl long-lasting (Bode and Wagner 2015; Ivanov,
Sokolov, and Dolgui 2014; Scheibe and Blackhurst720Given that such disruptions are unavoidable
and unpredictable in nature, supply chains musteldgvthe capacity to adapt to their changing
environment. This has led to considerable intarestipply chain resilience — the capability of gupply
chain to prepare for, to respond to, and to recénen a disruption (Juttner and Maklan 2011; Pettit
Croxton, and Fiksel 2013; Ponomarov and Holcomt9200

There has been a significant amount of academardst in SCR. These studies mainly focus on
outlining strategies for improving SCR, such adding logistics capabilities (Ponomarov and Holcomb
2009), investing in knowledge management (Juttred Blaklan 2011; Sheffi and Rice Jr. 2005;
Christopher and Peck 2004; Ponomarov and Holcon@i9)2@trengthening supply chain integration and
collaboration (Tang 2006; Pettit, Fiksel, and Cosx2010; Christopher and Peck 2084ierczek 2014),
increasing flexibility and visibility (Xia and Tang011; Pettit, Croxton, and Fiksel 2013; Tang 2006;
Sheffi and Rice Jr. 2005), and improving networkicture (Kim et al. 2011; Nair and Vidal 2011; Zhao
et al. 2011; Craighead et al. 2007; Ivanov 201Ba$. common in the literature to refer to resilienas
being associated not only with the response andvesg after a disruption, but also with resistance
against that disruption (Li et al. 2019). Corregfingly, a number of studies measure SCR in theestnt
of these two perspectives: robustness and recdlrgBruneau et al. 2003). Robustness, also reter
to as resistance (Dolgui, Ivanov, and Sokolov 2@it&bsorptive capacity (Hosseini, lvanov, and Dblg
2019), is the supply chain’s ability to withstahe impact from a disruption. Recoverability, alsterred
to as the capacity for recovery (Dolgui, Ilvanow] &okolov 2018), is the supply chain’s ability &store
functionality quickly after a disruption.

Because supply chains are complex networks comgisfi interactive firms, and modern businesses
no longer compete as solely autnomous entitiesdther as whole supply chains (Lambert, Cooper, and
Pagh 1998), there is a compelling need to study B&Nhe capacity of the entire supply network to
respond to and recover from a disruption (Kim, Ghamd Linderman 2015; Zhao et al. 2011). Many
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studies focused on SCR are primarily conducted firfirm/node perspective that looks into the
resilience capacity of a particular company or lfigcend only considers firm-level decision-making
(Zobel and Khansa 2014; Zobel 2014; Pettit, Croxtord Fiksel 2013; Pettit, Fiksel, and Croxton 2010
Extending this perspective to focus on the perforceaof the whole supply chain provides a more
comprehensive view of the network's resilience bighathis is particularly important for capturirige

systemic risk that each firm is exposed to insh hetwork (Li et al. 2019). As an indication bEt

importance of this extended perspective, severgntestudies specifically emphasize network level
resilience (Zhao, Kumar, and Yen 2011; Zhao eR@ll; Kim, Chen, and Linderman 2015; Nair and

Vidal 2011), focusing on the whole supply chairesfprmance after a disruption.
2.2 Risk propagation

It is important to recognize that many of the @rtSCNR studies discussed above take a static
approach to characterizing resilience, with rekdtivfew of them considering the impact of risk
propagation, or the ripple effect, in a complexwwk context (Basole and Bellamy 2014; Zhao, Zuo,
and Blackhurst 2019). In practice, a disruptiorateupply chain network often begins locally, with i
impacts spreading to other firms through interrddtionships. Consequently, the extent to whick thi
occurs, and persists, could be considered to latmlpindicator of how resilient the network asvhole
is to the disruption. Ignoring this ripple effectaynresult in misperceiving the nature of SCNR and
underestimating the systemic risk faced by the lyupbain. In recognition of the importance of this
behavior, the literature contains a growing numdfestudies on supply chain risk propagation. These
range from conceptual studies and literature revifiwanov, Sokolov, and Dolgui 2014; Dolgui, Ivanov
and Sokolov 2018), to empirical studies that edtmissk propagation between interacting firms (Goto
Takayasu, and Takayasu 2017), qualitative stuti@saim to understand what drives supply chain risk
propagation (Scheibe and Blackhurst 2017), strattanalyses of the interdependence of various risk
drivers and supply chain performance (Srivastavaaudhuri, and Srivastava 2015; Chaudhuri et al.

2016), modeling efforts to characterize firms’ ailap strategies against disruptions (Zhao, Zuo, and



Blackhurst 2019), and qualitative studies that gtigmte how network structure and supply chain
visibility influence the level of risk propagatigBasole and Bellamy 2014).

Our research effort contributes, in particularthte study of risk propagation from a complex networ
perspective (Basole and Bellamy 2014; Zhao, Zud, Blackhurst 2019; Li et al. 2019). Since modern
supply chains are complex networks by nature, taldnch a perspective helps to strengthen the
applicability of the research results. In this et risk propagation as a dynamic process refolts the
combined effect of the initial impact of the distiop, the network structure, and the firm-levelkris
capacities (Huang, Behara, and Hu 2008; BasoleBatidmy 2014). To understand the risk propagation
process given the initial severity of a particullisruption, it is thus necessary also to consiaer the

network structure affects the resilience behavighe supply chain.
2.3 Network Structure

SCN structure has been well recognized as ermdeting factor for SCNR (Kristianto et al. 2012;
Snyder et al. 2012), and studies of the concepe Hasen conducted from both a theoretical and a
guantitative perspective. From the theoretical pectve, it is commonly considered that a supplgich
is a complex network (Carter, Rogers, and Choi 2045 it is suggested that the construction o€C&l S
consider not just the visible horizon boundarytaf focal firm (Carter, Rogers, and Choi 2015) bsib a
the scope of supply chain management (Lambert, €oamd Pagh 1998). In addition, the structure of a
supply chain network may be defined in terms ofitidividual supply chain members and the process
links (Lambert, Cooper, and Pagh 1998; Borgatti Bnd009) or from an overall network perspective,
and it can include consideration of such conceptsgm networks (Borgatti and Li 2009), triads (Cluadl
Wu 2009), and specific network properties (Kimle@11; Borgatti and Li 2009; Choi and Krause 2006
Choi, Dooley, and Rungtusanatham 2001).

Quantitative studies that look at the ability ougpply network to resist and recover from disrupgio
mainly follow two types of approaches: traditiongptimization approaches (Nagurney 2010) and

network science approaches (Thadakamalla et ali; Z€rera, Bell, and Bliemer 2017; Kim, Chen, and



Linderman 2015; Nair and Vidal 2011; Zhao et all20 SCN structure has often been studied from a
traditional optimization perspective, where reskars construct a network that satisfies all coirgga
and maximize supply chain performance using opttion methods (Snyder et al. 2012). Such an
approach works well under the assumption of redfitiemall, static networks, but it is less effeetior
large-scale dynamic networks like those of mostenirglobal supply chains. Because of this limitati

the network science approach, which mainly focusesomparing the relative performance of different
network types, has emerged as an alternative (WagreNeshat 2010). Rather than looking at specific
nodes and links, this approach investigates fadtwas can describe the network structure. The most
frequently used such factor is the network typeafZlet al. 2011; Kim, Chen, and Linderman 2015),
which describes the interconnection patterns ohttevork. Such a focus has practical implicatiGirsce

real SCN may often resemble a certain network t{fme.example, the electronics industry network is
related to a small-world type of network, wherdas automotive industry is more similar to a scagef
type of network (Basole and Bellamy 2014).

Recent network science studies show, in partictlet network type has a significant impact on
robustness - the ability to resist the impact aistuption (Zhao et al. 2011; Thadakamalla et @042
Nair and Vidal 2011; Kim, Chen, and Linderman 2Q1&)d on the level of risk diffusion (Basole and
Bellamy 2014). They also indicate that there maytrbde-offs between these two aspects of network
behavior. For example, although a scale-free ndtvimrespecially robust against random disruptions
(Nair and Vidal 2011; Zhao et al. 2011; Kim, Chand Linderman 2015), such a network may also
accelerate risk diffusion (Basole and Bellamy 2014jis implies that a more comprehensive picture of

SCNR over time is necessary in order to underdttamdrue impact of particular factors.

3. SCNR framework
The complex nature of modern supply chain netwards make them challenging to study. For
example, Ford has 1400 tier-one suppliers and dp tiers of suppliers (Simchi-Levi et al. 2015)kés

three-tier SCN contains 4036 nodes and 10949 edgesGeneral Mills’ three-tier network has 1496



nodes and 4908 edges (Orenstein 2016). Resporathgstcomplexity, this section defines a framework

for measuring SCNR, in order to allow for explorihg resilience behavior of such networks.
3.1 SCN and disruption settings

We view the supply chain as a complex network ifctvinodes represent firms in the supply chain
and links represent the interactive supply relaimos between those firms (Carter, Rogers, and Choi
2015; Basole and Bellamy 2014; Zhao, Zuo, and Blacst 2019). From the perspective of modeling risk
propagation, we view SCN as undirected becauseaptien risks can diffuse from both the supply side
and the demand side (lvanov 2017; Garvey, Carnpaalg Yeniyurt 2015; Ivanov 2018b). According to
a recent survey (Gatepoint Research 2012), redBvenipply chain disruptions originate almost eqguall
between the demand side and tier-one supplietbidrstudy, we consider a single random disruptia
impacts one or more nodes in the network. Thisudison can be caused by any type of risk, including
natural disaster, supplier failure, unplanned deinanpolitical and economic instability, and tlevarity
of the disruption is measured by the number of adbat it initially impacts. To isolate the effecitisone
disruption from another, we assume that there areother major disruptions happening in a given
observation period.

We use the concept of a disruption profile (Sheffid Rice 2005) to characterize a SCN
disruption. A typical disruption profile includegght phases: preparation activities, the disrupévent,
the first response, the initial impact, the fullgatt, the recovery preparations, and the recovetyang-
term impact. Figure 1 shows a disruption profilehwa disruption that occurs at time= 0. It is
generated by plotting a specific performance indicay,, for each consecutive time periade
{0,1,...,T*}. HereT is the time when the supply chain fully recoveosf the disruptiont™** is the time
when the system has the lowest performance aftedigruption, an@* is the time when a decision is
made. To make different systems comparable, tHenpeance is defined on a scale of zero to one, aith

value of one representing full functionality.
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Figure 1: Disruption profile for a disruption that beginstiate t=0
3.2 SCNR Measures
Given that SCNR represents the capability of theral supply chain not only to maintain
functionality after a disruption but also to quigklecover from that disruption, we adopt a subget o
representative characteristics of the network perdmce indicators to measure this capability. This
section presents a multi-dimensional resiliencen&aork that is specifically based on the disruption

profile.
3.2.1 SCNR dimensions

We focus, in particular, on three different dimemsi of resilience behavior that may be derived from
the disruption profile: the robustness, the recptiene, and the average functionality retained diraee.

These three measures, which are listed and definEable 1, are explained in detail below.
Robustness

Supply chain robustness measures the system’dyahiliabsorb a disruption’s impact and
maintain functionality after that disruption occuf®ierney and Bruneau 2007). According to this
definition, a more robust system tends to perfoetidp right after the disruption, and we would also
expect higher robustness to lead to better perfocmat the time when the full impact of the disiupis
realized. For this reason, we use both the perfocamatinitial impact and affull impact to measure SCN
robustness. In each case, a larger value of theureeepresents a higher level of robustness.

Robustnessinitiai-impact = Yo Robustnessey—impact = Yemax
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Recovery Time

System recoverability, or restorative capacity, s with a system’s capacity to restore full
functionality in a timely manner (Tierney and Brane2007). We use totaécovery time to measure the
system recoverability, where a longer recovery tiegresents a lower recoverability.

Recovery Time =T
Average functionality

Overall functionality captures the dynamic netwpeeformance over a period of time that typically
starts with the outbreak of a disruption and eritds ¢he system fully recovers (Ponomarov and Hullco
2009; Tierney and Bruneau 2007; Sheffi and Ricés20Dhis broader measure of the disruption's ingact
not only effectively combines both robustness aabvery time, but also takes account of the spéed a
which the system recovers. Thus, we propose thd tlimension of SCNR — average functionality,
defined as overall average performance retained towe. This particular dimension is inspired b th
concept of predicted resilience (Zobel 2011), apddiated work that focuses on quantifying diffaren
types of resilient behavior (Zobel and Khansa 2@tghel 2014).

The average functionality is normalized by the ltpi@ssible area so that it can be compared across
networks of different sizes and complexities. Assiirated in Figure 1, it is thus defined as treaarnder
the performance curve from time zero to tiftieflwhereT* represents the upper limit of the time frame
of interest to the decision maker), divided by l#regth of that interval:

-

1
Average Functionality = Ff ytdt
0

Herey, represents the performance level at ttria practice, supply chain performance is oftesorded
at distinct points in time, so we discretize theamee as in Table 1. The actual value of T* can be

adjusted depending on the time frame over whichds® of performance is to be measured (Zobel 2014)
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Table 1: Quantitative Network Resilience Framework

Dimension M easure Generalized Formula
Robustness 1. Robustness at initial impact Yo
2. Robustness at full impact y¢max
Recovery Time 3. Recovery time T
Average Functionality 4. Average performance retained t=T"
over time 1
T Yt
0

3.2.2 Network performance indicators

The network performancg,, can be any quantitative measure that is relatedverall SCN
performance. Different network performance indicatdhat were used in previous studies are
summarized in Table 2, along with their relatiopstd the components of our resilience frameworle Th
Largest Connected Component (LCC) is the largest connected subnetwork at taitetime point after a
disruption, theaverage path length (APL) is the average shortest path between anygianodes, and
Max. path length (MPL) is the maximum shortest path among any péinades. Each performance
indicator describes a different aspect of suppbirtiperformance. For example, total costs desdrilve
a disruption influences operations (Nair and Vi@dlll), size of the LCC describes the network
connectivity, APL and MPL describe network acceitigi(Thadakamalla et al. 2004; Zhao et al. 2011),
and the calculated measure from (Kim, Chen, anddriman 2015) represents the likelihood of a network
level disruption. Different performance indicataiso have both pros and cons. Network-level fir@nci
indicators, such as sales, inventory level andscase easy to understand and apply, but geneegjlyre
more assumptions. Structural measures, such asizbeof the LCC and APL, are less intuitive to

practitioners, but are easier to calculate andtadapulti-product situations.
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Table 2. Network performance indicators in existing quatittastudies.

Reference Network Performance I ndicator Rda?gd Measuresin the Stat|c(
Resilience Framework Dynamic
Nair & Vidal (2011) Inventory level, Robustness Dynami
Backorders
Total costs
Thadakamalla et al. Size of the LCC Robustness-Initial impact Static
(2004) APL in the LCC
Zhao et al., (2011) MPL in the LCC
Kim et al., (2015) Total number of node or arc disruptions | Robustness-Initial impact Static
that does not result a network disruption
total number ofnode or arc disruptions
Basole & Bellamy, (2014) Change of healthy nodes buRtness-Full impact Dynamic

In order to illustrate the use of our quantitatresilience framework for SCNR, we select three

specific network-level performance indicators tonpare and contrast:

1. Number of healthy nodes. The total number of non-disrupted nodes can sgmtethe overall health

status of the network, and we divide it by the mekisize to normalize the impact of network size.

Thus, the percentage of healthy nodes at time bearalculated by, = Yoo/ healthy nodes at time ¢

network size

This indicator has been used to measure the Iéviakodiffusion (Basole and Bellamy 2014).

2. Size of the LCC. Size of the LCC measures the number of healtldesdn the LCC. When a
disruption happens, the network may become disamiedeand split into isolated subnetworks. The
LCC is the largest fully-functioning subnetworkeafta disruption, and a larger LCC indicates better

network performance against the disruption (Thanelka et al. 2004; Zhao et al. 2011). Normalized

. . . . . Si the LCC at ti t
by the network size, the corresponding performanckcator isy, = ~— Or’zetvjorksize T The

difference between theumber of healthy nodes and thesize of the LCC is the number of healthy

nodes that are isolated from the LCC. Although ¢h&sxternal" nodes are isolated, once they are
reconnected to the rest of the network recovery lmarachieved quickly. In this sense, the two
indicators provide different but complementary pertives of network performance against

disruptions.
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Practically, the size of the LCC is a good indicéftor systematic risks exposed to firms in the
SCN. A smaller size of the LCC after a disruptiomplies that the whole supply chain suffers more

and requires more efforts to recover from the gisomn.

Size of the LCC

- PLof the Lec- This ratioprovides a network performance that incorporateplsiuchain efficiency. APL

is generally used as an indication of supply cheffitiency in that a shorter APL indicates more
efficient flow in the network (Albet, Jeong, andrBbasi 2000; Thadakamalla et al. 2004; Zhao et al.
2011). However, using only APL as a performance lmamisleading as APL is highly correlated
with the size of the LCC. For example, if one dion makes the size of the LCC as small as two,

the corresponding APL is one. Interpreting this knddPL as representing high supply chain
. . . . . Size of the LCC . T
efficiency is misleading. Instead, we use the fiﬁem as the third performance indicator

because it not only is an effective measure of agtvwperformance that considers supply chain

efficiency, but also it bypasses the misleadingiltesf using APL. The performance indicator after

normalization is the __ Sizeof the LCC at time t/(APL of the LCC at time t)
e = network size /(APL of the network)

3.3 Modeling the risk propagation and recovery pssc

SCNR depends heavily on risk propagation and enréicovery behavior after a disruption. As a
result, modeling the risk propagation and recoyanycess, especially before a disruption happens, is
critical for estimating SCNR, and hence for supipgreffective decision-making. The classic SIR mode
is one of the seminal frameworks used to understakdoropagation in epidemiology literature (Bgile
1977). This model consists of three states: S stémdsusceptible, | for infectious, and R for reeed.

In the supply chain field, Basole and Bellamy (204dapted this model to fit an MTG model, with #hre
states: Good, Moderate and Toxic, in order to itigate the relationship between network structure,
supply visibility and levels of risk propagationinfilarly, we also adapt the SIR model to fit thekri

propagation and recovery process.
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In our work, we assume that a node has three stadedthy (susceptible), healthy (immune), and
disrupted. A healthy node can be either susceptiblefection or immune. A healthy (susceptiblelao
can become disrupted in the next period if anytohieighbors is in a disrupted status. Once a lisdu
node is recovered, it gains immunity and achieveslthy (immune) status, in which it will not be
influenced by the original disruption risk anymoFégure 2 illustrates the process of transitionneein
node states. The infection probabiliyy,section, iS the probability that a healthy (susceptiblegi@aovill
become disrupted in the next time period due toirifectious neighbors. Similarly, the recovery

probability, p,ecovery, is the probability that a disrupted node recovethe next time period.

pinfe(‘tion

Healthy
(susceptible)

Healthy
(immune)
p recovery

Figure 2: Node status transition

Disrupted

We summarize assumptions below that were madedier @0 have an appropriately descriptive and

necessarly complex model of the risk propagatiatgss:
» There is a single disruptive event

We assume that the network is only suffering frowa tascading effects of a single disruption, and

that there are no other types of disruptions intoed during the risk propagation and recovery gace
« Disruption happens at the node-level.

We only consider node-level disruptions becauseies the links in the network as the relationships
between firms, rather than as the physical routenfone to another. From the viewpoint of material
ownership, the loss from a disruption is eithelferafd by the supplier side or by the customer didle.
practice, even if a disruption happens during parstion between firms, the material ownership is
either of the supplier or of the customer, thus @ssentially equivalent to a node-level disruptio
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» The state of each node is known with certainty.

For the purposes of characterizing the effectsigsk propagation across the entire supply chain
network, we assume that the current state of eadk,ras defined above, is known at any given pnint

time.

» Firms gain "immunity" after recovery.

We assume a firm can gain sufficient experiencecamability to avoid being infected again by the
same disruptive event after the firm recovers. Thisupported by a number of real-world cases. For
example, Toyota and its suppliers ordered substitutto parts from China and even contracted with
competitors to produce parts on their behalf uthtdir operations resumed during the 2011 Tohoku
earthquake and tsunami (Greimel 2016). These adiamiproaches protected Toyota and its suppliers

from being re-infected again by the supply shortafter the earthquake.
» Homogeneous node risk capacity across the network.

Node risk capacity is the capability of a nodedsist and then quickly recover from a disruption.
This is effectively the individual node resiliencBoth pinrection @NdPrecovery therefore represent
aspects of the node risk capacity. For the saksimplicity, in this particular paper we assume that
Drecovery @NODinsection @re the same for all nodes across the networkoAgh this may not completely
capture the complexity of the real-world, it gives a good basis for understanding how node risk

capacity influences overall SCNR.
3.4 lllustrative example and determining factorSGINR

In this section, we illustrate how to calculate ST NIsing the Japanese auto supply network as
the data source and the NetLogo 5.3 modeling prat{dVilensky 1999) as the simulation tool. NetLogo
is a justified powerful agent-based simulationfplah, which is well designed and documented, arsy ea
to learn and use (Lytinen and Railsback 2012). ié&wvork data were extracted from the Bloomberg

SPLC database, based on the theory that the sopply is a complex network that exists relativeato
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particular product/agent and is bounded by thedlashorizon of the focal agents (Carter, Rogersl an
Choi 2015). We select Honda and Toyota as the fircas because these two are the largest automobile
makers in Japan. Then we construct a set of firdtssecond tier suppliers of these two focal firins,
which a supplier is included only if its percentaffeCOGS (Cost Of Goods Sold) is over 1%. This give
us a network with 302 nodes and 404 links.

Next, we simulate a 5% disruption severity by ranodisrupting 15 nodes. Assuming that all
nodes have a recovery probability of 5% and arctida probability of 10%, we record the three stddc
performance indicators at each time period andutatie the resulted network robustness, recoverg,tim
and average functionality according to Table 1. éinthe settings above, a single run of this sinedlat
disruption takes 133 steps to reach total recowétkie network. To reflect both the short-term #onb-
term performance, we u§€ = 50 andT* = 150 to calculate the average functionality over each of
those time periods. Table 3 shows the networksiimellated risk propagation and recovery process, an
the calculated SCNR measures from a single rumefstmulation. Several patterns emerge from this:
First, the characteristic shape of each performandieator's profile echoes the theoretical disropt
profile model in Figure 1; Second, although theowery time is the same for each network performance

indicator, the different dimensions of SCNR varyoss the network performance indicators.

Table 3; Calculation illustration

L] L]
%S :. o.. Network Disruption Example
b " e
[ | * .. *® : .: . : L ‘ ® | ecaa- No. Healthy Nodes Sizeof theLCC eeceecces LCC size APL
LI DG 8" -2 gl P 1.2
LR Te s 0ee | 0, P ’
..o....-...."ﬁ..'.... [ PP 1
...' oﬁ. ._"."..o s olo®
SIARRLET |
> - R |
P O:. .:::: ;.*:_:—:-.1.0.. . 06
ety S PN  eve ®
oo s%n ot he B u® o 0.4
® .....'d_‘: ® .'. . .Il ... 0.2
* .:...:..o.o.- 0
0 20 40 60 80 100 120 140
Japanese Auto SCN Disruption Severity: 5% (15 nodes)
No. nodes: 302 Recovery probability: 5%
No. links: 404 Infection probability: 10%
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Robustness Recovery Average Functionality
Initial Full Impact (;Img) T* =50 T* =150
I mpact P
No. Healthy nodes 0.950 0.761 133 0.865 0.925
Size of the LCC 0.921 0.500 133 0.701 0.818
Size of the LCC 0.905 0.507 133 0.690 0.822
APL of the LCC

SCNR depends not only on disruption severity bgb an network structure and node risk
capacity. Network structure, which influences theeation and level of risk propagation, can be
described by both network type and network compfedode risk capacity, or node resilience, whigh i
a firm’s ability to maintain functionality in a digbed environment, also has an impact on the risk
propagation and recovery process (Huang, BehadaHan?008; Brusset and Teller 2017). This capacity
can be measured by the combination of risk infectioobability and recovery probability, where arfir
with lower risk infection probability and highercvery probability will tend to have a higher risk
capacity. Figure 3 thus depicts the relationshipvben disruption severity, network structure, nadk

capacity, and SCNR.

/ Network Structure \
\

Network Type
e Scale-free

e Small-world

¢ Random
J
N\
Network Complexity / _
* Network size Supply Chain Network

« Average degree Resilience

\ % * Robustness

Disruption W > * Recovery Time
Severity * Average
Node Risk Capacity Functionality
* Infection probability
* Recovery probability \ j

Figure 3: Determining factors of network resilience
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4. Network resilienceanalysis

Our proposed framework uses simulation and regresainalysis to systematically explore the
impacts of network structure and node risk capaoitySCNR. Simulation is widely used in business
modeling when it is impossible or impractical tsdact experiments on a real system, and a number of
previous research efforts related to supply charugtions (Nair and Vidal 2011; Macdonald et &l18;
Melnyk et al. 2014) and to risk propagation (Basahel Bellamy 2014; Hua, Sun, and Xu 2011) have
used regression as a tool for analyzing simulatgd. dRegression is generally applicable for anatyzi
high-dimensional data where the underlying modelnisertain (Hanaki et al. 2007; Basole and Bellamy
2014), and the approach is flexible enough to mhelboth continuous and categorical variables.
Furthermore, previous studies have also utilizgglession to investigate the impact of network stme
on network health status (Basole and Bellamy 20The design of our experiment is motivated by
previous studies on SCN and on the characteristiosal-world SCNs. The full factorial design catesis
all possible combinations of parameter levels aceaxh of the independent variables and contnotsjta
results in a total of 2304 distinct observationss#mmary of the experimental design is presented in

Table 4, and the parameter settings for each var&ab explained in more detail below.

Table 4: Experimental Design.

Variables Notation Levels

Control Variables

Disruption Severity Dis_sev (10%, 30%, 50%, 70%)
Independent Variables

Network Types Net_type (Scale-free, Small-worldné&kam)
Network Size Net_size (200, 300, 500)

Average Degree Ave_degree (2,4,6,8)

Recovery Probability Rec_pro (20%, 40%, 60%, 80%)
Infection Probability Inf_pro (20%, 40%, 60%, 80%)

Total observations3 * 3« 4 x4 x4« 4 = 2304

4.1 Experimental design
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4.1.1 Control variables

Disruption severity, defined as the percentageoolies directly impacted by the disruption, has a
significant impact on SCNR. Because the severityadlisruption is typically beyond the control of
policymakers, however, we choose it as a controlake in our experiment. We set the disruption

severity levels to vary from 10% to 70%, to provadeide range of representative disruptions.
4.1.2 Independent variables

The independent variables are associated with mktstoucture and node risk capacity. We use
three variables to describe network structure: agkvtype, network size and average degree. Network
type is widely used to represent the general patiEconnections among nodes within a network, evhil
network size and average degree together measuretivork complexity. The variables used to measure
node risk capacity are node infection probabilitd @ecovery probability.

Network Type

We focus on three types of network in this stuagle-free, small-world, and random. These are
the most frequently studied SCN types (Thadakanwtllal. 2004; Zhao et al. 2011; Kim, Chen, and
Linderman 2015; Nair and Vidal 2011) because maagl-world supply chains resemble the
characteristics of scale-free and small-world netwo(Basole and Bellamy 2014; Perera, Bell, and
Bliemer 2017). A random network, which is a typenefwork in which every pair of nodes has the same
likelihood of being connected, is generally usedaadenchmark for comparatively assessing the
performance of the other network types (Nair anda¥/2011; Basole and Bellamy 2014), as we do here.
Below are the characteristics of each network tgpetail.

The scale-free network, which characteristicallg lz& exponential degree distribution, is the
most widely studied network type in the supply ahf&eld (Zhao et al. 2011; Basole and Bellamy 2014;
Nair and Vidal 2011; Kim, Chen, and Linderman 201%)scale-free network generally contains a few
nodes with many links, called hubs, and a largebrrmof nodes with few links. This characteristickes

the scale-free network robust to random disruptibasause this robustness is based on the average
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performance and a disruption has a low probabhilftgirectly impacting the few hub-nodes. Many real
networks belong to the scale-free type, includimg automobile industry (Basole and Bellamy 2014),
pork supply chain (Buttner et al. 2013), Airbus lychain (Brintrup, Wang, and Tiwari 2015), fooalda
retail supply chain (Orenstein 2016) and the WaltMastribution system (Holmes 2011).

The small-world network has the characteristic tfmaist interactions are local, and few links
exist between any given node and another distade.n®he clustering coefficient of a small-world
network is close to that of regular lattice netwaskich is much higher than that of a random nekwor
and a small-world network has been shown to havARIn similar to that of a random network (Watts
and Strogatz 1998). Real-world examples of smalidvaetworks include the ownership of German
firms, academic collaboration networks, firm altemetworks, and electronic industry supply network
(Rivkin and Siggelkow 2007; Basole and Bellamy 2044n, Chen, and Linderman 2015).

Network Complexity

Network complexity, in turn, can be measured byvwoek size and average degree (Craighead et

al. 2007; Choi and Krause 2006). Network size esthbmber of nodes in the network, and the average

degree has a linear relationship with the total loeinof links for a given networldverage degree =

%. The average degree of a network represents hetltdnnectedness and clustering of that

network. A higher value for average degree reptssemore links in a network, and hence more
complexity.

Our parameter settings for network size and avetlagece are motivated by recent studies, since
SCN size can vary significantly depending on theireaand scope of the analysis. Specifically, Zego
al. (2011) examine SCNR using a network size of0l®@h an average degree of 3.6, and Basole and
Bellamy (2014) look at network sizes ranging fro@0 1o 1000, with an average degree ranging from 2
to 20. Based on these studies, we chose to vargaiuiork size from 100 to 500, with an average eegr

range of 2 to 8. These represent moderately sigdkS
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Understanding the association between network caxiipland SCNR can be very important for
supply chain managers. In practice, supply chainagars can increase or decrease the number of links
in their network to achieve better performance.

Node Risk Capacity

We use the combination of infection probability enedovery probability to measure node risk
capacity. For both parameters, we chose valuesn@rigpm 20% to 80% in order to represent a wide
range of risk propagation behaviors. Practitionsas potentially improve these rates by investing in
resources such as extra stock, backup supplierdur@tionality, or emergency planning. Therefore,
gaining more insights into the relationship betweisk propagation and network resilience can suppor

more informed decision-making on related investment
4.1.3 Dependent variables and models

The dependent variables in the analysis are tHerdift components of SCNR: robustness at
initial impact Robust_II), robustness at full impacRobust_FI), recovery time RT), and average

functionality (AF), each one calculated based on three network npeaifice indicators: the number of
. Size of the LCC . . . . .
healthy nodes, the size of LCC, aj{ﬁm To investigate the relationship between indepehde

variables and these dependent variables, we use#mingly unrelated regression (SUR) model, &s it
able to evaluate relationship between a set ofetaied dependent variables and different sets of

exogenous explanatory variables. Below are thalddtaodel specifications.

Robust_II; = Byy + B11Dis_sev; + B, Net_type; + f13Net_size; + B, Ave_degree; + fisRec_pro; + igInf _pro; + €;
Robust_Fl; = B, + [21Dis_sev; + B,,Net_type; + f,3Net_size; + [,,Ave_degree; + BysRec_pro; + LyoInf _pro; + €5
RT; = B30 + [31Dis_sev; + B3, Net_type; + [z3Net_size; + fz,Ave_degree; + BisRec_pro; + PzgInf _pro; + €3;
AF; = B4 + P41 Dis_sev; + S, Net_type; + BysNet_size; + [y Ave_degree; + fysRec_pro; + LieInf_pro; + €4

The subscript stands for each observation.
4.2 Results and analyses

To generate the data for our analysis, we simwdatdh scenario in Table 4. We replicate each

scenario 30 times to average out the stochastctsff The total period chosen for the calculatibd fo
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retained isT*=50, which is longer than the maximum recovery tioie@any of the replications. Table 5
shows the descriptive statistics of the variables.

We run our analyses in STATA 14.1 and present tU& Segression results for the different
network performance indicators in Tables 6-8, fiwhich we summarize Table 9. As expected, given the
nature of the experiment design, these independeigbles are independent based on our data. We als
conducted a robustness check using a simultanepuatiens model and the results are consistent with

those of the SUR model.
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Table 5: Descriptive Statistics

N Mean Standard Deviation Min Max
Independent Variables
Dis_sev 2304 40 22.36553 10 70
Net_size 2304 300 163.3348 100 500
Ave_degree 2304 5 2.236553 2 8
Rec_prob 2304 50 22.36553 20 80
Inf_prob 2304 50 22.36553 20 80

Dependent Variables
Number of Healthy Nodes as Network Performancechitdr

Robust_II 2304 .6 2236553 3 .9
Robust_FI 2304 .5316207 211473 .1903333 .9

RT 2304 13.37079 9.467874 2.366667 42.33333
AF 2304 .9633217 .0290435 .9026133 .9974133
Size of the LCC as Network Performance Indicator

Robust_II 2304 4737241 2944265 .0123303 9
Robust_FI 2304 .3810829 2675571 .0106 .9

RT 2304 13.37079 9.467874 2.366667 42.33333
AF 2304 .9459654 .050766 .6951378 .9970593

Size of the LCC

as Network Performance Indicator
APL of the LCC

Robust_II 2304 4535413 .269155 .0453899 .8886256
Robust_FI 2304 .3543417 .2351857 .0314077 .8838721
RT 2304 13.37079 9.467874 2.366667 42.33333
AF 2304 .9439041 .0449719 .7888132 .9961957

4.2.1 Direct impact of network structure

Network Type

Our results show that network type influences vhaspects of SCNR differently. In general, the
impact of network type on SCNR is mainly in the stterm Robust_II), and less in the long-term (the
Robust_FI andRI). Moreover, this impact relies on the selectiothef network performance indicator.

For a scale-free network, our results echo theipusviinding that such a network is particularly
robust at initial impact in terms of measuring $iie of the LCC and the APL (Thadakamalla et ab420
Albet, Jeong, and Barabasi 2000; Zhao et al. 2613 random disruption. Our results also show ihat
has no significant impact on SCNR when the perfoieandicator is the number of healthy nodes, and i
has no significant impact aRobust_FI andRT. This is because, under the assumption of node
immunity, the network can gain robustness afterhthie nodes have immunity, which hampers the risk
diffusion afterward and offsets the initial negatiimpact. Considering that a scale-free network can

accelerate risk propagation and result in lessréhle network health when nodes don’t gain immunity
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after a disruption (Basole and Bellamy 2014), itnigportant to focus attention on preventing the hub
nodes from getting re-infected in practice.
For the small-world network, our results are caiesiswith a previous study that shows a small-

world network tends to have a smaller size of LGteraa disruption, compared to a random network

Size of the LCC

(Thadakamalla et al. 2004). Also, for performaméloatorAPL of the LCC" the small-world network is

robust because of the increased level of "smalldm@ss" after the disruption (Jalili 2011). Small-
worldness is a measure of the degree of the snmlbwattern by comparing the APL and clustering
coefficient of a random network. This increasingaiworldness means that a small-world network send
to have a smaller APL and a bigger clustering ddiefit when more nodes are removed. Similar to the

scale-free network, the small-world network alseglnot have a significant impact on recovery time.

Table 6: Number of Healthy Nodes as Network Performancehtdr

Robust_I1 Robust_FI RT AF
b/se b/se b/se b/se
Controls
Dis_sev -0.0100 -0.0080 -0.0175" -0.0003"
) (0.000) (0.003) (0.000)
Direct effect
Scale_free 0.0010 -0.0973 0.0002
(0.004) (0.177) (0.001)
Small_world -0.0011 0.0601 -0.0002
(0.004) (0.177) (0.001)
Net_size 0.0000 0.0087 0.0000
(0.000) (0.000) (0.000)
Ave_degree -0.0133 0.0784 -0.0012"
(0.001 (0.032 (0.000
Rec_prob 0.0032 -0.3881" 0.0011"
(0.000) (0.003) (0.000)
Inf_prcb -0.001:™ -0.0074 -0.000.™
(0.000) (0.003) (0.000)
Constar 0.8137" 30.856(" 0.928("
(0.008) (0.359) (0.001)
Number of observations 2304 2304 2304 2304
R-squared 1.00 0.87 0.87 0.84
p-value 0.00 0.00 0.00 0.00

p-value for Breusch-
Pagan test of
independence

Standard errors in parenthesgs< 0.05,” p< 0.01,” p < 0.001

Network Complexity

Our results show that network complexity (netwoikesand average degree) significantly

influences every aspect of SCNR. Network size hasgative but negligible impact on SCNR, with an
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increase in network size leading to a decreasehnstness, longer recovery time, and lower average
functionality. However, an increase of 100 noderétwork size can only decrease 0.0001 of thedfize
the LCC right after the disruption and it only ieases the recovery time by 0.87 steps. In pradticsh

an influence is too small to be operative. Thisfical insignificance is also seen with respedhtother
measures of SCNR, which is consistent with the iptesvfinding that network robustness is independent
of the network size (Albet, Jeong, and BarabasiD200 the parameter space. This finding allowsaus t

compare the performance of SCNs of different siwethe same basis.

Table 7: Size of the LCC abletwork Performance Indicator

Robust_I1 Robust_FI RT AF
b/se b/se b/se b/se
Controls
Dis_sev -0.0110 -0.0084" -0.0175" -0.0004"
(0.000) (0.000) (0.003) (0.000)
Direct effect
Scale_free 0.0136 0.0006 -0.0973 0.0028
(0.005) (0.006) (0.177) (0.001)
Small_world -0.018% -0.0073 0.0601 -0.0050
(0.005) (0.006) (0.177) (0.001)
Net_size -0.0007 -0.0000 0.0087" -0.0000"
(0.000) (0.000) (0.000) (0.000)
Ave_degree 0.0566 0.0485" 0.0784 0.0079"
(0.001) (0.001) (0.032) (0.000)
Rec_prob -0.0000 0.0041 -0.3881" 0.0017"
(0.000 (0.000 (0.003 (0.000
Inf_prob -0.0000 -0.0012 -0.0074 -0.0001"
(0.000 (0.000 (0.003 (0.000
Constant 0.6500 0.3512" 30.8560" 0.8457"
(0.010 (0.013 (0.359 (0.003
Number of observations 2304 2304 2304 2304
R-squared 0.89 0.79 0.87 0.70
p-value 0.00 0.00 0.00 0.00
p-value for Breusch- 0.0000
Pagan test of
independence

Standard errors in parenthesgs< 0.05,” p< 0.01,” p < 0.001
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Size of the LCC

Table8: asNetwork Performance Indicator
APL of the LCC
Robust_I1 Robust_FI RT AF
b/se b/se b/se b/se

Controls

Dis_sev -0.011% -0.0081" -0.0175" -0.0003"
(0.000) (0.000) (0.003) (0.000)

Direct effect

Scale_free 0.0244 0.0057 -0.0973 0.0037
(0.003) (0.005) (0.177) (0.001)

Small_world 0.0086 0.0213" 0.0601 0.0002
(0.003) (0.005) (0.177) (0.001)

Net_size -0.0007 -0.0001" 0.0087" -0.0000"
(0.000 (0.000 (0.000 (0.000

Ave_degree 0.0271 0.01706" 0.0784 0.0040"
(0.001) (0.001) (0.032) (0.000)

Rec_prib 0.000(¢ 0.004:™ -0.388." 0.0017"
(0.000) (0.000) (0.003) (0.000)

Inf_prob -0.0000 -0.0013 -0.0074 -0.0001"
(0.000 (0.000 (0.003 (0.000

Constant 0.7992 0.4787" 30.8560" 0.8586"
(0.006) (0.011) (0.359) (0.002)

Number of observations 2304 2304 2304 2304

R-squared 0.95 0.81 0.87 0.82

p-value 0.00 0.00 0.00 0.00

p-value for Breusch- 0.0000

Pagan test of

independence

Standard errors in parentheses * p < 0.05, ** p04.0*** p < 0.001

In contrast, the impact of average degree on diffeaspects of SCNR varies across the different
performance indicators. When the performance indida the number of healthy nodes, average degree

negatively influences SCNR, with a larger averaggree leading to lowaRobust_FI, higherRT, and

Size of the LCC

APLof the LCC" however, it is

lower AF. When the performance indicator is the size of t&C, or

positively correlated with all four resilience maess. These results imply that we should be awftieeo
trade-offs among different aspects of resilienaa. €&xample, when investing in network connectivity,

practitioners should consider all the possible bitnand costs, and evaluate the overall impacsGNR.
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Table9: Direct impact of independent variables.

Robustness RT AF
Robust_I1 Robust_FI
Scale-free No. healthy nodes No No No
Size of the LCC + No No No
Q Size of the LCC + No No +
= APL of the LCC
X Small- No. healthy nodes No No No
% world Size of the LCC - No No -
© Size of the LCC + + No No
pd
APL of the LCC
- Network No. healthy nodes No + No
o | ¥ |Size Size of the LCC - - + -
g o Size of the LCC - - + -
s | § APL of the LCC
2 2 Average No. healthy nodes - + -
5 | & |degree Size of the LCC + + + n
% % Size of the LCC + + + +
< | = APL of the LCC
Recovery | No. healthy nodes + - +
B s Probability | Size of the LCC No + - +
@ ';—é Size of the LCC No + - +
q') —_—
g i APL of the LCC
20 Infection No. healthy nodes - - -
Probability | Size of the LCC No - - -
Size of the LCC No - - -
APL of the L.CC

+ means there is a significant positive relatiopshimeans there is a significant negative relatigpy No means
there is no significant relationship; The shaded greans the situation is not suitable for the eis$ed calculation.
This is because the initial impact is the saménagiisruption severity in terms of the number adltiey nodes.

4.2.2 Direct impact of the node risk capacity

Both indicators of node risk capacity: recovery h@bility and infection probability, have
significant impacts oRobust_FI, on RT, and onAF. Since recovery probability and infection
probability mainly work during risk propagation pess, they do not have an impact onRiobust_I1.
Our results show that node recovery probabilifydsitively associated with SCNR: higher node recpve
probability can increasRobust_FI andAF, and it can decrease tiRY. Because node recovery

probability represents an individual node's cajpighid recover from a disruption, in practice a gamy
can increase its recovery probability by havingko@csuppliers and by implementing efficient risk
mitigation methods. These activities can both desgdoss and lower total recovery time.
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Infection probability, however, is negatively asisted withRobust_FI, RT, andAF. A lower
infection probability represents less likelihoodttl given firm can be influenced when exposedstsr
A company can decrease its infection probabilityadlppting a multi-supplier procurement strategy or
increasing its stock level to enhance the capglidiprotect against a disruption. Increasing ttfedtion
probability, on the other hand, will accelerate tis& propagation and lead to lower robustness.aide
observe that a higher infection probability is asst@d with a shorteRT. This is because even though a
higher infection rate will cause lower robustnesshie short-term, the immunity of the recoveredeasod
will lead a quick recovery time for the whole symteTaking the extreme case as an example, if the
infection probability is one then all nodes will Bisrupted within a few steps. Once these nodes/ezc
they gain immunity and will not get disrupted agaks the total recovery time is the time when laste
recovers, in this situation, total recovery tima&dsmally shorter than that of a process that égpees a

longer risk propagation period and then recovers.

5. Implications

From the above analyses, we summarize several iemgomplications.

1. The influence of network type on SCNR is mainlyazsated with short-term effects, and less so

with long-term effects.

Network type represents the interacting relatiomstmong nodes in a network given the network size
and average degree. Our results show that whepetfiermance indicator is the number of healthy sode

then network type does not have an impact on SGMRen the chosen performance indicator is size of

the LCC and =222 network type influenceBobust_II (short-term effect), but not the longer-term

resilience measures, suchRshust_FI, RT, andAF. This means that in the presence of risk propagati
the connection pattern represented by the differeitvork types has less effect on the network
performance later on. However, we also observexaeption, in that the small-world network has a

negative effect on average functionality when meaguthe size of the LCC, and it has a positiveeff
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Size of the LCC

onRobust_FI when measuringm. This implies that network types may be too gehnefaa

means for representing the network connection ipattetruly explain the effect on SCNR.

Besides network type and network complexity, a doation of network characteristics can also
describe a network. A network characteristic déssrione particular facet of the network structéice.
example, the clustering coefficient measures thgregeto which nodes in a network tend to cluster
together, and the APL depicts the average of tletes$t path length between any pair of nodes. In
addition, because not all networks can be classHi® a particular network type, but any given tgpe
network can always be described by a combinatiamebfork characteristics, network characteristans ¢
provide a more precise means of capturing netwehabior. Considering that the current literature on
SCN mainly focuses on network types (Kim, Chen, himdlerman 2015; Zhao et al. 2011; Basole and
Bellamy 2014; Nair and Vidal 2011), we propose fobatising on network characteristics can thus tead
a better understanding of how network structurkiérfces SCNR.

2. Compared with adjusting network structure, enhapcinde risk capacity is more effective for

improving SCNR, especially with the existence ekmpropagation.

We use network type, network size and average deggralescribe the network structure. In our
analysis, the impact of network type on SCNR isntyapbserved in the short-term, and very limited in
the long-term, while the impact of network sizepimctically negligible. Also, it is costly to inase
average degree substantially because increasinggevelegree by two represents increasing the total
number of links by the network size. For exampte, & network with 100 nodes, increasing average
degree by two represents adding additional 100slirkuch a substantial increase can cause higher
operational cost for communication and collaboratidoreover, although increasing average degree can
lead to higher robustness, it also causes longal tecovery time. Comparatively, enhancing nodg ri
capacity is more effective, especially because emsing recovery probability can both increase

robustness and decrease the total recovery timeprditice, activities used to increase recovery
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probability include increasing visibility within éhsupply chain, adopting a higher level of stoaid a
contracting with backup suppliers.

Given the importance of node risk capacity to SCAR the impracticality of enhancing the risk
capacity of every node inside the network, selgctiritical nodes in which to invest to maximize SN
is necessary for both researchers and practitio@asidering that current studies of critical n&ide
effects on disruptions are mainly conceptual (Craaygl et al. 2007; Ponomarov and Holcomb 2009) and
focus on short-term disruption impacts, we, themf@ropose looking at critical nodes that canduil

SCNR both short-term and long-term.
3. Trade-offs exist between robustness and recoiraey, t

An ideal investment in SCNR would increase robustnend decrease total recovery time
simultaneously. However, increasing robustness leag to longer recovery time in some cases. From
our results, when the performance indicator issize of the LCC, increasing average degree reBults
both higher robustness and longer recovery timmil&ily, decreasing the infection probability rasuh
higher robustness but longer recovery time. Becthiserade-off between robustness and recoverg tim
is the trade-off between short-term and long-teendfits, in practice, practitioners should evaluate
overall effect of their mitigation and recovery g#ans in order to achieve more effective overeduits.
This also implies that for future research on SCBluating a certain strategy should consider tath

short-term and long-term effects, so as to buikdose comprehensive understanding of SCNR.
4. Selecting network performance indicators is critfoainterpreting SCNR.

Our study selects three different network perforoeaimdicators for the purposes of demonstration,
each providing a different perspective. Our anayswlicate that the resilience behaviors of these
different performance indicators vary. For examplesreasing the average degree will decrease
Robust_FI when measuring the number of healthy nodes, twitlitncrease that robustness for the other
two network performance indicators. It is thus imant to clearly specify which aspects of the nelwo

are exhibiting which types of resilient behavias, different performance indicators may lead to veyy

32



outcomes. Practitioners should evaluate not orgylhavior of a preferred performance indicatot, bu
also the corresponding behaviors of other informeatierformance indicators. A SCN may be resiliant i
different ways under different circumstances, ang$tments into improving resilience should be thase
on a comprehensive understanding of resiliencevi@hacross various performance indicators.

As mentioned above, our simulation model is adafiad the SIR model, which only considers the

number of healthy nodes after the disruption. Wpaexled this to look at the size of the LCC and

Size of the LCC

PLofmeLcc 25 alternative performance indicators. While thenber of healthy nodes represents the

overall health status of the network, the sizehef tCC instead describes the network connectiwity]

Size of the LCC

PLoftheLeC depicts both the network connectivity and netwefficiency. As resilience behaviors vary

for different performance indicators, our work aimites to the network risk propagation literatbse

illustrating the potential for measuring resilidéethavior more holistically.
5. This resilience framework can be extended basqutaxtical needs.

The proposed framework provides support for a syate and comprehensive understanding of
SCNR. This framework can be extended in a numbaetliftdrent ways, in practice, to support effective
decision-making. First of all, additional resiliendimensions could be added depending on the tiype o
decisions that will be made. For examdl&?*, the length of time between when the disruptioppess
and the full impact is realized (see Figure 1), peavide additional information about how quickhet
system can start to recover. A practitioner maytwarnnvest in deriving better information abdut2*
in order to prepare more effectively for recovebjfferent values of T* could also be used to caitel
short-term average functionality retained, mid-tewerage functionality retained, or long-term agera
functionality retained. The framework could alsodxg@anded by adding additional network performance
indicators, such as average path length (APL) aadimmum path length (MPL). Furthermore, if the
generalized model presented above were adaptencéoporate specific behaviors such as directional
material flows, it could be used to analyze morwitkd supply chain measures such as total saks an

total customer satisfaction. The framework thustriioates to the literature of SCNR by providing a
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generalized, fundamental approach for assessingRS@idt future efforts can easily build upon to

explore other aspects of SCNR.

6. Conclusion

This paper explores SCNR in the presence of risbgmation, and in doing so it makes several
important theoretical and practical contributioosthe literature. Theoretically, this study enrighbe
literature of SCNR by focusing on risk propagatard proposing a multi-dimensional resilience metric
to quantify both short-term and long-term resiliertmehaviors. It also contributes to the literatbye
conducting a systematic analysis of the determif@mgors of SCNR: network structure and node risk
capacity, and their effects on risk propagation teddifferent characteristics of resilient behavio

This study also provides a number of practical iogplons for decision-makers, to help them
better understand SCNR in terms of the systemicfased by individual firms inside the network. As
illustrated in Section 3.4, practitioners can eatenSCNR for a given network using different sesiffor
disruption severity and node risk capacity. Thiewsd them to assess the short-term and long-term
behavior of a network after a disruption, and i ¢elp them to formulate proper sourcing, produmtio
and marketing strategies to prepare for potentsligtions and to gain a competitive advantageriaky
environment. Moreover, our findings can potentiadlypport decision makers in making proactive
investments to improve SCNR. Our results cleargspnt how network structure and node risk capacity
influence different aspects of SCNR. By considenielgted practical activities that are associatéti w
these factors, practitioners could compare diffeogerational strategies for improving SCNR.

There are several potential limitations associatiéldl applying our study to real SCNs that can be
easily addressed by extending our current work.

The first potential limitation is the assumption bbmogeneous recovery and infection
probabilities. In practice, the node risk capaaitgy be different across nodes in the SCN. By asgjgn
different recovery probabilities and infection pabllities to different nodes, our model could be

extended to accommodate networks with various mis#tecapacities. Moreover, when a company needs
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to evaluate practical investment decisions for &epgpliers with different characteristics, this aygwh
can help with comparing different strategies fopioving SCNR. This would also support letting thekr
capacity and/or the current state of a given sutisebdes be uncertain (Garvey et al., 2015) alaxireg

our assumption that the current state of each isoalevays known.

The second limitation is that this initial work fees on non-directed networks and doesn't
consider different supply chain tiers. Risk canpaigate to both the supplier side and the custoider s
but the infection probability may vary depending tbe direction of the relationship and the partcul
role that a firm plays in that relationship. Todngorate such variability, therefore, one couldeegt our
model to a directed network and define differefeeétion and recovery probabilities that depend amam
specific supply chain configurations of interesheTthird limitation of the current model is that wely
consider one-time disruptions, even though in tedie SCN may suffer multiple disruptions in aagiv
time period. By incorporating multiple disruptioiméo our simulation, we could build on the prelimig
results discussed here, to further investigatedldience behavior of networks under differentetypf
real-world scenarios.

There are a number of additional future researfdrtsfthat could also be supported by this work.
For example, there is an opportunity to more clogalestigate the role that immunity plays in SCNR.
Based on the assumption of immunity that was mdute/eg network types generally don’'t have a
significant influence on long-term SCNR. Other stsdhave shown, however, that scale-free networks
can increase the level of risk propagation whemnmounity is assumed (Basole and Bellamy 2014). In
practice, gaining immunity may require additiomatléstment, and firms need to justify if it is wotthdo
it. Evaluating how immunity influences SCNR canyide insights into related decision making. The
second direction is to apply our work to broadeetyof networks by adopting specific features tinake
them unique, whether it's the performance indicatothe structure of the network itself. Lookindan
broader types of network will allow for developiagoetter understanding of the different ways inclhi
different types of nodes, and the interactions betwthose nodes, might influence the different
characteristics of SCNR.
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