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1. Environmental protection is considered in a closed-loop supply chain network.
2. Two different multi-objective environmental uncertain supply chain models are

developed.
3. A quantitative environmental impact assessment method based on LCA is used to

evaluate the environment effects.
4. The inverse distribution method is used to transform uncertain models into equiv-

alence crisp models.
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Abstract

In the present study, a closed-loop supply chain network for production and

recovery of button batteries is investigated under uncertainty. The environmental

impact of button batteries is taken into account in the design of the supply chain net-

work. Since there are many uncertainties in reality, the demand, cost and capacity

are considered uncertain variables. To explore the impact of these uncertainties on

the supply chain network, two multi-objective mixed integer programming models

under uncertainty are developed, i.e., the expected value model and the chance-

constrained model. The aim is to reduce the multiple environment effects on the

total cost and weigh the pros and cons. A method based on life cycle assessment

is proposed to evaluate the environment effects on the supply chain network. The

two models can be converted into crisp models by the uncertainty theory. Lastly,

numerical experiments are used to verify the feasibility of the proposed models and

method.

Keywords: Environmental protection; Multi-objective; Uncertain environment;

Supply chain network; Life cycle assessment.

1 Introduction

An efficient supply chain network is the embodiment of an enterprise’s ability, which makes

it competitive in today’s market. The impact of commercial activities on the environment

has led to government legislation and the enhancement of consumer awareness of environ-

mental protection. Therefore, the people and government exert pressure on enterprises to

reduce the impact of production and operation on the environment. In recent years, sup-

ply chain management with environmental protection has attracted great attention from
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researchers and scholars owing to these factors. This kind of supply chain incorporates

environmental pollution into the design process, from product design to scrap.

Obviously, supply chain network design plays an important role in the environment.

For instance, scrapped products have a significant impact on the environment, numerous

literature were devoted to the management of these products. Research showed that it is

necessary to establish reverse supply chain model. It involves determining the number of

required collection, recycling, recycling and disposal centers, their location and capacity,

and the material flow. Mathematical models were used to studied this issue. Mutha

and Pokharel (2009) developed a mathematical model for the design of a reverse logistics

network, and the application of the model is illustrated by a numerical example. Paksoy

and Özceylan (2014) considered both economic and environmental performances in a

supply chain network, and proposed an environmentally conscious optimization model.

Zolfagharinia et al. (2014) modeled a two-stock inventory system with backordering option

for a reverse supply chain, and designed a simulation-based hybrid variable neighborhood

search to solve the model. Giri and Bardhan (2015) studied models under both linear and

iso-elastic demand patterns, and used wholesale-price-discount contract to coordinate the

chain. Moreover, many literatures have been conducted on the closed-loop supply chain

problem. Wang et al. (2017) investigated wage contract models in different scenarios,

and the results showed that the company benefits from the worker’s observable effort

under full information. Altmann and Bogaschewsky (2014) proposed a multi-objective

closed-loop supply chain model, which supports decision makers to better understand

the influence of parameters. Allevi et al. (2018) investigated a multitiered closed-loop

supply chain network, and used a variational inequality approach to analyze the effects

of environmental policies. Rabbani et al. (2019) considered a closed-loop supply chain

(CLSC) including a manufacturer, a distributor, and third-party logistics provider. To

investigate whether a manufacturer should do remanufacturing or sets a fee for technology

licensing of distributors and cooperate with them in remanufacturing, three multi-level

leader-follower Stackelberg game models were proposed.

The dynamic and uncertain nature of the scrapped product leads to the uncertainty of

the supply chain network. Numerous researchers studied supply chain problems in random

environments. Based on this hypothesis, probability theory is introduced into the supply

chain to cope with the uncertainty. Listes (2013) studied a generic stochastic model for

supply-and-return network, and a integer L-shaped method was proposed for the model.

Sazvar et al. (2014) developed a stochastic centralized supply chain model, and proposed

a new replenishment policy for deteriorating items. Modak and Kelle (2019) considered

dual-channel supply chain under price and delivery-time dependent stochastic customer

demand, and the results suggested that demand uncertainty affect the optimal price and
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lead time. Fuzzy set theory, first stated by Zadeh (1965), has been widely applied to

supply chain Pishvaee and Torabi (2013) proposed a bi-objective possibilistic model for

closed-loop supply chain network, and developed an interactive fuzzy solution approach.

Ramezani et al. (2014) studied a multi-product, multi-period, closed-loop supply chain

network, and used a fuzzy optimization approach to convert the fuzzy model into an

equivalent crisp model. Badhotiya et al. (2019) considered a novel fuzzy multi-objective

mixed integer programming model, and used an example inspired from an automobile

industry to demonstrate analytical results.

In addition, a part of the literatures studied the influence on the environment of the

supply chain, which aims to incorporate environment effects into this issue. A life cycle

assessment (LCA) based biofuel supply chain model with 3E criteria was proposed by

Liu (2007), and a Pareto-optimal solution surface of this multi-objective problem was

obtained. A new energy and carbon LCA model for vehicle energy supply infrastructure

was developed by Lucas et al. (2013). The results suggested that 37% Normal charging

and car/H2 station ratio are close to conventional one. An advanced life cycle assessment

was used to analyze environmental impacts on particular food supply chains Goucher et al.

(2017), and the results suggested that the greenhouse effect of an 800-gram bread during

its whole life cycle was equivalent to 0.589 kg of carbon dioxide. Qualitative properties

of the dynamic trajectories were obtained under suitable assumptions. A bi-objective

programming model for green closed-loop supply chain was proposed by Ghomi-Avili et

al. (2018), and KKT conditions and the possibilistic method were used to solve the fuzzy

model.

As everyone knows, probability distributions are often based on historical data. In

a supply chain, the data of these parameters cannot be always exactly determined and

known. There are always some reasons why data is not available, such as information

unavailable, fluctuating nature of parameters, poor statistical analysis, uncertainty in

judgment, etc. However, when statistics are unreliable or unavailable, probability theory

is not the best choice. The general possible values of these parameters are provided

by the experts at approximate intervals, language terms, etc. For example, the unit

transportation cost is “about 50”, the demand of customer is ”about 300”, etc. In such

a situation, we have no choice but to invite domain experts to evaluate the belief degree

that whether uncertain events will occur.

It is inappropriate to model belief degrees with probability theory, because it may

lead to the result of violating intuition. Consider a counterexample. Suppose a vehicle

passes 50 bridges. The weight of the vehicle is 90 tons, and the bearing capacity of the

bridge obeys the iid uniform distribution [95,110]. Suppose a bridge collapses when its

load-bearing capacity is less than the weight of a vehicle. Obviously, the probability that
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this vehicle will pass 50 bridges is 1. However, when there are no samples of bridge bearing

capacity observed at present, we must invite some bridge engineers to assess their belief

degrees. As we stated before, because of conservatism, people usually estimate a wider

range of values than the actual load-bearing capacity of bridges. Assume that the belief

degree function is

Φ(x) =





0, if x < 80

(x− 80)/40, if 80 ≤ x ≤ 120

1, if x > 120

What happens if the belief degree function is considered a probability distribution?

Firstly, we must consider the strength of 50 bridges as iid uniform random variable over

[80,120] tons. If we let the vehicle cross 50 bridges one by one, then we have

Pr{“the truck can cross over the 50 bridges” } = 0.7550 ≈ 0

As a result, it is almost impossible for the vehicle to cross 50 bridges successfully. Unfor-

tunately, the results are at opposite poles. This example shows that the improper use of

probability theory makes the inevitable event impossible.

The uncertainty theory was initiated by Liu (2007) and refined by Liu (2010) to address

personal belief degrees rationally. It is a useful tool for solving such problems in uncertain

environments. The uncertainty theory is a branch of axiomatic mathematics for modeling

human uncertainty, which have many research results such as uncertain programming

(Wen et al. (2014); Zhang et al. (2014); Shen and Zhu (2017, 2018, 2019); Gao et al.

(2017); Gao and Kar (2017); Gao et al. (2018)), uncertain supply chain (Lan et al. (2017,

2018); Wang et al. (2017); Feng et al. (2017)), uncertain risk analysis (Liu and Dan (2017);

Zhou et al. (2017); Chen et al. (2018)), uncertain uncertain calculus (Chen and Ralescu

(2013); Yao et al. (2014); Chen (2015); Yang et al. (2016)), uncertain differential equation

(LiuH (2013); Wang (2013); Yao et al. (2013)).

The concerned problem in this paper is motivated by a button battery production

supply chain network. With the development of social economy, the number of batteries

used in production and life has increased dramatically, and the battery has penetrated

into every corner of our life and work. However, the battery in daily life is harmful to

us unconsciously. Since the pollution of used batteries is very secretive, its harm has not

yet been fully recognized by the public. According to the experts’ assessment, a small

button cell can pollute 600,000 liters of water, which can not be consumed by one person

all one’s life. Every year, more than 32 billion used batteries worldwide are discarded

into the natural environment, and its impact on the environment can be imagined. Even

more frightening is that the battery contains three substances that are harmful to the

natural environment: mercury, lead, and cadmium. If waste batteries are mixed with
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domestic waste for landfill, the infiltration of mercury and heavy metals will infiltrate

the soil, contaminate groundwater, and then enter fish and crops, destroying environment

and indirectly threatening human health. To reduce the environmental impact of waste

batteries, there are generally three treatment methods: solidification deep buried, stored

in waste mine, recycling. Waste batteries are generally shipped to specialized toxic and

hazardous landfills, but this is not only costly but also wasteful, as there are many useful

substances that can be used as raw materials. The recovery and reuse of waste batter-

ies mainly adopts fire method, hydrometallurgy process and solid electrolytic reduction

technology. Moreover, the plastic casing can be regenerated without secondary pollution

to the environment.

In this paper, a closed-loop supply chain network with economic and environmental

factors is studied. The aim is to study the effects of uncertainties on supply chain, and to

find the optimal solution in the face of multiple objective functions. The demand, cost and

capacity are considered uncertain variables. Two practical and tractable multi-objective

uncertain programming models are developed for the supply chain network with environ-

mental protection. The economic and environmental objective functions are considered

simultaneously. To simulate the effects of different configurations on the environment, a

quantitative environmental impact assessment method based on LCA is integrated into

the design of closed-loop supply chain. The uncertainty theory is used to characterize

the epistemic uncertainty in reality. Under different decision criteria, the expected value

model and chance-constrained model are employed to address the problem. The equiv-

alence of the models is discussed base on the inverse distribution method. Furthermore,

this paper presents an effective solution method to address the models.

The main innovations of this paper are as follows. (1) The demand, cost and capacity

are considered uncertain variables, which differ from that of random variables. In a real

supply chain network, it would be more reasonable to regard these factors as uncertain

variables. (2) Due to the complexity of the uncertain scenario, the conventional algorithm

is no longer applicable, so we use inverse distribution method to transform uncertain

models into crisp models. (3) Numerical experiments suggest that the proposed method

can effectively solve the optimal solution.

The rest of this study is structured as follows. In Section 2, basic definitions and

properties regarding uncertainty theory are introduced. In Section 3, the problem and

notations are presented, and two multi-objective uncertain mathematical models are con-

structed. The equivalence of the models is investigated in Section 4. In Section 5, com-

putational experiments are presented to verify the modeling idea and the effectiveness of

the proposed method.
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2 Uncertainty theory

To describe an uncertain variable which refers to human uncertainty, Liu (2007) estab-

lished the uncertainty theory and has been developed well up to now. Some concepts in

uncertainty theory will be introduced.

Let Γ be a nonempty set, and let L be a σ-algebra over Γ. Each element Λ ∈ L is

called an event. A set function M from L to [0, 1] is called an uncertain measure if it

satisfies the normality axiom, duality axiom, subadditivity axiom and product axiom:

Axiom I (normality axiom). M{Γ} = 1 for the universal set Γ;

Axiom II (duality axiom). M{Λ} + M{Λc} = 1 for any event Λ;

Axiom III (subadditivity axiom). M

{ ∞⋃
i=1

Λi

}
≤

∞∑
i=1

M{Λi} for every countable sequence

of events Λ1,Λ2, · · · .
Besides, the product uncertain measure on the product σ-algebra L was defined by Liu

(2009) as follows: Let (Γk,Lk,Mk) be uncertainty spaces for k = 1, 2, · · · . The product

uncertain measure M is an uncertain measure satisfying M

{ ∞∏
i=1

Λk

}
=

∞∧
i=1

Mk{Λk}, where

Λk are arbitrarily chosen events from Lk for k = 1, 2, · · · , respectively. (Product axiom)

An uncertain variable is a measurable function ξ from an uncertainty space (Γ,L,M)

to the set R of real numbers, i.e., for any Borel set B of real numbers, the set {ξ ∈ B} =

{γ ∈ Γ|ξ(γ) ∈ B} is an event. The uncertain distribution Φ of an uncertain variable ξ is

defined by Φ(x) = M{ξ ≤ x} for any real number x. The uncertain variables ξ1, ξ2, · · · , ξm
are said to be independence (Liu (2009)) if

M

{
m⋂

i=1

(ξi ∈ Bi)

}
= min

1≤i≤m
M{ξi ∈ Bi}

for any Borel sets B1, B2, · · · , Bn of real numbers.

Definition 1 Liu (2007) An uncertain distribution Φ(x) is said to be regular if its inverse

function Φ−1(x) exists and is unique for each α ∈ (0, 1). Then the inverse function Φ−1

is called the inverse uncertainty distribution of ξ.

Theorem 1 Liu (2010) Assume ξ1, ξ2, · · · , ξn are independent uncertain variables with

regular uncertainty distributions Φ1,Φ2, · · · ,Φn, respectively. If f(x1, x2, · · · , xn) is strictly

increasing with respect to x1, x2, · · · , xm and strictly decreasing with respect to xm+1, xm+2,

· · · ,xn, then the uncertain variable ξ = f(ξ1, ξ2, · · · , ξn) has an expected value

E[ξ] =

∫ 1

0

f(Φ−1
1 (α), · · · ,Φ−1

m (α),Φ−1
m+1(1 − α), · · · ,Φ−1

n (1 − α))dα

provided that E[ξ] exists.
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For any real numbers a and b, we have E[aξ + bη] = aE[ξ] + bE[η], where ξ and η are

independent to each other.

Theorem 2 Liu (2010) Assume the constraint function g(x, ξ1, ξ2, · · · , ξn) is strictly in-

creasing with respect to ξ1, ξ2, · · · , ξk and strictly decreasing with respect to ξk+1,

ξk+2, · · · , ξn. If ξ1, ξ2, · · · , ξn are independent uncertain variables with uncertainty dis-

tributions Φ1, Φ2, · · · , Φn, respectively, then the chance constraint

M {g(x, ξ1, ξ2, · · · , ξn) ≤ 0)} ≥ α

holds if and only if

g(x,Φ−1
1 (α), · · · ,Φ−1

k (α),Φ−1
k+1(1 − α), · · · ,Φ−1

n (1 − α)) ≤ 0.

3 Models

3.1 Problem description

A multi-echelon closed-loop supply chain is considered in this paper. New products pro-

duced by the manufactory are distributed to customers through the forward network. In

the closed-loop supply chain, scrapped products are transported to the recycling center.

Customers’ demands should be satisfied and returned products will be collected.

The aim of the proposed supply chain network to minimize the total cost and the

total environmental impact simultaneously in an uncertain scenario. Therefore, it is

necessary to make a reasonable tradeoff between the two objectives. An environment

effect assessment method is employed to assess the second objective function. The LCA

is a common method for environment effect assessment, and it has been widely used in

the past twenty years. However, the process of LGA is expensive, time-consuming and

complex, and usually requires professional knowledge of environmental management. Eco-

indicator 99 (Goedkoop and Spriensma (2000)) is one of the most advanced environment

effect assessment methods in the world. The method can reduce the life cycle analysis

process of the designed product greatly.

3.2 Mathematical models under uncertainty

Before constructing the mathematical models, parameters and variables are introduced

as follows.

Indexes

i the candidate locations of manufactories, i = 1, 2, · · · , I
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j the index of customer, j = 1, 2, · · · , J
k the candidate locations of collection centers, k = 1, 2, · · · , K
l the index of recycling center for metal, l = 1, 2, · · · , L

m the index of recycling center for plastic, m = 1, 2, · · · ,M

Parameters

dj the demand of customer j

rj the return rate of customer j

fi the cost of opening manufactory i

gk the cost of opening collection center k

cij unit shipping cost from manufactory i to customer j

ajk unit shipping cost of scrapped products from customer j to collection

center k

bkl unit shipping cost of scrapped products from collection center k to

recycling center l for metal

hkm unit transportation cost of scrapped products from collection center k to

recycling center m for plastic

ρi unit manufacturing cost of product at manufactory i

σk unit process cost of scrapped products at collection center k

βl unit process cost of scrapped products at recycling center l for metal

τm unit process cost of scrapped products at recycling center m for plastic

πi the capacity of manufactory i

ηk the capacity of collection center k

δl the capacity of recycling center l for metal

ςm the capacity of recycling center m for plastic

eipro environmental impact of a unit of product

eitpcij environment effect of transporting a unit of product from manufactory i

to customer j

eitccjk environment effect of transporting a unit of scrapped product from customer

j to collection center k

eitcskl environment effect of transporting a unit of scrapped product from collection

center k to recycling center l for metal
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eitcpkm environment effect of transporting a unit of scrapped product from collection

center k to recycling center m for plastic

eicol environment effect handling a unit of used product at a collection center

eisrc environment effect of recycling the metal part of a unit of scrapped product

eiprc environment effect of recycling the plastic part of a unit of scrapped product

Decision variables

uij the number of products transported from manufactory i to customer j

qjk the number of scrapped products transported from customer j to collection

center k

vkl the number of metal part of scrapped products transported from collection

center k

to recycling center l

wkm quantity of plastic part of scrapped products transported from collection center k

to recycling center m

xi 1, if a manufactory is opened at position i; 0, otherwise

yk 1, if a collection center is opened at position k; 0, otherwise

The demands dj, rates of return percentage rj, fixed charges (fi, gk), transportation

costs (cij, ajk, bkl,hkm), manufacturing costs ρi, process costs (σk, βl, τm) and capacities

(πi, ηk, δl, ςm) are considered uncertain variables and independent of each other.

The first objective function of the supply chain network includes the opening costs,

process and shipping costs.

W1 =
∑

i

fixi +
∑

k

gkyk +
∑

i

∑

j

(ρi + cij)uij +
∑

j

∑

k

(σk + ajk)qjk+

∑

k

∑

l

(βl + bkl)vkl +
∑

k

∑

m

(τm + hkm)wkm. (1)

The environment effect of different supply chain network configurations is estimated

by the Eco-indicator 99 approach. The system boundary and functional unit should be

first identified. Next, the life cycle should be determined. The life cycle stages include: (1)

produce, (2) shipping from manufactories to customers, (3) shipping from customers to

collection centers, (4) handling the scrapped products at collection centers, (5) shipping
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from collection centers to recycling centers for metal, (6) metal recycling, (7) shipping

from collection centers to recycling centers for plastic and (8) plastic recycling.

Three different perspectives (hierarchist, individualist, egalitarian) based on the cul-

tural theory are provided by Eco-indicator 99 method. The second objective function is

as follows.

W2 =
∑

i

∑

j

(eipro + eitpcij )uij +
∑

j

∑

k

(eicol + eitccjk )qjk +
∑

k

∑

l

(eisrc + eitcskl )vkl+

∑

k

∑

m

(eiprc + eitcpkm)wkm (2)

For the total cost and overall environmental impact, the optimal value cannot be

obtained at the same time because the two objective functions conflict with each other.

To coordinate the conflict, the decision maker should establish a hierarchy between two

incompatible objectives to find a satisfactory solution. In reality, the decision maker will

be more inclined to consider minimizing the total cost. Accordingly, reducing the total

cost will be given priority. Secondly, it is to reduce the overall environmental impact. The

total cost W1 must be less than a preset value C,

W1 + d−1 − d+1 = C,

where d−1 and d+1 are the positive and negative deviations from the preset value C, respec-

tively.

Similarly, the overall environmental impact must be less than a preset value E,

W2 + d−2 − d+2 = E,

where d−2 and d+2 are the positive and negative deviations from the preset value E, respec-

tively.

The supply chain network problem can be modeled in many ways according to different

objectives. The expected value is the average value of uncertain variable in the sense of

uncertain measure, which can represent the size of uncertain variables. An expected value

model is conducted as follows:

lexmin{d+
1 , d

+
2 }

subject to:

E[W1] + d−1 − d+1 = C

W2 + d−2 − d+2 = E

E

[
dj −

∑

i

uij

]
≤ 0, ∀j (3)
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E

[
djrj −

∑

k

qjk

]
≤ 0, ∀j (4)

E

[∑

j

uij − xiπi

]
≤ 0, ∀i (5)

E

[∑

j

qjk − ykηk

]
≤ 0, ∀k (6)

E

[∑

k

vkl − δl

]
≤ 0, ∀l (7)

E

[∑

k

wkm − ςm

]
≤ 0, ∀m (8)

d−1 , d
+
1 , d

−
2 , d

+
2 ≥ 0,

xi, yk ∈ {0, 1}, ∀i, k
uij, qjk, vkl, wkm ≥ 0, ∀i, j, k, l,m

where lexmin means to minimize the objective vectors in dictionary order.

The model attempts to minimize the positive deviations. Formulation (3) ensure that

the demands of all customers must be met. Formulation (4) ensure that all used products

are collected from the customers. Constraints (5)-(8) ensure that capacity constraints are

met. The above constraints are established under the expected value criterion.

In practice, the decision maker always considers the risk and finds an upper bound

so as to design an optimal plan. That is, the decision maker’s aim may include the

condition of satisfying some chance constraints under some preset confidence levels. Under

other conditions, given confidence levels α. Accordingly, a chance-constrained model is

conceived.

The decision maker needs determine a budget target f such that there exists a solution

x∗ satisfies M{f(x) ≤ f} ≥ α. For example, let α = 0.9, the decision maker can determine

a budget target f and then choose a solution x that satisfies M{f(x) ≤ f} ≥ 0.9. If the

decision maker chooses the solution x, the total cost will be lower than f at least 90%.

Hence, the problem can be conducted as the following chance-constrained model according

to Definition 1:

lexmin{d+
1 , d

+
2 }

subject to

M{W1 − d+1 − C ≤ 0} ≥ α, (9)

W2 − d+2 −E ≤ 0, (10)
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M

{
dj ≤

∑

i

uij

}
≥ α1, ∀j (11)

M

{
djrj ≤

∑

k

qjk

}
≥ α2, ∀j (12)

M

{∑

j

uij ≤ xiπi

}
≥ α3, ∀i (13)

M

{∑

j

qjk ≤ ykηk

}
≥ α4, ∀k (14)

M

{∑

k

vkl ≤ δl

}
≥ α5, ∀l (15)

M

{∑

k

wkm ≤ ςm

}
≥ α6, ∀m (16)

d+1 , d
+
2 ≥ 0,

xi, yk ∈ {0, 1}, ∀i, k
uij, qjk, vkl, wkm ≥ 0, ∀i, j, k, l,m

where α, αi, i = 1, 2, · · · , 6 are preset confidence levels.

The model attempts to minimize the pessimistic value to W1 and W2 (9,10). Con-

straints (11) and (16) ensure that the conditions hold under confidence levels αi, i =

1, 2, · · · , 6.

Two multiobjective programming models are built to cope with an uncertain closed-

loop supply chain network. It is generally known that because of the multi-type of uncer-

tainty information, the decision maker will face the problem of multi-dimensional decision

variables. In a random environment, it is generally known that this multidimensional deci-

sion problem leads to multiple integration problems, thereby making the calculation more

difficult to achieve. Fortunately, the problem of multiple integration was avoided by the

operation law of inverse uncertainty distribution. Thus, the proposed uncertainty model

outperforms the stochastic model in many types of uncertain facility location problems.

4 Equivalence proof of uncertain models

Since uncertain variables are included in the two models, it is difficult to solve them

directly. In many uncertain programming literatures, various optimization methods are

used to find the approximate optimal solution of the uncertain model. Although the feasi-

bility of these methods is often illustrated by numerical experiments, the preciseness and
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generality of these methods are not satisfactory. Fortunately, with the help of uncertainty

theory, the two uncertain models can be converted into crisp forms.

Theorem 3 The expected value model can be converted into the following model equiva-

lently:

lexmin{d+
1 , d

+
2 }

subject to:

E[W1] + d−1 − d+1 = C

W2 + d−2 − d+2 = E
∫ 1

0

Φ−1
dj

(α)dα ≤
∑

i

uij, ∀j
∫ 1

0

Φ−1
dj

(α)Φ−1
rj

(α)dα ≤
∑

k

qjk, ∀j

∑

j

uij ≤ xi

∫ 1

0

Φ−1
πi

(α)dα, ∀i

∑

j

qjk ≤ yk

∫ 1

0

Φ−1
ηk

(α)dα, ∀k

∑

k

vkl ≤
∫ 1

0

Φ−1
δl

(α)dα, ∀l

∑

k

wkm ≤
∫ 1

0

Φ−1
ςm (α)dα, ∀m

d−1 , d
+
1 , d

−
2 , d

+
2 ≥ 0,

xi, yk ∈ {0, 1}, ∀i, k
uij, qjk, vkl, wkm ≥ 0, ∀i, j, k, l,m

where Φ−1
f denotes the inverse uncertainty distribution of f .

Proof:According to the nature of expected value, it yields

E[dj ] ≤
∑

i

uij. (17)

And because

E[dj] =

∫ 1

0

Φ−1
dj

(α)dα, (18)

it yields ∫ 1

0

Φ−1
dj

(α)dα ≤
∑

i

uij. (19)
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Likewise, the equivalent forms of other constraints can be obtained.

Besides,

E[W1] =
∑

i

xi

∫ 1

0

Φ−1
fi

(α)dα +
∑

k

yk

∫ 1

0

Φ−1
gk

(α)dα

+
∑

i

∑

j

uij

(∫ 1

0

Φ−1
ρi

(α)dα +

∫ 1

0

Φ−1
cij

(α)dα

)

+
∑

j

∑

k

qjk

(∫ 1

0

Φ−1
σk

(α)dα +

∫ 1

0

Φ−1
ajk

(α)dα

)

+
∑

k

∑

l

vkl

(∫ 1

0

Φ−1
βl

(α)dα +

∫ 1

0

Φ−1
bkl

(α)dα

)

+
∑

k

∑

m

wkm

(∫ 1

0

Φ−1
τm(α)dα +

∫ 1

0

Φ−1
hkm

(α)dα

)
(20)

The theorem is proved.

Theorem 4 The chance-constrained model can be converted into the following model

equivalently:

lexmin{d+
1 , d

+
2 }

subject to:

Ψ−1
W1

(α) − d+1 − C ≤ 0

W2 − d+2 −E ≤ 0

Φ−1
dj

(α1) ≤
∑

i

uij, ∀j

Φ−1
dj

(α2)Φ
−1
rj

(α2) ≤
∑

k

qjk, ∀j
∑

j

uij ≤ xiΦ
−1
πi

(1 − α3), ∀i
∑

j

qjk ≤ ykΦ
−1
ηk

(1 − α4), ∀k
∑

k

vkl ≤ Φ−1
δl

(1 − α5), ∀l
∑

k

wkm ≤ Φ−1
ςm (1 − α6), ∀m

d+1 , d
+
2 ≥ 0,

xi, yk ∈ {0, 1}, ∀i, k
uij, qjk, vkl, wkm ≥ 0, ∀i, j, k, l,m
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where Ψ−1
f and Φ−1

f denote the inverse uncertainty distributions.

Proof: According to the definition, it yields

M{W1 − d+1 − C ≤ 0} ≥ α (21)

is equivalent to

Ψ−1
W1

(α) − d+1 − C ≤ 0, (22)

where

Ψ−1
W1

(α) =
∑

i

xiΦ
−1
fi

(α) +
∑

k

ykΦ
−1
gk

(α)

+
∑

i

∑

j

uij[Φ
−1
ρi

(α) + Φ−1
cij

(α)]

+
∑

j

∑

k

qjk[Φ
−1
σk

(α) + Φ−1
ajk

(α)]

+
∑

k

∑

l

vkl[Φ
−1
βl

(α) + Φ−1
bkl

(α)]

+
∑

k

∑

m

wkm[Φ−1
τm(α) + Φ−1

hkm
(α)]. (23)

According to the definition of uncertain distribution, it yields

M

{
dj ≤

∑

i

uij

}
= Φ

(∑

i

uij

)
≥ α1. (24)

Take inverse distribution on both sides, it yields

Φ−1
dj

(α1) ≤
∑

i

uij. (25)

According to the inverse distribution property of product of uncertain variables Liu

(2007),

M

{
djrj ≤

∑

k

qjk

}
≥ α2 (26)

is equivalent to

Φ−1
dj

(α2)Φ
−1
rj

(α2) ≤
∑

k

qjk. (27)

Because

M

{∑

j

uij ≤ xiπi

}
= 1 −M

{
xiπi <

∑

j

uij

}
, (28)
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then

M

{∑

j

uij ≤ xiπi

}
≥ α3 (29)

is equivalent to

M

{
xiπi <

∑

j

uij

}
= Φ

(∑

j

uij

)
≤ 1 − α3. (30)

Take inverse distribution on both sides, it yields

∑

j

uij ≤ xiΦ
−1
πi

(1 − α3). (31)

Likewise, the equivalent forms of other constraints can be obtained.

The theorem is proved.

5 Numerical experiments

To assess the performance of the proposed mathematical models, numerical experiments

are performed. LINGO 11.0 will be used in the examples to solve the supply chain network

models.

A button battery supply chain network involving 15 customers, 6 candidate locations

for opening new manufactories, 10 candidate locations for collection centers, 4 metal and

plastic recycling centers is considered. The demands and return percentages are list in

Table 1. The costs of opening manufactories and collection centers are list in Tables 2-3.

Assume that all uncertain variables follow the zigzag distribution.

Table 1: The demands and return percentages

Customer Demand Return percentage

1 (250, 270, 290) (0.55, 0.75, 0.95)

2 (230, 260, 280) (0.65, 0.7, 0.85)

3 (180, 210, 260) (0.5, 0.7, 0.8)

4 (220, 250, 270) (0.55, 0.75, 0.85)

5 (100, 110, 130) (0.45, 0.65, 0.75)

6 (90, 105, 150) (0.6, 0.7, 0.8)

7 (85, 95, 105) (0.5, 0.65, 0.85)

8 (50, 70, 90) (0.55, 0.7, 0.75)

9 (130, 150, 160) (0.65, 0.75, 0.8)

10 (300, 320, 330) (0.5, 0.7, 0.8)

11 (150, 180, 210) (0.5, 0.65, 0.85)
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12 (120, 130, 140) (0.55, 0.75, 0.85)

13 (190, 200, 210) (0.45, 0.65, 0.75)

14 (100, 105, 110) (0.65, 0.7, 0.85)

15 (60, 80, 100) (0.55, 0.75, 0.95)

Table 2: The fixed costs and capacities of manufactories

Location Fixed cost Capacity

1 (120000, 150000, 180000) (2000, 2200, 2400)

2 (150000, 160000, 170000) (1750, 1900, 2050)

3 (130000, 150000, 180000) (1800, 2000, 2200)

4 (145000, 150000, 165000) (1650, 1800, 2000)

5 (135000, 140000, 155000) (1900, 2100, 2300)

6 (155000, 165000, 175000) (2100, 2300, 2500)

Table 3: The fixed costs and capacities of collection centers

Location Fixed cost Capacity

1 (15000, 16000, 18000) (2300, 2400, 2500)

2 (15500, 17000, 19000) (2350, 2450, 2550)

3 (17000, 18000, 20000) (2200, 2300, 2400)

4 (16000, 18000, 19000) (2500, 2600, 2700)

5 (17500, 18500, 19500) (2250, 2300, 2500)

6 (17000, 19000, 20000) (2400, 2500, 2600)

7 (18500, 19500, 20000) (2500, 2650, 2700)

8 (17000, 17500, 18500) (2250, 2450, 2550)

9 (17500, 18000, 19500) (2100, 2200, 2500)

10 (18000, 18500, 19000) (2400, 2600, 2700)

cij ∼ Z(30, 40, 50), ajk ∼ Z(35, 45, 55), bkl ∼ Z(25, 30, 35), hkm ∼ Z(20, 25, 30),

ρi ∼ Z(12, 15, 18), σk ∼ Z(3, 4, 5), βl ∼ Z(8, 9, 10), τm ∼ Z(5, 6, 7),

δl ∼ Z(2000, 2200, 2400), ςm ∼ Z(2100, 2150, 2200),

eipro = 5, eitpcij = 3, eitccjk = 2, eitcskl = 3, eitcpkm = 2, eicol = 4, eisrc = 1, eiprc = 2.
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5.1 Case study of the expected value model

Take preset values C = 810000 and E = 31025. The expected Value model is as follows.

lexmin{d+
1 , d

+
2 }

subject to:

E[W1] + d−1 − d+1 = 810000

W2 + d−2 − d+2 = 31025
∫ 1

0

Φ−1
dj

(α)dα ≤
6∑

i=1

uij, j = 1, 2, · · · , 15

∫ 1

0

Φ−1
dj

(α)Φ−1
rj

(α)dα ≤
10∑

k=1

qjk, j = 1, 2, · · · , 15

15∑

j=1

uij ≤ xi

∫ 1

0

Φ−1
πi

(α)dα, i = 1, 2, · · · , 6

15∑

j=1

qjk ≤ yk

∫ 1

0

Φ−1
ηk

(α)dα, k = 1, 2, · · · , 10

10∑

k=1

vkl ≤
∫ 1

0

Φ−1
δl

(α)dα, l = 1, 2, · · · , 4

10∑

k=1

wkm ≤
∫ 1

0

Φ−1
ςm (α)dα, m = 1, 2, · · · , 4

d−1 , d
+
1 , d

−
2 , d

+
2 ≥ 0,

xi, yk ∈ {0, 1}, i = 1, 2, · · · , 6; k = 1, 2, · · · , 10

uij, qjk, vkl, wkm ≥ 0, i = 1, 2, · · · , 6; j = 1, 2, · · · , 15; k = 1, 2, · · · , 10; l = 1, 2, · · · , 4;

m = 1, 2, · · · , 4.

The objective function can be rewritten as

minP1d
+
1 + P2d

+
2 ,

where P1 and P2 denote weight factors, P1 = 0.9, P2 = 0.1. The optimal solution

(0,1.8722) of the objective function is obtained by Lingo, and the corresponding deci-

sion variables x1 = x5 = x6 = 1, x2 = x3 = x4 = 0, yk = 1, k = 1, 2, · · · , 10. This result

suggests that the first aim can be achieved, while the second aim cannot be achieved.

After adjusting the factors, the results are reported in Table 4. As the environmental im-

pact is emphasized, the total cost of the supply chain network will increase. This results

remind decision makers to make the most reasonable decision after weighing the pros and

cons.
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Table 4: The relationship between weight factors and the optimal solution (expected value

model)

P1 P2 Optimal solution

0.9 0.1 (0, 1.8722)

0.7 0.3 (217, 1.3116)

0.5 0.5 (401, 0.9803)

To further explore the feasibility of the proposed models, the problem is investigated

in a large scale. P1 = 0.9, P2 = 0.1. A part of the uncertain variables are randomly

generated in table 5. Suppose the number of potential factories is 8, 10, 15, 20, 30, the

number of potential collection centers is 12, 15, 20, 25, 30, and the number of recycling

centers is 8.

Table 5: Ranges of the uncertain variables

dj rj fi πi gk ηk

[50,300] [0.45,0.95] [120000,180000] [1600,2500] [15000,20000] [2100,2700]

Table 6: Large-scale cases (the expected value model)

No Mfy(opened) Collection center(opened) (C,E) (d+1 , d
+
2 )

1 4 12 (9.0E+5,3.3E+4) (302,50.343)

2 6 13 (11.0E+5,3.6E+4) (455,60.253)

3 9 17 (16.0E+5,4.0E+4) (627,80.766)

4 14 20 (20.0E+5,4.5E+4) (925,125.22)

5 16 22 (26.0E+5,5.3E+4) (1223,377.83)

As can be seen from Table 6, the larger the scale, the greater the deviation.

5.2 Case study of the chance-constrained model

Assume that the decision maker should determine a budget target under confidence level

α = 0.9, αi = 0.9, i = 1, 2, · · · , 6.

lexmin{d+
1 , d

+
2 }

subject to:

Ψ−1
W1

(0.9) − 810000 ≤ d+1

W2 − 31025 ≤ d+2
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Φ−1
dj

(0.9) ≤
∑

i

uij, j = 1, 2, · · · , 15

Φ−1
dj

(0.9)Φ−1
rj

(0.9) ≤
∑

k

qjk, j = 1, 2, · · · , 15

∑

j

uij ≤ xiΦ
−1
πi

(0.1), i = 1, 2, · · · , 6
∑

j

qjk ≤ ykΦ
−1
ηk

(0.1), k = 1, 2, · · · , 10

∑

k

vkl ≤ Φ−1
δl

(0.1), l = 1, 2, · · · , 4
∑

k

wkm ≤ Φ−1
ςm (0.1), m = 1, 2, · · · , 4

d+1 , d
+
2 ≥ 0,

xi, yk ∈ {0, 1}, i = 1, 2, · · · , 6; k = 1, 2, · · · , 10

uij, qjk, vkl, wkm ≥ 0, i = 1, 2, · · · , 6; j = 1, 2, · · · , 15; k = 1, 2, · · · , 10; l = 1, 2, · · · , 4;

m = 1, 2, · · · , 4.

Similar to the above, the objective function can be rewritten as

minP1d
+
1 + P2d

+
2 ,

where P1 and P2 are weight factors, P1 = 0.9, P2 = 0.1. The optimal solution (0,19.22274)

of the objective function is gotten by Lingo, the corresponding decision variables x1 =

x3 = 1, x2 = x4 = x5 = x6 = 0, y1 = y2 = y3 = y4 = y5 = y7 = y8 = y10 = 1, y6 = y9 = 0.

This result reveals that the first aim can be achieved, while the second aim cannot be

achieved. Similar to the expected value model, the total costs of the supply chain network

will deviate significantly from the predetermined value when the environmental impact is

taken seriously.

Table 7: The relationship between weight factors and the optimal solution (chance-

constrained model)

P1 P2 Optimal solution

0.9 0.1 (0, 19.22274)

0.7 0.3 (569, 16.0495)

0.5 0.5 (933, 10.75661)

Table 8: Large-scale cases (the chance-constrained model)

No Mfy(opened) Collection center(opened) (C,E) (d+1 , d
+
2 )
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1 2 9 (9.0E+5,3.3E+4) (583,82.209)

2 5 12 (11.0E+5,3.6E+4) (747,105.22)

3 6 13 (16.0E+5,4.0E+4) (961,139.63)

4 11 17 (20.0E+5,4.5E+4) (1275,163.82)

5 14 17 (26.0E+5,5.3E+4) (1560,445.33)

The results from large-scale cases for the chance-constrained model are list in Table 8.

To investigate the sensitivity of the confidence levels α and αi, i = 1, 2, · · · , 6 in the

chance-constrained model, another supplementary test is performed and the results are

shown in Fig.1. When the sensitivity of a confidence level is tested, other confidence

levels are taken as 0.9. The step size of the confidence level is taken as 0.2. Fig.1

implies that the objective value is nondecreasing with respect to the confidence level α,

αi, i = 1, 2, · · · , 6. The result of the sensitivity analysis allows decision makers to make the

most reasonable judgment based on the degree of understanding of actual problems in an

uncertain environment. In other words, when the decision maker handles the uncertainty

at a higher confidence level, the environmental load also increases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
15

15.5

16

16.5

17

17.5

18

18.5

19

19.5

Confidence levels

d
+ 2

 

 

α
α

1

α
2

α
3

α
4

α
5

α
6

Figure 1: The sensitivity analysis of confidence levels

The results of two numerical examples also reveal the conflict between the two objective

functions (i.e., total cost minimization and total environmental impact minimization),

because the reduction of total environmental impact leads to the increase of total cost,

and vice versa. The expect value model tends to decentralize networks to minimize the

overall environmental impact. The environmental impact of decentralized networks is
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reduced, more manufactories are opened than centralized structures, so there are more or

possibly shorter paths for transporting products from source to destination. Less number

of manufactories and collection centers is opened in the chance-constrained model. This

suggests that the chance-constrained model tends to centralize supply chain network.

Enterprises and decision makers can use these models as quantitative and transparent

indicators to demonstrate their efforts to protect the environment to stakeholders. In

the proposed solution, the decision maker can adjust the scope of the goal throughout

the process. Therefore, the whole Pareto optimal solution from a rough hypothesis (For

example, the values of C and E) can be obtained. However, in further solving, the decision

maker may be interested in adjusting initial assumptions.

The expected value model and chance-constrained model are used to cope with the

uncertain closed-loop supply chain network. The results of the examples suggest that there

is a relative difference between the two models. This is primarily because the two models

are built from different perspectives, thereby resulting in different optimal solutions. In

fact, which model is more suitable is determined by the preference of the decision maker

and the mastery of the actual situation.

6 Conclusions

Environmental protection has become an important issue in recent years. An uncertain

environmental supply chain network for button batteries was investigated in this paper.

In addition to considering the environment effect of the supply chain, it also combines

the design of closed-loop supply chain. To make the research more realistic, the demand,

cost and capacity were considered uncertain variables owing to lack of observed data.

To address these empirical data in the problem, two novel multi-objective mixed integer

programming models that rely on different criteria were developed. Besides, positive and

negative deviations were introduced into the objective functions. A method based on

LCA was proposed to evaluate the environment effects. The equivalent forms of these

models were obtained in accordance with the uncertainty theory. Numerical experiments

suggested that the expected value model tends to be decentralized while the chance-

constrained model tends to be centralized. The effectiveness and efficiency of the proposed

models and solution method was verified.

Furthermore, it is an interesting research to develop some efficient heuristic algorithms

to solve the problem in large scale. Besides, other factors affected by human activities in

the supply chain network can also be considered uncertain variables, and this modeling

idea may also be suitable for solving other supply chain network design problems.
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