
Journal Pre-proof

Stochastic optimization of disruption-driven supply chain network design with a new
resilience metric

Mohammad Fattahi, Kannan Govindan, Reza Maihami

PII: S0925-5273(20)30140-7

DOI: https://doi.org/10.1016/j.ijpe.2020.107755

Reference: PROECO 107755

To appear in: International Journal of Production Economics

Received Date: 28 September 2019

Revised Date: 1 April 2020

Accepted Date: 2 April 2020

Please cite this article as: Fattahi, M., Govindan, K., Maihami, R., Stochastic optimization of disruption-
driven supply chain network design with a new resilience metric, International Journal of Production
Economics (2020), doi: https://doi.org/10.1016/j.ijpe.2020.107755.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.ijpe.2020.107755
https://doi.org/10.1016/j.ijpe.2020.107755


Stochastic optimization of disruption-driven supply chain network design with a new resilience 
metric 

 

Mohammad Fattahia, Kannan Govindan b,c,1, Reza Maihamid 

a Department of Industrial Engineering and Management, Shahrood University of Technology, Shahrood, Iran 

 
bChina Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai 201306, China 

 
cCentre for Sustainable Supply Chain Engineering, Department of Technology and Innovation, Danish Institute 

for Advanced Study, University of Southern Denmark, Odense M, 5230, Denmark 
 

d Department of Business, School of Business and Leadership, Our Lady of the Lake University, Houston, TX 

77067, USA 

 

 

 

 

                                                   
1 Corresponding author. China Institute of FTZ Supply Chain, Shanghai Maritime University, Shanghai, 201306, 

China (kgov@iti.sdu.dk) 



1 

 

Stochastic optimization of disruption-driven supply chain network design with a new resilience 
metric 

Abstract: The supply chain (SC) ability to return quickly and effectively to its initial 

condition or even a more desirable state after a disruption is critically important, and is 

defined as SC resilience. Nevertheless, it has not been sufficiently quantified in the 

related literature. This study provides a new metric to quantify the SC resilience by using 

the stochastic programming. Our metric measures the expected value of the SC’s cost 

increase due to a possible disruption event during its recovery period. Based on this 

measure, we propose a two-stage stochastic program for the supply chain network design 

under disruption events that optimizes location, allocation, inventory and order-size 

decisions. The stochastic program is formulated using quadratic conic optimization, and 

the sample average approximation (SAA) method is employed to handle the large number 

of disruption scenarios. A comprehensive computational study is carried out to highlight 

the applicability of the presented metric, the computational tractability of the stochastic 

program, and the performance of the SAA. Several key managerial and practical insights 

are gained based on the computational results. This new metric captures the time and cost 

of the SC’s recovery after disruption events contrary to most of previous studies and main 

impacts of these two aspects on design decisions are highlighted. Further, it is shown 

computationally that the increase of SC’s capacity is not a suitable strategy for designing 

resilient SCs in some business environments. 

Keywords: Resilience metrics, Supply chain network design, Stochastic programming, Conic mixed-
integer program. 

1- Introduction 
Resilience is the ability of a system or firm to recover after a disruption event effectively and quickly, 

and in supply chain management, this ability is affected by SC’s design decisions and resources. As 

emphasized by Chopra & Sodhi (2014), Simchi-Levi et al. (2014), and, Ivanov et al. (2016) from 

2000 to 2015, disruption events such as economic crises, earthquakes, terrorist attacks, and strikes 

occurred in SCs in more frequency and severity, and hence such an ability is crucial for SCs. The 

Business Continuity Institute reports that one-third of 408 surveyed companies experienced at least 

one SC disruption in 2017 and one-fifth of the corresponding disrupted companies stated cumulative 

losses of at least one million euros because of disruption events (Alcantara et al., 2017). Recently, 

quantitative models have received significant attention to optimize design and planning decisions in 

SCs with consideration of disruption events, and many companies such as IBM and Ford Motor used 

these methods (Simchi-Levi et al., 2014; Lu et al., 2015; Hosseini et al., 2019). 
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A resilient SC can come back to its original state or even a more desirable condition after being 

disrupted (Govindan et al. 2017). To have a resilient SC, based on Tomlin (2006), a SC can take 

some pre-disruption actions, as mitigation strategies, to reduce its corresponding risks. On the other 

hand, a SC can device some actions as contingency strategies to quickly and effectively return to its 

initial state after a disruption’s occurrence. Several studies examined these strategies in designing SC 

networks (see e.g., Cui et al. 2010; Qi et al. 2010; Mak and Shen 2012; Fattahi et al. 2017; Fattahi 

2017; Ivanov et al. 2017). These studies concluded that more investment on SC reserves such as 

backup suppliers and insurance capacity increases the SC’s ability in performing well after disruption 

events. In compared to the mitigation plans, a few papers developed contingency plans to recover a 

SC after disruption events. Risk management with contingency plans is investigated by Kamalahmadi 

and Parast (2016). 

Despite a rich literature on the SC planning with consideration of disruption risks, measuring the SC 

resilience is still a questionable task (Pavlov et al., 2017; Hosseini and Ivanov, 2019). In other word, 

most of quantitative methods incorporate robustness measures into the mathematical models to 

maintain the SC original condition and do not consider the SC recovery after happening a disruption 

(Behzadi et al., 2018; Ivanov and Sokolov, 2019). In terms of optimization techniques for the SC 

network design, two main groups of studies can be identified for modeling the SC uncertainties 

induced by disruption events. In the first group (e.g., Cui et al. 2010; Qi et al. 2010; Azad et al. 

2013), because of disruption events, a pre-specified failure probability for a facility/transportation 

link is considered, and in the second group (e.g., Mak and Shen, 2012; Klibi, and Martel, 2012; 

Fattahi et al., 2017; Fattahi and Govindan, 2018), the uncertainty related to the disruption impacts on 

a SC is modeled by a set of discrete scenarios, and stochastic programming approaches are employed.  

Generally, in order to measure the SC resilience, two main aspects including (1) the time of SC 

recovery, (2) the SC performance loss because of a disruption event should be taken into account. 

Further, it is a challenging task to incorporate such a resilience metric in the SC planning. The 

importance of shortening the recovery time after disruption events is highlighted by Sodhi and Tang 

(2009), and to quantify a resilience metric, a best performance is compared with the resilient 

solutions after a disruption occurrence in Saghafian and Van Oyen (2016) and Zobel (2011). 

Accordingly, this paper answers two main research questions: (1) How can a resilience metric be 

quantified based on the SC recovery time and its performance loss during recovery time? (2) How 

can a SC under disruption events be designed by consideration of a resilience metric?  

To answer the above-mentioned questions, this paper introduces a new resilience metric for the SC 

planning as the expected increase of SC operational costs because of a disruption event during its 

recovery time. To incorporate the proposed resilience metric into the supply chain network design 
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(SCND) problem, a novel two-stage stochastic program is developed. In the first stage of the 

stochastic program, we optimize location, allocation, capacity, inventory, and order-size decisions of 

a SC system under a normal (non-disrupted) condition in which customers’ demands follow a normal 

distribution. In the second stage, when disrupted facilities are disclosed because of a disruption event, 

the operational decisions should be determined over the recovery time, and allocation, inventory, and 

order-size decisions can be altered. Our proposed approach captures two main facets of the SC 

resilience consist of the recovery time and the performance loss during its recovery, and the 

stochastic program allows managers to quantify the impact of a disruption on the SC’s operational 

performance.  

Our optimization problem is firstly formulated as a mixed integer non-linear programming (MINLP) 

model and then, is reformulated as a conic quadratic mixed-integer program (CQMIP), which can be 

directly solved by using standard optimization software packages. On other hand, a large number of 

disruption scenarios make the stochastic program computationally expensive, and hence we use the 

SAA method to address this issue through frequently solving the optimization problem with a smaller 

set of scenarios. 

The organization of this paper is as follows: In Section (2), a literature review is represented. The 

stochastic program and resilience metric are proposed in Section (3). In Section (4), the SAA method 

and scenario generation approach are represented. In Section (5), we present numerical experiments. 

Section (6) contains derived managerial implications. Finally, Section (7) contains conclusions and 

future research directions. 

2- Literature Review 
Recently, the SCND subject to disruptive events has gained much attention in both academia and 

practice. Various optimization models are proposed to address this problem. Lately, Snyder et al. 

(2016) presented a survey study related to the operations research and management science models 

for dealing with disruption events in SCs. Other survey studies have also focused on specific aspects 

of SCM under disruptions (e.g. Tang 2006; Klibi et al. 2010; Heckmann et al. 2015; Govindan et al. 

2017; Dolgui et al. 2018).  

A large part of studies in the corresponding area proposed an optimization model for designing a 

robust SC network that remains functional after a disruption event. Several studies considered a pre-

determined probability for disruption of a facility and/or transportation link, and their models are also 

called reliable SCND (see e.g. Qi et al., 2010; Cui et al., 2010; Azad et al., 2013). Regarding facility 

disruption in some of these models, such as Cui et al. 2010, a contingency plan is proposed in which 

more than one facility are assigned to customers, and if a facility is disrupted, its corresponding 

customers should be served by other non-disrupted facilities. These studies fail to capture correlated 

and non-correlated multiple disruptive events. Further, the ripple effect that has been recently defined 
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in the SC disruption literature (Dolgui et al., 2018; Pavlov et al., 2019) cannot be taken into account 

by this modeling approach. In particular, by the ripple effect analysis, when a disruption event 

happens at a facility or transportation link, we can consider further possible interruptions in the SC 

network. Recently, by using the SC structural dynamics control and ripple effect analysis, a few 

studies presented pre-disruption and recovery planning for SCs (Dolgui et al., 2018). 

Scenario-based stochastic programming approaches are also popular in this area in which the 

uncertainty induced by natural or man-made disruptive events are modeled via discrete scenarios (see 

e.g., Mak and Shen, 2012; Klibi and Martel 2012; Ahmadi-Javid and Seddighi, 2013; Fattahi et al., 

2017). Furthermore, weighted mean-risk objectives are employed in the stochastic programming 

approach to mitigate the disruption risks, and the used well-known risk measures are: the CVaR 

(Ahmadi-Javid and Seddighi, 2013) and the absolute deviation (Sadghiani et al., 2015). Although 

scenario-based approaches are relatively flexible to capture the induced SC uncertainties by 

disruption events, the detection of disruption scenarios and estimating their probability are 

challenging tasks. A few papers such as Hosseini, Morshedlou et al. (2019) and Fattahi et al. (2017) 

addressed these issues in using stochastic programming approaches for the SC planning under 

disruption events.  

In the related literature, most of operations research models do not consider the recovery stage of a 

disrupted SC network and focus on pre-disruption SC planning that maintains the SC functionality 

after a disruption event. In other word, the contingency strategies are rarely addressed in compared 

with the mitigation ones. In the related area, as emphasized by Tomlin (2009), demand switching and 

contingent sourcing are the main contingency strategies. In the demand switching strategy, the SC 

offers incentives for a customer to buy another product if her preferred product is not available. In the 

contingent sourcing strategy, the SC uses a back-up supplier after a failure at its normal one. 

Although, the contingent sourcing is applied in Fattahi et al. (2017) and Cui et al. (2010), we could 

not find any paper that uses demand switching strategy for the SCND under disruption risks. 

2-1- Resilience metrics 

Based on Melnyk et al. (2014), currently, the resilience is the heart of SCM thinking. However, we 

could not find any unique definition for the resilience in the literature that presents a clear 

understanding of resilient SCs so that the robustness and resilience are the same in a part of the 

literature. In accordance with our definition, a few studies presented quantitative resilience metrics. 

The ratio between actual and promised lead time, called lead time ratio, is considered as a resilience 

metric in Carvalho et al. (2012). To improve the SC resilience metric, they used a simulation 

approach that allows the observation of SC behavior under various SC design strategies. Francis and 

Bekera (2014) and Losada et al. (2012) quantified the SC resilience based on the required time for 
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the SC recovery after a disruption occurrence. In Hishamuddin et al. (2013), for a lot sizing problem 

in a two-echelon serial SC under transportation disruption, the SC cost during its recovery time after 

a disruption occurrence is considered as the resilience metric. Zobel (2011) defined a resilience 

metric based on the reduced system's infrastructure quality in recovery time after a disruption 

occurrence. Saghafian and Van Oyen (2016) modeled the dynamics of disruptions as Markov chains 

and taken into account the disruption costs in terms of the inventory backorders over the supply 

shortfall. Recently, Hosseini and Ivanov (2019) presented a SC resilience metric by considering the 

ripple effect in both disruption and recovery stages. In this study, by a Bayesian network and the 

consideration of disruption propagation, the SC resilience is introduced as a function of supplier 

recoverability and vulnerability. 

Based on the presented literature review and the existing survey studies (see Tang 2006; Klibi et al. 

2010; Heckmann et al. 2015; Govindan et al. 2017; Dolgui et al. 2018) in the related areas, there 

exists the lack of practical resilience metrics in designing SC network. The existing metrics are not 

appropriate to be embedded into optimization models for the SCND. In addition, to introduce a SC 

resilience metric, it is essential to consider both the SC recovery time and its performance loss during 

its recovery. In this study, we attempt to present such a resilience metric, and to the best of our 

knowledge, a tractable stochastic program is proposed for the first time that optimizes the design 

decisions with consideration of this resilience metric. Further, a large number of disruption scenarios 

are handled by the SAA method in which the probability of scenarios should not be estimated. 

3- Optimization Model 

In this paper, a SCND problem under disruption events is formulated as a two-stage stochastic 

program. To consider the impact of disruption events on the SC performance, we assume that a 

disruption event happens for the supply chain network, and after its occurrence some of facilities will 

be disrupted. SC decisions should be made under normal condition without any disrupted facility as 

the first stage decisions. However, after a disruption occurrence, the availability of SC facilities 

would be realized at the second stage, and corrective SC decisions have to be determined to serve the 

customers.  

In the SC network, multiple products should be forwarded to geographically dispersed customer 

zones from distribution centers (DCs). The DCs have the capacity limitation in terms of handling 

products. Each customer’s demand follows a normal distribution, and the mean and variance related 

to the normal distribution of customers’ demands are known. In the presented formulation, (1) 

location and capacity of DCs, (2) inventory decisions for DCs, and (3) allocation decisions have to be 

made at the time of network design before disruption events. After occurrence of a disruption event, 
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the SC can alter the allocation and inventory decisions to fulfill the customers’ demands. Further, it is 

possible for the SC after disruption events to not serve some customers. 

Our goal is to minimize the total yearly SC cost under normal condition as well as the expected 

increase cost related to the DCs’ disruption. The expected increase cost related to a disruption event 

is introduced as a new metric to measure the resiliency of a SC.  

Other main assumptions are listed as follows: 

� A set of candidate locations are assumed for the DCs whose locations are to be obtained in the 

design phase.  

� For the establishment of DCs, a set of capacity levels are specified, and the SC pays a fixed 

location cost for activating a DC with a capacity level. 

� Each DC i follows an inventory policy ( ),ip ipQ r  for each product p. In this policy, by using an 

EOQ model, whenever the inventory level of product p at DC i falls to or bellow a reorder level 

ipr , the DC places an order for 
ipQ  units from a supplier. In this approach, the reorder point 

(parameter 
ipr ) and safety stock, will be obtained to guarantee that the probability of stock-out at 

the DC is less than or equal to a constant value. 

� Each customer should be allocated to only one open DC for receiving a product.  

In this study, if a disruption event occurs, some unreliable DCs will be unavailable during the 

corresponding recovery time and other non-disrupted DCs have to fulfill the customers’ demands. A 

set of discrete scenarios is used to model the impacts of disruptions on a SC network that is denoted 

by K. Set ( )I k  contains the disrupted DCs related to scenario k K∈ , and the corresponding recovery 

time ( )T k  and  recovery cost  can be approximated based on the disrupted DCs in scenario k. As 

shown in Fig. 1, after realization of scenario k K∈ , the operational cost of SC will be increased in 

compared with the normal condition of SC in which all DCs are available. The increase of the SC 

cost is denoted by ( )IC k . As a new metric for the SC resilience, the expected increase cost related to 

a disruption event can be obtained by our formulation. 
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Fig. 1. The concept of defined resilience metric. 

The used notations for presenting the optimization problem are reported in Table 1.  

Table 1. The used notations in the mathematical formulation. 
Sets 
J  Set of customers ( )j J∈ , 

I  Set of potential locations for DCs including reliable (IR ) and unreliable DCs (IU ), ( ), ,i i I IR IU I′∈ ∪ = , 

P  Set of products ( )p P∈ , 

N  Set of capacity levels for the establishment of DCs ( )n N∈ , 

K  Set of scenarios ( )k K∈ , 

( )I k  Set of disrupted DCs in scenario k, ( )( )I k IU⊂  

Parameters 

,i nf  The annualized fixed cost related to opening DC i with capacity level n. 

,i no  The yearly fixed cost of operating DC i with capacity level n, 

, ,i j pe  The transportation cost for forwarding one unit of product p from DC i to customer j, 

,i nb  The handling capacity over one year with level n for DC i, 

iph  Inventory holding cost per unit of product p during each year at DC i, 

ipd  The fixed cost per order for product p placed to the supplier by DC i, 

ipLt  Lead time of DC i for product p as a fraction of one year. 

ipg  The fixed cost per shipment of product p from supplier to DC i, 

ips  The shipment cost for per unit of product p from the supplier to DC i, 

pl  The lost sale cost for per unit of product p after a disruption event, 

jpµ  Mean of yearly demand of customer j for product p, 

jpσ  Standard deviation of yearly demand of customer j for product p, 
pα  Desired percentage of customer orders for product p that should be satisfied,  

pzα  Left α-percentile of standard normal random variable Z, i.e. ( )p

pp Z z≤ =α α , 

( )T k  The SC recovery time after a disruption event occurrence in scenario k, 

rc  The recovery cost related to per unit of disrupted capacity, 

( )kπ  The occurrence probability of scenario k by assuming that a disruption event will happen for the SC, 

( )i kϕ  The binary indicator parameter: ( ) ( )
( )

1

0
i

if i I k
k

if i I k
ϕ

 ∉= 
∈

 

β  Weight factor associated with the resilience metric. 
Decision variables 

,i nX  1 if DC i with capacity level n is established, 

, ,i j pY  1 if customer j is assigned to DC i for product p under normal condition, 

( ), ,i j pY k  1 if customer j is assigned to DC i for product p in scenario k, 

ipQ  The order size for product p at DC i under normal condition, 

( )ipQ k  The order size for product p at DC i in scenario k, 

OC  The yearly operational cost of SC under normal condition, 
( )IC k  The cost increase related to the SC operation during the recovery time of the SC in scenario k. 
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3-1- Mixed integer nonlinear programming formulation: 

In the proposed two-stage stochastic program, we minimize the total SC cost over one year in the 

first stage and the expected increase cost because of a disruption event in the second stage. Our 

stochastic program is formulated as an MINLP. It is worth noting that some parameters, such as  
,i nf  

and 
,i nb , are defined based on the SC planning over one year. 

Based on the used inventory policy at DCs in this study, the value of reorder point (ipr ) and safety 

stock is a function of the assignment of customers to DCs. Therefore, the parameters related to the 

inventory policy at each DC can be obtained in according to the optimal assignment and order size 

decisions after solving the optimization model (Daskin et al., 2002).   

Further, it should be mentioned that a virtual un-capacitated DC, indexed by 0i , is considered, and in 

the case of not serving some customers after the realization of a disruption event, the SC should 

assign them to this virtual DC. 

The objective function includes three parts: 1- the fixed cost related to the SC design, 2- the yearly 

operational cost of SC, 3- the expected increase cost related to DCs’ disruption. 

The annualized investment cost of opening DCs, given as , , .i n i n
i I n N

f X
∈ ∈
∑ ∑  Therefore, parameter 

,i nf  is 

the annualized fixed cost related to opening DCs that can be approximated based on the project life 

(in years) and the corresponding interest rate (Fattahi and Govindan, 2018). 

The yearly operational cost of SC can be obtained by summation of the following components: 

1- The fixed operating cost of DCs in one year, given as , , .i n i n
i I n N

o X
∈ ∈
∑ ∑ , 

2- At each DC, the variable operational cost contains the fixed cost of placing orders, the holding of 

working inventory cost, the safety stock cost, and the shipment cost from suppliers to DCs. Where 

,i pQ  represents the order size for product p at DC i, the fixed cost of placing orders and holding 

cost of working inventory for product p are 
, , ,

,

,

j p i j p
j J

i p

i p

Y

d
Q

µ
∈
∑

 and 
2

,

,

i p

i p

Q
h , respectively. Since the 

optimal value of 
ipr  is 

2
, , , ,p i p j p i j p

j J

z Lt Yα σ
∈
∑ , the safety stock cost is 2

, , , , ,pi p i p j p i j p
j J

h z Lt Yα σ
∈
∑ . 

Further, the expected shipment cost from supplier to DC i for product p is 

, , ,

, , , , ,

,

j p i j p
j J

i p j p i j p i p
j J i p

Y

s Y g
Q

µ
µ ∈

∈
+

∑
∑  that includes fixed and variable shipment costs. 

3- For product p, the shipment cost from DCs to customers, given as , , , , ,i j p j p i j p
i I j J

e Yµ
∈ ∈
∑ ∑ . 

The two-stage stochastic program is as follows: 
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( ) ( ) ( )2

2

, , , , , , , , , , , , ,

, , ,
,

, , , , , ,

,

min

,p

i n i n i n i n i j p j p i j p i p j p i j p
i I n N i I n N i I j J p P i I p P j J

j p i j p
j J i p

ip ip i p i p i p j p i j p
i I p P i I p P i I p P j J k Ki p

f X o X e Y s Y

Y
Q

d g h h z Lt Y k IC k
Q α

µ µ

µ
σ β π

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

 + + +  
 

+ + + + + ×

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑
∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

 

 

 

(1) 

1,. . i n
n N

s t X
∈

≤∑  ,i I∀ ∈  (2) 

1, , ,i j p
i I

Y
∈

=∑  , ,j J p P∀ ∈ ∀ ∈  (3) 

, , ,i j p i n
n N

Y X
∈

≤ ∑ , , , ,i I j J p P∀ ∈ ∀ ∈ ∀ ∈  (4) 

, , , , , ,j p i j p i n i n
p P j J n N

Y b Xµ
∈ ∈ ∈

≤∑ ∑ ∑  ,i I∀ ∈  (5) 

( ) 2

2

, , , , , , , , , , ,

, , ,
,

, , , , , , , ,

,

,p

i n i n i j p j p i j p i p j p i j p
i I n N i I j J p P i I p P j J

j p i j p
j J i p

i p i p i p i p i p j p i j p
i I p P i I p P i I p P j Ji p

OC o X e Y s Y

Y
Q

d g h h z Lt Y
Q α

µ µ

µ
σ

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈

∈ ∈ ∈ ∈ ∈ ∈ ∈

 = + +  
 

+ + + +

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑
∑ ∑ ∑ ∑ ∑ ∑ ∑

 

 

 

(6) 

{ }0 1, ,∈X Y ,  (7) 

0≥Q ,  (8) 

where IC(k) can be obtained as follows: 

( ) ( )( )

( )

( )
( ) ( )

( )
( )

( )
( )

( )2

1

2

, ,

, , , , , , , , , , ,
\

, , ,
,

, , ,

,

, , , , ,

min :

p

i i n i n
i I n N

i n i n i j p j p i j p i p j p i j p
i I I k n N i I j J p P i I p P j J

j p i j p
j J i p

i p i p i p
i I p P i I p Pi p

i p i p j p i j p

IC k rc k b X

o X e Y k s Y k

Y k
Q k

T k d g h
Q k

h z Lt Y k

∈ ∈

∈ ∈ ∈ ∈ ∈ ∈ ∈ ∈

∈

∈ ∈ ∈ ∈

= × −

 + +  
 

+ + + +

+

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑

∑
∑ ∑ ∑ ∑

α

ϕ

µ µ

µ

σ ( )
0, , ,p j p i j p

i I p P j J j J p P

l Y k OC
∈ ∈ ∈ ∈ ∈

 
 
 
 
 
 
 
 + − 
 
 

∑ ∑ ∑ ∑ ∑ µ

, 
(9) 

( )
( ) { }( )0

1, ,
\

. . ,i j p
i I I k i

s t Y k
∈ ∪

=∑  , ,j J p P∀ ∈ ∀ ∈  (10) 

( ) ( ), , , ,i j p i i n
n N

Y k k Xϕ
∈

≤ ∑  , , ,i I j J p P∀ ∈ ∀ ∈ ∀ ∈  (11) 

( ) ( ), , , , , ,j p i j p i i n i n
j J p P n N

Y k k b X
∈ ∈ ∈

≤∑ ∑ ∑µ ϕ  ,i I∀ ∈  (12) 

( ) { }0 1,k ∈Y ,  (13) 

( ) 0k ≥Q .  (14) 
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Based on constraints (2), if a DC is established, only one capacity level must be selected. Constraints 

(3) guarantee that customers should be allocated to only one DC for each product. Constraints (4) 

assure that customers can be allocated to a DC, if the DC is activated. Constraints (5) assure that each 

DC cannot handle the products more than its available handling capacity during each year. Relation 

(6) calculates the operational cost of the SC during one year under normal condition. Constraints (7) 

and (8) are integrality and non-negativity constraints, respectively in which the indices of decision 

variables are eliminated. 

After a disruption event, some DCs will be disrupted (unavailable), and the operational cost of the SC 

will be increased. By assuming ( )T k  as the recovery time of the SC in scenario k, the SC cost during 

the recovery time plus the corresponding cost of SC recovery is as follows: 

( )( ) ( )

( )
( ) ( )

( )
( )

( )
( )

( )2

1
2

, , , , , , , , , , ,
\

, , ,
,

, , , , ,

,

, , , , ,p

i n i n i j p j p i j p i p j p i j p
i I I k n N i I j J p P i I p P j J

j p i j p
j J i p

i i n i n i p i p i p
i I n N i I p P i I p Pi p

i p i p j p i j p
p P j J
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∑
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µ µ

µ
ϕ
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 + 
 
 

∑ ∑ ∑ µ

 , 

As a consequence, the increase cost of SC in scenario k can be obtained by relation (9). Further, 

based on our previous explanations, constrains (10)-(14) are obvious that are written for scenario k. 

3-2- An equivalent CQMIP model 

The general mathematical formulation of a conic quadratic mixed-integer program is as follows: 

0 02
1 2

min ,

. . , , ,.., ,

T

x X

T

i i i i

c x

s t A x b a x b i m

∈

′+ ≤ + =
 

where nc R∈  and x is the n-vector of decision variables, ( ){ }, : , ,p kX y y y Z y R p k n′ ′= ∈ ∈ + = , and 

the data are 0 0, , andi im n m n

i i i i
A R b R a R b R

×∈ ∈ ∈ ∈  for 1 2, , ..,i m′= . .  denotes the Euclidean norm 

and the constraints define the second-order cone. In recent years, there have been significant 

developments on solving CQMIP models, and commercial optimization software such as CPLEX can 

solve CQMIP models efficiently. In this section, based on an approach proposed by Atamtürk et al. 

(2012), the equivalent CQMIP of our two-stage stochastic program is developed. Atamtürk et al. 

(2012) have studied several types of joint facility location and inventory management problems with 

stochastic retailer demand that follows a normal distribution with mean µ  and variance 2σ . 

However, they did not consider the impact of disruption events, and their model is extended to a two-
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stage stochastic program under disruption events in which the proposed resilience metric is quantified 

and integrated. 

In the presented model (1)-(14), decision variables 
,i pQ  and ( ),i pQ k  have only appeared in the 

objective function and we can obtain their optimal values as follows: 

By assuming that ( )1 0Tβ− × >  in our problem, where ( ) ( )
k K

T k T kπ
∈

= ∑ , the objective function is 

convex in 0,i pQ >  and to determine the optimal value of  
,i pQ , the objective function’s derivative with 

respect to 
,i pQ  is equalized to zero as follows: 

( )( ) ( )2
1 1 0

2

, , ,
,

, ,

,

j p i j p
j J i p

i p i p

i p

Y
h

T d g T
Q

µ
β β∈− − × + + − × =

∑
. 

As a consequence, the optimal value of 
,i pQ  is: 

( )2
, , ,

*

, , ,

,

j p i j p
j J

i p i p i p

i p

Y

Q d g
h

µ
∈= +
∑

. 

Further, such as decision variable 
,i pQ , the optimal value of ( ),i pQ k  can be obtained as: 

( ) ( )
( )

2
, , ,

*

, , ,

,

j p i j p
j J

i p i p i p

i p

Y k

Q k d g
h

µ
∈= +
∑

. 

Therefore, by substituting the optimal values of 
,i pQ  and ( ),i pQ k  in objective function (1) and 

equations (6) and (9), ( )
2

, , ,
,

,

,

j p i j p
j J i p

ip ip i p
i I p P i I p Pi p

Y
Q

d g h
Q

µ
∈

∈ ∈ ∈ ∈
+ +

∑
∑ ∑ ∑ ∑  is written as 

( )2 , , , ,i p ip ip j p i j p
i I p P j J

h d g Y
∈ ∈ ∈

+∑ ∑ ∑ µ , and term ( )
( )

( )
( )

2

, , ,
,

, , ,

,

j p i j p
j J i p

i p i p i p
i I p P i I p Pi p

Y k
Q k

d g h
Q k

µ
∈

∈ ∈ ∈ ∈
+ +

∑
∑ ∑ ∑ ∑  is written 

as ( ) ( )2 , , , ,i p ip ip j p i j p
i I p P j J

h d g Y kµ
∈ ∈ ∈

+∑ ∑ ∑ . 

By using the fact that 2 =Y Y , non-linear terms , , ,j p i j p
j J

Y
∈
∑ µ  and 2

, , ,j p i j p
j J

Yσ
∈
∑  are substituted by 

auxiliary variables 
,i p

W  and 
,i p

V  respectively, and constraints 2 2
, , , , , ,j p i j p i p

j J

Y W i I p P
∈

 ≤ ∀ ∈ ∀ ∈ 
 
∑ µ  and 

2 2 2
, , , , , ,j p i j p i p

j J

Y V i I p P
∈

 ≤ ∀ ∈ ∀ ∈ 
 
∑σ  are embedded into the optimization problem. In addition, we 

reformulate the objective function of the recourse problem, equation (9), by this approach.  Finally, 

the two-stage stochastic program as a CQMIP formulation is presented as follows: 
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( )
( ) ( )

2

, , , , , , , , ,

, , , , , , , ,

, , ,

min:
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i p i p i p
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f X o X e Y
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h z Lt V k IC k

∈ ∈ ∈ ∈ ∈ ∈ ∈

∈ ∈ ∈ ∈ ∈

∈ ∈ ∈

+ +

 + + + 
 

+ + ×

∑ ∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑α

µ
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β π

 

 

(15) 

2 2 2
, , , ,. . j p i j p i p

j J

s t Y Vσ
∈

≤∑  , ,i I p P∀ ∈ ∀ ∈  (16) 

2 2
, , , ,j p i j p i p

j J

Y W
∈

≤∑ µ  , ,i I p P∀ ∈ ∀ ∈  (17) 

( )2

, , , , , , , , , , ,
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n N j J p P p P j J

i I
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OC

h d g W h z Lt Vα

µ µ
∈ ∈ ∈ ∈ ∈

∈

∈ ∈

  + +  
  =

 + + + 
 

∑ ∑ ∑ ∑ ∑
∑

∑ ∑

 
 

(18) 

0, ≥V W ,  (19) 

Constraints (2)-(5), (7), and (8),  (20) 

where IC(k) can be obtained as follows: 

( ) ( )( )

( )

( )
( )

( ) ( )
( ) ( )

0
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2

, ,

, , , , , , ,
\

, , , , , , , ,

, , , , , ,
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ϕ
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, 

 

 

(21) 

( ) ( )2 22
, , , ,. . j p i j p i p

j J

s t Y k V kσ
∈

≤∑  , ,i I p P∀ ∈ ∀ ∈  (22) 

( ) ( )2 2

, , , ,j p i j p i p
j J

Y k W k
∈

≤∑ µ  , ,i I p P∀ ∈ ∀ ∈  (23) 

( ) ( ) 0,k k ≥V W ,  (24) 

Constraints (10)-(14).   (25) 

4- Sample Average Approximation Method 

In this paper, a scenario generation approach is explained that leads to identically and independently 

distributed (i.i.d.) subset of scenarios related to disrupted DCs. Secondly, the SAA method is used to 

avoid from the computational intractability of the proposed stochastic program because of a large 

number of scenarios.  

Scenario Generation Procedure: we generate i.i.d. scenarios for the status of disrupted unreliable 

facilities because of natural disruption events such as earthquake and flood. Based on the 

geographical area of a SC network and/or historical data, the possibility of disruption events in each 
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district of the considered geographical area can be analyzed. Firstly, we define the possible disruption 

events in the corresponding geographical area as set , .E e E∈ Secondly, we obtain the possibility 

weights (
eω ) for the occurrence of disruptions such that 1.e

e E

ω
∈

=∑   

For each disruption event e E∈ , the set of unreliable facilities that may be disrupted under its 

occurrence is denoted as 
eI . The disruption probability of these unreliable facilities is approximated 

as ( ) ,
i e

pr e i I∀ ∈ . As an illustrative example, a part of a SC network in a specific district that may be 

affected under disruption event e is illustrated in Fig. 2 and facilities 1, 2, and 5 are assumed as 

unreliable facilities. It should be mentioned that the detection of disruption scenarios is deeply 

investigated by Pavlov et al. (2019) and Ivanov et al. (2016b). 

 

 

  

{ }1 2 5, ,eI =  

( ) ( )0 2 0 5 0 0 0 4. , . , , , .pr e =  
The disruption probability of the 

district’s facilities. 

Fig. 2. SC facilities in an affected district. 

Algorithm 1 presents the scenario generation procedure. 

Algorithm 1. Scenario generation with NS samples 

for all 1,...,k NS=  do  
 Set ( )I k = Φ .  

 Select one disruption event e from set E by roulette wheel selection. 
 for all 

ei I∈  do 

 Generate U from Uniform (0,1). 
 if ( )i

U pr e≤  then 

 ( ) 0i kϕ = . 

 ( ) ( ) { }I k I k i← ∪ . 

 end if 
 end for 

Approximate ( )T k  based on disrupted facilities. 

end for 

A main challenge related to solving the stochastic program (15)–(25) is to calculate the expectation in 

the problem’s objective. The SAA method is used to deal with this issue. In the SAA, firstly, M 

batches of K scenarios related to the SC disruptions are generated. Next, the stochastic problem is 

solved for these batches, and their objectives’ average is used to estimate a lower bound for the 

optimal value of the problem’s true objective with mean 
Lµ  and standard deviation 

Lσ . Then, the 
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obtained M feasible solutions are simulated by K ′  scenarios where  K K′�  , and the average of 

simulation responses for each solution is considered as an upper-bound for the problem’s objective. 

Finally, the feasible solution with the minimum average of simulation responses will be selected for 

estimating the upper bound of the problem’s true objective. The main steps of the SAA are illustrated 

in Algorithm 2. For more information about the SAA, one can refer to Wang (2007) and Shapiro 

(2001). In the SAA method, after calculating the confidence intervals for upper and lower bounds, we 

will obtain a ( )1 %α−  confidence interval (CI) for the optimal value of true objective as follows: 

2 1 2,
, UL

L M U
t z

M K
α α

σσµ µ−
 − + ′ 

.                                                                                                            (26) 

Algorithm 2. The SAA method 
1- Generate a sample of size K ′ .  
2- for all 1,...,s M=  do  
 a- Generate a sample of size K 
 b- Solve the stochastic program with the generated sample and obtain the   

optimal objective 
sz  and solution 

sx . 

 c- Evaluate solution 
sx  over K ′  scenarios, and obtain the expected value of 

simulation responses as K
s

µ ′ .  

end for  
3- Calculate mean and variance of true objective value’s lower bound: 

1

1 M

L s
s

z
M =

= ∑µ  and ( )22

1

1

1
.

M

L s L
s

z
M =

= −∑
−

σ µ  

 

4- Construct ( )1 %α−  CI for the lower bound approximation as: 

2 1,
.L M Lt Mαµ σ−±  

 

5- Obtain the best upper bound estimate and its solution as: 

{ }1 2, ,...,
min K

U s
s M

µ µ ′

∈
=  and .x  

 

6- By assuming ( )k
f x  as the problem’s objective related to solution x  

under scenario k in the selected sample in Step 5, compute the variance of the 
upper bound estimate: 

( )( )22

1

1

1
.

K

U k U
k

f x
K

σ µ
′

=
= −∑

′ −
 

 

7- Construct ( )1 %α−  CI for the upper bound estimate as: 

2 .U Uz Kαµ σ ′±  

 

5- Computational Results 
Here, the results from the computational study are summarized. Our goal is to examine the 

tractability of the presented stochastic program and the performance of the resilience metric and, 

derive managerial insights regarding resilient SCs. The developed stochastic program is solved via 

CPLEX solver in GAMS 25.1. All implementations in this section are performed by a personal 

computer with Intel Core i7-640 M CPU (2.8 GHz), with 4.00 GB of RAM.  
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5-1- Computational efficiency of the proposed CQMIP model  
Several problem instances are taken into account to examine the applicability of the CQMIP model. 

The model’s parameters are generated based on Table A1 in Appendix A by using uniform 

distribution according to Javid and Azad (2010) and Mak and Shen (2012). In this sub-section, four 

capacity levels are considered for the establishment of DCs and we randomly assumed 75% of DCs 

as unreliable ones. Further, each unreliable DC has 0.15 probability to be disrupted in each scenario, 

and parameter β  is set to 1. Table 2 illustrates characteristics of test instances, the objective function 

value, and CPU time from solving problem instances.  

Table 2. . Computational details from solving the problem instances 

Instance number ( ), , ,I J P K  Objective function 
value First stage cost  run time (S) 

P1 (8, 10, 5, 15) 8.8857E+5 6.6526E+5 12 
P2 (10, 12, 4, 10) 8.0121E+5 6.2327E+5 11 
P3 (12, 15, 4, 15) 9.1873E+5 6.9946E+5 32 
P4 (15, 18, 4, 10) 1.0722E+6 8.1057E+5 24 
P5 (20, 25, 5, 15) 1.8262E+6 1.3725E+6 191 
P6 (24, 28, 4, 10) 1.6349E+6 1.1972E+6 174 
P7 (25, 30, 5, 10) 2.1354E+6 1.5786E+6 312 
P8 (30, 40, 5, 10) 2.7238E+6 2.0308E+6 546 
P9 (35, 45, 4, 10) 2.4191E+6 1.8141E+6 808 
P10 (40, 50, 4, 10) 2.6621E+6 1.9785E+6 1080 
P11 (45, 60, 4, 10) 3.1156E+6 2.2392E+6 1988 
P12 (50, 70, 4, 10) 3.4781E+6 2.5716E+6 2932 
P13 (60, 75, 4, 10) 3.5890E+6 2.6592E+6 5356 
P14 (70, 90, 4, 10) 4.3510E+6 3.1547E+6 9444 
P15 (100, 120, 4, 8) 6.0918E+6 4.4612E+6 14233 

 

As shown by Table 2, the CQMIP model is solvable for a range of problem instances by CPLEX 

solver. It should be noted that in Table 2, the computational results are reported for some problem 

instances those are solvable in less than 4 hours. Further, it is illustrated that the run times are 

sensitive to the number of scenarios, meaningfully and hence the importance of the SAA method is 

highlighted. 

The first stage cost that is reported in Table 2 is the total yearly cost of the SC distribution network 

consisting of the fixed cost of the establishment of DCs and SC operational cost. As reported in 

Table 2, for our generated problem instances, this cost is only about 75% of the objective function, 

averagely, and we can conclude the value of the resilience metric in comparison with the total yearly 

SC cost is significant.  

5-2- Application of the proposed stochastic model 

One problem instance is generated in this sub-section based on the geographical area of Iran. In this 

problem instance 40 potential locations for DCs (40I = ) and 31 customers ( 31J = ) based on Iran’s 

provinces are considered. The other characteristics of the problem instance are:
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4 32 4, , and .P IU N= = =  In this case example, the transportation costs are obtained from Iran's Road 

Maintenance and Transportation Organization, and other parameters are based on Table A1. The SC 

network, including the potential location of DCs and customers, is illustrated in Fig. 3. 

The natural disruptions, including flood and earthquake, are considered in this case example, and Fig 

4 (a) and (b) show the approximate zoning map of Iran related to the earthquake and flood hazard, 

respectively. Based on these figures, opinions of experts in Iran’s National Disaster Management 

Organization, and DCs’ potential locations, 40 main disruption events are assumed. In Algorithm 1 

for the scenario generation, the disruption probability of DCs in the very high, high, and moderate 

levels are assumed to be 0.4, 0.2, and 0.1, respectively. It should be mentioned an area that may be 

affected after each disruption event is also derived. We use this case example to discuss about the 

obtained optimal solution and resilience metric from solving the stochastic program. 

 

 

 

Fig. 3. The network of the case example. 
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Fig. 4 (a). Approximate earthquake hazard zoning map of Iran 

 

 
Fig. 4 (b). Approximate flood hazard zoning map of Iran 

We apply the SAA method in the case example to show the CIs for lower and upper bounds of the 

true optimal objective value. For solving the case example, the parameters of the SAA method are set 

as K = 40, M = 10, K’= 400. The resulting 95% CIs for the lower and upper bounds are presented in 
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Table 3. The percentage gap between the lower and upper ends of the CI related to the true optimal 

objective in (26) is reported in the last column of Table 3. It should be mentioned that in this sub-

section parameter β  is set to 1.  

Table 3. Results from the SAA method for the case example 

Uµ  CI for LB CI for UB Gap (%) 

1.6787E+6 (1.6393, 1.6673) 610×  (1.6646, 1.6928) 610×  3.2% 

5-3- the applicability of the resilience metric 

To emphasize the importance of the considered resilience metric. We solve the problem without 

considering the second stage problem ( ,=β ε  ε  is a small number). Then, by using the simulation, 

we examine the solution of the case example with 1=β  and ,=β ε  for a set of disruption scenarios 

including 150 scenarios. The comparison between the SC costs is presented in Table 4. Further, in 

Fig. 5, the frequency of the SC cost increase in the face of disruptions is illustrated for these 

solutions.  

Table 4. Comparison of the SC cost with and without the resilience metric consideration  

 First stage cost: 
Total yearly SC cost 

Simulation results 

Resilience metric Expected of recovery cost 

=β ε  1.1743E+6 1.0537E+6 8.5092E+5 

1=β  1.2146E+6   5.1425E+5 4.0114E+5 

 

 

  

1=β  =β ε  

Fig. 5. the frequency of SC cost increase that is obtained by simulation of the optimal solution with 1=β  and .=β ε  

As illustrated in Table 4, the first-stage objective of the problem that is the total yearly SC cost under 

normal condition increases about 3.4% by the disruption-driven design decisions. However, the 

resilience metric reduces 51.1% that highlights the main impact of our approach. The main 

importance of considering the resilience metric is also emphasized in Fig 5. In Fig 5, the average 

response of the SC cost increase during the recovery time for the case example with 1=β  and =β ε  

are 5.1425E+5 and 1.0537E+6, respectively. It should be mentioned that the SC’s recovery cost takes 

about 80% of the resilience metric in this case example. 
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In the optimal design decisions from solving the case example with 1=β  and =β ε ,  the number of 

established DCs are 28 and 24, and the total installed capacity are 94100 and 119193, respectively. 

Therefore, we can conclude that by considering the proposed resilience metric in the design phase, 

the average capacity of the established DCs decreases from 4966.3 to 3360.7. We can conclude that 

for the resilient SCND, it is not necessary to install more capacity for responding to customers in 

some cases. In our case study, in the design phase without consideration of the resilience metric, the 

SC benefits from the economy of scale related to the cost of opening facilities with high capacity. 

The SAA method by setting K = 40, M = 10, and K’= 400 is used for solving some generated problem 

instances and the above-mentioned analysis are done for them and the results are illustrated in Table 

5. In Table 5, the percentage gap between the lower and upper ends of the CI related to the true 

objective in relation (26) is also reported. 

           Table 5. The impact of SC resilience metric consideration on design decisions by using simulation 

Test 
instances 

=β ε  1β =  
Total yearly SC cost under 

normal condition 
Resilience 

metric 
SAA Gap 

(%) 
Total yearly SC cost 

under normal condition 
Decrease of 

resilience metric 
SAA Gap 

(%) 

P3 6.87E+05 4.36E+05 1.98 % 7.08E+05 41 % 2.14 % 

P6 1.21E+06 8.92E+05 2.45 % 1.25E+06 51 % 2.87 % 

P9 1.94E+06 1.01E+06 2.44 % 2.01E+06 49 % 3.09 % 

P12 2.72E+06 1.69E+06 3.19 % 2.81E+06 54 % 3.37 % 

The reported results in Table 5 confirm the obtained results corresponding to the case example. 

Further, the presented gaps of the SAA approach in various test instances shows its acceptable 

performance and robustness. In Fig. 6, it is shown how the consideration of the resilience metric in 

the SCND decreases the expected increase of SC operational costs because of a disruption event and 

increases the yearly SC costs under normal condition in several problem instances. Based on Fig. 6, 

we can conclude that the increase of yearly SC costs is negligible in compared with the improvement 

of the SC’s resiliency. 
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Fig. 6. Decrease of the resilience metric and increase of the yearly SC costs by using disruption-driven model. 

In our optimization problem, about 75% of the SC cost increase is associated with the SC recovery 

and hence the recovery cost of SC network during its recovery period has a meaningful impact on the 

SC planning subject to disruption events. For designing a resilient SC, selection of reliable facilities 

has priority and the installed capacity of unreliable facilities with high likelihood of disruption should 

be reduced.   

5-4- sensitivity analysis 
A discussion related to the impact of main parameters’ value on the solution of the stochastic 

program is presented in this sub-section. 

Analysing the impact of parameter β : Parameter β  in our stochastic program should be set by the 

decision maker, and illustrates the importance weight of the proposed resilience metric. To find how 

the total yearly SC cost and resilience metric change by considering various values for this 

parameter, the sensitivity analysis is done. Fig 7 shows the sensitivity of the total yearly SC cost 

under normal condition (the first stage cost) to the value of parameter β  in the case example. 

Furthermore, in Fig 8 

, it is shown that in the case example, how the expected value and variability of the SC cost increase 

due to a disruption event change by considering various important weights for the resilience metric in 

the design phase. 

 
Fig. 7. the sensitivity of the first stage cost to parameter β 
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Fig.8. the sensitivity of the expected and variability of SC cost increase after a disruption event to parameter β 

In Fig. 8, it is shown that our proposed approach for disruption-driven SCND reduces the SC cost 

increase in terms of the expected value and variability. Further, based on Figs 7 and 8, when we 

apply our approach for designing resilient SCs, the increase of the total yearly SC cost in compared 

with the decrease of the resilience metric is not significant. Therefore, we can highlight the 

applicability our proposed resilience metric for the SCND. 

Analysing the impact of the recovery time: Based on the definition of the resilience as the ability to 

quickly and effectively recover from a disruption, the recovery time has a main role in the presented 

resilience metric. In Table 6, we report the impact of the recovery time value on the total yearly SC 

cost (the first stage cost) to obtain a resilient SC with 1=β . The changes of the recovery time are 

exerted by multiplying some coefficients to this parameter. In Table 6, the main importance of the 

recovery time on the resilience metric is highlighted, and hence decision makers should develop 

recovery plans to return a disrupted SC to its initial state as soon as possible. 

          Table 6. the sensitivity of the SC costs to the recovery time 

Problem instances 
Multiplier coefficient for SC recovery time 

0.1 0.5 1 2 

Case 
example 

The first stage cost 1.18E+06 1.20E+06 1.21E+06 1.21E+06 
Resilience metric 4.31E+05 4.69E+05 5.04E+05 5.38E+05 
Total Objective function 1.61E+06 1.67E+06 1.71E+06 1.75E+06 

Problem 
instance 3 

The first stage cost 6.90E+05 6.95E+05 6.99E+05 7.01E+05 
Resilience metric 2.01E+05 2.11E+05 2.16E+05 2.29E+05 
Total Objective function 8.91E+05 9.06E+05 9.15E+05 9.30E+05 

Problem 
instance 5 

The first stage cost 1.36E+06 1.37E+06 1.37E+06 1.37E+06 
Resilience metric 4.03E+05 4.52E+05 4.60E+05 5.04E+05 
Total Objective function 1.76E+06 1.82E+06 1.83E+06 1.87E+06 

5-5- The effect of the risk-based resilience metric 

The proposed resilience metric is based on the SC cost increase during the recovery period after a 

disruption event, and this cost for a SC network is stochastic and dependent on disruption scenarios. 

We have considered the expected value of the SC cost increase to introduce the resilience metric. In 
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this sub-section, CVaR is applied to obtain the resilience metric and their impacts are investigated in 

three small-sized examples.  It should be mentioned that the CVaR can be calculated in a stochastic 

program by linear programming techniques (Ahmed, 2006).  

We can obtain ( )CVaR ICα  instead of ( ) ( )
k K

k IC k
∈
∑ π  in objective (15) as follows (Govindan and 

Fattahi 2017): 

( ) ( ) ( )

( ) ( )
( )

1

1

0

min : ,

.

,

,

.

k K

CVaR IC k k

st

k IC k k K

k k K

∈

 = +  −  

≥ − ∀ ∈

≥ ∀ ∈

∈

∑

�

α η π θ
α

θ η
θ
η

 

where, the possible loss for each scenarios k is illustrated by decision variable ( )kθ . 

By the proposed risk-based resilience metric, we have solved three small-sized problem instances 

with 40 scenarios, 1=β , and CVaR0.95. Next, obtained design decisions are simulated for 100 

disruption scenarios and the results are reported in Table 7. 

 Table 7. simulation results from solving problem instances with risk-based resilience metric 
Problem 
instance 

Resilience metric Statistics of the resilience metric’s simulation  
mean Standard deviation 75% quantile (QT) 

P3 CVaR0.95 measure 2.76E+5 2.01E+4 2.88E+5 
Expected value measure 2.59E+5 3.15E+4 2.92E+5 

P5 CVaR0.95 measure 4.77E+5 5.59E+4 5.08E+5 
Expected value measure 4.41E+5 7.66E+4 5.11E+5 

P6 CVaR0.95 measure 5.01E+5 5.02E+4 4.98E+5 
Expected value measure 4.40E+5 7.26E+4 5.03E+5 

 

We can conclude from the simulation results that the risk-based resilience metric makes the expected 

value of the SC cost increase worse. On the other hand, it reduces the standard deviation and 75% QT 

of the SC cost increase because of a disruption event during its recovery time.  

5-6- Analyzing different disruption scenarios 
In this study, the increase of yearly SC cost (the first stage cost of our optimization model) after 

consideration of the resilience metric can be interpreted as the cost of designing a resilient SC 

network, called resilient design cost. However, the resilient design cost of SCs is dependent on the 

disruption risk of DCs and the percentage of unreliable potential DCs in the SCND problem. To 

highlight this issue, in this sub-section, we define three conditions and run several test instances with 

40 scenarios under these conditions and in Fig. 9 the percentage increase of the resilient design cost 

is reported for these problem instances under these conditions. 

Condition 1: the probability of disruption occurrence at unreliable DCs is multiplied by 1.5. 

Condition 2: the number of unreliable potential DCs is increased 15%. 
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Condition 3: both conditions (1) and (2) are considered. 

 

Fig.9. The impact of DCs’ disruption risk and the percentage of unreliable potential DCs on resilient design cost 

Presented results in Fig. 9 highlight the meaningful impact of unreliable DCs’ number and their 

disruption risk in designing resilient SC networks. As it is expected, by increasing the disruption 

probability and number of unreliable DCs in the SCND problem, the resilient design cost increases 

and the impact of disruption probability is more than the number of unreliable DCs in our study. It 

should be mentioned that the modelling approach of disruption impacts on SC networks has a main 

influence on design decisions. 

6- Managerial implications 
In this study, we address a main challenge corresponding to the quantification of a resilience metric 

for SC planning under disruption events. Although many studies (see survey papers related to this 

area such as Klibi et al., 2010; Snyder et al., 2016; Ivanov  et al., 2017; Govindan et al., 2018) 

attempted to design SCs under disruption risk, most of them (e.g., Sheffi, 2005; Azad et al., 2013; 

Hasani and Khosrojerdi ,2016; Fattahi et al., 2017; Fattahi and Govindan, 2018; Jabbarzadeh et al., 

2018) neglected the cost and time of the SC recovery after a disruption event and concluded that the 

establishment of more capacity in the design phase would lead to a resilient SC network. We 

formulate a new resilience metric that captures these two main aspects of SC disruptions, and we 

show computationally that in some situations, the establishment of excess capacity may lead to the 

increase of the SC’s recovery cost. The main impacts of the SC’s recovery time and cost on design 

decisions are also investigated. Furthermore, this study confirms the results of the literature (e.g., 

Mak and Shen, 2012; Hasani and Khosrojerdi, 2016) that states the increase of facilities’ dispersion 

leads to the SC’s resiliency. In practice, many companies, such as Toyota, Honda, BMW, and Intel, 

devote a significant attempt to obtain resiliency in the face of disruption events by quantitative 

models (Handfield et al., 2006). This study introduces a new applicable approach in this area that can 

be simply modified based on various SC planning problems. 
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The proposed two-stage stochastic program finds that second stage decisions should be made after a 

disruption event as corrective decisions. This approach enables us to develop a contingent planning 

based on a disruption scenario. This issue is scarcely addressed (see Tomlin, 2009; Fattahi et al., 

2017) in the literature and our decision-making framework employs the contingent sourcing strategy 

that meaningfully reduces the SC’s performance loss because of disruption events.   

We investigate differences between the robust design of SCs under disruption risk and resilient-based 

objectives. Many robust design methods (e.g., Klibi and Martel, 2013; Baghalian et al., 2013; 

Jabbarzadeh et al., 2018) are criticized for obtaining over-conservative solutions based on the worst-

case scenario. Contrary to this approach, our computational results highlight the proposed resilient-

based objective, so the loss of the SC’s efficiency in comparison with the increase of its resiliency is 

negligible. To improve the SC resilience metric by 50%, the average increase of the resilient design 

cost is less than 5%; this impressive outcome highlights the applicability of the proposed resilience 

metric. Further, our approach for designing resilient SCs allows for considering different risk 

attitudes of a decision maker by carefully adaption of control parameter β.  

The SC cost increase due to a disruption event is a stochastic variable that is dependent on the SC 

network structure and on the severity and type of the disruption event. The resilience metric is 

quantified based on the expected SC cost increase in the face of a disruption event during its recovery 

time. This approach can help SC decision makers to find how the existing SC network is resilient 

under various disruption scenarios. We have shown the quantification approach of the resilience 

metric affects design decisions. The CVaR of the SC cost increases, in the face of a disruption event, 

is also investigated as a risk-based resilience metric. Computational results illustrate the risk-based 

metric leads to higher mean and lower variance and 75% QT in the distribution of the SC cost 

increase after a disruption event.  

Based on computational results, network structure influences the impacts of a disruption on the SC. 

In many problem instances, to design a resilient distribution SC network, it is more favourable to 

increase the number of active DCs and to decrease the total established capacity. In sub-section 5-2, 

the resilient design for the problem instance presented (based on the Iran map) results in increasing 

the number of active DCs from 24 to 28 and decreasing the total installed capacity about 21%.  

The occurrence of disruption events in a SC network may result in a ripple effect; further, many SC 

facilities may be simultaneously disrupted. This study proposes an applicable framework for the 

detection and construction of disruption scenarios based on the SAA approach that can address this 

issue. In addition, by this framework, a large number of disruption scenarios can be considered for 
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modeling the uncertainty induced by disruption events without approximation of the scenarios’ 

probability. 

7- Conclusion 
In the related literature, there exist a few metrics for the SC resilience, and these metrics are not 

suitable to be embedded in SC optimization models. In this paper, we propose a new metric for the 

SC resilience and use this metric in the design phase of a distribution SC network. We consider that 

the disruption events lead to the failure of unreliable facilities in the network and a two-stage 

stochastic program is developed. In the stochastic program, the resilience metric is formulated by 

minimizing the expected value of the SC cost increase during its recovery time after the realization of 

a disruption event. 

The considered problem is initially formulated as a mixed-integer nonlinear problem, and then 

reformulated as a CQMIP, which is solvable by commercial solvers such as CPLEX. A particular 

emphasis of this paper has been put on the real-world applicability of the proposed resilience metric. 

To deal with a large number of disruption scenarios, the SAA method is employed. We test the 

validity of our model and the impact of the resilience metric consideration by using a simulation 

approach. 

In the experimental results, we show the computational tractability of the proposed model by using 

several generated problem instances and a case example based on Iran geographical area. 

Furthermore, we investigate the impact of the recovery time and the resilience metric weight in our 

stochastic program on the optimal design solution, total yearly SC cost under normal condition, and 

the value of the resilience metric. Finally, we examine the risk-based resilient metric by using CVaR 

in some small-sized problem instances.   

This paper presents a new resilience metric, and there are many opportunities to consider this metric 

in other SC optimization problems. Further, an interesting future work related to our problem is to 

extend the presented model for a multi-period SCND problem by using the multi-stage stochastic 

programming (see Fattahi et al. 2018).  

Big data analytics, Industry 4.0 applications, and ERP systems can increase the SC’s resilience in the 

pre- and post-disruption stages of the SC planning by real-time monitoring. Further, the big data 

analytics can help in the detection of disruption scenarios for designing resilient SC networks. As a 

consequence, the extension of the proposed optimization approach and resilience metric for digital 

technology applications is a promising future research direction.   

Appendix A 
Table A1. Generation of parameters in problem instances 

Symbol Value Symbol Value 
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