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Stochastic optimization of disruption-driven supply chain network design with a new resilience
metric

Abstract: The supply chain (SC) ability to return quickly aaffectively to its initial

condition or even a more desirable state afterseupiion is critically important, and is

defined as SC resilience. Nevertheless, it hasbeen sufficiently quantified in the

related literature. This study provides a new mdtriquantify the SC resilience by using

the stochastic programming. Our metric measureipected value of the SC’s cost

increase due to a possible disruption event duitsigecovery period. Based on this

measure, we propose a two-stage stochastic profgratime supply chain network design

under disruption events that optimizes locationpcaition, inventory and order-size

decisions. The stochastic program is formulatedguguadratic conic optimization, and

the sample average approximation (SAA) method igleyed to handle the large number

of disruption scenarios. A comprehensive computalistudy is carried out to highlight

the applicability of the presented metric, the cataponal tractability of the stochastic

program, and the performance of the SAA. Sevemalmkanagerial and practical insights

are gained based on the computational results.nEvismetric captures the time and cost

of the SC’s recovery after disruption events caogtta most of previous studies and main

impacts of these two aspects on design decisiaasighlighted. Further, it is shown

computationally that the increase of SC’s capasityot a suitable strategy for designing

resilient SCs in some business environments.
Keywords Resilience metrics, Supply chain network desipochastic programming, Conic mixed-
integer program.

1- Introduction

Resilience is the ability of a system or firm teoeer after a disruption event effectively and glyic
and in supply chain management, this ability ieet#d by SC’s design decisions and resources. As
emphasized by Chopra & Sodhi (2014), Simchi-Levalket(2014), and, Ivanov et al. (2016) from
2000 to 2015, disruption events such as econonses;rearthquakes, terrorist attacks, and strikes
occurred in SCs in more frequency and severity, larce such an ability is crucial for SCs. The
Business Continuity Institute reports that oneethof 408 surveyed companies experienced at least
one SC disruption in 2017 and one-fifth of the esponding disrupted companies stated cumulative
losses of at least one million euros because obpli®n events (Alcantara et al., 2017). Recently,
guantitative models have received significant aitento optimize design and planning decisions in
SCs with consideration of disruption events, andiyr@mpanies such as IBM and Ford Motor used
these methods (Simchi-Levi et al., 2014; Lu et2015; Hosseini et al., 2019).



A resilient SC can come back to its original stateeven a more desirable condition after being
disrupted (Govindan et al. 2017). To have a retileC, based on Tomlin (2006), a SC can take
some pre-disruption actions, as mitigation stra®gio reduce its corresponding risks. On the other
hand, a SC can device some actions as contingératgges to quickly and effectively return to its
initial state after a disruption’s occurrence. Sal/studies examined these strategies in desigdhg
networks (see e.g., Cui et al. 2010; Qi et al. 208k and Shen 2012; Fattahi et al. 2017; Fattahi
2017; Ilvanov et al. 2017). These studies conclutietl more investment on SC reserves such as
backup suppliers and insurance capacity increageS€’s ability in performing well after disruption
events. In compared to the mitigation plans, a peywers developed contingency plans to recover a
SC after disruption events. Risk management wititingency plans is investigated by Kamalahmadi
and Parast (2016).

Despite a rich literature on the SC planning witnsideration of disruption risks, measuring the SC
resilience is still a questionable task (Pavloalet2017; Hosseini and Ivanov, 2019). In otherdyor
most of quantitative methods incorporate robustrmessisures into the mathematical models to
maintain the SC original condition and do not cdaesithe SC recovery after happening a disruption
(Behzadi et al., 2018; Ivanov and Sokolov, 2018)tdrms of optimization techniques for the SC
network design, two main groups of studies candantified for modeling the SC uncertainties
induced by disruption events. In the first groupgy(eCui et al. 2010; Qi et al. 2010; Azad et al.
2013), because of disruption events, a pre-spdcfhdure probability for a facility/transportation
link is considered, and in the second group (eMak and Shen, 2012; Klibi, and Martel, 2012;
Fattahi et al., 2017; Fattahi and Govindan, 20t&),uncertainty related to the disruption impacts o
a SC is modeled by a set of discrete scenariosstaatiastic programming approaches are employed.
Generally, in order to measure the SC resilienw®, iihain aspects including (1) the time of SC
recovery, (2) the SC performance loss becausedigraption event should be taken into account.
Further, it is a challenging task to incorporatelsa resilience metric in the SC planning. The
importance of shortening the recovery time aftsruption events is highlighted by Sodhi and Tang
(2009), and to quantify a resilience metric, a bestformance is compared with the resilient
solutions after a disruption occurrence in Saghafiamd Van Oyen (2016) and Zobel (2011).
Accordingly, this paper answers two main reseangéstions: (1) How can a resilience metric be
qguantified based on the SC recovery time and itlopeance loss during recovery time? (2) How
can a SC under disruption events be designed ksidenation of a resilience metric?

To answer the above-mentioned questions, this papreduces a new resilience metric for the SC
planning as the expected increase of SC operatmsbs because of a disruption event during its

recovery time. To incorporate the proposed resitkemetric into the supply chain network design



(SCND) problem, a novel two-stage stochastic pmogra developed. In the first stage of the
stochastic program, we optimize location, allogaticapacity, inventory, and order-size decisions of
a SC system under a normal (non-disrupted) comditiavhich customers’ demands follow a normal
distribution. In the second stage, when disrupsedlifies are disclosed because of a disruptiomigve
the operational decisions should be determined thnerecovery time, and allocation, inventory, and
order-size decisions can be altered. Our propogppdoach captures two main facets of the SC
resilience consist of the recovery time and thefgperance loss during its recovery, and the
stochastic program allows managers to quantifyirtiygact of a disruption on the SC’s operational
performance.

Our optimization problem is firstly formulated asréxed integer non-linear programming (MINLP)
model and then, is reformulated as a conic quadnaitted-integer program (CQMIP), which can be
directly solved by using standard optimization wafte packages. On other hand, a large number of
disruption scenarios make the stochastic programpotationally expensive, and hence we use the
SAA method to address this issue through frequesalying the optimization problem with a smaller
set of scenarios.

The organization of this paper is as follows:Section (2), a literature review is represented. The
stochastic program and resilience metric are pregasSection (3). In Section (4), the SAA method
and scenario generation approach are represent8dction (5), we present numerical experiments.
Section (6) contains derived managerial implications. FinaBggtion (7) contains conclusions and
future research directions.

2- Literature Review
Recently, the SCND subject to disruptive events gmsed much attention in both academia and

practice. Various optimization models are proposedddress this problem. Lately, Snyder et al.
(2016) presented a survey study related to theatipaes research and management science models
for dealing with disruption events in SCs. Othenvsy studies have also focused on specific aspects
of SCM under disruptions (e.g. Tang 2006; Klibeet2010; Heckmann et al. 2015; Govindan et al.
2017; Dolgui et al. 2018).

A large part of studies in the corresponding aregp@sed an optimization model for designing a
robust SC network that remains functional afteisaugtion event. Several studies considered a pre-
determined probability for disruption of a facilijmd/or transportation link, and their models dse a
calledreliable SCND(see e.g. Qi et al., 2010; Cui et al., 2010; Aetdl., 2013). Regarding facility
disruption in some of these models, such as Cal. €010, a contingency plan is proposed in which
more than one facility are assigned to customenrd, iba facility is disrupted, its corresponding
customers should be served by other non-disrugateitities. These studies fail to capture correlated
and non-correlated multiple disruptive events. lrertthe ripple effect that has been recently @elfin

3



in the SC disruption literature (Dolgui et al., 3QPavlov et al., 2019) cannot be taken into actoun
by this modeling approach. In particular, by thpple effect analysis, when a disruption event
happens at a facility or transportation link, we cansider further possible interruptions in the SC
network. Recently, by using the SC structural dyicantontrol and ripple effect analysis, a few
studies presented pre-disruption and recovery pigrfor SCs (Dolgui et al., 2018).

Scenario-based stochastic programming approachlesalao popular in this area in which the
uncertainty induced by natural or man-made disvepdivents are modeled via discrete scenarios (see
e.g., Mak and Shen, 2012; Klibi and Martel 2012#stdi-Javid and Seddighi, 2013; Fattahi et al.,
2017). Furthermore, weighted mean-risk objectives employed in the stochastic programming
approach to mitigate the disruption risks, and dked well-known risk measures are: the CVaR
(Ahmadi-Javid and Seddighi, 2013) and the absadfie@ation (Sadghiani et al., 2015). Although
scenario-based approaches are relatively flexiblecapture the induced SC uncertainties by
disruption events, the detection of disruption sct@ms and estimating their probability are
challenging tasks. A few papers such as HosseiarshMedlou et al. (2019) and Fattahi et al. (2017)
addressed these issues in using stochastic progngmapproaches for the SC planning under
disruption events.

In the related literature, most of operations regeanodels do not consider the recovery stage of a
disrupted SC network and focus on pre-disruptionp@ning that maintains the SC functionality
after a disruption event. In other word, the caggimcy strategies are rarely addressed in compared
with the mitigation ones. In the related area,rapleasized by Tomlin (2009), demand switching and
contingent sourcing are the main contingency sjrase In the demand switching strategy, the SC
offers incentives for a customer to buy anothedpot if her preferred product is not availabletHa
contingent sourcing strategy, the SC uses a backugplier after a failure at its normal one.
Although, the contingent sourcing is applied int&aitet al. (2017) and Cui et al. (2010), we could
not find any paper that uses demand switchingeggyafior the SCND under disruption risks.

2-1- Resilience metrics

Based on Melnyk et al. (2014), currently, the fesite is the heart of SCM thinking. However, we
could not find any unique definition for the resiice in the literature that presents a clear
understanding of resilient SCs so that the robgstrand resilience are the same in a part of the
literature. In accordance with our definition, avfstudies presented quantitative resilience metrics
The ratio between actual and promised lead timieccéead time ratio, is considered as a resilience
metric in Carvalho et al. (2012). To improve the &Silience metric, they used a simulation
approach that allows the observation of SC behawider various SC design strategies. Francis and
Bekera (2014) and Losada et al. (2012) quantifredSC resilience based on the required time for



the SC recovery after a disruption occurrence. ishamuddin et al. (2013), for a lot sizing problem
in a two-echelon serial SC under transportationugitson, the SC cost during its recovery time after
a disruption occurrence is considered as the eaes#i metric. Zobel (2011) defined a resilience
metric based on the reduced system's infrastruajuadity in recovery time after a disruption
occurrence. Saghafian and Van Oyen (2016) modakediynamics of disruptions as Markov chains
and taken into account the disruption costs in seohthe inventory backorders over the supply
shortfall. Recently, Hosseini and Ivanov (2019)serdged a SC resilience metric by considering the
ripple effect in both disruption and recovery stage this study, by a Bayesian network and the
consideration of disruption propagation, the Sdlieexe is introduced as a function of supplier
recoverability and vulnerability.

Based on the presented literature review and tistimy survey studies (see Tang 2006; Klibi et al.
2010; Heckmann et al. 2015; Govindan et al. 201glgl et al. 2018) in the related areas, there
exists the lack of practical resilience metricslasigning SC network. The existing metrics are not
appropriate to be embedded into optimization motteisthe SCND. In addition, to introduce a SC
resilience metric, it is essential to consider kbt SC recovery time and its performance lossnduri
its recovery. In this study, we attempt to pressunth a resilience metric, and to the best of our
knowledge, a tractable stochastic program is pregder the first time that optimizes the design
decisions with consideration of this resilience meefurther, a large number of disruption scergario
are handled by the SAA method in which the proligtilf scenarios should not be estimated.

3- Optimization Model

In this paper, a SCND problem under disruption &veéa formulated as a two-stage stochastic
program. To consider the impact of disruption esem the SC performance, we assume that a
disruption event happens for the supply chain ndtnand after its occurrence some of facilitied wil
be disrupted. SC decisions should be made undemata@ondition without any disrupted facility as
the first stage decisions. However, after a disompbccurrence, the availability of SC facilities
would be realized at the second stage, and coreeSIC decisions have to be determined to serve the
customers.

In the SC network, multiple products should be famded to geographically dispersed customer
zones from distribution centers (DCs). The DCs htnee capacity limitation in terms of handling
products. Each customer’s demand follows a nornsatildution, and the mean and variance related
to the normal distribution of customers’ demands known. In the presented formulation, (1)
location and capacity of DCs, (2) inventory deaisidor DCs, and (3) allocation decisions have to be

made at the time of network design before disrupé&weents. After occurrence of a disruption event,



the SC can alter the allocation and inventory dewssto fulfill the customers’ demands. Furthersit

possible for the SC after disruption events tosssve some customers.

Our goal is to minimize the total yearly SC costi@nnormal condition as well as the expected

increase cost related to the DCs’ disruption. Tkgeeted increase cost related to a disruption event

is introduced as a new metric to measure the eesii of a SC.

Other main assumptions are listed as follows:

= A set of candidate locations are assumed for the WRbse locations are to be obtained in the
design phase.

= For the establishment of DCs, a set of capacitglteare specified, and the SC pays a fixed
location cost for activating a DC with a capacéyél.

= Each DCi follows an inventory pOliC)(Qip,rip) for each producp. In this policy, by using an

EOQ model, whenever the inventory level of produet DCi falls to or bellow a reorder level

r,,,» the DC places an order far, units from a supplier. In this approach, the reorgoint
(parameter, ) and safety stock, will be obtained to guarantee the probability of stock-out at

the DC is less than or equal to a constant value.
= Each customer should be allocated to only one §y&ifor receiving a product.
In this study, if a disruption event occurs, someeliable DCs will be unavailable during the
corresponding recovery time and other non-disrupt€s have to fulfill the customers’ demands. A
set of discrete scenarios is used to model theataps disruptions on a SC network that is denoted

by K. Seti(k) contains the disrupted DCs related to scenktfid , and the corresponding recovery
time T(k) and recovery cost can be approximated basetheulisrupted DCs in scenarko As

shown inFig. 1, after realization of scenaribK , the operational cost of SC will be increased in
compared with the normal condition of SC in whi¢dhRCs are available. The increase of the SC

cost is denoted byc (k). As a new metric for the SC resilience, the exgeincrease cost related to

a disruption event can be obtained by our formaiati

Recovery time=T(k)

. Cumulative SC operational cost with
disrupted DCs + recovery cost
ic(k)
: Cumulative SC operational cost
under normal condition

1 T »  Planning horizon
The time of disruption The time of SC
occurrence recovery



Fig. 1. The concept of defined resilience metric.

The used notations for presenting the optimizgbiablem are reported ihable 1.

Table 1. The used notations in the mathematical formulation.

(i
o0
¢, (k)
B

Set of customer$; /),
Set of potential locations for DCs including rel@p/R ) and unreliable DCsI{ ), (i,i' OLIROIU = 1) ,

Set of product{p (l P) ,
Set of capacity levels for the establishment of EQEIS N ) ,
Set of scenariofk 0K ),

Set of disrupted DCs in scenah,o(l(k) O IU)

The annualized fixed cost related to openingiiith capacity levenh.

The yearly fixed cost of operating O@Qvith capacity leveh,

The transportation cost for forwarding one unipadductp from DCi to customey,
The handling capacity over one year with lavébr DCi,

Inventory holding cost per unit of produyztiuring each year at DIC

The fixed cost per order for prodyzplaced to the supplier by DC

Lead time of DA for productp as a fraction of one year.

The fixed cost per shipment of prodpdirom supplier to DG,

The shipment cost for per unit of prodpdrom the supplier to DG

The lost sale cost for per unit of prodpcifter a disruption event,

Mean of yearly demand of customéor productp,

Standard deviation of yearly demand of custoper productp,

Desired percentage of customer orders for progtitat should be satisfied,
Left a-percentile of standard normal random varighlee. p(Z <z, ) =a’,
The SC recovery time after a disruption event aenge in scenarik,

The recovery cost related to per unit of disrumapacity
The occurrence probability of scenakiby assuming that a disruption event will happerttierSC,

1 if i0I(k)
0 if i0I(k)

Weight factor associated with the resilience metric

The binary indicator parameteg; (k) :{

Decision variables

1 if DCi with capacity leveh is established

1 if customey is assigned to DCfor productp under normal conditign
1 if customei is assigned to DCfor productp in scenarid,

The order size for produptat DCi under normal conditign

The order size for produptat DCi in scenarid,

The yearly operational cost of SC under normal @ang
The cost increase related to the SC operation gitine recovery time of the SC in scendio




3-1- Mixed integer nonlinear programming formulatio
In the proposed two-stage stochastic program, wenmee the total SC cost over one year in the
first stage and the expected increase cost beazfugedisruption event in the second stage. Our

stochastic program is formulated as an MINLP. Wweth noting that some parameters, suchfgs

and b,

in?

are defined based on the SC planning over one yea
Based on the used inventory policy at DCs in thisly the value of reorder point,() and safety

stock is a function of the assignment of customer®Cs. Therefore, the parameters related to the
inventory policy at each DC can be obtained in etiog to the optimal assignment and order size
decisions after solving the optimization model (Klast al., 2002).

Further, it should be mentioned that a virtual apaxcitated DC, indexed hy, is considered, and in

the case of not serving some customers after takezaton of a disruption event, the SC should
assign them to this virtual DC.
The objective function includes three parts: 1-fiked cost related to the SC design, 2- the yearly

operational cost of SC, 3- the expected increastretated to DCs’ disruption.

The annualized investment cost of opening DCs,rga®>. 2. f; X, .- Therefore, parametef, , is
i nCIN

the annualized fixed cost related to opening D@s$ tlan be approximated based on the project life
(in years) and the corresponding interest ratdgRaand Govindan, 2018).
The yearly operational cost of SC can be obtainesulbnmation of the following components:

1- The fixed operating cost of DCs in one year, gigenX. > 0, . X; .,
il nON

2- At each DC, the variable operational cost cont#nesfixed cost of placing orders, the holding of
working inventory cost, the safety stock cost, Hreshipment cost from suppliers to DCs. Where

Q,, represents the order size for prodpat DCi, the fixed cost of placing orders and holding

o 2 HipVi Q N
cost of working inventory for produgt are d,.,p”— and h,.,p7"’, respectively. Since the
ip

- - 2 - 2
optimal value ofr, is z, /Lti_pj%;]aj_pr, the safety stock cost i% ,z , Lti'pj%jjaj'pYi_j_p.
Further, the expected shipment cost from supplier DC i for product p is

S .

sy 2 MY, g, ——— thatincludes fixed and variable shipment costs.

joI

ip

3- For producp, the shipment cost from DCs to customers, giveRx ase, ; 1, .Y, .
i0r jOj

The two-stage stochastic program is as follows:



mln ZZﬁnX1n+ZZOInX1n+ZZ Zel}p/'[]pYI]p-i-ZZS (Z’LIJPYIJPJ

i0I nON i0I nON i1 jOj popP il popP jaj

(d, )%}ﬂ,,,,,, h @y h k)ic(k 1
+ +g | HL— LA Lt, ¥ o? x> k)l ,
g,gp Gip o, ggp 2 ggp % |LE: Z io¥iip ¥BX 2 (k)1C(k) 1)
st. Y X,,<1 0idl, (2

nON
%Yi,j,p =1 0j0J7,0p0P, 3)
,,p—%VX 0idl,00/,0p0P, 4)
ZZ,U Jj —Zbln i,n’ |:|1|:|I, (5)
pUP jOj

0C=2 20, Xin ¥ 22 2 €1, i, T2 XS, (Z,U]p”pj

{01 nON i01 jOj papP i1 poOP P Joj
%}ﬂ] oYijp Q,
%%P(d gi”’)—Qi,p LEh, TR, /Lt,pz Y, ©)
Xy 0{0,1, )
Q=0 ®)

wherelC(k) can be obtained as follows:

IC( ) min: ZZrcX(l ¢( )) i nXin

i0I nON

X; k
iDl%( )H%OIH 1n+§%p§)eszﬂjp 1][7( )+I%p%})slp(zy]p ij( )j (9)
zlujpsz(k) Q. (k) ,
T (k d. N P h
+ ( ) "‘%;p%lp( gz,p) ip(k) %;p%:}) F—
T, ap\/Lt 307 Y0 () T T LY, (K)-0C
L. Y, (k)= ,
* fD(I\I(kZ)D{fO}) o) =2 0j0J.0p0Pp, (10)
Voo (k)< (K) 2 X, 0i01,0j07,0p0P, (11)
J%pgp’ulp IJP( ) ¢( )n%\,bln in’ DIDI, (12)
Y (k)o{o,1, (13)
Q(k)=0. (14)



Based on constraints (2), if a DC is establishetly one capacity level must be selected. Conssaint
(3) guarantee that customers should be allocatexhlp one DC for each product. Constraints (4)
assure that customers can be allocated to a Qe IDC is activated. Constraints (5) assure thet ea

DC cannot handle the products more than its aeilabndling capacity during each year. Relation
(6) calculates the operational cost of the SC duone year under normal condition. Constraints (7)
and (8) are integrality and non-negativity constisi respectively in which the indices of decision

variables are eliminated.

After a disruption event, some DCs will be disrupfenavailable), and the operational cost of the SC

will be increased. By assumirif(k) as the recovery time of the SC in scenérithe SC cost during

the recovery time plus the corresponding cost of&0very is as follows:

X o Yok , Y. (k
g i 5 T B bt )%%ps’“(%“f,p i )j
> 1,1 ()

22 rc><(1—¢i (k))bi,nXi,n +T(k) +> (di_p +gl.'p) o +> 3 h, Qi (k)

i01 nON i01 pOP Q » (k ) i01 pOP 2

+z z hi.pza” \/Lti.pj%ljafg.pyi,j,p (k) + Z Z Ip'ujrpyio,j.p (k)

il poOP jOJ pOP

As a consequence, the increase cost of SC in sognaan be obtained by relation (9). Further,

based on our previous explanations, constrains())are obvious that are written for scen&rio

3-2- An equivalent CQMIP model

The general mathematical formulation of a conicdyatic mixed-integer program is as follows:

minc’x,
xOX

st. |Ax+b)|,<agx+by, i=12.,m,

where cOR" andx is then-vector of decision variablesy ={(y,y'): y0z,y'OR*,p+k=n}, and

the data are4, DR™",b, JR™ ,a,, OR"andb,, OR for i=12.,m". |.| denotes the Euclidean norm

and the constraints define the second-order camere¢ent years, there have been significant
developments on solving CQMIP models, and commleppimization software such as CPLEX can
solve CQMIP models efficiently. In this sectionsbd on an approach proposed by Atamtirk et al.
(2012), the equivalent CQMIP of our two-stage s&stic program is developed. Atamtiurk et al.
(2012) have studied several types of joint facilitgation and inventory management problems with

stochastic retailer demand that follows a normaitrifiution with meany and varianceo?.

However, they did not consider the impact of disiarpevents, and their model is extended to a two-
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stage stochastic program under disruption eventioh the proposed resilience metric is quantified
and integrated.

In the presented model (1)-(14), decision variabjes and @, , (k) have only appeared in the

objective function and we can obtain their optiwvalues as follows:

By assuming tha{1-5xT)>0 in our problem, wherd = ¥ 71(k)T(k), the objective function is
kOK

convex inQ, , >0 and to determine the optimal value Qf , the objective function’s derivative with

respect tag, , is equalized to zero as follows:

As a consequence, the optimal valueof is:

2 Hi Y
o 0
Qi,p - \/z(di,p +gi,p )]]h—

i,p

Further, such as decision varialglg , the optimal value o, , (k) can be obtained as:

> 4,Y (k)
€, (K)=|2(d,, +g,) T ———

1,p

Therefore, by substituting the optimal values @f and @, , (k) in objective function (1) and

. %:'uj,pyi,j.p Q. . .
equations (6) and 9, > (dip +gip)”—+2 > h, = is  written  as
i01 pOP Q; » ioipop T2
e toms 5 (0, 0 )T s )
d. +g. Y. ., and term +g. + - —P2 1 is written
i%;p%P ip\dip T ip j%:]'uj.p i,j.p %;p%lp ip T Yip Qi,p(k) %;p%:P i,p 2

asy > 2hi,p (dip +gip) )y 'uj,pYi,j,p (k) '

i1 poP joJ

By using the fact tha¥ =Y , non-linear terms |3 u;,Y,,, and /Zajz_le._j_p are substituted by
jOJ joJ

auxiliary variablesw, ~ andvV, respectively, and constrainEsZ H; pY,.Z}.p SI/I/,.ZP,DiDI,DpDPj and
, : 2 Kt ,

Jp 1j.p

(ZJ.Z Y? sVi_zp,DiDI,DpDPj are embedded into the optimization problem. Initamd we
joJ

reformulate the objective function of the recoupseblem, equation (9), by this approach. Finally,

the two-stage stochastic program as a CQMIP fortiomlas presented as follows:

11



min: z Z f;’,nXi,n +z Z Oi,nXi,n +Z z z ei,j,pluj,pyi,j,p

i0I nON i0I nON i0r jOj popP
(15)
+ s, Y|+ 2h. (d. +g. W
+ h z  JLt. V. +B%> mlk)IC(k
3 3 12,0V, B 3 () (K)
st. 3 07,¥0, <V, 0iO1,0p 0P, (16)
> U Y, S W 0i01,0p 0P, (17)
joJ
o X. + e.. uU.Y  +> s Y. .
OC:Z n%I:V Lnnn ]%:jp%; IJIP'quP LJ],p p%‘;’ IrP[J%#JrP IrJrPJ
ior (18)
+p%;,\/2hi.p (di,p +gi,p )Wi.p +p%lphi.pzaﬂ Lti.p Vi,p’
VW >0, (19)
Constraints (2)-(5), (7), and (8), (20)
wherelC(k) can be obtained as follows:
IC(k)=miny 3 rex(1-4,(k))b, X,
i1 nON o
o X + e.. .Y . (k
+T(K) +3 3 s v (k) |+ on (d +g W | (21)
() +Z 250 S0, (0 [+ 5 2. 20, (4, 73,0,
+> Y h z Lt V. (k)+ Lu Y . (k)-0C
EP%:P LP  a Lp er( ) ]%:]p%l:l’ P'UJ'P lo.],P( )
2 2 ,
st. j%:]ajz,pyirj.p(k) SVi.p(k) DIDI'DPDP' (22)
Xy ¥ () W () 0i01,0p 0P, (23)
J
V (k)W (k)=0, (24)
Constraints (10)-(14). (25)

4- Sample Average Approximation Method

In this paper, a scenario generation approachpkmed that leads to identically and independently
distributed (i.i.d.) subset of scenarios relatedisyupted DCs. Secondly, the SAA method is used to
avoid from the computational intractability of tiepoposed stochastic program because of a large
number of scenarios.

Scenario Generation Procedure: we generate i.i.d. scenarios for the status ougisd unreliable
facilities because of natural disruption eventshswas earthquake and flood. Based on the

geographical area of a SC network and/or histodegd, the possibility of disruption events in each

12



district of the considered geographical area caanadyzed. Firstly, we define the possible dismupti

events in the corresponding geographical area ta%' ge1E. Secondly, we obtain the possibility

weights (w, ) for the occurrence of disruptions such thaty, =1.
elE

For each disruption everdJE , the set of unreliable facilities that may be wjged under its
occurrence is denoted ds The disruption probability of these unreliableilifies is approximated
as pr,(e),0i01, . As an illustrative example, a part of a SC nelwiora specific district that may be

affected under disruption eveatis illustrated inFig. 2 and facilities 1, 2, and 5 are assumed as
unreliable facilities. It should be mentioned thié detection of disruption scenarios is deeply

investigated by Pavlov et al. (2019) and Ivanoalef2016Db).

1,={125

|:> pr(e)=(020500 03
The disruption probability of the

district’s facilities.

Fig. 2. SC facilities in an affected district.
Algorithm 1 presents the scenario generation procedure.

Algorithm 1. Scenario generation withSsamples

for all k=1,..,NS do
Set I(k)=0.
Select one disruption evemfrom setk by roulette wheel selection.
for all ilJ], do
GenerateJ from Uniform (0,1).
if Uspr, (e) then
4, (k)=0.
I(k) — 1(k)O{i}.
end if
end for
ApproximateT(k) based on disrupted facilities.

end for

A main challenge related to solving the stochgstogram (15)—(25) is to calculate the expectation i
the problem’s objective. The SAA method is usedléal with this issue. In the SAA, firstiyyl
batches oK scenarios related to the SC disruptions are gesteréiext, the stochastic problem is
solved for these batches, and their objectivestanee is used to estimate a lower bound for the

optimal value of the problem’s true objective wittean 1, and standard deviatioa, . Then, the
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obtainedM feasible solutions are simulated & scenarios whereK'[l K , and the average of
simulation responses for each solution is consalasan upper-bound for the problem’s objective.
Finally, the feasible solution with the minimum eage of simulation responses will be selected for
estimating the upper bound of the problem’s truediive. The main steps of the SAA are illustrated
in Algorithm 2. For more information about the SAA, one can reéfeWang (2007) and Shapiro
(2001). In the SAA method, after calculating thafodence intervals for upper and lower bounds, we

will obtain a(l— 0/)% confidence interval (ClI) for the optimal valuetafe objective as follows:

(26)

[/IL _tn/z M—li’ﬂU +Zn/2ij :
"M JK'

Algorithm 2. The SAA method
1- Generate a sample of sikg.
2-for all s=1,...M do

a- Generate a sample of sike
b- Solve the stochastic program with the generateapte and obtain the

optimal objectivez, and solutionx_ .

c- Evaluate solutiorx over K' scenarios, and obtain the expected value of

simulation responses as‘ .

end for
3- Calculate mean and variance of true objectiveea lower bound:

1um 2 1 M 2
=—2z ando, =—— |z - .
py =12z, ando) =y (2, 4)
4- Construct(l— a)% Cl for the lower bound approximation as:

H ot ta/Z,M—lO-L/\/M'
5- Obtain the best upper bound estimate and itgisolas:
— . K' =
My = sm{rlr,lzl,PM} M, andXx.
6- By assuming fk()?) as the problem’s objective related to soluti®n
under scenarit in the selected sample 8tep 5 compute the variance of the
upper bound estimate:
1 « _ 2
2
g, =—- X)— .
7= 2 (f(F) 1)
7- Construct(l— a')% Cl for the upper bound estimate as:

My x2,, O-U/\/?'

5- Computational Results
Here, the results from the computational study smenmarized. Our goal is to examine the

tractability of the presented stochastic progrard Hre performance of the resilience metric and,
derive managerial insights regarding resilient SO developed stochastic program is solved via
CPLEX solver in GAMS 25.1. All implementations ihig section are performed by a personal
computer with Intel Core i7-640 M CPU (2.8 GHz){w4.00 GB of RAM.

14



5-1- Computational efficiency of the proposed CQMi&del
Several problem instances are taken into accouexamine the applicability of the CQMIP model.

The model's parameters are generated based ammie A1l in Appendix A by using uniform
distribution according to Javid and Azad (2010) dmk and Shen (2012). In this sub-section, four
capacity levels are considered for the establishreBCs and we randomly assumed 75% of DCs
as unreliable ones. Further, each unreliable DQOHES probability to be disrupted in each scenario,
and parametep is set to 1Table 2 illustrates characteristics of test instancespthjective function

value, and CPU time from solving problem instances.

Table 2. . Computational details from solving the problerstémces

Instance number (1.11.1PLIK]) Obj eCt\'/\;JngnCtlon First stage cost run time (S)
P1 (8, 10, 5, 15) 8.8857E+5 6.6526E+* 12
P2 (10,12, 4, 10) 8.0121E+5 6.2327E+5 11
P3 (12, 15, 4, 15) 9.1873E+5 6.9946E+5 32
P4 (15, 18, 4, 10) 1.0722E+6 8.1057E+5 24
P5 (20, 25, 5, 15) 1.8262E+6 1.3725E+6 191
P6 (24, 28, 4, 10) 1.6349E+6 1.1972E+6 174
P7 (25, 30, 5, 10) 2.1354E+6 1.5786E+6 312
P8 (30, 40, 5, 10) 2.7238E+6 2.0308E+6 546
P9 (35, 45, 4, 10) 2.4191E+6 1.8141E+6 808
P10 (40, 50, 4, 10) 2.6621E+6 1.9785E+6 1080
P11 (45, 60, 4, 10) 3.1156E+6 2.2392E+6 1988
P12 (50, 70, 4, 10) 3.4781E+6 2.5716E+6 2932
P13 (60, 75, 4, 10) 3.5890E+6 2.6592E+6 5356
P14 (70, 90, 4, 10) 4.3510E+6 3.1547E+6 9444
P15 (100, 120, 4, 8) 6.0918E+6 4.4612E+6 14233

As shown byTable 2, the CQMIP model is solvable for a range of probl@astances by CPLEX
solver. It should be noted that Trable 2, the computational results are reported for sonodlpm
instances those are solvable in less than 4 héungher, it is illustrated that the run times are
sensitive to the number of scenarios, meaningfaig hence the importance of the SAA method is
highlighted.

The first stage cost that is reportedTiable 2 is the total yearly cost of the SC distributiorivinark
consisting of the fixed cost of the establishmehD&s and SC operational cost. As reported in
Table 2, for our generated problem instances, this coshig about 75% of the objective function,
averagely, and we can conclude the value of theerese metric in comparison with the total yearly

SC cost is significant.

5-2- Application of the proposed stochastic model
One problem instance is generated in this subesetiased on the geographical area of Iran. In this

problem instance 40 potential locations for D@k-@0) and 31 customerg/(=31) based on Iran’s

provinces are considered. The other characteristafs the problem instance are:
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|P|=4,|10]=32 and|N|= 4 In this case example, the transportation cost®ltained from Iran's Road

Maintenance and Transportation Organization, ahdrgharameters are basedTable A1l. The SC
network, including the potential location of DCglasustomers, is illustrated Fig. 3.

The natural disruptions, including flood and eautéke, are considered in this case example Famd

4 (a) and(b) show the approximate zoning map of Iran relatethéoearthquake and flood hazard,
respectively. Based on these figures, opinionsxpieds in Iran’s National Disaster Management
Organization, and DCs’ potential locations, 40 maisruption events are assumed Aligorithm 1

for the scenario generation, the disruption praigloef DCs in the very high, high, and moderate
levels are assumed to be 0.4, 0.2, and 0.1, regglgctlt should be mentioned an area that may be
affected after each disruption event is also ddriWwe use this case example to discuss about the

obtained optimal solution and resilience metrigrfreolving the stochastic program.

A Potential reliable DCs o
A Potential unreliable DCs 4 4
® Customers

Fig. 3. The network of the case example.
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High risk
Moderate risk

l:lww risk

Fig. 4 (a). Approximate earthquake hazard zoning map of Iran

Il very nigh risk
B Hieh risk

M Moderate risk

[ ]rowrisk

Fig. 4 (b). Approximate flood hazard zoning map of Iran

We apply the SAA method in the case example to st@nCls for lower and upper bounds of the
true optimal objective value. For solving the cagample, the parameters of the SAA method are set
asK = 40,M = 10,K’=400. The resulting 95% Cls for the lower and uppminds are presented in
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Table 3. The percentage gap between the lower and upplsradrthe Cl related to the true optimal
objective in (26) is reported in the last columnTaible 3. It should be mentioned that in this sub-
section parametef is set to 1.

Table 3. Results from the SAA method for the case example
Hy Clfor LB Cl for UB Gap (%)

1.6787E+6 | (1.6393, 1.6673X1C0° | (1.6646, 1.692851C° 3.2%

5-3- the applicability of the resilience metric

To emphasize the importance of the consideredigrsé metric. We solve the problem without
considering the second stage problef=(E, ¢ is a small number). Then, by using the simulation,
we examine the solution of the case example v@thl and S=¢, for a set of disruption scenarios

including 150 scenarios. The comparison betweerSthecosts is presented Trable 4. Further, in
Fig. 5, the frequency of the SC cost increase in the fafcdisruptions is illustrated for these
solutions.

Table 4. Comparison of the SC cost with and without theliegsie metric consideration

First stage cost: Simulation results
Total yearly SC cost

Resilience metric Expected of recovery cpst

1.1743E+6 1.0537E+6 8.5092E+5

£
=1 1.2146E+6 5.1425E+5 4.0114E+5

20 T T T — - 25 T T T T T S

20
15

10

05 06 07 08 0.9 1 1.1 1.2 1.3 1.4 1.5

p=1 p=¢

Fig. 5. the frequency of SC cost increase that is obtaiyesimulation of the optimal solution Witﬁ =1and ,8: E.

As illustrated inT able 4, the first-stage objective of the problem thatis total yearly SC cost under
normal condition increases about 3.4% by the dissogpdriven design decisions. However, the
resilience metric reduces 51.1% that highlights thain impact of our approach. The main
importance of considering the resilience metri@lso emphasized iRig 5. In Fig 5, the average
response of the SC cost increase during the regtwvee for the case example wifi=1 and =&

are 5.1425E+5 and 1.0537E+6, respectively. It shbalmentioned that the SC’s recovery cost takes
about 80% of the resilience metric in this casergla.
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In the optimal design decisions from solving theecaxample withF=1 and f=¢&, the number of

established DCs are 28 and 24, and the total ledtahpacity are 94100 and 119193, respectively.
Therefore, we can conclude that by consideringptioposed resilience metric in the design phase,
the average capacity of the established DCs dexsdemm 4966.3 to 3360.7. We can conclude that
for the resilient SCND, it is not necessary to afistnore capacity for responding to customers in
some cases. In our case study, in the design phigsaut consideration of the resilience metric, the
SC benefits from the economy of scale related écctist of opening facilities with high capacity.

The SAA method by setting = 40,M = 10, andK’=400 is used for solving some generated problem
instances and the above-mentioned analysis arefdotieem and the results are illustrated’able

5. In Table 5, the percentage gap between the lower and uppkr @nthe CI related to the true

objective in relation (26) is also reported.

Table 5. The impact of SC resilience metric consideratiomesign decisions by using simulation

Test pB=¢ B=1
instances | Total yearly SC cost under Resilience SAA Gap Total yearly SC cost Decrease of | SAA Gap
normal condition metric (%) under normal conditior) resilience metric (%)
P3 6.87E+05 4.36E+05 1.98 % 7.08E+05 41 % 214 %
P6 1.21E+06 8.92E+05 2.45% 1.25E+06 51 % 2.87 %
P9 1.94E+06 1.01E+06 2.44 % 2.01E+06 49 % 3.09 %
P12 2.72E+06 1.69E+06 3.19% 2.81E+06 54 % 3.37 %

The reported results iffable 5 confirm the obtained results corresponding to chse example.
Further, the presented gaps of the SAA approachaious test instances shows its acceptable
performance and robustness.Hig. 6, it is shown how the consideration of the resgemetric in

the SCND decreases the expected increase of S@tigped costs because of a disruption event and
increases the yearly SC costs under normal condiigeveral problem instances. Based-ap 6,

we can conclude that the increase of yearly SGsaestegligible in compared with the improvement

of the SC’s resiliency.

Decrease of resilience metric

Increase of yearly SC costs under normal condition

1.00E+06
9.00E+05
8.00E+05
7.00E+05
6.00E+05
5.00E+05
4.00E+05
3.00E+05
2.00E+05
1.00E+05
0.00E+00

P3 P6 P9 P12

Cost

Test Instances
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Fig. 6. Decrease of the resilience metric and increaskeof¢arly SC costs by using disruption-driven model
In our optimization problem, about 75% of the SGtdacrease is associated with the SC recovery
and hence the recovery cost of SC network dursgeitovery period has a meaningful impact on the
SC planning subject to disruption events. For desga resilient SC, selection of reliable facdi
has priority and the installed capacity of unrdkafacilities with high likelihood of disruption shld
be reduced.

5-4- sensitivity analysis
A discussion related to the impact of main paramsétealue on the solution of the stochastic

program is presented in this sub-section.

Analysing the impact of parameter 5: Parameterf3 in our stochastic program should be set by the
decision maker, and illustrates the importance ltead the proposed resilience metric. To find how
the total yearly SC cost and resilience metric gleaty considering various values for this
parameter, the sensitivity analysis is doRigy 7 shows the sensitivity of the total yearly SC cost
under normal condition (the first stage cost) te thalue of parametef3 in the case example.
Furthermore, irFig 8

, it is shown that in the case example, how theeetqal value and variability of the SC cost increase
due to a disruption event change by consideringpuarimportant weights for the resilience metric in

the design phase.

1.25E+06
1.24E+06 1 ok
123E406{ =
122E+064 ae=T
1.21E+061 4
1.20E+06- -
1.19E+06 1 o
1.18E+064 ==~
1.176+064
1.16E+061
1.15E+06 | | |
0 05 1 15 2

Total yearly SC cost
AY

Fig. 7. the sensitivity of the first stage cost to paramgte
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1.40E+06
1.20E+06
1.00E+06
8.00E+05
6.00E+05

4.00E+05

2.00E+05

0.00E+00
0 0.5 1 2

—— Maximum value 1.43E+06 8.94E+05 7.76E+05 7.58E+05
—— Minimum value 6.11E+05 2.91E+05 2.92E+05 2.90E+05
—O6— Reilience metric 1.05E+06 5.72E+05 514250 4.89E+05

Fig.8. the sensitivity of the expected and variabilityse? cost increase after a disruption event to paemhe

In Fig. 8, it is shown that our proposed approach for digompdriven SCND reduces the SC cost
increase in terms of the expected value and véitiabFurther, based ofrigs 7 and8, when we
apply our approach for designing resilient SCs,itlceease of the total yearly SC cost in compared
with the decrease of the resilience metric is nghicant. Therefore, we can highlight the
applicability our proposed resilience metric foe tARCND.

Analysing the impact of the recovery time: Based on the definition of the resilience as thétalo
quickly and effectively recover from a disruptidhe recovery time has a main role in the presented
resilience metric. ITable 6, we report the impact of the recovery time valuetlee total yearly SC
cost (the first stage cost) to obtain a resilie@t\@ith £=1. The changes of the recovery time are
exerted by multiplying some coefficients to thiggraeter. InTable 6, the main importance of the
recovery time on the resilience metric is highleght and hence decision makers should develop

recovery plans to return a disrupted SC to itsah#tate as soon as possible.

Table 6. the sensitivity of the SC costs to the recoveryetim

: Multiplier coefficient for SC recovery time
Problem instances 01 05 1 >

Case The.f.irst stage gost 1.18E+06 1.20E+O_6 1.21E+06 1H+P6
example Re5|l|enqe metnc _ 4.31E+05 4.69E+0pH 5.04E+05 5.38E+

Total Objective function 1.61E+06 1.67E+06 1.71E+D6L.75E+06

Problem The.f.irst stage gost 6.90E+0"1 6.95E+O_5 6.99E+405 1E+05
instance 3 Re5|l|enqe metnc _ 2.01E+05 2.11E+O? 2.16E+05 2.2%E+

Total Objective function 8.91E+05 9.06E+05 9.15E+D9.30E+05

Problem The.f.irst stage gost 1.36E+06 1.37E+O_6 1.37E+06 7H+B6
instance 5 Re5|l|enqe metnc _ 4.03E+05 4.52E+0b 4.60E+05 5.0+

Total Objective function 1.76E+06 1.82E+06 1.83E+D6L.87E+06

5-5- The effect of the risk-based resilience metric
The proposed resilience metric is based on the &€ increase during the recovery period after a
disruption event, and this cost for a SC networkteshastic and dependent on disruption scenarios.

We have considered the expected value of the SOraease to introduce the resilience metric. In
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this sub-section, CVaR is applied to obtain thdiese metric and their impacts are investigated i
three small-sized examples. It should be mentigdhatithe CVaR can be calculated in a stochastic

program by linear programming techniques (Ahme@®620

We can obtaincvar, (Ic) instead of > 7z(k)IC(k) in objective (15) as follows (Govindan and
kOK

Fattahi 2017):

CVaR,, (IC)=min: 7 +1i[ > n(k)é’(k)j,

—a \ kK
st.
6(k)zIC(k)-n OkOK,
6(k)=0 Ok OK,
nQog.

where, the possible loss for each scendcissillustrated by decision variab®k) .
By the proposed risk-based resilience metric, weelsolved three small-sized problem instances
with 40 scenarios,f=1, and CVaR,ss Next, obtained design decisions are simulated 1100

disruption scenarios and the results are repontéalble 7.

Table 7. simulation results from solving problem instanedth risk-based resilience metric

Problem Resilience metric Statistics of the resilience m&tisimulation
instance mean Standard deviation  75% quantile (Q[T)
P3 CVaR, o: measure 2.76E+5 2.01E+4 2.88E+5
Expected value measure 2.59E+5 3.15E+4 2.92E+5
P5 CVaR, o: measure 4. 77E+5 5.59E+4 5.08E+5
Expected value measure| 4.41E+5 7.66E+4 5.11E+5
PG CVaR, o: measure 5.01E+5 5.02E+4 4.98E+5
Expected value measure 4.40E+% 7.26E+4 5.03E+5

We can conclude from the simulation results thatrtbk-based resilience metric makes the expected
value of the SC cost increase worse. On the otdued it reduces the standard deviation and 75% QT
of the SC cost increase because of a disruptionteleging its recovery time.

5-6- Analyzing different disruption scenarios
In this study, the increase of yearly SC cost (itst stage cost of our optimization model) after

consideration of the resilience metric can be preted as the cost of designing a resilient SC
network, called resilient design cost. However, ttbglient design cost of SCs is dependent on the
disruption risk of DCs and the percentage of ualdé potential DCs in the SCND problem. To
highlight this issue, in this sub-section, we defthree conditions and run several test instandis w
40 scenarios under these conditions anBiga 9 the percentage increase of the resilient desigh co
is reported for these problem instances under tba@saitions.

Condition 1 the probability of disruption occurrence at uraiele DCs is multiplied by 1.5.

Condition 2 the number of unreliable potential DCs is incega$5%.
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Condition 3 both conditions (1) and (2) are considered.

—@— Condition1 --@-= Condition2 = @ =Condition3
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-
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increase of resilient design cost (%)
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Problem instances

Fig.9. The impact of DCs’ disruption risk and the percgetaf unreliable potential DCs on resilient desigst
Presented results iRig. 9 highlight the meaningful impact of unreliable DA®imber and their
disruption risk in designing resilient SC networks it is expected, by increasing the disruption
probability and number of unreliable DCs in the SICproblem, the resilient design cost increases
and the impact of disruption probability is morarnhthe number of unreliable DCs in our study. It
should be mentioned that the modelling approactiisstiption impacts on SC networks has a main
influence on design decisions.

6- Managerial implications
In this study, we address a main challenge corredipg to the quantification of a resilience metric

for SC planning under disruption events. Althouganm studies (see survey papers related to this
area such as Klibi et al., 2010; Snyder et al.,620¢anov et al., 2017; Govindan et al., 2018)
attempted to design SCs under disruption risk, robshem (e.g., Sheffi, 2005; Azad et al., 2013;
Hasani and Khosrojerdi ,201Battahi et al., 2017; Fattahi and Govindan, 20&Bbarzadeh et al.,
2018) neglected the cost and time of the SC regaaker a disruption event and concluded that the
establishment of more capacity in the design phaseld lead to a resilient SC network. We
formulate a new resilience metric that captureseahigvo main aspects of SC disruptions, and we
show computationally that in some situations, tealdishment of excess capacity may lead to the
increase of the SC’s recovery cost. The main ingpatthe SC’s recovery time and cost on design
decisions are also investigated. Furthermore, ghidy confirms the results of the literature (e.g.,
Mak and Shen, 2012; Hasani and Khosrojerdi, 204#&0) $tates the increase of facilities’ dispersion
leads to the SC's resiliency. In practice, many panies, such as Toyota, Honda, BMW, and Intel,
devote a significant attempt to obtain resilienaythe face of disruption events by quantitative
models (Handfield et al., 2006). This study introelsia new applicable approach in this area that can
be simply modified based on various SC plannindplemos.
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The proposed two-stage stochastic program findss#@ond stage decisions should be made after a
disruption event as corrective decisions. This agghh enables us to develop a contingent planning
based on a disruption scenario. This issue is slyaaddressed (see Tomlin, 2009; Fattahi et al.,
2017) in the literature and our decision-makingrfesvork employs the contingent sourcing strategy

that meaningfully reduces the SC’s performance bessuse of disruption events.

We investigate differences between the robust desigsCs under disruption risk and resilient-based
objectives. Many robust design methods (e.g., Kdhd Martel, 2013Baghalian et al., 2013;
Jabbarzadeh et al., 2018) are criticized for obtgiover-conservative solutions based on the worst-
case scenario. Contrary to this approach, our ctatiponal results highlight the proposed resilient-
based objective, so the loss of the SC’s efficienogomparison with the increase of its resiliergy
negligible. To improve the SC resilience metric39p6, the average increase of the resilient design
cost is less than 5%; this impressive outcome fggtd the applicability of the proposed resilience
metric. Further, our approach for designing resili&Cs allows for considering different risk

attitudes of a decision maker by carefully adaptboontrol parametes.

The SC cost increase due to a disruption eventsto@hastic variable that is dependent on the SC
network structure and on the severity and typehef disruption event. The resilience metric is
guantified based on the expected SC cost increabe iface of a disruption event during its recgver
time. This approach can help SC decision makefmtbhow the existing SC network is resilient
under various disruption scenarios. We have shdwenquantification approach of the resilience
metric affects design decisions. The CVaR of thec8€1 increases, in the face of a disruption event,
is also investigated as a risk-based resilienceien€omputational results illustrate the risk-tdhse
metric leads to higher mean and lower variance &b QT in the distribution of the SC cost

increase after a disruption event.

Based on computational results, network structofleences the impacts of a disruption on the SC.
In many problem instances, to design a resiliestridution SC network, it is more favourable to

increase the number of active DCs and to decrémstotal established capacity. In sub-section 5-2,
the resilient design for the problem instance presge (based on the Iran map) results in increasing

the number of active DCs from 24 to 28 and decnggt$ie total installed capacity about 21%.

The occurrence of disruption events in a SC netwmaaly result in a ripple effect; further, many SC
facilities may be simultaneously disrupted. Thisdst proposes an applicable framework for the
detection and construction of disruption scenabiased on the SAA approach that can address this

issue. In addition, by this framework, a large nembf disruption scenarios can be considered for
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modeling the uncertainty induced by disruption esewithout approximation of the scenarios’
probability.

7- Conclusion
In the related literature, there exist a few metfier the SC resilience, and these metrics are not

suitable to be embedded in SC optimization modelshis paper, we propose a new metric for the
SC resilience and use this metric in the desigrs@lod a distribution SC network. We consider that
the disruption events lead to the failure of umiae facilities in the network and a two-stage
stochastic program is developed. In the stochasbgram, the resilience metric is formulated by
minimizing the expected value of the SC cost ineeeduring its recovery time after the realization o
a disruption event.

The considered problem is initially formulated asn&ed-integer nonlinear problem, and then
reformulated as a CQMIP, which is solvable by comumaé solvers such as CPLEX. A particular
emphasis of this paper has been put on the reathapplicability of the proposed resilience metric.
To deal with a large number of disruption scenartbe SAA method is employed. We test the
validity of our model and the impact of the resite metric consideration by using a simulation
approach.

In the experimental results, we show the computatitractability of the proposed model by using
several generated problem instances and a casepkxamased on Iran geographical area.
Furthermore, we investigate the impact of the recptime and the resilience metric weight in our
stochastic program on the optimal design solutiotal yearly SC cost under normal condition, and
the value of the resilience metric. Finally, we mxae the risk-based resilient metric by using CVaR
in some small-sized problem instances.

This paper presents a new resilience metric, aeck thre many opportunities to consider this metric
in other SC optimization problems. Further, annegéng future work related to our problem is to
extend the presented model for a multi-period SQiBblem by using the multi-stage stochastic
programming (see Fattahi et al. 2018).

Big data analytics, Industry 4.0 applications, &RP systems can increase the SC’s resilience in the
pre- and post-disruption stages of the SC planbygeal-time monitoring. Further, the big data
analytics can help in the detection of disruptiocararios for designing resilient SC networks. As a
consequence, the extension of the proposed optionizapproach and resilience metric for digital
technology applications is a promising future resleairection.

Appendix A
Table ALl. Generation of parameters in problem instances
[ Symbol | Value | Symbal | Value
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