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A B S T R A C T

The blood supply of hospitals in disasters is a crucial issue in supply chain management. In this paper, a
dynamic robust location–allocation model is presented for designing a blood supply chain network under
facility disruption risks and uncertainty in a disaster situation. A scenario-based robust approach is adapted
to the model to tackle the inherent uncertainty of the problem, such as a great deal of a periodic variation
in demands and facilities disruptions. It is considered that the effect of disruption in facilities depends on the
initial investment level for opening them, which are affected by the allocated budget. The usage of the model is
implemented by a real-world case example that addresses the demand and disruption probability as uncertain
parameters. For large-scale problems, two meta-heuristic algorithms, namely the self-adaptive imperialist
competitive algorithm and invasive weed optimization, are presented to solve the model. Furthermore, several
numerical examples of managerial insights are evaluated.

1. Introduction

Supply chain management (SCM) is often described as a procedure
of planning, implementation, and control of supply chain operations
based on efficient practices (Melo et al., 2009). The supply chain
network design (SCND) has played a dominant role in the performance
of the supply chain (SC). It copes with so many prospects of the SC
such as information, location of facilities and allocation of material. The
SCND is considered as a significant issue in strategic and operational
decisions in the SCM scope (Devika et al., 2014; Amin et al., 2017; Fu
and Fu, 2015).

Blood supply management and its products are vital issues for
humankind. Blood is not a regular commodity since its demand is rela-
tively random, and efficient coordination between supply and demand
has not been resolved in various researches yet (Beliën and Forcé,
2012). Human blood is a rare and vital source that is produced only
by human beings, and since there is currently no other product that
can produce blood and also its uncertainty supply and demand side,
keeping an adequate supply level is very important to fulfill demands
(Duan and Liao, 2014).
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For full disclosure statements refer to https://doi.org/10.1016/j.engappai.2020.103493.
∗ Corresponding author at: School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
E-mail address: tavakoli@ut.ac.ir (R. Tavakkoli-Moghaddam).

In a supply chain, disaster happens in a situation, which is defined
as deactivation of one or more supply chain parts’ activities, which
results in a crucial disruption to the usual flow of different parts of a
supply chain. Some decision-making processes to prevent disasters and
reflexive decisions in prevailing over the disaster are named disaster
management (Natarajarathinam et al., 2009). Today, supply chains
become susceptible to several disruptions. One of the solutions is pre-
dicting the disruption and another solution is in knowing which policies
will be more suitable in such disrupted conditions (Samvedi and Jain,
2013). Two types of risks can be defined in terms of a supply chain:
operational and failure risks. Operational risk is caused by intrinsic
disruptions of the chain (e.g., uncertain demand, uncertain capacity
and uncertain costs of the chain) while the failure risk is created with
natural or abnormal accidents (e.g., earthquake, flood, terrorist attacks
and fire). In most cases, the risk of disruption and failure in the supply
chain performance has a much greater impact than operational risk
(Tang, 2006).

Robust optimization planning provides a risk aversion approach to
face uncertainty in optimization issues. Since Ben-Tal and Nemirovski
(1998) showed the consequences of not considering uncertainty, every
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person realized that ignoring the uncertainty of the data could even
lead to an infeasible answer for the problem when it was executed in
reality.

These instances highlight the importance and need for the creative
design and planning of blood supply chains, which are robust to such
disruptions during and after a disaster condition. Thus, this paper aims
to design a network, which proposes a new robust model in a blood
supply chain by considering disruption risk and demand uncertainty in
a disaster situation in a real-world case study.

The remainder of the paper is classified as follows. The literature
on the blood supply chain and concepts of reliability and disaster
are reviewed in Section 2. In Section 3, the problem is defined in
details with the related assumptions. Section 4 describes a solution
method and symbols. Section 5 provides computational and analytic
results. Eventually, the managerial insight and conclusion are gathered
in Sections 6 and 7, respectively.

2. Literature review

Studies about the location of unreliable facilities were started by
introducing the probability of equality of disruption in all facilities in
a p-median problem by Drezner (1987). Berman et al. (2009) focused
on the location of unreliable facilities based on the assumption that
customers have inaccurate information about the location of active
facilities. Peng et al. (2011) presented a model based on a scenario
approach and considered that each scenario incorporates some facilities
that are disrupted at the same time. They reduced the whole cost by
reducing the risk of a disruption using p-robust criteria and finally used
the genetic algorithm to solve the model. Hong et al. (2012) presented a
robust optimization model for the p-median location problem under fa-
cility disruption considering the uncertainty of demand and capacity of
facilities. Esmaeilikia et al. (2016) introduced an analogous description
and classification of hazards in a supply chain scope and considered
disruptions in two categories, namely main disruptions and demand or
supply disturbances.

Jabbarzadeh et al. (2016) designed a supply chain network based
on robust stochastic optimization and Lagrangian relaxation methods.
They considered a real-world problem, in which disruption could lead
to disability or capacity reduction. Also, they considered a function
of the investment level for a disruption probability parameter in the
construction of facilities with a budget constraint. Diabat et al. (2019)
introduced a bi-objective model for a perishable supply chain consider-
ing the robust approach and disaster scenarios. The goal of the model
was to minimize the time and cost after a disaster. They developed
Lagrangian relaxation and 𝜀-constraint methods to solve the model by
considering a real-case study.

Sha and Huang (2012) presented a multi-period model for location-
distribution of blood facilities in a disaster condition. They faced with
the model by a Lagrangian relaxation method and solved the model
for a real-case problem in Beijing. Zahiri et al. (2014) proposed the
design and location–allocation model for organ transplantation that
aims to minimize the cost of the facility construction, transportation
time between centers and relocation of facilities, and based on a
robust planning approach to face with uncertainty in some model
parameters. Jabbarzadeh et al. (2014) developed a model for the multi-
period, single-product blood supply chain network in disaster situations
considering the robust approach for the uncertainty of the demand
parameter. The proposed model sought to minimize the total cost of the
blood supply chain including fixed facility location costs, relocation of
temporary facilities, operation costs, shifting and inventory costs.

Zahiri et al. (2015) presented a multi-period location–allocation
model in the blood supply chain by considering the collection process,
temporary facilities, and blood centers. They solved their model under
uncertain conditions of the input parameters (e.g., blood donors and
demand) by using a robust optimization approach. Fereiduni and Sha-
hanaghi (2016) proposed a multi-period location–allocation model in a

blood supply chain for the Tehran province after the disaster. Ahmadi-
Javid et al. (2017) presented a health review paper that reviews related
subjects up to 2015. Zahiri and Pishvaee (2017) designed a network
for the blood supply chain, whose proposed bi-objective model aimed
at minimizing the maximum unsatisfied demand and the entire cost
considering the robust approach. Fahimnia et al. (2017) proposed a
new stochastic bi-objective model for a blood supply chain in a disaster
condition. Their model minimizes the cost and minimizes the time
simultaneously. They presented a hybrid solution approach with a
combination of Lagrangian relaxation and 𝜀-constraint approaches.

Ramezanian and Behboodi (2017) designed a network for the
blood supply chain and developed a mixed-integer linear programming
model. They considered two uncertain parameters and some social
parameters, such as the distance of donors, advertising budget and
donor experience. They utilized a robust optimization approach for
evaluating the proposed model and used a real-case study in Tehran.

Zhalechian et al. (2017) considered an uncertain hub location
problem and developed a multi-objective model for it by consider-
ing responsiveness, social responsibility and economic issue. Habibi-
Kouchaksaraei et al. (2018) designed a robust blood supply chain and
developed a multi-period model in disaster situations considering the
uncertain demand. The objective of the model was to find the location
and number of temporary facilities and minimize the total cost and
blood shortages. Also, they used a robust approach for uncertainty and
solved the model with data taken from the Ghaemshahr city.

Samani et al. (2018) designed a blood supply chain in disaster
situations considering the perishable nature of blood and its shortage
and uncertain demand. They provided a multi-objective model that
simultaneously reduced the most unmet demand and costs.

Eskandari-Khanghahi et al. (2018) developed a sustainable blood
supply chain network in disaster situations with uncertain parameters.
They considered some objectives as minimizing the costs, environmen-
tal effects of blood collection and wasted blood, maximizing the social
impacts, such as the number of job opportunities created, and finally
minimizing the cost of purchasing, lack of blood, maintenance, etc. The
simulated annealing (SA) and harmony search (HS) algorithms were
chosen and compared for the large-scale solution.

From what has been discussed above, the effects of a disaster on
facilities (e.g., disruption and the budget constraint) are one of the most
important issues in most countries, which have not taken managerially
into account. Besides, knowing the number of required facilities in
such emergency systems is one of the challengeable subjects among
managers, which should pay more attention. Besides, it is better to
generate the model in a real-world condition to be more practical and
even it will be more beneficial study to be generated in a new case
study and solved the issues of them. Furthermore, the blood supply
chain is an integrated chain, in which all sections influence each other,
so considering one city or one region will not be as useful as the whole
ones. Moreover, in most real cases when a facility is disrupted, it will
not lose the whole capacity, whereas it will lose it, which is affected
by disruption partially.

To overcome these shortcomings and fill these gaps, a robust model
is developed for a blood supply chain under uncertainty of both de-
mand and disruption probability to investigate the best solutions in
a real-world and large-scale supply chain. Furthermore, the budget
constraint is considered as a vital issue in making a decision. Besides,
two meta-heuristic algorithms are conducted and compared with each
other.

In this paper, some gaps in the blood supply chain scope are covered
and the following contributions are categorized:

• Considering both types of risks that have not taken into account
in the post-disaster blood supply chain literature so far.

• Considering two types of reliable and unreliable facilities and the
effect of disruption on them.

• Proposing a new and practical model in an uncertain blood supply
chain.
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• Solving the model in a real-world case study, which is suffering
from insufficient blood in an emergency case.

• Assuming a multi-period model in a post-disaster condition. Most
studies in this area consider the models as a single-period one,
whereas after a disaster, due to the nature of the uncertainty, the
demand should be considered in different periods.

• Considering the available budget for the model. According to the
experts, one of the most important issues for blood centers is the
considered budget by the government and optimal usage of it in
centers and facilities.

• Examining the uncertainty in some parameters of the problem,
such as demand and disruption probability of temporary facilities
because of a disastrous occurrence.

• Considering the robustness concept to cope with the uncertainty.
• Applying the self-adaptive imperialist competitive algorithm

(SAICA) to solve the model and comparing it with the invasive
weed optimization (IWO) algorithm.

The features of the proposed supply chain network design models
are summarized in Table 1. Besides, for the efficiency of this issue,
it is considered a case study in the Mazandaran province located in
the north of Iran, which is predisposed to earthquakes and floods
disruption, and it is suffered from the lack of blood more than other
provinces.

3. Problem definition and the proposed model

The assignment of facilities to centers, donors and the shift of blood
between these nodes are shown in Fig. 1. The content of this paper
includes locating temporary facilities and blood centers in the blood
supply chain network and allocating the facilities and donors in a
disaster situation. It should be noted that in the event of a disaster,
temporary facilities get disrupted, in which the level of disruption
of any facility and center depends on the initial investment for its
construction. Also, the disaster will affect the demand for blood needed
by hospitals. Furthermore, the planned budget will also have an impact
on this issue and the demand which can be met. In the following, the
proposed model is solved in deterministic and robust conditions. The
reason for choosing this topic is the vitality of blood substance and the
fact that countries always face shortages of this supply, especially at the
time of the disaster. A robust formulation model is presented according
to the uncertainty of some parameters such as demand and disruption
probability. Below, we present a brief background of a scenario-based
optimization method.

3.1. Background of the robust formulation

Robust optimization planning is a method to handle the uncer-
tainty in problems. Mulvey et al. (1995a) demonstrated a description
of scenario-based data and introduced solution robustness and model
robustness contexts. The linear optimization model is as follows:

Min 𝑐𝑇 𝑥 + 𝑑𝑇 𝑦
s.t.

(1)

𝐴𝑥 = 𝑏, (2)

𝐵𝑥 + 𝐶𝑦 = 𝑒 (3)

𝑥, 𝑦 ≥ 0 (4)

At this model, x and y define the vectors of decision and control
variables, respectively. Control variables are subjected to frame once a
specific realization of parameters, while design variables are specified
before the realization of the uncertain parameters and are not depen-
dent on the realization of them. A set of scenarios is introduced as
𝑆 = {1, 2, 3,… , 𝑠}. For each scenario 𝑠𝜖𝑆, the set 𝑆 = {𝑑𝑠, 𝐵𝑠, 𝐶𝑠, 𝑒𝑠}

of realizations is related to the coefficients. The robust optimization
model can be formulated by:

Min 𝜎
(

𝑥, 𝑦1, 𝑦2,… , 𝑦𝑠
)

+ 𝜔𝜌
(

𝛿1, 𝛿2,… , 𝛿𝑠
)

s.t.
(5)

𝐴𝑥 = 𝑏, (6)

𝐵𝑠𝑥 + 𝐶𝑠𝑦𝑠 + 𝛿𝑠 = 𝑒𝑠 ∀𝑠𝜖𝑆 (7)

𝑥 ≥ 0, 𝑦𝑠 ≥ 0 ∀𝑠𝜖𝑆 (8)

For modeling with this approach, control variable y𝑠 and error
vector 𝛿𝑠 should be introduced to measure the infeasibility allowed in
the control constraints under scenario𝑠. With different scenarios, the
objective function (1) would become a random variable as 𝜉𝑠 = 𝑐𝑇 𝑥 +
𝑑𝑠𝑇 𝑦𝑠 with probability 𝑝𝑠, which ∑𝑆

𝑠=1 𝑝𝑠 = 1. Equation 𝜎 (.) =
∑

𝑠𝜖𝑆 𝑝𝑠𝜉𝑠
is used for the first term in the objective function. The second term
in the objective function (5) is a measurement of model robustness.
Mulvey et al. (1995b) proposed that 𝜎

(

𝑥, 𝑦1, 𝑦2,… , 𝑦𝑠
)

can be written
by:

𝜎
(

𝑥, 𝑦1, 𝑦2,… , 𝑦𝑠
)

=
∑

𝑠𝜖𝑆
𝑝𝑠𝜉𝑠 + 𝜆

∑

𝑠𝜖𝑆
𝑝𝑠(𝜉𝑠 − 𝑝𝑠′𝜉𝑠′ )2 (9)

In the above suggestion, 𝜆 is a constant by which the objective
function would be less sensitive to change under the scenarios. In brief,
the final formulation of the robust optimization model based on the
results of Yu and Li (2000) is as follows.

Min 𝑍 =
∑

𝑠𝜖S
𝑝𝑠𝜉𝑠 + 𝜆

∑

𝑠𝜖𝑆
𝑝𝑠

[

(𝜉𝑠 −
∑

𝑠′𝜖𝑆
𝑝𝑠′𝜉𝑠′ ) + 2𝜃𝑠

]

+ 𝜔
𝑆
∑

𝑠=1
𝑝𝑠𝛿

𝑠
𝑡 (10)

s.t.

𝜉𝑠 −
∑

𝑠′𝜖𝑆
𝑝𝑠′𝜉𝑠′ + 𝜃𝑠 ≥ 0 ∀𝑠, 𝑠′𝜖𝑆 (11)

𝜃𝑠 ≥ 0 ∀𝑠𝜖𝑆 (12)

In this model, if a solution remains near to optimal for any re-
alization of each scenario 𝑠, the mathematical programming model
will be robust with regard to optimality that is defined as ‘‘solution
robustness’’ and the solution feasibility is that if the solution remains
almost feasible under almost all possible values for any realization of
𝑠 that is defined as ‘‘model robustness’’. The weighting penalty 𝜔 is
utilized to represent the trade-off between the two mentioned contents.
With various scenarios, the objective function will become a random
variable taking the value 𝜉𝑠 and the 𝜃𝑠 is a variable, which is used to
do the linearization of the model

3.2. Assumptions of the model

The assumptions of this model are as follows:

• Two types of facilities are considered in this model: temporary
facilities and blood centers. Disruptions occur in temporary fa-
cilities, and blood centers are safe against disruptions according
to the case study. So, temporary facilities and blood centers are
considered as unreliable and reliable facilities, respectively.

• The cost of building a blood center is much higher than a tempo-
rary facility.

• Each donor can either donate to blood centers or temporary
facilities.

• The probability of disruption in temporary facilities and centers
depends on the value of the initial investment for opening them
meaning that it is possible to increase the investment to reduce
the effects of disruption. For example, in centers due to the high
investment, the center will not be disrupted.

• The planned budget has an impact on this problem and the
responding demand.

• Disaster affects the blood demand of hospitals.
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Table 1
Classification of the related papers.

Articles Uncertain
parameter

Blood
supply
chain

Disaster Multi-period Movement
of facilities

Number of
required
facilities

Investment
level

Solution
method

Budget Disruption Case
study

Partially
affected
facility

Complete
shutdown

Fereiduni and
Shahanaghi (2016)

* * * * * P-robust *

Jabbarzadeh et al.
(2016)

* * * Robust
optimization
& Lagrangian
relaxation

* * *

Jabbarzadeh et al.
(2014)

* * * * * Robust
optimization

*

Diabat et al. (2019) * * * * * Robust
optimization
& Lagrangian
relaxation n

* *

Ramezanian and
Behboodi (2017)

* * * * * Robust
optimization

*

Habibi-Kouchaksaraei
et al. (2018)

* * * * * Robust
optimization
& Goal
programming

*

Fahimnia et al. (2017) * * * * * Stochastic
programming

This study * * * * * * * Robust
optimization
& two meta-
heuristics

* * *

Fig. 1. General view of the problem.

• It is assumed when a disruption occurs on a facility, it is not
fully failed. The facility loses some of the capacity to serve in the
disruption situation.

• For better controlling the mid-term decisions and fluctuations in
demand periods, the model is considered as a multi-period one.

The aim of the presented model is to make an optimal decision
about the location of blood centers, location and shift of temporary
facilities, the allocation of donors to blood centers or temporary facili-
ties located in the coverage area, blood donation from donors through
facility, the number of temporary facilities available to collect and
transfer blood to centers at any time period and under any scenarios. In
the following sections, the modeling indices, parameters, and variables
are described.

3.3. Sets

𝐾 Set of blood donors, 𝑘 ∈ 𝐾
𝐼 Set of potential locations for blood centers or temporary facili-

ties, 𝑖 ∈ 𝐼
𝑀 Set of potential locations for blood centers, 𝑚 ∈ 𝑀
𝐽 Set of potential locations for temporary facilities, 𝑗, 𝑗1, 𝑗2 ∈ 𝐽
𝑁 Set of available investment levels, 𝑛 ∈ 𝑁
𝑇 Set of periods, 𝑡 ∈ 𝑇
𝑆 Set of scenarios, 𝑠1, 𝑠2, 𝑠3, s4, s5, s6 ∈ 𝑆

3.4. Parameters

𝐷𝑠
𝑡 Blood demand in period t under scenario 𝑠
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𝑉𝑗1𝑗 Cost of shifting a temporary facility from location 𝑗 to 𝑗1
𝐹𝑅𝑚 Fixed cost of constructing a blood center at location 𝑚
𝐹𝑈 Fixed cost for operating a temporary blood facility
𝐶𝑚𝑗 Unit transportation cost of moving blood from the facility at

location 𝑗 to the blood center at location 𝑚
𝐶𝑐𝑖𝑘 Unit operational cost of gathering blood at location 𝑖 from donor

group 𝑘
𝐶𝑎𝑝 Capacity of a temporary facility
𝑎𝑗 Percentage of total capacity in temporary facility 𝑗 that is af-

fected by the disruption
𝑞𝑠𝑗 Disruption probability in temporary facility 𝑗 under scenario 𝑠

𝐵 Desired budget
𝑟𝑖𝑘 Distance between donor 𝑘 and facility at location 𝑖
𝑟 Coverage distance of donors and blood facilities

𝑟𝑤𝑚𝑗 Distance between temporary facility 𝑗 and blood center at loca-
tion 𝑚

𝑟𝑤 Coverage distance of blood facilities
𝑝𝑠 Probability of scenario 𝑠 occurrence
𝑑𝑘𝑡 Maximum blood donation quantity of group 𝑘 of donors in

period 𝑡
𝛩 Cost of losing blood in the facility capacity that cannot get blood

due to disaster
𝑀𝑁 A big number

3.5. Variables

𝑋𝑈 𝑠
𝑗1𝑗𝑡

A binary variable, equal to 1 if a temporary facility is located at
location 𝑗 in period 𝑡 − 1 and moves to Location 𝑗1 in period 𝑡
under scenario 𝑠; 0, otherwise

𝑋𝑅𝑚 1 if a blood center is opened at location m; 0, otherwise
𝑌 𝑈 𝑠

𝑗𝑘𝑡 1 if donor group 𝑘 is assigned to a temporary facility at location
𝑗 in period t under scenario 𝑠; 0, otherwise

𝑅𝑠
𝑚𝑗𝑡 1 if a temporary facility at location 𝑗 is assigned to a blood center

at location 𝑚 in period 𝑡 under scenario 𝑠; 0, otherwise
𝑌 𝑅𝑠

𝑚𝑘𝑡 1 if donor group 𝑘 is assigned to a blood center at location 𝑚 in
period 𝑡 under scenario 𝑠; 0, otherwise

𝑇 𝑠
𝑗𝑡 Quantity of blood loss due to a disruption in temporary facility

𝑗 in period 𝑡 under scenario 𝑠
𝑄𝑠

𝑗𝑘𝑡 Quantity of blood collected at temporary facility 𝑗 from group 𝑘
of donors in period 𝑡 under scenario 𝑠

𝑄′𝑠
𝑚𝑗𝑡 Quantity of blood shifted from a temporary facility at location 𝑗

to a blood center at location 𝑚 in period 𝑡 under scenario 𝑠
𝑄′′𝑠

𝑚𝑘𝑡 Quantity of blood gathered at blood center 𝑚 from group 𝑘 of
donors in period 𝑡 under scenario 𝑠

𝑃 𝑟𝑠𝑡 Number of the temporary facilities required in period 𝑡 under
scenario 𝑠

3.6. Model formulation

The objective function to minimize several cost drivers is as follows:

• Fixed cost of locating facilities:

𝐹𝐶𝑠 =
∑

𝑡
𝐹𝑈𝑃𝑟𝑠𝑡 +

∑

𝑚
𝐹𝑅𝑚𝑋𝑅𝑚 (13)

• Operational cost: It includes the cost of gathering blood from the
donors in the facilities.

𝑂𝐶𝑠 =
∑

𝑗

∑

𝑘

∑

𝑡
𝑄𝑠

𝑗𝑘𝑡𝐶𝑐𝑗𝑘 +
∑

𝑘

∑

𝑚

∑

𝑡
𝑄′′𝑠

𝑚𝑘𝑡𝐶𝑐𝑚𝑘 (14)

• Transportation cost: It includes the cost of shifting temporary
facilities to other locations and to the center to evacuate their
collected blood.

𝑇𝐶𝑠 =
∑

𝑗

∑

𝑚

∑

𝑡
𝑄′𝑠

𝑚𝑗𝑡𝐶𝑚𝑗 +
∑

𝑗

∑

𝑗1

∑

𝑡
𝑉𝑗1𝑗𝑋𝑈 𝑠

𝑗1𝑗𝑡
(15)

• Blood loss cost: It includes the cost of losing the capacity of
temporary facilities in the event of a disruption.

𝐵𝐶𝑠 = 𝛩
∑

𝑡

∑

𝑗

∑

𝑗1

𝑇 𝑠
𝑗𝑡𝑋𝑈 𝑠

𝑗𝑗1𝑡
(16)

The objective function is formulated based on the approach ex-
plained in Section 3.1 for the robust model as follows:

Min 𝑍 =
∑

𝑠
𝑝𝑠 (𝐹𝐶𝑠 + 𝑂𝐶𝑠 + 𝑇𝐶𝑠 + 𝐵𝐶𝑠)

+ 𝜆
∑

𝑠
𝑝𝑠

[

(𝐹𝐶𝑠 + 𝑂𝐶𝑠 + 𝑇𝐶𝑠 + 𝐵𝐶𝑠)

−
∑

𝑠′𝜖𝑆
𝑝𝑠′

(

𝐹𝐶𝑠′ + 𝑂𝐶𝑠′ + 𝑇𝐶𝑠′ + 𝐵𝐶𝑠′
)

+ 2𝜃𝑠

]

+ 𝜔
𝑆
∑

𝑠=1
𝑝𝑠𝛿

𝑠
𝑡

(17)
s.t.
(𝐹𝐶𝑠 + 𝑂𝐶𝑠 + 𝑇𝐶𝑠 + 𝐵𝐶𝑠) −

∑

𝑠′
𝑝𝑠′ (𝐹𝐶𝑠′ + 𝑂𝐶𝑠′ + 𝑇𝐶𝑠′

+𝐵𝐶𝑠′ ) + 𝜃𝑠 ≥ 0
∀𝑠 (18)

∑

𝑗
𝑌 𝑈 𝑠

𝑗𝑘𝑡 +
∑

𝑚
𝑌 𝑅𝑠

𝑚𝑘𝑡 ≤ 1 ∀𝑠, 𝑘, 𝑡 (19)

𝐹𝑈𝑀𝑎𝑥𝑡(𝑃𝑟𝑠𝑡 ) +
∑

𝑚
𝐹𝑅𝑚𝑋𝑅𝑚 ≤ 𝐵 ∀𝑠 (20)

𝑄𝑠
𝑗𝑘𝑡 ≤ 𝑀𝑁𝑌𝑈 𝑠

𝑗𝑘𝑡 ∀𝑘, 𝑠, 𝑡, 𝑗 (21)

𝑄′𝑠
𝑚𝑗𝑡 ≤ 𝑀𝑁𝑅𝑠

𝑚𝑗𝑡 ∀𝑚, 𝑠, 𝑡, 𝑗 (22)

𝑄′′𝑠
𝑚𝑘𝑡 ≤ 𝑀𝑁𝑌𝑅𝑠

𝑚𝑘𝑡 ∀𝑘, 𝑠, 𝑡, 𝑚 (23)
∑

𝑚
𝑋𝑅𝑚 ≥ 1 (24)

𝑋𝑅𝑖 +
∑

𝑗1

𝑋𝑈 𝑠
𝑖𝑗1𝑡

≤ 1 ∀𝑖, 𝑡, 𝑠 (25)

∑

𝑗1

∑

𝑗
𝑋𝑈 𝑠

𝑗1𝑗𝑡
= 𝑃𝑟𝑠𝑡 ∀𝑡, 𝑠 (26)

∑

𝑗
𝑋𝑈 𝑠

𝑗1𝑗𝑡
≤ 1 ∀𝑗1, 𝑡, 𝑠 (27)

∑

𝑗2

𝑋𝑈 𝑠
𝑗2𝑗1𝑡

≤
∑

𝑗
𝑋𝑈 𝑠

𝑗1𝑗𝑡−1
∀𝑗1, 𝑡, 𝑠 (28)

𝑌 𝑈 𝑠
𝑗𝑘𝑡 ≤

∑

𝑗1

𝑋𝑈 𝑠
𝑗𝑗1𝑡

∀𝑗, 𝑠, 𝑡, 𝑘 (29)

𝑌 𝑅𝑠
𝑚𝑘𝑡 ≤ 𝑋𝑅𝑚 ∀𝑘, 𝑠, 𝑚, 𝑡 (30)

𝑅𝑠
𝑚𝑗𝑡 ≤ 𝑋𝑅𝑚 ∀𝑗, 𝑠, 𝑚, 𝑡 (31)

𝑟𝑚𝑘𝑌 𝑅
𝑠
𝑚𝑘𝑡 ≤ 𝑟 ∀𝑘, 𝑠, 𝑡, 𝑚 (32)

𝑟𝑤𝑚𝑗𝑅
𝑠
𝑚𝑗𝑡 ≤ 𝑟𝑤 ∀𝑗, 𝑠, 𝑡, 𝑚 (33)

𝑟𝑗𝑘𝑌 𝑈
𝑠
𝑗𝑘𝑡 ≤ 𝑟 ∀𝑗, 𝑠, 𝑡, 𝑘 (34)

𝑞𝑠𝑗𝑇
𝑠
𝑗𝑡 +

(

1 − 𝑞𝑠𝑗
)

(

1 −
∑

𝑗1

𝑎𝑗𝑋𝑈 𝑠
𝑗𝑗1𝑡

)

𝐶𝑎𝑝 ≥
∑

𝑘
𝑄𝑠

𝑗𝑘𝑡𝑌 𝑈
𝑠
𝑗𝑘𝑡 ∀𝑠, 𝑗, 𝑡

(35)

𝑅𝑠
𝑚𝑗𝑡 ≤

∑

𝑗1

𝑋𝑈 𝑠
𝑗𝑗1𝑡

∀𝑠, 𝑗, 𝑚, 𝑡 (36)

∑

𝑗
𝑄𝑠

𝑗𝑘𝑡 +
∑

𝑚
𝑄′′𝑠

𝑚𝑘𝑡 ≤ 𝑑𝑘𝑡 ∀𝑠, 𝑘, 𝑡 (37)

∑

𝑘
𝑄𝑠

𝑗𝑘𝑡 =
∑

𝑚
𝑄′𝑠

𝑚𝑗𝑡 + 𝑇 𝑠
𝑗𝑡 ∀𝑠, 𝑗, 𝑡 (38)

∑

𝑗

∑

𝑚
𝑄′𝑠

𝑚𝑗𝑡 +
∑

𝑘

∑

𝑚
𝑄′′𝑠

𝑚𝑘𝑡 + 𝛿𝑠𝑡 ≥ 𝐷𝑠
𝑡 ∀𝑡, 𝑠 (39)

𝑋𝑅𝑚, 𝑋𝑈 𝑠
𝑗𝑗1𝑡

, 𝑌 𝑈 𝑠
𝑗𝑘𝑡, 𝑌 𝑅

𝑠
𝑚𝑘𝑡, 𝑅

𝑠
𝑚𝑗𝑡 ∈ 0, 1 ∀𝑠, 𝑗, 𝑚, 𝑡, 𝑘 (40)

𝑇 𝑠
𝑗𝑡, 𝜃𝑠, 𝑄

𝑠
𝑗𝑘𝑡, 𝑄

′𝑠
𝑚𝑗𝑡, 𝑄

′′𝑠
𝑚𝑘𝑡 ≥ 0 ∀𝑠, 𝑡, 𝑚, 𝑗, 𝑘 (41)

The model is intended to minimize the mentioned costs, including
the fixed, operational, transportation, and blood loss cost. Constraint
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Table 2
Input parameter values for solving small- and medium-sized problems.

Parameters Values Parameters Values

𝐵 ∼ Uniform (25,000, 40,000) 𝐶𝑚𝑗 ∼ Uniform (0.00015, 0.0006)

𝑞𝑗 ∼ Uniform (0.25, 0.45) 𝐶𝑐𝑖𝑘 ∼ Uniform (0.05, 0.09)

𝑟 ∼ Uniform (4, 10) 𝐶𝑎𝑝 ∼ Uniform (80, 140)

𝑟𝑤 ∼ Uniform (30, 50) 𝐶𝑐𝑗𝑘 ∼ Uniform (0.0002, 0.0003)

𝑑𝑘𝑡 ∼ Uniform (30, 120) 𝑀𝑁 100,000,000

𝐷𝑡 ∼ Uniform (700, 900) 𝑎𝑗 ∼ Uniform (0.3, 0.5)

𝑉𝑗1𝑗 ∼ Uniform (0.0005, 0.0015) 𝛩 ∼ Uniform (0.01, 0.08)

𝐹𝑟𝑚 ∼ Uniform (14,000, 35,000) 𝐹𝑈 ∼ Uniform (200, 500)

(18) is the auxiliary equation determined in Eq. (11). Constraint (19)
shows that only a blood center or a temporary facility can get blood
from each group of donors (not both of them). Constraint (20) indicates
the budget for construction of the facilities. Constraints (21)–(22) guar-
antee that donor group 𝑘 can be donated to a facility or a temporary
facility transfer blood units to a center if they are assigned them.
Constraint (24) guarantees that at least one blood center should be built
because temporary facilities should deliver blood units at the center
and this center is responsible for testing and collecting blood units for
hospital applications. Constraint (25) ensures that only one facility or
center can locate at location 𝑖. Constraint (26) indicates the number of
required temporary facilities.

Constraint (27) imposes that at most one facility can be shifted to
the location 𝑗1 in each period. Constraint (28) ensures that temporary
facilities can shift from a location where there has been a facility
located there. Constraint (29) makes sure that donor groups can be
allocated only to facilities that are facilitated there. Constraint (30)
imposes that donors can only be assigned to a blood center that is
established there. Constraint (31) guarantees that a temporary facility
at location 𝑗 can allocate to a blood center at location 𝑚 if the center
has been constructed there. Constraints (32)–(34) indicate the radius of
coverage of donors with a blood center, temporary facilities with center
and donors with temporary facilities. Constraint (35) indicates the
capacity of the temporary facilities in consideration of the disruption.
Indeed, this constraint reveals that the quantity of blood cannot exceed
the capacity, which is not affected by the disruption. Constraint (36)
guarantees that a temporary facility at location 𝑗 can be assigned to a
blood center if there has been a temporary facility in there. Constraint
(37) limits the number of blood units donated in each period by each
donor group. Constraint (38) indicates that some of the blood units
donated to a temporary facility are transferred to a blood center, and
some of them are also destroyed due to disruption. Constraint (39) is
a control constraint indicating that the desirable demand should be
fulfilled in each period.

3.7. Linearization

The objective function and formula (35) are nonlinear. However,
the nonlinear terms are 𝑇 𝑠

𝑗𝑡𝑋𝑈 𝑠
𝑗1𝑗𝑡

and 𝑄𝑠
𝑗𝑘𝑡𝑌 𝑈

𝑠
𝑗𝑘𝑡. A new variable is

defined by:

𝐴𝑠
𝑗𝑗1𝑡

= 𝑇 𝑠
𝑗𝑡𝑋𝑈 𝑠

𝑗𝑗1𝑡
∀𝑠 (42)

𝐴𝑠
𝑗𝑗1𝑡

≥ 𝑇 𝑠
𝑗𝑡 +𝑀𝑁(𝑋𝑈 𝑠

𝑗𝑗1𝑡
− 1) ∀𝑗, 𝑠, 𝑡, 𝑗1 (43)

𝐴𝑠
𝑗𝑗1𝑡

≤ 𝑇 𝑠
𝑗𝑡 −𝑀𝑁(𝑋𝑈 𝑠

𝑗𝑗1𝑡
− 1) ∀𝑗, 𝑠, 𝑡, 𝑗1 (44)

𝐴𝑠
𝑗𝑗1𝑡

≤ 𝑀𝑁𝑋𝑈 𝑠
𝑗𝑗1𝑡

∀𝑗, 𝑠, 𝑡, 𝑗1 (45)

𝐴𝑠
𝑗𝑗1𝑡

≥ 0 ∀𝑗, 𝑠, 𝑡, 𝑗1 (46)

The above term can be written in the objective function by:

𝐵𝐶𝑠 =
∑

𝑡
𝛩
∑

𝑗

∑

𝑗1

𝐴𝑠
𝑗𝑗1𝑡

∀𝑠 (47)

Fig. 2. Solution representation.

Also, the same approach is used to linearize the non-linear term in
Eq. (48).

𝑄𝑠
𝑗𝑘𝑡𝑌 𝑈

𝑠
𝑗𝑘𝑡 = 𝑄𝑈 𝑠

𝑗𝑘𝑡 ∀𝑠 (48)

The above term in constraint can be written by:

𝑞𝑠𝑗𝑇
𝑠
𝑗𝑡 +

(

1 − 𝑞𝑠𝑗
)

(

1 −
∑

𝑗1

𝑎𝑗𝑋𝑈 𝑠
𝑗𝑗1𝑡

)

𝐶𝑎𝑝 ≥
∑

𝑘
𝑄𝑈 𝑠

𝑗𝑘𝑡 ∀𝑗, 𝑠, 𝑡 (49)

4. Solution methodology

Since solving large-sized location–allocation problems are time-
consuming and are NP-hard, meta-heuristic search algorithms are uti-
lized to solve them, because the GAMS solver is unable to solve it.
In this paper, we propose a self-adaptive imperialist competitive al-
gorithm (SAICA) to solve the model. Furthermore, an invasive weed
optimization (IWO) algorithm is presented to evaluate the efficiency of
the proposed SAICA.

4.1. Solution representation

In designing a meta-heuristic algorithm, a solution representation
is one of the critical steps to get an appropriate near-optimal so-
lution. For the presented model, a solution representation contains
location–allocation parts and some integer variables (e.g., collected and
delivered blood). The location part of the proposed solution representa-
tion for the centers includes a (1×𝑚) matrix, where m is the number of
locations, filled with random numbers 0 and 1. In addition, for other
parts of location and allocation (e.g., the location part of temporary
facilities), we define a (1 × 𝑠 × 𝑡 × 𝑖 × 𝑗) matrix that is filled with
random numbers of 0 and 1, and 𝑡 is the number of periods, 𝑠 is the
number of scenarios, 𝑗 and 𝑖 are the number of locations. For instance,
in a network with three possible locations, two possible periods and
two possible scenarios (|𝑠| = 2, |𝑡| = 2, |𝑗| = 3, |𝑖| = 3), a solution
representation is displayed in Fig. 2. It illustrates when the third cell
is filled with 1, it means that this cell is related to 𝑠1, 𝑗1, 𝑖2, 𝑡1 and it
results that 𝑋𝑈1

211 = 1. For integer variables, it is similar to Fig. 2 with
a difference that the matrix is filled with random integer numbers.
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4.2. Imperialist competitive algorithm

The imperialist competitive algorithm (ICA) is a politically-socio
motivated global search algorithm that is utilized to solve a lot of op-
timization problems (Atashpaz-Gargari and Lucas, 2007; Rahimi et al.,
2018). Like Genetic Algorithm, which begins with an initial population
named chromosome (Rabbani et al., 2016), the ICA begins with an
incipient population is named a country. Then, based on their cost,
some of them with the lower cost are chosen to be imperialist (the best
solutions in the population) and other ones with more cost are allocated
to the imperialists based on their power (Ardalan et al., 2015). Thus,
the initial empires are created by the imperialists and their colonies (the
solutions, like a generation in the genetic algorithm). Afterwards, such
as the assimilation policy, colonies begin to shift toward their related
imperialists. Then, a competition starts among all the empires. Notably,
the whole power of an empire is decided by two factors, one of which
is the power of the imperialist and another is the power of its colonies.
An empire will be eliminated if it is not able to increase its power. So,
the loser empires will collapse. Finally, just one empire exists based on
the competition and the collapse mechanism, and its colonies are other
loser countries.

4.2.1. Generating initial empires
In ICA, a country is formed as an array to solve an N-dimensional

optimization problem shown below:

Country = [p1, p2, p3,… , pN] (50)

To start this algorithm, Npop is generated as an initial population
size and then imperialists are considered as Nimp that are a number
of most powerful countries. In this algorithm, there are two types of
countries that are: imperialist and colony. The colonies are distributed
among imperialists based on their power, so the normalized cost of an
imperialist is needed that is defined by:

Ci = maxi
{

cn
}

− ci (51)

where ci is the cost of imperialist i.
The colonies are divided among imperialists due to their power, so

the possession probability of each imperialist is as follows:

pi =
|

|

|

|

|

|

Ci
∑Nimp

n=1 Cn

|

|

|

|

|

|

(52)

It should be noted that in this study, the exponential function is used
for this probability.

4.2.2. Power of an empire
The total power of an empire is equivalent to the power of impe-

rialist and a percentage of mean power of the colonies of it which is
given as follows:

𝑇𝑃𝑖 = 𝐶𝑖 + 𝜉 mean
𝑛∈𝑖

{

𝐶𝑛
}

(53)

where 𝑇𝑃𝑖 is the total power of the empire i and 𝜉 is a positive and
small number, which is better to be less than 1.

4.2.3. Assimilation
The assimilation operator is displayed in Fig. 3. Colonies are moved

toward imperialists in another direction by considering a random devi-
ation. where 𝜃 is a random number that follows a uniform distribution.
Also, d is considered as the distance between the imperialist and the
colony.

4.2.4. Crossover
In this step, the information of colonies is shared between them-

selves by using crossover operators shown by the p-Crossover.

Fig. 3. Assimilation operator.

4.2.5. Revolution
The revolution operator is an action, which selects a number of

colonies by using a random selection mechanism and replaces with
an equal number of the newly generated ones, also revolution op-
erator decreases the risk of getting trapped in Local searches. three
various procedures are performed obtaining: (a) swap, (b) inversion
and (c) reversion operators as they are presented in Fig. 4. In the
swap operator, places of two randomly chosen bits are exchanged. In
the inversion operator, one bit is selected randomly and its value is
replaced with a new random value. Finally, In the reversion operator,
a random part of a colony is selected and its permutation is reversed.
Moreover, for employing the revolution operator on a discrete part of
each colony, two various policies are adopted. First, the discrete part
stays unchanged. Second, one bit is chosen randomly, and it is replaced
with another random number that is not equal to previous ones.

4.2.6. Exchanging positions
The position of a colony and its imperialist might be changed if a

colony becomes more powerful than its imperialist.

4.2.7. Eliminating the powerless empires
During the competition process, weak empires will be eliminated.

4.2.8. Stopping criteria
The proposed algorithm will be stopped when the maximum itera-

tion is established or only one empire remains in process.

4.2.9. Self-adaptive ICA
In the ICA, some colonies are influenced by other empires in other

countries or maybe empires interchange data with each other. The
crossover operator is a practical operator for this concept. There are
various methods in the subject literature for the crossover operator,
which is utilized before in the genetic algorithm to search the solution
space (e.g., one-point crossover, two-point, three-point, uniform, and
crossover with three parents), each with its advantages. Since the use of
all of them simultaneously rises the algorithm’s time, many researchers
use only one type of algorithm. In the proposed solution method in
this section, it is possible to use most intersection operators without
increasing the solving time. To do this, we integrate different operators.
For this reason, the proposed algorithm is called SAICA for solving
the model. The proposed SAICA has two steps. In the first step, which
is called the ‘‘Preparation Phase’’, different crossover operators will
compete after a competition. After the competition, the crossover with
the higher score has more opportunity to be chosen in the next phase.
Two pseudo-codes and flow charts for preparing phases and the ICA are
shown in Algorithms 1 and 2, and Figs. 5 and 6.
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Fig. 4. Three steps revolution.

After the completion of the preparatory phase, the ‘‘main phase’’ of
the ICA will be done as mentioned above, with the difference that the
response space is searched by all assimilation, crossover, and revolution
operators. Notably, the objective function value is shown as OFV in this
paper.

4.3. Invasive weed optimization (IWO)

Mehrabian and Lucas (2006) introduced an evolutionary algorithm
based on population to optimize problems, which is called IWO. In
IWO, the treatment of weeds is simulated in colonizing to discover
appropriate sites for breeding and growth. In short, the procedure of
the IWO is described below.

In the first step, a generation of the incipient population (i.e., weeds)
is done over search space randomly. The next step, a number of seeds
(𝑆 ∈

[

𝑆𝑚𝑖𝑛, 𝑆𝑚𝑎𝑥
]

) are created from each weed based on their relative
suitability. Afterwards, the distribution of the created seeds is randomly
done over the search space. Finally, all seeds are ranked together with
their parents as a colony of weed when they have found in the search
area.

Fig. 5. Flow chart of initial steps in the proposed SAICA.

4.4. Handling the constraints

The considered mathematical model contains several constraints,
and the presented algorithms are required to handle them during op-
timization. The solution representation can guarantee the feasibility of
most of the constraints, except for some constraints such as constraint
(20). In the literature, there are some approaches to handle these kinds
of constraints. In this paper, the penalty function is used based on
Yeniay (2005). The penalty is defined based on the amount of deviation
from constraints, which is explained as below with assumption of the
infeasible constraint (𝑢(𝑥) ≤ c):

𝑃 (𝑥) = 𝐵 ×𝑀𝑎𝑥
{(

𝑢 (𝑥)
𝑐

− 1
)

, 0
}

where 𝑃 (𝑥) is the penalty value and 𝐵 is the coefficient for aggression
the constraint. Then, the sum of the penalties of all related constraints
is added in the objective function. So, the algorithms find the solution
with minimum penalties.
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5. Experimental results

In this section, a small-sized problem is solved for validating the
proposed model, using data taken from one of the main city in the
Mazandaran province located in the north of Iran and according to
experts’ opinion, which is indicated in Table 2. It should be noted that
the unit costs are million Rials (as the Iranian currency).

For this model, there are three scenarios for demand and two
scenarios for the disruption probability. All the scenarios are presented
in Table 3. Table 4 shows the comparison between deterministic and

robust approach for small- and medium-sized problems. The problems
in this table are solved by the exact method by GAMS (General Alge-
braic Modeling System) software (Rosenthal, 2013) using the CPLEX
solver.

The computation problems in this paper are solved on a computer
with a Core i5 CPU 2.67 GHz and 4 GB RAM. Steps of running the
numerical model are depicted in Fig. 7.

As from Table 4, the values of the objective function with the robust
approach highly depend on the value of 𝜔. For example, for higher
𝜔 the model should decrease the unmet demand and try to fulfill the

9
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Fig. 6. Flow chart of main steps in the proposed SAICA.

Fig. 7. Flow chart of the solution method.

most quantity of the demand; as a result, the objective function and

the solving time increase. Moreover, for a higher value of 𝜔, the model

intends to make the solution feasible for almost all the scenarios, that is

why the amount of objective function is higher than the deterministic

ones. Indeed, this is the price of robustness (Bertsimas and Sim, 2004).

5.1. Model performance assessment

To evaluate the proposed model, a Monte Carlo simulation method
is used. This method is an efficient and famous computational algo-
rithm, which runs several simulations according to the random genera-
tion of data with a specific statistical distribution (Kalos and Whitlock,
2009).
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Table 3
Scenarios of the problem.

Scenarios Parameter value 𝑝𝑠 Scenarios Parameter value 𝑝𝑠

𝑆1 0.5𝐷𝑡&𝑞𝑗 0.1 𝑆4 0.5𝐷𝑡&1.3𝑞𝑗 0.2

𝑆2 𝐷𝑡&𝑞𝑗 0.2 𝑆5 𝐷𝑡&1.3𝑞𝑗 0.2

𝑆3 1.4𝐷𝑡&𝑞𝑗 0.2 𝑆6 1.4𝐷𝑡&1.3𝑞𝑗 0.1

In this paper, the quantity of the unmet demand is compared in
robust and deterministic conditions. The unmet demand in robust
is the expected value of variable 𝛿𝑠𝑡 in different scenarios based on
the probability of each scenario. To find the deterministic solution
performance in realization under uncertain environment, we applied
a Monte Carlo simulation method to find out the quantity of the unmet
demand by using a deterministic solution. Indeed, in this simulation,
the deterministic model considers the expected value and the robust
model considers different scenarios.

As can be seen in Table 4, in conservatism and semi-conservatism
solutions of the proposed robust model, the value of the unmet demand,
which is shown in the last two columns, is significantly better than the
deterministic solution. For example, as it is evident in the last data set, a
robust solution with values of 𝜔 = 80 yields significantly less the unmet
demand in comparison with the deterministic solution by spending just
14% more money on the supply chain. It can be concluded that the
proposed model shows better performance because it does not ignore
the uncertainty of parameters.

5.2. Parameter setting of meta-heuristic algorithms

The parameters of an algorithm have an effective influence on
it, so inappropriate parameters may lead to inappropriate answers.
In this paper, the response surface methodology (RSM) is utilized to
adjust the appropriate parameters for the proposed algorithm. In this
method, first, parameters that influence the algorithm are known and
investigated based on input parameters (usually from the objective
function value), and by fitting the best regression equation on several
levels of the parameters, the desired values are suggested to adjust the
parameters. The parameters of SAICA and IWO algorithms are given in
Table 5 by considering that the condition for stopping the algorithm
is equal to the NFC number of 90,000. Indeed, NFC is the Number of
Function Calls used for the stopping criteria. It is defined based on the
number of iterations and loops.

5.3. Numerical examples

IWO and SAICA solutions are compared in small- and large-sized
problems. For evaluating the gap between each algorithm with the

Table 5
Algorithms’ parameters.

Algorithm Parameters Settings Parameters Settings

IWO

𝑖𝑡𝑒𝑟max 200 𝑁𝑂 80
𝑃max 120 𝑆min 2
𝑁 3 𝜎initial 0.35
𝑆max 12 𝜎f inal 0.005

SAICA Nimp 3 𝛽 1.8
𝜉 0.7 Npop 181

exact solution solved by GAMS, Average Percentage of Relative Gap
(APRG) is calculated. It is defined as

[

100 ×
(

𝐺𝑀𝑒𝑡𝑎 − 𝐺𝐺𝑎𝑚𝑠
)

∕𝐺𝑀𝑒𝑡𝑎
]

, in
which 𝐺𝐺𝐴𝑀𝑆 is the objective function values (OFV) in GAMS software
and 𝐺𝑀𝑒𝑡𝑎 is the OFV for the meta-heuristic algorithm. For each test
problem and each algorithm, 30 runs are performed and the results are
shown in Table 6. It should be noted that the APRG and Std metric
shown in this table are the average and the standard deviation of 30
runs for each test problem. As can be seen, APRG(%) for each test
problems of two algorithms are less than 2%. So, both algorithms can
result in reasonable solutions.

There are several statistical tests to determine a significant dif-
ference between the performance of two algorithms. The Wilcoxon
sum-rank test, a non-parametric test, is used to find a meaningful
difference between the SAICA and IWO in terms of CPU times (average
time solving of 30 independent runs) and quality (average PRG of 30
independent runs) metrics. The Wilcoxon sum-rank is performed in
Excel software for small-sized problems. The statistical details of this
test are presented in Table 7.

The test is applied to each test problem, and the p-value for both
metrics of time and quality is less than 0.05 in all test problems. As
a result, the null hypothesizes in all test problem are rejected, and
there is a considerable difference between the SAICA and IWO in terms
of CPU times and quality metrics. Hence, SAICA has less CPU time
in all test problems compared to IWO, and it has less gap with the
exact solution in all test problems. Therefore, SAICA produces better
solutions in terms of both time and gap.

Due to the aforementioned point that the presented mathematical
model is an NP-hard, GAMS software is not able to solve the large-
sized test problems. In this respect, for large-sized test problems, a gap
between SAICA and IWO algorithms is calculated in MATLAB software
and is created as

[

100 ×
(

𝐺IWO − GSAICA
)

∕GSAICA
]

, in which 𝐺𝐼𝑊 𝑂 and
𝐺𝑆𝐴𝐼𝐶𝐴 are the OFV of the SAICA and IWO algorithms. The results are
given in Table 8. It also presents the average cost function and time of
30 replications for each test problem. It should be noted that the APRG
is the average, and Std is the standard deviation of 30 replications of
each test problem. The problem is solved on a computer with a Core i5
CPU 2.67 GHz and 4 GB RAM.

Table 4
Problem-solving with two deterministic and robust modes.

Size problem
|𝑘| × |𝑖| × |𝑡|

Values of 𝜔 OFV Time (s) Unmet demand

Deterministic Robust Deterministic Robust Deterministic Robust

8 × 4 × 3
5

17001
16,999

120
121

69
92

20 17,004 122 62
50 17,013 289 23

10 × 5 × 3
5

17086
17,009

245
256

75
87

20 17,115 346 71
50 17,183 681 33

14 × 6 × 3

5

17248

17,174

349

423

101

121
20 18,374 546 96
50 19,131 825 71
80 19,854 875 36

18 × 8 × 3

5

19475

19,379

481

534

112

131
20 19,485 767 99
50 21,160 1032 83
80 22,334 1102 40
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Table 6
APRG and STD of the SAICA in comparison with the IWO and computational time for small-sized problems.

Data set 𝑘 𝑖 SAICA IWO

Std. deviation APRG(%) Time (s) Std. deviation APRG(%) Time (s)

1 6 3 0.01 0.07 51 0.04 0.11 83
2 7 3 0.03 0.12 63 0.04 0.17 99
3 8 4 0.04 0.25 77 0.02 0.28 97
4 9 3 0.04 0.24 82 0.03 0.42 123
5 10 5 0.02 0.34 94 0.03 0.73 123
6 12 5 0.01 0.39 94 0.04 0.77 135
7 14 6 0.01 0.45 98 0.03 0.94 137
8 16 6 0.01 0.50 109 0.08 1.13 161
9 17 7 0.02 0.56 119 0.05 1.45 176
10 18 8 0.01 0.65 117 0.04 1.65 185

Table 7
Results of the Wilcoxon test with alpha = 0.05.

Test problem Time metric Quality metric

p-value Result of test Final result p-Value Result of test Final result

1 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

2 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

3 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

4 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

5 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

6 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

7 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

8 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

9 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

10 0.000 Reject null hypothesis SAICA is better than IWO 0.000 Reject null hypothesis SAICA is better than IWO

Table 8
APRG and STD of the SAICA in comparison with the IWO and average computational time and average cost function for large-sized problems.

Data set 𝑘 𝑖 APRG Std.
deviation

Time (s)
SAICA

Cost SAICA Time (s)
IWO

Cost IWO

11 26 14 4.82 0.19 368 23,544 480 24,679
12 28 15 5.09 0.12 370 23,887 524 25,102
13 29 16 5.33 0.14 427 23,972 520 25,222
14 30 17 5.71 0.10 521 24,161 625 25,557
15 34 18 6.29 0.06 539 24,355 684 25,928
16 36 17 6.76 0.09 546 24,317 718 25,935
17 38 18 7.21 0.23 586 24,441 789 26,210
18 42 19 7.55 0.07 671 24,543 841 26,389
19 46 19 7.64 0.18 668 24,539 887 26,445
20 50 18 8.27 0.13 598 24,731 931 26,828
21 54 21 8.83 0.42 692 24,866 1023 27,091
22 60 24 9.49 0.06 761 25,180 1274 27,594
23 70 30 11.08 0.22 969 26,655 1353 29,719
24 75 32 12.28 0.33 985 26,744 1366 30,086
25 80 37 13.26 0.43 1012 27,353 1573 31,050
26 86 41 13.91 0.14 1106 27,534 1682 31,411
27 90 46 15.15 0.26 1153 32,464 1754 37,526
28 108 52 16.57 0.48 1234 32,572 1951 38,043
29 120 63 18.47 0.18 1441 33,021 2019 39,125
30 150 70 20.50 0.18 1752 33,149 2160 39,973

The calculation time of meta-heuristic algorithms increases by in-
creasing the size of problems, but in small-sized problems, it has a
relative increase. These results show that the approaches of both meta-
heuristics can find near-optimal solutions in a reasonable time, while
the SAICA is better than the IWO in all the problems in terms of time
and APRG. Fig. 8 reveals the comparison between two algorithms in
terms of cost function value, which shows that in all sets the cost of
SAICA is less than IWO based on the results of Table 8. Meanwhile,
Figs. 8 and 9 shows the APRG differences between the two algorithms
based on the results of Table 8; it indicates that by increasing the
number of problems, not only the GAP between 𝐺𝐼𝑊 𝑂 and 𝐺𝐺𝑎𝑚𝑠 is
increased more than the GAP between 𝐺𝑆𝐴𝐼𝐶𝐴 and 𝐺𝐺𝑎𝑚𝑠, but also the
differences between two algorithms in terms of their GAP is growing.
Besides, Fig. 9 shows the CPU time of the IWO and SAICA, which the

CPU time of the SAICA is less than the IWO. Similar to the explanation
mentioned in Fig. 10 by increasing the number of problems, the solving
time for IWO grows more than the SAICA. As a result, based on what
has been explained above, the performance of the SAICA is better than
the IWO in both small- and large-sized problems.

5.4. Case study

The Iranian Blood Transfusion Organization (IBTO) is one of the
most important institutions in Iran that has the main responsibility to
provide the blood, particularly in disaster and emergencies. One of
the most important sub-collections of this institution is the Transfu-
sion Organization of Mazandaran Province. This province is a major
province in the north of Iran and is one of the most dangerous provinces

12



N. Haghjoo, R. Tavakkoli-Moghaddam, H. Shahmoradi-Moghadam et al. Engineering Applications of Artificial Intelligence 90 (2020) 103493

Fig. 8. Average cost objective function value comparison between two algorithms.

Fig. 9. Average percentage of relative differences between the two algorithms in small size.

Fig. 10. Average CPU time of the IWO and SAICA.

in terms of natural disasters with a population of over three million.
The proposed model aims to develop an efficient blood supply chain
network design in Mazandaran.

The collected data is from 73 cities and 150 surrounding villages
located in Mazandaran. The cost of shifting temporary facilities is
considered to be proportional to the distances between them. Also, the
transportation cost of a blood unit is equal to a constant number in
the distance between their positions. The quantity of the blood unit, in
which each region can donate, is given in Appendix A. It is determined

by considering the population of the region. Other information about
the data are given in Tables 9 and 10 As it was mentioned before, this
province has been exposed to some hazardous disasters (e.g., earth-
quake and flood). In this study, special attention is paid to this issue
and the disruption probability is considered as an important parameter,
which is shown in Appendix B. It is determined based on the data
during last years and some information about the most likely locations
disrupted by disaster.
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Fig. 11. Aerial map of Mazandaran province and blood facilities.

Fig. 12. Trade-off between the objective function and unmet demand without Budget constraint.

Fig. 13. Trade-off between the objective function and unmet demand with a budget constraint.

Table 9
Parameters of the case study.

Parameters Values Parameters Values

𝐹𝑈 250 𝑟𝑤 50
𝑟 10 Cap 120

5.4.1. Model robustness versus solution robustness
Model robustness is defined as being close to a feasible solution

while solution robustness means being close to an optimal solution
with the least variance between the objective function of scenarios. We
examine the trade-off between the objective function value (solution

Table 10
Associated blood demands in each scenario and period.

Scenarios 𝑡 = 1 𝑡 = 2 𝑡 = 3

𝑆1, 𝑆4 500 570 474
𝑆2, 𝑆5 1000 1140 948
𝑆3, 𝑆6 1400 1596 1327

robustness) and the unmet demand (model robustness) which can be
assessed by changing a weighting penalty is named 𝜔(𝑜𝑚𝑒𝑔𝑎) (the last
term in the objective function ((17))). As mentioned before, in the
robust optimization problem, the infeasibility in different scenarios is
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Fig. 14. Trade-off between unmet demand with a budget constraint.

Table 11
Model robustness and solution robustness trade-off
solved by SAICA algorithm.

Values of 𝜔 Expected OFV Unmet demand

10 33,019 677
30 33,267 636
70 33,893 531
100 64,374 299
140 66,943 280
180 68,001 242

allowed by using penalty 𝛿𝑠𝑡 in Constraint (40). As demonstrated in
Table 11 that is solved based on the data taken from the mentioned case
study, by increasing in the value of 𝜔, the objective function (solution
robustness) will increase and the unmet demand (model robustness)
will consequently decrease. From this table, at larger risk-aversion
weights, there is an inclination toward ‘almost’ feasible solutions in all
the scenarios, at the expense of an increased objective function. This
trade-off can help in finding a proper risk-aversion weight. At 𝜔 = 180
and more, the problem guarantees the minimum quantity of unmet
demand; however, it needs more cost to be feasible and because of
the budget constraint, it would be infeasible. Therefore, we choose a
smaller risk-aversion weight, which faces the problem with less cost
and an acceptable quantity of unmet demand. At 𝜔 = 180, the whole
cost is 68,001, and simultaneously, the model is robust to most of the
scenarios. So, we adjust 𝜔 equal to 180 in the rest of solving.

According to the results obtained from solving the developed SAICA
for the mentioned case study, some cities of the Mazandaran province
are selected for construction of blood centers. It should be noted that
in location–allocation issues, location centers are strategic decisions
that do not change over the periods, while most allocation decisions
are tactical decisions that can be changed as needed in every period.
Therefore, the cost of such decisions is considered only once for the
entire period, while mid-term decisions often change periodically due
to policies (e.g., movement of temporary facilities in periods).

Tables 12 and 13 show the optimal results of solving the model for
the case study. Fig. 11 shows the location of candidate blood centers
and temporary facilities for one of the periods. As can be seen from
Fig. 11 four centers are established in four cities and seven temporary
facilities are assigned to them for collecting the blood donated.

Based on the information from Table 12, increasing the 𝜔 forces the
model to decrease the quantity of the unmet demand and as a result, the
number of centers and temporary facilities will increase. It is important
to mention that the model equips new facilities and centers until the
𝜔 = 180; however, for more than 𝜔 = 180, the model cannot build new
equipment to fulfill the demand because of the budget constraint.

The value of fundamental variables after solving the problem in
each period under each scenario is shown in Table 13.

Table 12
Optimal number and location of facilities in different omega weights.

Values of 𝜔 Blood center Temporary facility Number of
temporary
facilities

10 44, 69 71, 3, 14, 41 4
30 44, 69 71, 3, 14, 51 4
70 44, 69 71, 51, 16, 4, 36 5
100 44, 69, 5 71, 51, 36, 47, 59, 66, 41 7
140 44, 69, 5, 30 71, 51, 47, 64, 46 5
180 44, 69, 5, 30 71, 51, 47, 57, 49, 36, 20 7
250 44, 69, 5, 30 71, 51, 47, 57, 49, 36, 20 7
300 44, 69, 5, 30 71, 51, 47, 57, 49, 36, 20 7

Table 13
Quantity of blood unit collected, blood unit loss and several temporary facilities
required, in each period.

Scenarios First period Second period Third period

𝑄𝑠
𝑗𝑘1 𝑄′𝑠

𝑚𝑗1 𝑄′′𝑠
𝑚𝑘1 𝑇 𝑠

𝑗1 𝑄𝑠
𝑗𝑘2 𝑄′𝑠

𝑚𝑗2 𝑄′′𝑠
𝑚𝑘2 𝑇 𝑠

𝑗2 𝑄𝑠
𝑗𝑘3 𝑄′𝑠

𝑚𝑗3 𝑄′′𝑠
𝑚𝑘3 𝑇 𝑠

𝑗3

𝑆1 0 0 500 0 0 0 500 0 0 0 474 0
𝑆2 291 266 734 28 627 562 621 65 400 346 602 52
𝑆3 648 561 839 87 777 684 795 93 660 576 743 84
𝑆4 0 0 500 0 0 0 500 0 0 0 474 0
𝑆5 302 246 754 56 616 540 600 78 420 353 596 68
𝑆6 662 561 839 101 838 728 743 110 672 574 753 97

5.5. Sensitivity analysis of the required parameters

In this part, several sensitivity analyses are conducted to present
the management perspective on the basic parameters of the problem.
The minimum of the met demand is the parameter that can effectively
affect the structure of the model, and the value of 𝜔 can affect it as
well. As mentioned in Table 11, an increase of this parameter will
result in more construction of facilities for more demand coverage, so
by increasing in 𝜔, the amount of mean objective function increases
and the unmet demand decreases. Fig. 12 shows the sensitivity analysis
of the mean objective function values and unmet demand for different
values of 𝜔. As can be seen from Fig. 12, by increasing this parameter
to 180, more demand is covered by the construction of more facilities
and, consequently, by increasing the total cost. As it is mentioned in the
prior section, by increasing the 𝜔 more than 180 the model needs more
cost to fulfill the demand; for comparing the effect of budget constraint,
the model is solved with and without considering the budget constraint
and the results are shown in Figs. 12 and 13 Based on these figures,
without budget constraint the model desires to decrease the unmet
demand to zero with increasing the cost function in 𝜔 = 410 and the
cost 11,0456, which means that if the decision makers want to fulfill
the whole quantity of demand, they should cost 11,0456; however, by
considering the budget constraint, the best decision is that they accept
the quantity of unmet demand which is not high.
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Table A.1
Maximum blood supply of each blood donor group.

Donors First
period

Second
period

Third
period

Donors First
period

Second
period

Third
period

Donors First
period

Second
period

Third
period

1 56 27 30 51 176 140 76 101 71 69 46
2 40 43 32 52 74 63 37 102 72 64 48
3 44 46 35 53 74 69 46 103 77 70 63
4 43 25 30 54 74 70 32 104 73 68 56
5 100 90 60 55 78 70 41 105 70 60 47
6 52 35 34 56 70 62 31 106 73 64 52
7 40 43 32 57 72 68 31 107 49 27 31
8 33 44 28 58 68 63 41 108 57 27 40
9 53 39 40 59 70 66 37 109 51 25 34
10 51 33 20 60 71 68 48 110 41 45 33
11 31 31 21 61 106 87 56 111 66 51 45
12 55 42 34 62 64 51 31 112 59 59 33
13 59 41 34 63 61 54 41 113 53 55 50
14 120 100 56 64 62 56 41 114 58 60 54
15 36 25 22 65 59 54 44 115 63 48 30
16 36 37 24 66 59 57 34 116 72 67 65
17 60 36 26 67 110 93 76 117 73 69 50
18 31 35 28 68 60 56 31 118 68 61 47
19 45 48 30 69 64 45 34 119 72 62 51
20 53 50 32 70 110 91 56 120 72 68 44
21 52 50 33 71 58 47 38 121 73 64 38
22 180 130 70 72 61 54 41 122 74 60 38
23 78 61 57 73 57 51 31 123 77 66 48
24 72 60 54 74 35 29 28 124 69 62 46
25 71 62 46 75 40 26 24 125 68 67 46
26 77 60 49 76 55 39 34 126 75 62 54
27 69 64 42 77 39 43 34 127 69 65 32
28 69 67 58 78 53 31 36 128 77 66 36
29 75 60 54 79 38 26 26 129 68 64 40
30 80 65 57 80 49 28 24 130 80 60 30
31 73 67 48 81 41 29 35 131 78 67 44
32 74 70 60 82 52 28 29 132 80 67 36
33 68 67 63 83 54 33 36 133 77 70 44
34 102 89 53 84 49 42 33 134 78 64 36
35 38 53 40 85 46 43 35 135 71 65 37
36 53 46 30 86 51 43 36 136 75 70 42
37 120 103 72 87 36 48 38 137 71 68 45
38 61 57 52 88 46 33 40 138 74 67 42
39 54 52 49 89 51 44 32 139 59 54 44
40 55 49 47 90 51 40 44 140 59 57 34
41 67 59 30 91 57 30 34 141 65 51 39
42 62 55 47 92 42 47 33 142 61 53 45
43 186 110 76 93 72 70 57 143 61 56 44
44 75 70 41 94 70 60 54 144 58 56 32
45 73 69 36 95 69 68 43 145 61 53 35
46 79 61 50 96 78 62 54 146 60 50 31
47 80 65 43 97 72 60 43 147 64 47 35
48 79 65 33 98 70 67 48 148 57 51 33
49 72 63 52 99 75 64 58 149 58 51 39
50 68 67 37 100 75 69 57 150 57 54 45

In Fig. 14, a comparison between the amount of the budget and
unmet demand is made. It demonstrates that by increasing the bud-
get, the unmet demand will be decreased; however, there are some
important hints in this comparison. With a budget between 32,000 and
50,000, there is no significant reduction in the unmet demand whereas,
with more than 65,000, there is a dramatic change in decreasing the
unmet demand. As a result, the decision makers should note this matter
that if they intend to boost the budget for the system, increasing it
between 32,000 and 50,000 does not make difference and when they
have less money to allocate, it is better to allocate the 32,000 rather
than 50,000. Also, by increasing the budget into 65,000, they will
take the opportunity to diminish the unmet demand and fulfill more
blood demand in disaster condition. Moreover, if this issue has priority
over the cost, by increasing the budget into 82,000 they will fulfill
approximately all the demand.

Another remarkable insight can be obtained from Table 12. As can
be seen, the location 44 and 69 are the optimal locations for all amount
of 𝜔; in other words, these two locations are the proper locations for
equipment of blood centers under a variety of budget; Indeed, the
decision makers should note that when they face the lack of sufficient

budget, these two locations are the best solution for decreasing the
whole cost and fulfilling the most quantity of demand. So, they should
focus on investing in these two locations. Furthermore, another hint can
be obtained from this study is the number of required facilities, which
based on the desired budget can be changed and decision makers can
utilize the information for making the best decision.

6. Managerial insight

To validate the accuracy of the proposed model, the model is solved
on several numerical examples of the case study in prior sections.
From another point of view, several problems are solved by changing
the parameters to examine and analyze the sensitivity of the model.
Managerial insight is an integral part of decision making for each
organization. Some of the most important insights given by this paper
include:

• Making the best decision in a healthcare system and with a
perishable supply.

• Coping with uncertainty in an emergency.
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Table B.1
Disruption probability of each location.

Location Disruption
probability

Location Disruption
probability

Location Disruption
probability

Location Disruption
probability

Location Disruption
probability

1 0.23 16 0.42 31 0.28 46 0.24 61 0.32
2 0.24 17 0.27 32 0.27 47 0.25 62 0.36
3 0.25 18 0.43 33 0.23 48 0.21 63 0.21
4 0.26 19 0.34 34 0.25 49 0.25 64 0.27
5 0.25 20 0.35 35 0.19 50 0.19 65 0.32
6 0.28 21 0.25 36 0.18 51 0.42 66 0.34
7 0.26 22 0.22 37 0.24 52 0.32 67 0.35
8 0.25 23 0.28 38 0.21 53 0.34 68 0.31
9 0.18 24 0.34 39 0.21 54 0.21 69 0.29
10 0.23 25 0.31 40 0.23 55 0.23 70 0.36
11 0.25 26 0.29 41 0.45 56 0.25 71 0.40
12 0.23 27 0.23 42 0.40 57 0.23 72 0.42
13 0.27 28 0.24 43 0.24 58 0.19 73 0.19
14 0.41 29 0.24 44 0.32 59 0.28
15 0.42 30 0.21 45 0.23 60 0.32

• Coping with both operational and failure risk in the network.
• Making the best decision for evaluating the budget level in the

network.
• Making the best decision for equipment of centers and locating

facilities in the network in a real case study.

7. Conclusion

Because of increasing attention paid to the health care area in
recent years particularly in the emergencies, and since the relocation of
facilities will have irreversible effects, this paper has studied location–
allocation of facilities in the blood supply chain network. In this
paper, we have presented a new mathematical model to make effec-
tive decisions in location–allocation of a blood supply chain network
in post-disaster periods by considering the budget constraint for the
construction of blood facilities and centers. Also, the disruption risk
and its effects have been considered for each temporary facility. Due
to the existence of disaster conditions, we have developed the model
under uncertainty and presented a robust optimization model. A real
case study was utilized to evaluate the usage of the presented model.
Due to the difficulty of facility location–allocation problems, the self-
adaptive imperialist competitive algorithm (SAICA) is considered to
solve the proposed model. Furthermore, to evaluate the efficiency of
this algorithm, its performance is compared with the invasive weed
optimization (IWO) algorithm. Finally, to provide some managerial
perspectives for the aforementioned problem, a sensitivity analysis
has been performed over the key parameters of the problem. For
future studies, we suggest other new and effective methods to face
uncertainty (e.g., stochastic programming or fuzzy programming). Also,
using other algorithms to solve the developed model is suggested.
Moreover, considering the concept of inventory management will be
helpful in the case of healthcare systems or even considering another
objective function to decrease the computational time will be practical.
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