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The Internet of Things is allowing agriculture, here specifically arable farming, to become

data-driven, leading to more timely and cost-effective production and management of

farms, and at the same time reducing their environmental impact. This review is

addressing an analytical survey of the current and potential application of Internet of

Things in arable farming, where spatial data, highly varying environments, task diversity

and mobile devices pose unique challenges to be overcome compared to other agricultural

systems. The review contributes an overview of the state of the art of technologies

deployed. It provides an outline of the current and potential applications, and discusses the

challenges and possible solutions and implementations. Lastly, it presents some future

directions for the Internet of Things in arable farming. Current issues such as smart

phones, intelligent management of Wireless Sensor Networks, middleware platforms, in-

tegrated Farm Management Information Systems across the supply chain, or autonomous

vehicles and robotics stand out because of their potential to lead arable farming to smart

arable farming. During the implementation, different challenges are encountered, and here

interoperability is a key major hurdle throughout all the layers in the architecture of an

Internet of Things system, which can be addressed by shared standards and protocols.

Challenges such as affordability, device power consumption, network latency, Big Data

analysis, data privacy and security, among others, have been identified by the articles

reviewed and are discussed in detail. Different solutions to all identified challenges are

presented addressing technologies such as machine learning, middleware platforms, or

intelligent data management.

© 2020 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1 e Number of publications per year retrieved from

SCOPUS with the following searching criteria: (Internet of

things OR IoT) AND (agriculture OR farming).
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1. Introduction

The global population and its food consumption are growing

alarmingly quickly, while climate change effects are simul-

taneously complicating the challenge of ensuring food secu-

rity in a sustainable manner (Godfray et al., 2010; Tilman,

Balzer, Hill, & Befort, 2011). Data-driven agriculture is one of

the main strategies and concepts proposed to increase pro-

duction efficiently while decreasing its environmental impact

(Foley et al., 2011). Data-driven technologies in general are

quickly advancing with the development of the Internet of

Things (IoT), and may become an important part of the future

of farming (Brewster, Roussaki, Kalatzis, Doolin, & Ellis, 2017;

Jayaraman, Yavari, Georgakopoulos, Morshed, & Zaslavsky,

2016; Verdouw, 2016; Wolfert, Ge, Verdouw, & Bogaardt,

2017). Smart Farming, also called Agriculture 4.0 or digital

farming (CEMA, 2017), is developing beyond the modern

concept of precision agriculture, which bases its management

practices on spatial measurements largely thanks to Global

Positioning System (GPS) signals. Smart farming bases its

management tasks also on spatial data but is enhanced with

context-awareness and is activated by real-time events,

improving the performance of hitherto precision agriculture

solutions (Sundmaeker, Verdouw, Wolfert, & P�erez Freire,

2016; Wolfert et al., 2017). Additionally, Smart Farming usu-

ally incorporates intelligent services for applying and man-

aging Information and Communication Technologies (ICT) in

farming, and allows transverse integration throughout the

whole agri-food chain in regards to food safety and trace-

ability (Sundmaeker et al., 2016). IoT is therefore a key tech-

nology in smart farming since it ensures data flow between

sensors and other devices, making it possible to add value to

the obtained data by automatic processing, analysis and ac-

cess, and this leads to more timely and cost-effective pro-

duction and management effort on farms. Simultaneously,

IoT enables the reduction of the inherent environmental

impact by real-time reaction to alert events such asweed, pest

or disease detection, weather or soil monitoring warnings,

which allow for a reduction and adequate use of inputs such

as agrochemicals or water. IoT eases documentation and su-

pervision of different activities as well as the traceability of

products, improving the environmental surveying and control

in farms by the appropriate authorities.

The IoT concept was introduced by Kevin Ashton in 1999 in

relation to linking Radio-Frequency Identification (RFID) for

supply chains to the internet (Ashton, 2009), but has no official

definition. It implies, however, the connection of a network of

“things” to or through the internet without direct human

intervention. “Things” can be any object with sensors and/or

actuators that is uniquely addressable, interconnected and

accessible through the world-wide computer network, i.e. the

Internet. The application of IoT in agriculture is advantageous

because of the possibility to monitor and control many

different parameters in an interoperable, scalable and open

context with an increasing use of heterogeneous automated

components (Kamilaris, Gao, Prenafeta-Boldu, & Ali, 2016), in

addition to the inevitable requirement for traceability. As a

result of IoT, agriculture is becoming data-driven, i.e. making

informed real-time decisions formanaging the farm, reducing
uncertainties and inefficiencies, and as a consequence

reducing its environmental impact.

The application of IoT in agriculture, also called Ag-IoT

(Zhai, 2017), AIoT (Zou & Quan, 2017), or IoF meaning

Internet of Farming (Alahmadi, Alwajeeh, Mohanan, &

Budiarto, 2017) or Internet of Food and Farm (Sundmaeker

et al., 2016; Verdouw, Wolfert, Beers, Sundmaeker, &

Chatzikostas, 2017), has received exponentially increasing

attention in the scientific community (Fig. 1). Even though the

publications are mainly dominated by Asian scientists

(Talavera et al., 2017; Verdouw, 2016), in Europe several large

scale international pilot projects, such as IoF2020

(Sundmaeker et al., 2016; Verdouw et al., 2017), AIOTI (P�erez-

Freire & Brillouet, 2015), SmartAgriFood (Kaloxylos et al.,

2012), SMART AKIS (Djelveh & Bisevac, 2016), or more

recently SmartAgriHubs (Chatzikostas et al., 2019), are aiming

to implement IoT technologies in the agricultural industry in

Europe. Similar projects elsewhere include the Accelerating

Precision Agriculture to Decision Agriculture (P2D) project in

Australia (Zhang, Baker, Jakku, & Llewellyn, 2017), which

complement additional major investments with the aim to

help farmers convert to smart farming (Higgins, Bryant,

Howell, & Battersby, 2017; Pham & Stack, 2018).

Several reviews have been done on IoT in agriculture in the

relatively short time period in which publications about the

subject have emerged (Ray, 2017; Sto�ces, Van�ek, Masner, &

Pavlı́k, 2016; Talavera et al., 2017; Tzounis, Katsoulas,

Bartzanas, & Kittas, 2017; Verdouw, 2016). In addition, re-

view papers have been published with a focus on specific

subjects related to IoT applied in agriculture, such as Big Data

(Kamilaris, Kartakoullis, & Prenafeta-Boldú, 2017; Wolfert

et al., 2017), modelling (O’Grady & O’Hare, 2017), Wireless

Sensor Networks (WSN) (Jawad, Nordin, Gharghan, Jawad, &

Ismail, 2017), food supply chain (Ramundo, Taisch, & Terzi,

2016), Internet of Underground Things (Vuran, Salam, Wong,

& Irmak, 2018), chemical wireless sensors (Kassal, Steinberg,

& Murkovi, 2018), or Farm Management Information Systems

(FMIS) (Fountas, Sørensen et al., 2015; Kaloxylos et al., 2012).

However, to the authors’ knowledge, no existing review has
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focused on arable farming, which has specific characteristics

and challenges that differ from those in a controlled envi-

ronment, i.e. greenhouses, or permanent crops such as fruit

orchards. Arable farming poses particular challenges due to:

� much larger farm sizes, which affect the design of the

sensor networks, the data processing, analysis and

extrapolation of limited stationary sensor data, and the

consequent decision making with regards to actuators,

vehicle logistics, etc.;

� the larger farm sizes also imply that spatial data has a

central role in arable farming, affecting the data pro-

cessing, decision making and precision machinery

employed to address in-field variability not at plant

level as in most permanent crops, but at subfield level

with automatic recognition and actuation (Zude-Sasse,

Fountas, Gemtos, & Abu-Khalaf, 2016);

� greater use of mobile sensors and other devices on ve-

hicles, which have specific challenges. While other

cropping systems may also use sensors and devices on

operating machinery, arable farming often requires a

fleet of vehicles to operate in a co-ordinated fashion.

This creates issues particularly regarding network

infrastructure (Martı́nez, Pastor, �Alvarez, & Iborra,

2016), e.g. connectivity to the cloud of moving things

that rely mainly on mobile networks, or vehicle to

implement communication, which implies real-time

interoperability between machines and devices from

different manufacturers (Peets, Mouazen, Blackburn,

Kuang, & Wiebensohn, 2012);

� larger amounts of heterogeneous spatial data generated

at different rates and from very disparate sources: sta-

tionary sensors, moving vehicles and implements, sat-

ellites, data from web services, etc., which need to be

intelligently integrated;

� highly varying and uncertain environmental condi-

tions, as annual crops are more susceptible to weather

changes and other external factors than permanent

crops, which are more resilient mainly due to their

deeper roots (Zude-Sasse et al., 2016), or crops in

controlled environments. This obligates the IoT system

to handle both spatial and temporal data, increasing the

complexity of the data processing as well as the de-

cisions based on the data collected.

� more diverse types of field tasks per growing season in

arable farming, from soil preparation and crop estab-

lishment, through highly varying plant nursing tasks, to

coordinated harvest, which increase the complexity

and also the risks.

The IoT in agriculture is a fast-developing field, which can

make reviews obsolete quickly. This challenge can be over-

come by focussing a critical view on the general principles,

main application areas and identify the limitations and chal-

lenges. Summarising, the aim of the paper is to provide an up

to date novel analytical review of the role of IoT in arable

farming, with the following specific objectives:

� Provide an overview of the current situation of IoT

technologies deployed in arable farming. Focussing on
the current use of communication technologies and

protocols, the generation and analysis of data, and IoT

architectures.

� Outline the different applications and capabilities of IoT

in arable farming.

� Investigate the main challenges encountered by IoT

enabling technologies applied to arable farming.

� Present key potential fields of application where IoT

could be employed, as well as future directions of the

current trends.

The remaining part of this paper is structured as follows:

Section 2 describes the methodology used in this review

paper. Section 3 provides an overview of the state of the art of

IoT technologies used in arable farming; Section 4 presents an

outline of the current and potential IoT-based applications in

arable farming; Section 5 discusses the challenges and solu-

tions found in its implementation; and lastly, the review

closes with Section 6 in which future directions are

summarised.
2. Review methodology

In order to address the specific objectives identified above, the

literature listing from the SCOPUS database of the last 11 years

has been reviewed. More precisely, the timeframe investi-

gated was from 1 January 2008 to 31 December 2018, selected

as the whole period in which any literature about the subject

turned up in the studied database. SCOPUSwas selected as the

primary literature source as it is a key peer-reviewed research

literature database. The specific keywords used in the search

criteria where: (Internet of Things OR IoT) AND (agriculture OR

farming). To ease the searching process, the keywords needed

to be present in at least the title, abstract, highlights or key-

words. Additionally, the articles had to be published in

English.

Articles concerning greenhouse, livestock or permanent

crops were excluded from the survey, as were supply chain

related articles. However, issues concerning traceability at

farm level were included.

The survey was performed in a systematic manner

following three steps (see Fig. 2):

� Firstly, a list of 1193 articles meeting the search criteria

mentioned above was retrieved from the database.

� In the second step, by reading the titles, any article that

was clearly not related to arable farming was excluded,

leaving a list of 293 articles.

� In the last step, a second screeningwasmade by reading

the abstracts, where articles outside the focus of this

review were omitted. After this step, 167 articles were

studied in detail, from which 69 articles were consid-

ered relevant, 27 as partially relevant, while the rest

were considered of little relevance. Relevance con-

cerned mainly the connection of the article to the sub-

ject studied. The content of a relevant article directly

addresses the application of an IoT technology in an

arable farming scenario. A partially relevant article

studies a certain IoT technology in agriculture in a

https://doi.org/10.1016/j.biosystemseng.2019.12.013
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Fig. 2 e Reviewing procedure tree diagram.
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broader sense. In the distinction made regarding little

relevant articles included off-topic, lack of novelty, as

well as non-peer-reviewed articles that lacked scientific

rigour, e.g. ambiguous information or absence of ma-

terials or methods description.

The final 167 articles studied included: 77 journal papers,

88 conference papers and 4 book chapters, of which 19 were

review papers. The final list of articles was complemented

with other publications that expanded on some of the IoT

related subjects and technologies mentioned in the studied

articles, and did not contain the specified keywords. These

were found by a targeted search for specific subjects. Lastly, in

each article from the final list a special focus wasmade on the

IoT technologies employed, the applications, the challenges

encountered and, finally, on potential future perspectives.
3. IoT implementation in arable farming

IoT has recently been gaining momentum in the farming in-

dustry as it can fulfil the urgent necessity for interoperability

across brands, scalability and traceability (Kamilaris et al.,

2016). Different technologies are implemented as IoT is still

evolving, adapting to a great diversity of uses. To cover the

range of technologies, protocols, standards, etc. employed,

this review is addressing the layers in the IoT architecture.

Three layers normally describe the architecture of the IoT in

the literature reviewed (Ferr�andez-Pastor, Garcı́a-Chamizo,

Nieto-Hidalgo, & Mora-Martı́nez, 2018; Khattab, Abdelgawad,

& Khattab, 2016; K€oksal & Tekinerdogan, 2018; Na & Isaac,

2016; Tzounis et al., 2017; Verdouw, 2016), though some au-

thors divide it into more layers (Ferr�andez-Pastor, Garcı́a-
Chamizo, Nieto-Hidalgo, Mora-Pascual, & Mora-Martı́nez,

2016; Ramundo et al., 2016; Ray, 2017; Talavera et al., 2017;

Wang et al., 2014), depending on their definitions. More than

three layers can especially be relevant in IoT systems with

edge or fog computing, where an edge/fog computing layer

can be considered in between the device and network layers

(Ferr�andez-Pastor et al., 2016). Even though the naming of the

layers also varies depending on the author, there is nonethe-

less a general trend to divide the layers into device, network

and application layers (Fig. 3). Thus, this has been the adapted

structure in this review. The device layer consists of the

physical objects (things) that are capable of automatic iden-

tification, sensing or actuation, and connection to the

internet. The network layer communicates the data to a

gateway (or proxy server) to the internet (cloud) by the use of

communication protocols. And the application layer typically

stores and facilitates access for the end-user to the processed/

analysed information.

The collected data experience diverse stages during their

transition from sensors to cloud, interfaces, and occasionally

actuators, and these stages have considerable influence on

the technologies applied in an IoT context. Six main stages

regarding data flow have been identified in the literature

reviewed: sensing/perception, communication/transport/

transfer, storage, processing, analytics, and actuation and

display (Fig. 4). The order of the stages is different depending

on the IoT setup employed and the computing techniques

used, e.g. fog and edge computing processes the data before

communicating it to the cloud, an example of its application

in precision farming is given by Ferr�andez-Pastor et al. (2016);

while cloud computing processes the data in the cloud, ex-

amples of this are given by Hernandez-Rojas, Mazon-Olivo,

Novillo-Vicu~na, and Belduma-Vacacela (2018) and Na and
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Fig. 3 e IoT architecture represented by device, network and application layer, in which the middleware platform is not

always present.

Fig. 4 e Different agricultural data flows in arable farming.
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Isaac (2016). Nonetheless, sensing/perception is normally the

first stage, where data are captured by sensors, then the data

can follow different paths and does not necessarily go through

all the steps listed. In summary, IoT data is identified to be

gathered or generated through threemain processes:machine

generated, which come from sensing devices; process-

mediated, i.e. commercial data coming from business pro-

cesses; and human-sourced, recorded by humans and digi-

talised later on (Balducci, Impedovo, Informatica, & Moro,

2018). These different sources have an influence on how to

process, analyse and use the data in IoT solutions, and this

needs to be taken into account in the overall data acquisition

planning process.

3.1. Device layer

As mentioned above, the device layer consists of the physical

objects (things) that are capable of automatic identification,

sensing or actuating, and providing connection to the

internet. Sensor devices measure and collect one or more
parameters automatically and transmit the data wirelessly to

the cloud. And, when the devices become actuators, they

generally, in turn, receive data from the cloud in order to

activate or deactivate some mechanical component, e.g. a

valve in an irrigation system. The device layer is also often

called perception layer (Tzounis et al., 2017; Zou & Quan,

2017), sensing layer (Na & Isaac, 2016; Wang et al., 2014), or

physical layer (Ramundo et al., 2016; Talavera et al., 2017). The

devices are constituted of a transceiver, a microcontroller, an

interfacing circuit and one or more sensors and/or actuators.

The sensor measures a physical parameter, e.g. air tempera-

ture that is interpreted and transformed into an equivalent

analogue signal, i.e. electric voltage or current, which is then

converted by the interfacing circuit, i.e. Analogue-to-Digital

Converter (ADC), into a corresponding digital format. After-

wards, the microcontroller, sometimes also in the form of

microprocessors or single-board computers (Talavera et al.,

2017), collects the data in digital format from one or more

sensors through the ADC, and sends them to the transceiver,

i.e. a wireless communication module, which communicates

the data to a gateway. A comparison of microcontrollers and

single-board computers used in IoT in agriculture has been

made by Ray (2017). In the case of edge computing, the mi-

crocontroller or single-board computer processes the data

from one or more sensors before communicating them, with

the intention of, for example, reducing the amount of data to

be transferred to the cloud and accelerating the data pro-

cessing (Ferr�andez-Pastor et al., 2016; Sundmaeker et al.,

2016). In fog computing the data are processed in the local

area network level, i.e. in a fog node or IoT gateway (Ahmed,

Abdalla et al., 2018; Ahmed, De et al., 2018; Ferr�andez-Pastor

et al., 2018). When employing an actuator, the signal is

received by the transceiver, communicated to the microcon-

troller, where it is then converted to analogue signal by a

Digital-to-Analogue Converter (DAC), i.e. the interfacing cir-

cuit, or to a digital signal by a Digital-to-Digital Converter, and

finally interpreted by the actuator, which acts in accordance

to the signal received.

In arable farming, when agricultural machinery data are

used, i.e. data from sensors and devices mounted on tractors

or other agricultural machinery, the data in digital format is

normally collected and accessible through the Controller Area

Network (CAN) bus in the machine, although in some cases

https://doi.org/10.1016/j.biosystemseng.2019.12.013
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some data are accessible through other ports (Oksanen,

Linkolehto, & Seilonen, 2016; Peets et al., 2012). Machine and

operator performance information is accessible through the

Machine and Implement Control System (MICS) of the ma-

chine, which can also be accessed through the CAN bus data.

MICS data are used to allow machinery operators and farm

managers tomonitor and potentially improve the efficiency of

their machines, by employing e.g. smart alerts or recom-

mendation systems (Pfeiffer & Blank, 2015). Global Navigation

Satellite System (GNSS) data, e.g. Real Time Kinematics GPS

(RTK-GPS), are often also available through the CAN bus port,

which allows, among others, vehicle monitoring and dynamic

optimised route planning (Edwards et al., 2017; Villa-

Henriksen, Skou-Nielsen, Sørensen, Green, & Edwards, 2018).

Many different sensors and actuators are employed in

arable farming. The type of device used depends on the pur-

pose of the system in addition to the technologies imple-

mented in the system. And the number of devices is steadily

increasing. The number of IoT device installations in farms is

expected to increase globally from 30 million installations in

2015 to 75 million in 2020. Furthermore, data points generated

per day and farm are expected to increase from 190000 in 2014

to over half a million by 2020 (Meola, 2016). It was also esti-

mated that by 2018 there would be 10 billion IoT devices

employed in agriculture. However, the great amount of data

generated is often unused or underutilised (Bennett, 2015), e.g.

in countries like Denmark with a relative high ICT adoption in

farms, in 2016 only 2e5% of farmers worked actively with the

data generated (SEGES, 2016). Even if data usage is still rela-

tively low, it is expected to increase rapidly (Bennett, 2015;

Wolfert et al., 2017; World Bank, 2017) An overview about

how they are implemented for different purposes is presented

in the Applications section.

3.2. Network layer

The network layer communicates the data initially to an

intermediary platform and eventually to the internet (cloud),

and from there to, for example, employed actuators.When the

data are transferred to the intermediary platform, it typically

uses wireless communication technologies, for instance RFID,

WSN with Zigbee, LoRa (Long Range), etc., and more recently

Near-Field Communication (NFC) (Kassal et al., 2018;

Sundmaeker et al., 2016; Tzounis et al., 2017; Verdouw,

2016). The intermediary platform is normally an internet

gateway located in the vicinity of the connected devices, also

including sometimes a proxy server, where the data are

collected and occasionally processed in order to send the in-

formation further to the end user through the internet by the

use of e.g. MQTT standards, or HTML or XMPP protocols.

The use of Android smart devices or other operating sys-

tems is also increasing in popularity among agricultural ap-

plications, as they can be employed as a gateway for 3G and 4G

networks, and they frequently include other wireless

communication technologies, e.g. Bluetooth, Wi-Fi, GPRS and

NFC. They also automatically conform to communication

standards and protocols, in which way interoperability is

increased (Balmos, Layton, Ault, Krogmeier, & Buckmaster,

2016; Ferr�andez-Pastor et al., 2016; Gao & Yao, 2016;

Hernandez-Rojas et al., 2018; Villa-Henriksen et al., 2018). In
addition, Android and other smart devices can include GNSS

and RGB camera sensors, and can relatively easily be pro-

grammed for computing data and displaying Graphical User

Interface (GUI) applications being able to straightforwardly

update the software if necessary. In thatmanner, Android and

similar smart devices are represented in all three IoT layers,

i.e. sensing in the device layer, node or gateway in the network

layer, and computing data and displaying GUI in the applica-

tion layer. Furthermore, the automatic software updating

possibilities of smart devices allow remote installation of

updates with new functionalities, bug fixes, etc. and easily

improve the interoperability of the system (Ferr�andez-Pastor

et al., 2016).

Many different wireless technologies have been applied for

diverse purposes in agriculture, depending on economic,

accessibility and capability factors. Jawad et al. (2017), Ray

(2017) and Tzounis et al. (2017) have presented good over-

views of the specifications of wireless communication tech-

nologies implemented in IoT in an agricultural context, which

have been here collected in Table 1 and complemented with

information from other relevant articles (Alahmadi et al.,

2017; Elijah, Member, & Rahman, 2018; Kassal et al., 2018;

Sinha, Wei, & Hwang, 2017; Sundmaeker et al., 2016). The

great variety of technologies, standards and frequency bands

used exposes the relevant interoperability and application

challenges found when applying IoT technologies. Potential

communication standards for smart farming can be classified

into short-range and long-range according to their commu-

nication distance, which determines their specific usability in

different requirement settings. This is particularly the case in

arable farming, where mobile network accessibility can be an

issue inmany rural areas, andwhere large farm sizes limit the

use of some wireless technologies due to their reduced

communication distance and due to the necessity to replace/

recharge device batteries on nodes over large areas. These

issues are addressed in the challenges section later.

A WSN is formed by pervasive devices called motes or

sensor nodes, which integrate sensors and actuators that

communicate wirelessly forming a spatial network

(Hernandez-Rojas et al., 2018; Jawad et al., 2017; Tzounis et al.,

2017). In a WSN, base stations act as gateways forwarding the

data to the cloud. Different communication technologies

support different network node architectures, e.g. star, tree or

mesh. Depending on the application, different wireless

communication technologies are employed in a WSN as each

has different node architecture possibilities, data rates,

ranges, standards, among others, with the use of ZigBee, LoRa,

Bluetooth/BLE, WiFi and SigFox being relatively common in

agriculture. In arable farming, BLE has for example been

employed for soil and air monitoring and irrigation control

(Hernandez-Rojas et al., 2018); ZigBee was used in a WSN for

monitoring soil conditions and actuating an irrigation system

(Mafuta et al., 2012) and cropmonitoring (Zhai, 2017); and LoRa

for air and water temperature of rice paddy fields (Tanaka,

2018) and smart irrigation control (Zhao, Lin et al., 2018;

Zhao, Lucani et al., 2018). In order to cover larger distances,

GPRS is appropriate and has been used for irrigation control

(L�opez-Riquelme et al., 2017), and for remote maintenance of

machinery (Miettinen, Oksanen, Suomi, & Visala, 2006). GPRS,

or other technologies, such as LTE, or 3G/4G, are also

https://doi.org/10.1016/j.biosystemseng.2019.12.013
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Table 1 e Wireless communication technologies (adapted from Jawad et al. (2017), Ray (2017) & Tzounis et al. (2017)).

Technology Standard(s) Frequency Data rates Range Power

ANTþ ANT þ Alliance 2.4 GHz 1 Mb s�1 30e100 m 1 mW

Cognitive Radio IEEE 802.22 WG 54e862 MHz 24 Mb s�1 100 km 1 W

Bluetooth (2.0, 2.1, 3.0) Bluetooth, IEEE 802.15.1 2400e2483.5 MHz 1e24 Mb s�1 10e100 m 0.1e1 W

BLE IoT Inter-connect 2400e2483.5 MHz 1 Mb s�1 10 m 10e500 mW

EDGE 3GPP GSM 850/1900 MHz 384 kb s�1 26 km/10 km 3 W/1 W

GPRS 3GPP GSM 850/1900 MHz 171 kb s�1 25 km/10 km 2 W/1 W

HSDPA/HSUPA 3GPP 850/1700/1900 MHz 0.73e56 Mb s�1 27 km/10 km 4 W/1 W

ISM/SRD860 IEEE 802.11 433 MHz, 863e870 MHz 200 kb s�1 50 me2 km Very low

LoRaWAN LoRaWAN 868/900 MHz, various 0.3e50 kb s�1 2e15 km Very low

LR-WPAN IEEE 802.15.4 (ZigBee) 868/915 MHz,

2.4 GHz

40e250 kb s�1 10e20 m Low

LTE 3GPP 700e2600 MHz 0.1e1 Gb s�1 28 km/10 km 5 W/1 W

NB-IoT 3GPP Rel.13 180 kHz DL: 234.7 kb s�1

DI: 204.8 kb s�1

Using LTE/4G base stations Low

NFC ISO/IEC 13157 13.56 MHz 424 kb s�1 0.1e0.2 m 1e2 mW

RFID Many standards 13.56 MHz 423 kb s�1 1 m 1 mW

SigFox SigFox 908.42 MHz 10e1000 b s�1 30e50 km N/A

THREAD IEEE 802.15.4 2400e2483.5 MHz 251 kb s�1 11 m 2 mW

Weightless-N/W Weightless SIG 700/900 MHz 0.001e10 Mb s�1 5 km 40 mW/4 W

WiFi IEEE 802.11 a/c/b/d/g/n 2.4, 3.6, 5, 60 GHz 1 Mb s�1e6.75 Gb s�1 20e100 m 1 W

WiMAX IEEE 802.16 2 GHze66 GHz 1 Mb s�1e1 Gb s�1 (Fixed)

50e100 Mb s�1

<50 km N/A

ZigBee IEEE 802.15.4 2400e2483.5 MHz 250 kb s�1 10 m (100m) 1 mW

Z-Wave Z-Wave 908.42 MHz 100 kb s�1 30 m 1 mW

2G (GSM) GSM,

CDMA

865 MHz,

2.4 GHz

50e100 kb s�1 Mobile network area Medium

3G & 4G UMTS,

CDMA2000

865 MHz,

2.4 GHz

0.2e100 Mb s�1 Mobile network area Medium

5Ga 3GPP, ITU IMT-2020 0.6e6 GHz, 26, 28, 38, 60 GHz 3.5e20 Gb s�1 (peak rates 10e100 Gb s�1) Mobile network area Medium

6LoWPAN IEEE 802.15.4 908.42 MHz or 2400e2483.5 MHz 250 kb s�1 100 m 1 mW

a Not yet publicly available.
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commonly used at the gateway to transmit data to the cloud.

Regarding other less common communication technologies

used in WSNs, RFID can be integrated into a WSN too by

connecting the RFID tag readers to a radio-frequency trans-

ceiver (Costa et al., 2013).

Passive and active RFID technologies are used to a great

extent in agricultural research and industry (Ruiz-Garcia &

Lunadei, 2011), especially for animal production (e.g.

Kamilaris et al., 2016), as well as vegetable or fruit product

traceability (e.g. Kodali, Jain, & Karagwal, 2017); however, in

arable farming only few examples have been found: e.g. RFID

tags used for irrigation scheduling (Vellidis, Tucker, Perry,

Kvien, & Bednarz, 2008), for agrochemical traceability (Peets,

Gasparin, Blackburn, & Godwin, 2009), for vehicle monitoring

(Sjolander, Thomasson, Sui, & Ge, 2011), and even on a pro-

totype for soil temperature monitoring (Hamrita & Hoffacker,

2005). Regarding NFC, no concrete examples of NFC used in

arable farming have been found in the literature reviewed.

Finally, the latest generation of mobile communications,

i.e. 5G, has higher data rates, large coverage areas, higher peak

throughput, and also improved flexibility, which can open

new possibilities and may solve some of the challenges

encountered by many IoT solutions (Alahmadi et al., 2017;

Marsch et al., 2016). 5G allows new options for monitoring

rural areas with no previous infrastructure for Internet

connection (Faraci, Raciti, Rizzo, & Schembra, 2018). 5G can

also improve vehicle-to-vehicle or vehicle-to-anything

communication in e.g. logistics solutions, due to its low la-

tency and new frequency bands (Marsch et al., 2016). A chal-

lenge for the 5G networks will be the great increase in devices

to support once IoT becomes a standard solution not only in

agriculture, but also in any sphere of everyday life.

3.3. Application layer

The application layer is crucial in an IoT context as it is this

layer that actually adds value to the sensed and communi-

cated data through directly controlling devices, supporting

farmers’ decision making, etc. In this layer, several important

services occur such as data storage, data analytics, data access

through an appropriate Application Programming Interface

(API), as well as possibly a user interfaced software applica-

tion. The layer may also include middleware platforms that

aid handling the heterogeneous cloud data improving

interoperability.

Data storage can be cloud based, i.e. onmultiple servers, or

more local based, where data are stored in different types of

databases, depending on the application and design. Even if

relational databases, such as Structured Query Language (SQL)

databases (Gao& Yao, 2016; Goap, Sharma, Shukla,& Krishna,

2018; Ray, 2017; Wang et al., 2014), MySQL (Kaloxylos et al.,

2014), or PostgreSQL (Mazon-Olivo, Hern�andez-Rojas, Maza-

Salinas, & Pan, 2018) are employed in some of the reported

applications in the reviewed articles, non-relational data-

bases, such as Not only SQL (NoSQL), or also SPARQL, a se-

mantic query language based database, are gaining attention

due to their flexibility and scalability, especially when dealing

with Big Data. Their ability to store andmanage large amounts

of heterogeneous data makes them suitable in many IoT

agricultural contexts (Huang & Zhang, 2017; Kamilaris et al.,
2017). Examples of NoSQL employed in agriculture are Cas-

sandra (Huang & Zhang, 2017), Dynamo (Xian, 2017), HBase

(Ray, 2017; Wang et al., 2014) and MongoDB (Martı́nez et al.,

2016). An example of SPARQL has been given by Jayaraman

et al. (2016).

Data analytics can be achieved by cloud computing, where

computer resources are managed remotely to analyse data,

often Big Data, or by distributed computing, e.g. edge and fog

computing. Cloud computing has the advantage that it pro-

vides high quality services that allow independent execution

of multiple applications as if they were isolated, even if they

are on the same platform, e.g. in data centres, which is

especially relevant when dealing with Big Data (Hernandez-

Rojas et al., 2018; Martı́nez et al., 2016; Tzounis et al., 2017).

However, cloud computing techniques mostly rely on general

purpose cloud providers that do not comply with specific

agricultural service requirements (L�opez-Riquelme et al.,

2017) and can experience latency issues, which are not

acceptable in IoT solutions where monitoring, control and

analysis require fast performance (Ferr�andez-Pastor et al.,

2018). Examples of application of cloud computing related to

arable farming are given by Khattab et al. (2016), Na and Isaac

(2016) and L�opez-Riquelme et al. (2017). Khattab et al. (2016)

present an IoT architecture with a cloud-based back-end

where weather and soil data are processed and analysed for

automatic activation of irrigation and spraying actions. Na

and Isaac (2016) describe a human-centric IoT architecture

with a list of cloud services, such as language translation, data

simplification or updated market price information. And

L�opez-Riquelme et al. (2017) use FIWARE components for a

cloud service for smart irrigation tasks, focussing on the

benefits of using FIWARE as cloud provider. Regarding Big

Data analysis and Big Data in general in an agricultural

context, Kamilaris et al. (2017) and Wolfert et al. (2017)

respectively have performed exhaustive reviews on the

subject.

The use of IoT middleware platforms is gaining interest

due to its potential for solving different challenges found in

the application of IoT, especially interoperability. IoT mid-

dleware platforms try to simplify the complex communication

through the cloud due to heterogeneity of devices, commu-

nications and networks, by using enablers like standardised

APIs and protocols (Jayaraman et al., 2016; Martı́nez et al.,

2016; O’Grady & O’Hare, 2017). Examples of these are

HYDRA, UBIWARE, UBIROAD, UBIDOTS, SMEPP, SIXTH, Think

Speak, SensorCloud, Amazon IoT and IBM IoT, with focus on

context aware functionality; SOCRADES, GSN and SIRENA,

with more focus on security and privacy; Aneka, WSO2, Pub-

Nub, SmartFarmNet and FIWARE, with a wider services-

oriented approach; and projects like IoT-A, OpenIoT, or

ArrowHead (Gill, Chana, & Buyya, 2017; Jayaraman et al., 2015,

2016; Kamilaris et al., 2016; Martı́nez et al., 2016; Ray, 2017;

Sundmaeker et al., 2016). Even if all these and more solu-

tions are found in the IoT market, an intelligent middleware

solution that addresses most issues observed in smart

farming successfully is yet to be implemented (Jayaraman

et al., 2016; Martı́nez et al., 2016; Sundmaeker et al., 2016).

However, FIWARE (Ferreira et al., 2017; L�opez-Riquelme et al.,

2017; Martı́nez et al., 2016; Rodriguez, Cuenca, & Ortiz, 2018)

and SmartFarmNet (Ferr�andez-Pastor et al., 2018; Jayaraman
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et al., 2016) have been implemented effectively for precision

and smart farming applications.

In order to communicate data across platforms and IoT

devices, ensuring interoperability, APIs are essential. These

should adapt to evolving or new standards in order to ensure

a longer life span, which may become a limitation if the APIs

are not updated. It is through the APIs that data are made

available for the IoT applications (e.g. Goap et al., 2018;

Hernandez-Rojas et al., 2018). These services may include

tracing, monitoring, event management, forecasting or opti-

misation for agricultural activities and products. These ap-

plications related to arable farming are described in the next

section.
4. Current and potential applications

Multiple applications can be derived from the implementation

of IoT in arable farming. These applications can always be

conceptualised into the three IoT layers described previously,

and are not to be confused with the application layer. Elabo-

rations of the reviewed articles show that the applications

have been differentiated and categorised as follows: moni-

toring, documentation, forecasting and controlling. Moni-

toring refers to timely sensing of very diverse parameters and

is mostly the initial point of entry for other applications.

Documentation covers the storing of sampled data for later

use in e.g. farm management or traceability of produce.

Forecasting employs different sources of data through pre-

cisely designed analytic methods for predicting concrete

events. And controlling is the result of active monitoring,

where processed data are used to automatically activate and

control actuators in a predefined manner. A summarising

table collects all the IoT applications in arable farming

described in this chapter (Table 2). Most IoT-based systems

include at least two of these applications and isolated appli-

cations are seldom seen. In addition, special attention has

been paid to FMIS and associated decision support to improve

operations and production processes involving vehicle posi-

tioning analytics, optimisation and logistics, which are key

elements in arable farming (Bochtis et al., 2011, 2014) and have

consequently got a section of their own.

4.1. Monitoring

Automaticmonitoring is the obvious first step in IoT applied to

agriculture. Strategically placed sensors can automatically

sense and transmit data to the cloud for further documenta-

tion, forecasting or controlling applications. Sensors are used

to monitor crop parameters such as leaf area index (e.g. Bauer

& Aschenbruck, 2018), plant height and leaf colour, size and

shape (e.g. Okayasu et al., 2017); soil parameters such as soil

moisture (e.g. Brinkhoff, Hornbuckle, Quayle, Lurbe, &

Dowling, 2017; Kodali & Sahu, 2016) or soil chemistry (e.g.

Kassal et al., 2018); irrigationwater parameters such as pH and

salinity (e.g. Popovi�c et al., 2017); or weather parameters such

as air temperature, air pressure, air relative humidity, rainfall,

radiation, wind speed andwind direction (e.g. Yan et al., 2018).

In addition, remote sensing can also be employed, i.e. instead

of sensors placed in the field they are installed on satellites or
Unmanned Aerial Vehicles (UAV). However, these measure-

ments mostly require some form of processing and interpre-

tation as the values sampled are not directly related to the

targeted parameters. An example of monitoring through

remote sensing is the estimation of crop biomass and nitrogen

content by the use of hyper- and multispectral images (N€asi

et al., 2018), or the use of thermal remote sensing, which has

been applied for e.g. irrigation scheduling or plant disease

detection (Khanal, Fulton, & Shearer, 2017). Furthermore,

agricultural machinery can also be remotely monitored, e.g.

vehicle position and yield data (Oksanen et al., 2016), or ma-

chine performance (Miettinen et al., 2006). This is especially

relevant with the increasing appearance of autonomous ve-

hicles and robots in agriculture (Sundmaeker et al., 2016).

Finally, at farm level the storage of crops can also be moni-

tored to ensure the correct control of, for example, tempera-

ture and moisture, and avoid losses due to damage (Green

et al., 2009; Juul, Green, & Jacobsen, 2015). Environmental

impact indicators should be integrated into farm monitoring

applications, so that leaching (Burton, Dave, Fernandez,

Jayachandran, & Bhansali, 2018), contaminants (Severino,

D’Urso, Scarfato, & Toraldo, 2018) or emissions (Manap &

Najib, 2014) are addressed too.

4.2. Documentation and traceability

Collected operations and process data once stored can be used

for documentation. Documentation is usually the natural

application of monitored data but it must be noted that it can

also include other types of sampled data, such as manually

input or documentation of performed control actions

(Sørensen, Pesonen, Bochtis, Vougioukas, & Suomi, 2011). The

data are stored as raw data or as processed data at different

levels. Documentation is essential for decision-making, con-

trolling or analytics, and is an indispensable element in FMIS

(Kaloxylos et al., 2014). Mapping is also a form of documen-

tation where data are spatially projected onto a map. On-the-

go sensors installed on vehicles and implements can be used

for automated field mapping (Fountas, Sørensen et al., 2015),

e.g. yield mapping used for later fertilisation planning (Lyle,

Bryan, & Ostendorf, 2014), or soil mapping for site-specific

amendment measures (Godwin & Miller, 2003; McBratney,

Mendonça Santos, & Minasny, 2003). Remote sensing can

also be used for mapping crop development (Khanal et al.,

2017; N€asi et al., 2018; Viljanen et al., 2018), or soil texture

and residue coverage (Khanal et al., 2017). Remote sensing is

becoming a popular tool for monitoring and mapping, but is

yet to be proven feasible for all its potential applications.

When documentation data sets extend beyond the farm level

so that they can be traced throughout the supply chain, it is

often referred as traceability and this notion is a key element

in agri-food supply chain management as a measure to

satisfy, for example, consumer demands (Bochtis & Sørensen,

2014; Pesonen et al., 2014).

4.3. Forecasting

Forecasting is one of the fundamental functions for decision

making that IoT brings to agriculture. Access to “real-time”

data and historical data is used for forecasting events that

https://doi.org/10.1016/j.biosystemseng.2019.12.013
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Table 2 e IoT applications in arable farming.

Applications Examples References

Monitoring Crop Leaf area index Bauer and Aschenbruck (2018)

Plant height and leaf parameters Okayasu et al. (2017)

Soil Moisture (Brinkhoff et al., 2017; Kodali & Sahu, 2016)

Chemistry Kassal et al. (2018)

Irrigation water pH and salinity Popovi�c et al. (2017)

Weather Air (T, atm and RH), rainfall, radiation, and wind

speed and direction

Yan et al. (2018)

Remote sensing Estimating crop biomass and N content N€asi et al. (2018)

Irrigation scheduling and plant disease detection Khanal et al. (2017)

Machinery Vehicle position and yield data Oksanen et al. (2016)

Machine performance (Miettinen et al., 2006; Pfeiffer & Blank, 2015)

Farm facilities Crop storage temperature and moisture levels (Green et al., 2009; Juul et al., 2015)

Environment Nutrient leaching Burton et al. (2018)

Contaminants Severino et al. (2018)

Emissions Manap and Najib (2014)

Documentation and traceability Machinery Field mapping Fountas, Sørensen et al., 2015

Yield mapping for fertilisation planning Lyle et al. (2014)

Soil mapping for site-specific amendment measures (Godwin & Miller, 2003; McBratney et al., 2003)

Remote sensing Mapping crop development (Khanal et al., 2017; N€asi et al., 2018; Viljanen et al., 2018)

Mapping soil texture and residue coverage Khanal et al. (2017)

Supply chain Agri-food traceability (Bochtis & Sørensen, 2014; Pesonen et al., 2014)

Forecasting Machine learning models Forecasting max. and min. T at field level Aliev (2018)

Estimating levels of P in the soil (Estrada-L�opez et al., 2018)

Forecasting soil moisture Goap et al. (2018)

Plant disease forecasting (Aasha Nandhini et al., 2017; Jain et al., 2018)

Predicting irrigation recommendations Goldstein et al. (2018)

Frost prediction (Diedrichs et al., 2018; Moon et al., 2018)

Forecast of harvest and fertilisation dates Viljanen et al. (2018)

Classical models Soilmoisture and contaminant dynamics forecasting

for irrigation scheduling

Severino et al. (2018)

Fungal disease forecast in cereals (El Jarroudi et al., 2017; M€ayr€a et al., 2018)

Forecasting field trafficability and workability for

field operations

Edwards et al. (2016)

DAISY soil-crop-atmosphere model Abrahamsen and Hansen (2000)

RUSLE soil erosion model Renard et al. (1991)

Controlling Irrigation Fully autonomous irrigation scheme Goap et al. (2018)

Machinery Variable rate fertilisation Peets et al. (2012)

Site-specific weed control Christensen et al. (2009)

In-row cultivation in precision seeding Midtiby et al. (2018)

Adaptive route planning in field operations (Edwards et al., 2017; Seyyedhasani & Dvorak, 2018; Villa-

Henriksen et al., 2018)

Autonomous vehicles & robots Operations of autonomous vehicles Bechar and Vigneault (2016)

In-field obstacle detection Christiansen et al. (2016)
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require some form of action for managing successfully

the crop or field operation. Therefore, both monitoring

and documentation are important prerequisites for

enabling forecasting. Forecasting is employed as preventive

measures that require some action due to a predicted event,

e.g. weeding, irrigating or harvesting. Machine learning and

scientific modelling are examples of tools employed for

forecasting.

Different machine learning models have been employed,

e.g. Artificial Neural Networks for forecasting maximum and

minimum temperatures at field level (Aliev, 2018) or for esti-

mating levels of phosphorus (P) in the soil (Estrada-L�opez,

Castillo-Atoche, V�azquez-castillo, & S�anchez-Sinencio, 2018);

support vector regression method for forecasting soil mois-

ture (Goap et al., 2018) or plant disease detection (Aasha

Nandhini, Hemalatha, Radha, & Indumathi, 2017); gradient

boosting for predicting irrigation recommendations

(Goldstein, Fink, & Meitin, 2018); Bayesian networks and

random forest for frost prediction (Diedrichs, Bromberg,

Dujovne, Brun-laguna, & Watteyne, 2018); multiple linear

regression and random forest in estimating yield and fertil-

isation requirements for forecasting harvest and fertilisation

dates (Viljanen et al., 2018); or also for frost prediction using

four different machine learning algorithms: decision tree,

boosted tree, random forest, and regression (Moon, Kim,

Zhang, & Woo, 2018). A rather different forecasting approach

was employed by Jain, Sarangi, Bhatt, and Pappula (2018),

where three different models, i.e. random forest, support

vector machine and artificial neural network were used for

forecasting diseases and at the same time for adaptive data

collection from the network of nodes in order to reduce data

traffic and energy consumption of the network. Summarising,

IoT is allowing the sampling of large amounts of data, which

can be employed as training data by the machine learning

algorithms to build predictive mathematical models. Machine

learning is opening new possibilities for effectively fore-

casting events in arable farming, whichmight change the very

nature of decision making in agriculture.

Scientific modelling has also been employed for fore-

casting in an IoT context, e.g. soil moisture dynamics and

contaminant migration forecasting using soil sensor data and

precipitation forecasts for irrigation scheduling (Severino

et al., 2018); fungal disease forecast in winter wheat (El

Jarroudi et al., 2017) and barley (M€ayr€a, Ruusunen, Jalli,

Jauhiainen, & Leivisk€a, 2018); or forecasting field trafficability

and workability for field operations (Edwards, White,

Munkholm, Sørensen, & Lamand�e, 2016). These modelling

tools have an important role in agriculture as they are

conscientiously developed and validated by the scientific

community, and can forecast events for which machine

learning models are very limited. There is also considerable

potential for integrating existing and acknowledged model-

ling tools such as the soil-crop-atmosphere system model

DAISY (Abrahamsen&Hansen, 2000) or the soil erosionmodel

RUSLE (Renard, Foster, Weesies, & Porter, 1991) into an IoT

solution.

Many of these solutions can make agriculture in general,

and arable farming in particular, more resource efficient, e.g.

through smart irrigation, as well as environmentally friendly,

e.g. by smart pest and disease management.
4.4. Controlling

In IoT, controlling is the result of active monitoring in an

automated system, where the monitored variables are auto-

matically adjusted to, for example, predefined thresholds.

Forecasting can also play an important role in controlling.

This is, for example, the case in smart irrigation systems,

where irrigation is activated before drought damage in the

crop is recognised, thus reducing yield losses. Goap et al.

(2018) employed real-time sensing of soil moisture and soil

temperature in combination with weather forecasts to control

a fully autonomous irrigation scheme. Sensors on-the-go

installed in tractors and implements can also be used to

control e.g. variable rate fertilisation (Peets et al., 2012), site-

specific weed control technologies (Christensen et al., 2009),

or in-row cultivation controlled by plant patterns in precision

seeding (Midtiby, Steen, & Green, 2018). Controlling is crucial

in smart farming as it allows the automation of systems,

especially considering the operations of autonomous vehicles

and robots in the fields (Bechar & Vigneault, 2016), where site-

specific actions and sensing-based safety systemswill play an

important role, e.g. for in-field obstacle detection for autono-

mous vehicles (Christiansen, Nielsen, Steen, Jørgensen, &

Karstoft, 2016).

4.5. FMIS

FMIS can be defined as systems that store and process farm-

related collected data and provide decision supporting tools

for farm management (Paraforos et al., 2016). FMIS assist

farmers in the execution and documentation of farm activ-

ities, their evaluation and optimisation, as well as in strategic,

tactical and operational planning of the farm operations

(Kaloxylos et al., 2014). FMIS are consequently systems that

can encapsulate all the applications previously described, and

are vital elements in smart farm management. However, the

adoption of FMIS targeted to the new IoT technologies is slow.

A study published in 2015 showed that most FMIS architec-

tures used at that time had been designed in the 1980s by

researchers. This may explain why most FMIS currently have

a structure and an architecture that is not suitable for

distributed and service oriented decision support required for

supporting precision agriculture and smart farming solutions,

e.g. 75% of FMIS are still PC-based, and functionalities

regarding traceability, quality assurance and agronomic best

practice estimate are still missing or in their initial develop-

ment stages in most commercial FMIS (Fountas, Sørensen

et al., 2015). FMIS are key in smart farming and they should

support automatic data acquisition, monitoring, document-

ing, planning and decision making (K€oksal & Tekinerdogan,

2018). The latest research on IoT-based FMIS is expected to

become part of the commercial FMIS available in the near

future and will cover different needs across the supply chain

and needs of IoT-based agriculture as a whole, as well as

complying with standards ensuring interoperability between

systems. In addition, decision support systems (DSS) are

essential in dealing with Big Data and assisting the farm

manager in management and decision making in tasks such

as farm financial analysis, business processes or supply chain

functions (Fountas, Carli et al., 2015; Kaloxylos et al., 2012). In
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order to design an up-to-date FMIS, it is beneficial to make

preliminary use of dedicated system analysis methodologies,

such as soft system methodologies (SSM), for identifying

required changes and constraints and proposing solutions,

followed by a later hard system modelling for designing the

required specifications and components of the system

(Sørensen et al., 2010; Fountas, Sørensen et al., 2015). It is also

necessary to base FMIS on the cloud as it allows intercon-

nection with diverse additional services (Kaloxylos et al.,

2014). This development points out the inevitable need for

standardisation of APIs in order to achieve interoperability

among applications and services as part of the FMIS. New

technologies such as distributed management systems can

also enhance the capabilities of FMIS to a great extent

(Fountas, Sørensen et al., 2015). Furthermore, the introduction

of agricultural moving robots in the near future, as well as the

wireless and automatic control andmonitoring of agricultural

machinery, also needs to be considered in the design and

development of FMIS (Fountas, Sørensen et al., 2015; Paraforos

et al., 2016). The future FMIS will also be capable of emulating

farmers different work habits, as the system will automate

certain tasks previously performed by farmers, which will

require additional training (Sørensen et al., 2011). Conse-

quently, it is important to provide supportive adoption and

transition strategies for conventional farming to convert into

smart farming (K€oksal & Tekinerdogan, 2018). Examples of

current FMIS employed in arable farming are offered by

different technology providers: machine manufacturers, in-

stitutions or targeted private companies. Somemanufacturers

provide their own farm management tools, such as Agricul-

tural Management Solutions (AMS) from John Deere, or Pre-

cision Land Management (PLM) from New Holland. Across

brands some FMIS have a more local approach, e.g. the Dutch

Akkerweb developed by Wageningen University and

Research, while other commercial solutions have a global

approach, e.g. 365FarmNet, Agworld or FarmWorks.

4.6. Vehicle navigation, optimisation and logistics

Navigation systems arewidely used in arable farmingwith the

successful implementation of auto-steering systems in trac-

tors and harvesters. However, IoT-based solutions are still in

their early stages. IoT-based field operation monitoring

(Oksanen et al., 2016) or monitoring of motor and machine

performance (Pfeiffer & Blank, 2015) have been effectively

implemented on harvesting operations. Commercial exam-

ples of agricultural telematics are Trimble’s Connected Farm,

AGCO’s AgCommand, John Deer JDLink, New Holland’s PLM

Connect or CLAAS’ telematics; however, they are all closed

systems, which limits greatly the possibilities of the IoT

technologies, especially interoperability (Oksanen, Piirainen,

& Seilonen, 2015).

Regarding optimised route planning, pre-planning har-

vest operations based on field data using simulation models

can improve the harvest capacity of the vehicle or fleet

saving working hours as well as fuel consumption (Bakhtiari,

Navid, Mehri, & Bochtis, 2011; Bochtis & Sørensen, 2009;

Busato, Berruto, & Saunders, 2007; Jensen, Bochtis,

Sorensen, Blas, & Lykkegaard, 2012; Zhou, Leck Jensen,

Sørensen, Busato, & Bothtis, 2014). However, field
complexity and vehicle fleet size can become major hurdles

for the algorithms employed (Seyyedhasani, Dvorak, &

Roemmele, 2019; Skou-Nielsen, Villa-Henriksen, Green, &

Edwards, 2017). The accessibility of field and harvest data can

be eased by IoT technologies that allow automated data

collection and sharing via common communication pro-

tocols and standards, in interoperable data formats, with

compatible data model hierarchies; however, this is not al-

ways the case (Tzounis et al., 2017). IoT also allows cloud or

fog computing to be employed to solve the high computa-

tional requirements of these route planning models

(Seyyedhasani et al., 2019), even though the computing can

also be achieved at the edge (Villa-Henriksen et al., 2018).

Data communication costs, latency problems and unstable

mobile connectivitymay pose important challenges for route

planning applications that rely only on cloud computing,

making mobile edge computing more adequate and robust

for these systems. Nevertheless, true IoT-based dynamic

route planning is still in its infancy but gaining increasing

attention, especially with the arrival of agricultural robots

(Bechar & Vigneault, 2016; Kayacan, Kayacan, Ramon, &

Saeys, 2015). Concerning its application, until recently, har-

vest logistics has employed field sampled data, i.e. bound-

aries, obstacles, gates, etc., to optimise the route of the

vehicles involved in the operation statically (e.g. Bakhtiari

et al., 2011; Jensen et al., 2012), where the complete routes

of all vehicles are planned a priori. Nevertheless, these plans

often do not comply with real-world challenges as they do

not adapt to variating inputs, e.g. vehicle speed changes or

in-field yield variations, or to unforeseen situations, e.g.

machine breakdowns, eventual out of field delays, non-

trafficable wet spots, undefined obstacles, etc. There is

consequently the need to integrate route optimisation and

operation logistics in IoT systems, where the optimisation

can adapt dynamically to varying input and unforeseen

events. It is only in the last few years that harvest logistics

really started adapting dynamically to parameters such as

vehicles’ behaviour or in-field yield variations (Edwards

et al., 2017; Seyyedhasani & Dvorak, 2018; Villa-Henriksen

et al., 2018).

Today, new possibilities for optimising infield operations

arrive with the large amount of data available via internet, e.g.

remote sensing data or other collected spatial data. These

could be adaptive planning based on trafficability maps for

reducing soil compaction or avoiding vehicles getting stuck in

wet spots; or selective harvesting based on predicted grain

quality maps, which is expected to increase the value of the

crop harvested.
5. Challenges and solutions

When implementing IoT in arable farming, as well as in other

contexts, diverse challenges limit or affect the performance of

the systems employed. The challenges identified in the liter-

ature reviewed (Fig. 5) can indicate which areas need to be

taken into account when designing an IoT-based system or

point out areas that require further research. However, the

results presented in the figure are indicative and do not

necessarily describe the importance of the challenges
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included, especially because of the multiple applications and

implementation designs that are conceivable in arable

farming. Any of the challenges can become crucial in different

setups, and are therefore described. In addition, all challenges

can be related to or have consequences for other challenges.

Interoperability, in general, is a major hurdle in the appli-

cation of IoT. There are different dimensions related to it:

technical, syntactical, semantic and organisational (Serrano

et al., 2015; Veer & Wiles, 2008). Technical interoperability

refers mostly to the communication protocols which affect

the hardware and software components implemented. Syn-

tactical interoperability is usually related to data formats,

their syntax and encoding. Semantic interoperability con-

cerns the interpretation of data contents, i.e. the meaning of

the information exchanged. And organisational interopera-

bility involves intercommunication of meaningful informa-

tion across organisations regardless of information systems

and infrastructures in a world-wide scale. As interoperability

is such a generic term, in this section, technical interopera-

bility has been addressed as part of the communication pro-

tocol challenge, syntactical and semantic interoperability

have been included under the data heterogeneity challenge,

and organisational interoperability have been described under

the scalability challenge.
5.1. General challenges

5.1.1. Revenue and affordability
Often the investment for establishing an IoT-based solution

is high and as such challenging for small-scale farmers,

while larger farms can more easily acquire IoT-based tech-

nologies when investing in new equipment (Brewster et al.,

2017). The uncertainty regarding required costs, e.g. fuel or

water allocations, and selling prices of the product give little

margin for many farmers for investing in new technologies

(Higgins et al., 2017). Trust plays an important role when

investing in IoT systems, and relieving the perceived risks by

demonstrating the revenues from their adoption is essential

(Ferr�andez-Pastor et al., 2016; Jayashankar et al., 2018). For

example, in Europe 70% of all fertilising and spraying ma-

chinery is equipped with at least one precision agriculture

technology, but only 25% of farmers actually use precision

agriculture components on their farms (Say, Keskin, Sehri, &

Sekerli, 2017). Technology providers need to increase the

perceived value by demonstrating the financial return from

IoT in order to diminish the perceived risk of adoption many

farmers have. Technology providers need also to provide

robust tools that are aligned with farmer needs and practices

in order to gain acceptance and trust of IoT technologies.

https://doi.org/10.1016/j.biosystemseng.2019.12.013
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These technologies need to reduce the workload, assist in

decision making and improve the efficiency of the targeted

practice. Additionally, technology providers need to develop

interoperable and flexible solutions that can easily be inte-

grated and comply with accepted standards. Governments

can also incentivise IoT adoption by policies and regulations,

especially regarding documentation and traceability as ICT

eases paperwork and bureaucracy. A reduction in the per-

centage of mentions regarding this challenge (see Fig. 5)

could indicate that IoT is being more adopted in arable

farming.

In addition, IoT is likely to reshape the arable farming

business. The implementation of monitoring and control

of farming operations are generating substantial amounts

of valuable data that are essential for the business of

technology providers. The way farmers will dive into the

data economy, i.e. connecting their data to work in verti-

cal and horizontal networks beyond the farm, will have an

effect on their business models, as well as on the business

models of technology providers. The point of view of the

farmer’s business regarding IoT has not been fully

addressed in the literature reviewed and will require

further investigation.

5.1.2. Data heterogeneity
The diverse data sources and sensor manufacturers imply

use of different unit systems, data structures and nomen-

clatures in different data formats, which result in reduced

syntactical and semantic interoperability among IoT envi-

ronments. Sensor data can be encoded in binary, or repre-

sented in formats such as json, xml, text (e.g. csv), shapefile,

or even proprietary formats. The heterogeneity of data types

and formats can also affect the performance of a protocol

employed for communicating the information. Furthermore,

this challenge becomes critical in situations such as system

integration or sharing data with other systems (e.g. FMIS),

which could imply developing data conversion tools or even

redesign of the IoT setup. The use of standardised formats

can help with this challenge. Some attempts have beenmade

at producing standards or standardised formats that cover

the great heterogeneity of agricultural data, e.g. ISO 11783

(ISOBUS) developed by the Agricultural Industry Electronics

Foundation (AEF) for tractors and agricultural machinery,

which is very relevant in arable farming (Fountas, Sørensen

et al., 2015; Miettinen et al., 2006; Oksanen et al., 2015;

Peets et al., 2012) or AgroXML developed by the Association

for Technologies and Structures in Agriculture (KTBL) mainly

for FMIS (Kaloxylos et al., 2014; K€oksal & Tekinerdogan, 2018;

O’Grady & O’Hare, 2017; Peets et al., 2012). These are now

being integrated by the non-profit organisation AgGateway

through the ADAPT framework and SPADE project for

seamlessly communicating agricultural machinery data to

FMIS, trying to enhance the existing standards and as a

consequence improve interoperability (Brewster et al., 2017).

A drawback of comprehensive data models, which try to

describe all attributes of agricultural data, is that they

become too cumbersome to handle in many applications.

Finally, the use of middleware platforms applicable in smart

farming, e.g. FIWARE or SmartFarmNet, can also reduce the

problems caused by data heterogeneity (Ferr�andez-Pastor
et al., 2018; Ferreira et al., 2017; O’Grady & O’Hare, 2017;

Serrano et al., 2015).

5.1.3. Scalability and flexibility
Organisational interoperability is a key element concerning

scalability and flexibility (Serrano et al., 2015; Tzounis et al.,

2017; Verdouw, 2016). Many of the systems described in the

literature reviewed are centralised, closed, difficult to inte-

grate in other existing platforms or difficult to implement on

larger scales, different farming systems or geographical areas.

They are also challenging to integrate beyond the farm level

and across the supply chain in order to provide agri-food

safety and traceability. The use of standardised dynamic

protocols, such as SOAP protocol (cloud-based infrastructures

with extensible ontologies that cover the broad and diverse

agricultural production systems and environments), fast and

reliable APIs (e.g. RESTful) and middleware platforms appli-

cable for smart agriculture, such as FIWARE with its generic

enablers, are tools that are employed to achieve organisa-

tional interoperability and make the system developed more

scalable and flexible (Ferreira et al., 2017; L�opez-Riquelme

et al., 2017; O’Grady & O’Hare, 2017; Serrano et al., 2015).

Service-Oriented Architectures (SOA) also bring possibilities

to effectively integrate ecosystems through open and stand-

ardised interfaces, increasing organisational interoperability

(Kaloxylos et al., 2014; K€oksal & Tekinerdogan, 2018; Kruize

et al., 2016; Pesonen et al., 2014; Sørensen & Bochtis, 2010).

Scalability and flexibility may also refer to WSNs in the

literature, to their capacity to support an increasing number of

devices/nodes, with the network architecture, the gateway

and protocols used being the main constrains (Elijah et al.,

2018). This challenge has been considered under the

network size challenge.

5.1.4. Robustness and fault tolerance
Many different factors can affect the overall robustness and

fault tolerance of a system. Robust wireless connectivity is an

important limitation in many setups (Oksanen et al., 2016;

Vuran et al., 2018). In the design of an IoT-based solution

dealing with faults, errors and unforeseen events need to be

taken into account in order to ensure the reliability of the

system. Many of these issues are related to the other chal-

lenges presented here and can be handled at the device level,

but also need to be thought of in the overall IoT system design

(Ferreira et al., 2017; Ray, 2017).

5.1.5. Complexity
The agricultural system is complex and can be challenging to

work with. It is complex not only because of the multifaceted

nature of the physical, chemical and/or biological processes in

the soil-crop-air system, but also because of the technical

complexity of hardware and software interacting with it.

Depending on the novelty of the IoT technology implemented

and the background of the developer and user, the systems

can become more or less complex. For example, software and

hardware incompatibilities can challenge its implementation

and integration (Ferr�andez-Pastor et al., 2016), as well asmany

other challenges, e.g. the great field task diversity in arable

farming, that can add complexity to the system. Technical

knowledge can become a major hurdle for the
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implementation of IoT in farms, and it is therefore important

that user-friendliness and plug-and-play basis have a high

priority for the technology providers (Sundmaeker et al., 2016;

Zou & Quan, 2017). Complexity should be an issue for the

technology provider and not for the customer.

In addition, the co-created development and imple-

mentation of IoT systems in agriculture by a multi-actor

approach is needed to overcome the complexity at different

levels of integrating IoT in agriculture. Good examples of this

are the European Union supported research and development

efforts through multi-actor large-scale pilot projects, such as

IoF2020 (Sundmaeker et al., 2016; Verdouw et al., 2017), AIOTI

(P�erez-Freire & Brillouet, 2015), SmartAgriFood (Kaloxylos

et al., 2012), SMART AKIS (Djelveh & Bisevac, 2016), or more

recently SmartAgriHubs (Chatzikostas et al., 2019).

5.1.6. Lack of products
In the early stages of precision agriculture and IoT in agri-

culture, products that integrated agronomy and ICT engi-

neering were lacking, which hindered their adoption

(Ferr�andez-Pastor et al., 2016; Kitchen & Roger, 2007). The

large scales and diversity of environments in arable farming

can challenge the products used evenmore than in controlled

environments, as they are to be modelled to describe larger

areas, send information through larger distances and be

exposed to harsher environments. Even if Figure 5 shows lack

of references in the last couple of years, it is still relevant for

some applications, e.g. for in-situ real-time soil nutrient

sensing is still a real challenge, especially regarding calibra-

tion (Bünemann et al., 2018; Marı́n-Gonz�alez, Kuang, Quraishi,

Mu~n�oz-Garcı́a, & Mouazen, 2013).

5.2. Device layer challenges

5.2.1. Power consumption
The use of wireless devices has major advantages over wired

systems, as they are more economical to establish and can

cover much wider areas. However, their power consumption,

with limited battery life, is amajor drawback ofmanywireless

systems, and needs to be accounted for. This issue is so

important that it is the main identified challenge in the liter-

ature reviewed (Fig. 5), especially for WSNs (Jawad et al., 2017;

Tan & Panda, 2010). The large distances to cover in arable

farming make wireless devices indispensable, and solutions

to reduce their power consumption and/or extend their bat-

tery life are required. These solutions can include energy

harvesting, low power consumption sensors and communi-

cation technologies or power efficient management. Energy

harvesting techniques can include solar cells, micro wind

turbines or other interesting solutions which have been well

described by Tuna and Gungor (2016) and Jawad et al. (2017).

The power consumption of the communication technologies

and sensors employed are also to be considered in the design

of the IoT solution as there are big differences between de-

vices (Balmos et al., 2016; Hernandez-Rojas et al., 2018; Jawad

et al., 2017). Choosing low power sensors and communication

devices needs to be taken into accountwhen designing the IoT

system (Estrada-L�opez et al., 2018). Low power wireless tech-

nologies, such as BLE, have low power consumption but also

low communication range, while Wi-Fi has somewhat higher
communication range, but much higher power consumption

(Table 1), however data rates and other parameters are

important factors to consider too. ZigBee and LoRa have been

identified as appropriate candidates for many farming appli-

cations (Jawad et al., 2017). Power efficient management

techniques of WSNs include sleep/active schemes, e.g. duty-

cycling algorithms (Ahmed, Abdalla et al., 2018; Ahmed, De

et al., 2018; Alahmadi et al., 2017; Balmos et al., 2016; Dhall &

Agrawal, 2018; Temprilho, N�obrega, Pedreiras, Gonçalves, &

Silva, 2018); data mitigation schemes, e.g. data aggregation

(Abdel-basset, Shawky, & Eldrandaly, 2018) or data compres-

sion (Moon et al., 2018); energy-efficient routing schemes, e.g.

mobile sinks by the use of UAVs (Bacco, Berton, Ferro et al.,

2018; Bacco, Berton, Gotta et al., 2018; Uddin, Mansour,

Jeune, Ayaz, & Aggoune, 2018); and other combined solu-

tions, e.g. LEACH, a cluster architecture with Time Division

Multiple Access (TDMA) based MAC protocol and data aggre-

gation scheme (Kamarudin, Ahmad,&Ndzi, 2016), or dynamic

power management by combining sleep/active states with

dynamic data rates schemes (Estrada-L�opez et al., 2018).

Jawad et al. (2017) have provided a good overview and

description of WSN power efficient management techniques.

Lastly, techniques such as edge computing may have higher

power requirements on the device, making cloud computing

more desirable if power consumption is a constraint in the

projected IoT solution.

On the other hand, mounting sensors and devices on

agricultural vehicles and implements allows connection to the

power supply of the vehicle and as a consequence eliminate

power consumption as a limiting factor. The type of sensors

that are mounted on vehicles and their implements is quite

limited, being currently mainly camera-based (e.g. Midtiby

et al., 2018; Steen, Villa-Henriksen, Therkildsen, & Green,

2012). Nevertheless, there is for example potential in

employing sensors on the coulters of seed-drills for mapping

soil properties (Nielsen et al., 2017), or other on-the-go sensors

for mapping soil or crop variations (Peets et al., 2012).

5.2.2. Harsh device environment
The natural environment in which sensors and other devices

are placed can greatly challenge their functionality and

longevity. Harsh weather conditions, e.g. large temperature

variations, intense rainfall or prolonged high humidity can

cause water condensation inside devices and consequently

provoke corrosion and short circuits (Bauer & Aschenbruck,

2018). Sensors and other devices situated close to the ground

experience exposure to dust, mud, or even corrosive chem-

icals, e.g. agro-chemicals, which can seriously damage the

performance of the device or cause its total failure (Aliev, 2018;

Bauer & Aschenbruck, 2018). Underground chemical sensors

are also exposed to soil chemical and biological processes that

deteriorate the sensors and can mislead the measurements,

requiring unfeasible maintenance and re-calibrations (Burton

et al., 2018; Kassal et al., 2018). Choosing adequate casing that

does not interfere with the functionality of the device and also

tolerates the environment they are located in is essential in

the design of the IoT system. Sensors are also developed for

different conditions, and need to match the system’s mini-

mum requirements. RFID tags have been reported to perform

flawlessly under extreme conditions and environments (Costa
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et al., 2013; Ruiz-Garcia & Lunadei, 2011); however, RFID

technology is quite limited in its applications in arable

farming, and suitable sensors and communication devices are

therefore primarily dependent on the application and design

of the IoT system.

5.3. Network layer challenges

5.3.1. Latency, throughput and rate
The large amounts of data generated in IoT applications do

not only cause problems regarding data storage or handling,

but also latency problems that reduce the throughput of the

network employed. In arable farming, latency problems can

be of great importance in some IoT solutions, e.g. in WSNs

where high latency implies higher power consumption of a

node (L�opez-Riquelme et al., 2017), or in dynamic optimised

route planning in vehicle logistics, which requires rapid re-

sponses to deviations in the route plan (Villa-Henriksen et al.,

2018). For reducing latency problems, fog and edge computing

can be employed, as these computing techniques decrease

latency and network congestion (Elijah et al., 2018; Ferr�andez-

Pastor et al., 2018), e.g. data compression at the edge reduces

the large volumes of data communicated through the network

(Moon et al., 2018). In addition, the use of lightweight protocols

can also reduce latency problems, e.g. LP4S for sensors

(Hern�andez-rojas, Fern�andez-Caram�es, Fraga-Lamas, &

Escudero, 2018), or MQTT messaging protocol, which has a

faster throughput than HTTP and works well for bandwidth

limited networks (Estrada-L�opez et al., 2018). The communi-

cation rate is important to have in mind when planning the

wireless communication technology to implement, e.g. 5G can

handle high-rates, while SigFox or IEEE 802.15.4-based pro-

tocols are for low-rates (Bacco, Berton, Ferro et al., 2018; Bacco,

Berton, Gotta et al., 2018; Jawad et al., 2017). The throughput of

the network affects the communication rate, and the

communication rate also influences the power consumption,

which equally has to be carefully considered. Fast response to

events is achieved by data processing techniques such as data

merging (Tanaka, 2018), data compression (Zhao, Lin et al.,

2018; Zhao, Lucani et al., 2018), or dynamic and complex

event processing rules for conditioning input data and

immediately acting accordingly (Mazon-Olivo et al., 2018).

These processes can be on the cloud or at the edge, i.e. devices.

Finally, test-bed analysis prior to implementation of the

network can simulate communication rates and possible la-

tency and throughput issues (Stewart, Stewart, & Kennedy,

2017).

5.3.2. Wireless link quality
A low wireless link quality affects greatly the QoS of an IoT

systemas it ends in unreliable communication betweennodes

(Klaina, Alejos, Aghzout, & Falcone, 2018). This can be caused

by multipath propagation (Ruiz-Garcia & Lunadei, 2011),

background noise (Mazon-Olivo et al., 2018), routing problems,

e.g. packet collision or limited band width (Jawad et al., 2017),

or even by harsh environmental conditions, which affect the

transceivers and the quality of the data transmitted (Elijah

et al., 2018). Adequate design and testing of the network are

crucial for avoiding or reducing this challenge. However,

techniques such as channel access methods, e.g. TDMA, can
improve the link quality by reducing packet collisions

(Temprilho et al., 2018). Regarding testing, the calculation of

signal strengths in real-time on the base station helps esti-

mating the wireless link quality of a WSN when establishing

the system (Klaina et al., 2018). Packet loss characterisation

can also be used to assess the wireless link quality of a

connection (Bacco, Berton, Ferro et al., 2018; Bacco, Berton,

Gotta et al., 2018). Additionally, blind entity identification

can also help estimating the wireless link quality of a network

(Mukherjee, Misra, Raghuwanshi, & Mitra, 2018).

5.3.3. Communication range
The different wireless communication technologies have very

diverse ranges, which need to be accounted for when

designing the IoT solution, together with other factors such as

data rate, power consumption, communication protocols or

costs (Table 1). In arable farming, due to the larger farm sizes

and because of the employment ofmobile sensors and devices

on vehicles, this challenge becomes even more critical.

Furthermore, relying on the approximate communication

range of a wireless technology can be misleading, e.g. WiFi is

often described to have 100 m range, but a test analysing the

packet delivery ratio with respect to distance to gateway

shows packet losses at � 60 m (Giordano, Seitanidis, Ojo,

Adami, & Vignoli, 2018), while in another test using WiField

devices, 2.6 km range was claimed to be reached still having

reliable internet connection (Brinkhoff et al., 2017). Testing the

communication range is therefore important for some set-

tings. In addition to the choice of wireless technology,

network topology in WSNs, such as mesh topologies can also

increase the communication range by using nodes to

communicate with the central node (Ahmed, Abdalla et al.,

2018; Ahmed, De et al., 2018). Reduced range due to obsta-

cles or topography is addressed in the propagation losses

challenge later.

5.3.4. Communication protocols
Differences in communication protocols can cause technical

interoperability issues, which can lead to connectivity and

compatibility issues among the hardware and software

employed (Sto�ces et al., 2016). Network protocols are sepa-

rated into diverse layers forming a protocol stack, where tasks

are divided into smaller steps (Suhonen, Kohvakka, Kaseva,

H€am€al€ainen, & H€annik€ainen, 2012). In the infrastructure

layer, some wireless standards that define communication

protocols are commonly used by different wireless technolo-

gies, e.g. IEEE 802.15.4, which is used by ZigBee or 6LowPAN

among others, or 3GPP, which is used by GPRS, LTE or 5G

among others (see Table 1). In the application layer, standards

such as HTTP (Ahmed, Abdalla et al., 2018; Ahmed, De et al.,

2018; Kaloxylos et al., 2014), MQTT (Ferr�andez-Pastor et al.,

2016; Mazon-Olivo et al., 2018) or XMPP (K€oksal &

Tekinerdogan, 2018) are commonly used in IoT applications

in arable farming. Adequate protocols are especially relevant

and challenging in vehicle-to-vehicle communication, and

crucial in arable farming. Different standards in different

layers require careful planning of the whole IoT solution, as

they are not always compatible and can also have an effect on

the data formats used, or sensors and gateways employed

(Hernandez-Rojas et al., 2018). Middleware platforms can ease

https://doi.org/10.1016/j.biosystemseng.2019.12.013
https://doi.org/10.1016/j.biosystemseng.2019.12.013


b i o s y s t em s e n g i n e e r i n g 1 9 1 ( 2 0 2 0 ) 6 0e8 476
the integration of diverse protocols and standards by offering

enough abstraction levels so that this diversity is effectively

managed (O’Grady & O’Hare, 2017; Tuna et al., 2017). Edge

computing can also ease technical interoperability issues as a

local computing layer is created to process data and create

control rules before sending the data to the cloud (Ferr�andez-

Pastor et al., 2016).

5.3.5. Network management
Managing aWSN can imply battery change, software updates,

calibration of sensors, replacement of devices and similar

maintenance activities that can be very time-consuming.

Smart mobile devices, e.g. smart phones, can make remote

software updating possible, and can sometimes even be used

for updating some other IoT devices (Ferr�andez-Pastor et al.,

2016). Using energy efficient devices and communication

techniques can also be employed to extend the battery life of

devices (Jawad et al., 2017). Some sensors may require recali-

brations with a certain periodicity, which has to be accounted

for in the projected IoT solution (Kassal et al., 2018). None-

theless, the management of the network is always to be

considered when implementing IoT solutions in arable

farming, where distances and number of devices/nodes can be

vast.

5.3.6. Network size
WSN configuration schemes have a maximum number of

sensor nodes per gateway that the network can handle, i.e. the

network size. According to the analysis of the reviewed liter-

ature, network size is being identified more often in the last

two years (see Fig. 5), which seems to indicate new possibil-

ities for exploiting the capabilities of WSNs. Network size

depends on the wireless communication technology

employed and can affect other parameters, such as data la-

tency or scalability of the network (Balmos et al., 2016).

Network topologies can also influence the network size and

vary from simple star network (e.g. Hernandez-Rojas et al.,

2018) to more advanced multi-hop mesh networks (Ahmed,

Abdalla et al., 2018; Ahmed, De et al., 2018; Langendoen,

Baggio, & Visser, 2006) that can increase the network size by

using network nodes as relays to reach a central node and

gateway. Optimisation algorithms have been used to find the

best spatial distribution of WSN nodes, and therefore to assist

in the optimisation of its network size (Abdel-basset et al.,

2018).

5.3.7. Propagation losses
Even though propagation losses can become a big problem for

WSNs in application areas like fruit orchards and tree plan-

tations, in arable farming hedges, trees, big rocks or sheds, as

well as pronounced topography, like hills and valleys, can also

block, diffract or scatter the signal reducing the communica-

tion range and causing data packet losses. Additionally,

weather conditions can also degrade the wireless connectivity

propagation of signals (Jawad et al., 2017; Kamarudin et al.,

2016; Stewart et al., 2017). To avoid or reduce these prob-

lems, adequate planning of the location of the sensor nodes,

the antenna height, the communication protocols and the

network topology is necessary. Regarding network topologies,

mesh networks compared to star networks can reduce
propagation losses as well as increase communication range

(Kamarudin et al., 2016; Ruiz-Garcia & Lunadei, 2011). More-

over, propagation modelling can help planning, reduce

communication tests and ensure Quality of Service (QoS) for

heterogeneous wireless networks (Jawad et al., 2017; Stewart

et al., 2017; Kamarudin et al., 2016; Klaina et al., 2018; Ruiz-

Garcia & Lunadei, 2011).

5.4. Application layer challenges

5.4.1. Data analysis
Data analysis can in some cases become an important chal-

lenge, especially when dealing with Big Data, which is data in

such amounts, heterogeneity and complexity that they need

new data management techniques for analysis (Wolfert et al.,

2017). Agricultural Big Data are worthless unless analysed;

however, analysis can be very challenging because of the

volume, diversity, and quality (e.g. errors and duplications).

This is especially challenging in arable farming, where larger

amounts of heterogeneous data are generated at diverse rates

and from very different sources. The literature reviewed show

an increased identification of this challenge in the last two

years compared with the previous 6 years (see Fig. 5). This

evolution might be caused by increased access and use of

agricultural Big Data in recent times (Kamilaris et al., 2017;

Pham & Stack, 2018). Techniques for lowering data dimen-

sionality can ease the analysis by applying feature reduction

models, which reduce data size by eliminating unnecessary

data dimensions (Sabarina & Priya, 2015). Cloud computing

provides the flexibility and scalability necessary for Big Data

analysis, where numerous users operate simultaneously with

the large and complex datasets (Gill et al., 2017). Likewise,

cloud platforms are perfect for storing such large amounts of

data, where NoSQL databases can store and manage these

large unstructured datasets (Kamilaris et al., 2017). The anal-

ysis of Big Data can potentially be used, for example, for

policy-making, reducing environmental negative impact,

improve food-safety, as well as improved farm management

and production, benefiting the different stakeholders involved

(Kamilaris et al., 2017; Wolfert et al., 2017). Another facet to

data analysis is the growing use of machine learning tech-

niques, which are being used for exploring Big Data and

identifying important factors and their interrelationship that

affect agricultural production systems like, for example,

identifying diverse patterns (e.g. crop development stages,

weeds or diseases) as part of machine vision systems (Bacco,

Berton, Ferro et al., 2018; Bacco, Berton, Gotta et al., 2018;

Reshma & Pillai, 2018). In these cases, the model is built

upon a sample of data, often called training data, whose size

and quality directly affects the final model. Choosing the

adequate approach for building the model with the available

data is also essential for the success of the IoT solution.

5.4.2. Data security and privacy
Even though data security and privacy do not constitute a high

challenge in the literature reviewed, they are certainly major

concerns for the farmers, i.e. the suppliers of data and also

end-users of the technology developed, who have little trust in

service providers’ use of data (Jayashankar et al., 2018; Zhang

et al., 2017). Also, data ownership needs to be taken into
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consideration as raw data and processed data in IoT systems

have different ownership and are accessible by different ac-

tors, affecting the necessary requirements for data security

and privacy (Kaloxylos et al., 2014). Research and development

focus has been on sensing, processing, controlling and

computing, while less effort has been devoted to solving se-

curity threats, risks and privacy (Tuna et al., 2017). Other is-

sues like cost effectiveness in, for example, cloud services are

also affecting the security of the data, which eventually af-

fects the whole privacy and security of the IoT solution, as

low-cost services have lower security (Dhinari, Newe, Lewis,&

Nizamani, 2017). Technology providers should prioritise data

security and privacy in their business models. The availability

of privacy and security technologies that are dynamic enough

to support the vast numbers and variety of stakeholders, as

well as the complexity of the network, is still a major chal-

lenge that needs to be overcome (Verdouw, 2016). Many so-

lutions are being employed to reduce data security and

privacy issues in each of the IoT layers of the system, e.g.

encryption algorithms, intrusion detection mechanisms,

authentication, secure routing protocols, anonymisation, etc.

(Tuna et al., 2017; Tzounis et al., 2017). Middleware platforms

are employed to add a security layer between network and

applications, which can include confidentiality, anonymity

and security to the system (Rodriguez et al., 2018; Serrano

et al., 2015; Tuna et al., 2017; Tzounis et al., 2017). Addition-

ally, newer technologies such as blockchain are aiming to

solvemany of the challenges related to privacy and security as

well as transparency of the IoT. In agriculture, it is mainly

being applied in the food supply chain (Bermeo-Almeida et al.,

2018). Blockchain make sense for IoT platforms where large

amounts of confidential data are handled.

5.4.3. Data quality and availability
Some of the challenges previously described have a direct

influence on data quality, e.g. propagation losses, wireless link

quality, robustness and fault tolerance. Anomaly detection

and similar methods have been employed to identify faulty

data before analysis (Cadavid et al., 2018; Lyle et al., 2014). The

poor quality of data or its limited availability can limit many

applications that involve Big Data analytics, modelling and

machine learning, which can affect or even compromise the

success of some IoT solutions (Balducci et al., 2018; O’Grady &

O’Hare, 2017; Wolfert et al., 2017). In these setups, and spe-

cifically in arable farming, many datasets are integrated from

different sources and sensors, and the quality or scarcity of

some data can become a major hurdle to overcome. Ensuring

quality and availability of the data before starting such a

project is required. Even if it is not always possible to gather all

the data necessary to develop models, perform correct ana-

lytics or train machine learning algorithms, scientific as-

sumptions (Severino et al., 2018), data augmentation

(Diedrichs et al., 2018) or simulated data (Wolanin et al., 2019)

are used to help or solve the encountered challenge.

5.4.4. Context-awareness (metadata)
Context-awareness is an important and distinctive feature of

Smart Farming as compared to Precision Farming, because it

automatically includes descriptive data from e.g. fields, sen-

sors, machines, i.e. metadata. Metadata can include
information about the date and time, node identification

number, data of calibration, height and position information,

or even descriptive data about an experiment objective, field,

machinery, crop genotype or soil information at the sensor

placement (Jayaraman et al., 2015). Metadata about sensor

nodes in the system are crucial for providing contextual in-

formation so that correct data analysis can be performed

(Jayaraman et al., 2016; Ray, 2017). Context-awareness helps

computing techniques to decide what data is to be analysed,

and consequently easing the computations, and the lack of

this data complicate data analysis substantially. This is

especially relevant in arable farming, where the system has to

handle both spatial and temporal data and make decisions

based on the data collected. The use of standards, formats and

middleware that support metadata is therefore important to

have in mind during the planning of an IoT solution (Peets

et al., 2009; Ray, 2017). Context-awareness facilitates new

business models and strategies for data analytics and DSS

software providers.
6. Conclusions and future perspectives

A literature review of current and foreseeable IoT technologies

and systems in arable farming was carried out. This has

included an overview of the state of the art of IoT technolo-

gies, an outline of the current and potential applications, and

a thorough description of the challenges and solutions. From

this survey, the role smart mobile phones play is highlighted,

especially Android devices, which are employed in different

ways for a wide diversity of applications, due to their avail-

ability, connectivity, interoperability, programmable ease and

computational power. The introduction of 5G networks in the

near future will enhance the capabilities of smart mobile de-

vices due to their enhanced performance. The intelligent

management of WSN as well as the capabilities of improved

communication technologies can also solve some of the

challenges IoT-based solutions are experiencing. The role of

middleware platforms and generic enablers are expected to

gain acceptance and importance, as they can solve system

integration issues and interoperability challenges.

In general, regarding challenges, interoperability is a main

challenge throughout the whole IoT architecture, where

development and/or acceptance of standards and protocols is

required to ease the issues encountered by many IoT imple-

mentations. Furthermore, challenges such as revenue and

affordability of IoT systems, the power consumption of wire-

less devices, latency and throughput problems during data

transfer, as well as the complexity of data analysis, and data

privacy and security have been identified in the reviewed

literature as of high importance, and academic research

should direct their resources toward solving or reducing these

issues. Technology developers need to ensure that the solu-

tions create a real benefit for farmers and are available and

applicable for both large and small producers. How IoT

generated farm data will affect the business models of

farmers requires further investigation as it is not fully

addressed in the literature reviewed. The combination of

intelligent power efficient systems with power harvesting

technologies should guarantee longer battery-life of wireless
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devices. Computing data at the edge, i.e. on the devices, as

well as lightweight protocols can reduce network latency and

capacity/throughput problems. The emergence of Big Data is

posing significant challenges for data analysis, as the

complexity and heterogeneity of the huge data sets require

the application of new analysis techniques beyond those

traditionally used. Techniques such as lowering data dimen-

sionality, cloud platforms and cloud computing, including

machine learning algorithms, can help in this area and new

innovative solutions are expected to be developed. Finally,

technology producers have to guarantee privacy and security

of the data handled throughout all the layers by employing

different secure methods without compromising the user-

friendliness of the solutions employed. Middleware plat-

forms can help improving the privacy and security of IoT so-

lutions, and techniques such as blockchain can assist with

privacy and security problems of IoT platforms when dealing

with Big Data.

In the near future, interoperable and service-oriented FMIS

that are integrated in the supply chain with intelligent ana-

lytic tools will take over some of the management and

decision-making tasks of farmers and advisors, which will

require training for farmers to adapt to this type of FMIS. Key

decision support functions include farm financial analysis,

business processes, or supply chain functions, whichwill gain

importance with Big Data analytics. In addition, DSS for

vehicle logistics will grow in importance as a way to optimise

field operations using route planning and sensor-based site-

specific applications. Finally, the introduction of autonomous

vehicles and robotics in arable farming in the near future is

expected to completely change arable farming operations and

production praxes requiring fully adopted IoT capabilities.

Acknowledgements

This work was supported by the European Union’s Horizon

2020 research and innovation programme under grant agree-

ment no. 731884, Internet of Food and Farm (IoF2020).
r e f e r e n c e s

Aasha Nandhini, S., Hemalatha, R., Radha, S., & Indumathi, K.
(2017). Web enabled plant disease detection system for
agricultural applications using WMSN. Wireless Personal
Communications, 1e16. https://doi.org/10.1007/s11277-017-
5092-4.

Abdel-basset, M., Shawky, L. A., & Eldrandaly, K. (2018). Grid
quorum-based spatial coverage for IoT smart agriculture
monitoring using enhanced multi-verse optimizer. Neural
Computing & Applications, 4. https://doi.org/10.1007/s00521-018-
3807-4.

Abrahamsen, P., & Hansen, S. (2000). Daisy : An open soil-crop-
atmosphere system model. Environmental Modelling & Software,
15, 313e330. https://doi.org/10.1016/S1364-8152(00)00003-7.

Ahmed, E. M. E., Abdalla, K. H. B., & Eltahir, I. K. (2018). Farm
automation based on IoT. In 2018 International conference on
computer, control, electrical, and Electronics engineering (ICCCEEE)
(pp. 1e4). IEEE.
Ahmed, N., De, D., Member, S., & Hussain, I. (2018). Internet of
Things (IoT) for smart precision agriculture and farming in
rural areas. IEEE Internet of Things Journal, 5(6), 4890e4899.
https://doi.org/10.1109/JIOT.2018.2879579.

Alahmadi, A., Alwajeeh, T., Mohanan, V., & Budiarto, R. (2017).
Wireless sensor network with always best connection for
internet of farming. In V. Mohanan, R. Budiarto, & I. Aldmour
(Eds.), Powering the Internet of Things with 5G networks (pp.
176e201). Hershey, PA, USA: IGI Global. https://doi.org/
10.4018/978-1-5225-2799-2.ch007.

Aliev, K. (2018). Internet of plants application for smart
agriculture. IJACSA - International Journal of Advanced Computer
Science and Applications, 9(4), 421e429. https://doi.org/10.14569/
IJACSA.2018.090458.

Ashton, K. (2009, June). That “internet of things” Thing. RFID
Journal. Retrieved from http://www.rfidjournal.com/articles/
view?4986.

Bacco, M., Berton, A., Ferro, E., Gennaro, C., Gotta, A., Matteoli, S.,
et al. (2018). Smart farming : opportunities, challenges and
technology enablers. In 2018 IoT vertical and topical summit on
agriculture - tuscany (IOT tuscany) (pp. 1e6). IEEE. https://
doi.org/10.1109/IOT-TUSCANY.2018.8373043.

Bacco, M., Berton, A., Gotta, A., & Caviglione, L. (2018). IEEE
802.15.4 air-ground UAV communications in smart
farming scenarios. IEEE Communications Letters, 22(9),
1910e1913. https://doi.org/10.1109/LCOMM.2018.
2855211.

Bakhtiari, A., Navid, H., Mehri, J., & Bochtis, D. D. (2011). Optimal
route planning of agricultural field operations using ant
colony optimization. Agricultural Engineering International: CIGR
Journal, 13(4), 1e16. Retrieved from http://www.cigrjournal.
org/index.php/Ejounral/article/view/1939.

Balducci, F., Impedovo, D., Informatica, D., & Moro, A. (2018).
Machine learning applications on agricultural datasets for
smart farm enhancement. Machines, 6(38), 1e22. https://
doi.org/10.3390/machines6030038.

Balmos, A. D., Layton, A. W., Ault, A., Krogmeier, J. V., &
Buckmaster, D. R. (2016). Investigation of Bluetooth
communications for low-power embedded sensor networks in
agriculture. Transactions of the ASABE, 59(5), 1021e1029. https://
doi.org/10.13031/trans.59.11173.

Bauer, J., & Aschenbruck, N. (2018). Design and implementation of
an agricultural monitoring system for smart farming. In In
2018 IoT Vertical and topical Summit on agriculture (pp. 1e6).
Tuscany, Italy: IEEE. https://doi.org/10.1109/IOT-
TUSCANY.2018.8373022.

Bechar, A., & Vigneault, C. (2016). Agricultural robots for field
operations: Concepts and components. Biosystems Engineering,
149, 94e111. https://doi.org/10.1016/
j.biosystemseng.2016.06.014.

Bennett, J. M. (2015). Agricultural big Data : Utilisation to discover
the Unknown and instigate practice change. Farm Policy
Journal, 12(1), 43e50. Retrieved from http://www.farminstitute.
org.au/publications-1/farm-policy-journals/2015-autumn-
from-little-data-big-data-grow/agricultural-big-data-
utilisation-to-discover-the-unknown-and-instigate-practice-
change.

Bermeo-Almeida, O., Cardenas-Rodriguez, M., Samaniego-
Cobo, T., Ferruzola-G�omez, E., Cabezas-Cabezas, R., & Baz�an-
Vera, W. (2018). Blockchain in Agriculture : A systematic
literature review. In 4th International conference, CITI 2018,
proceedings (pp. 44e56). Guayaquil, Ecuador: Springer. https://
doi.org/10.1007/978-3-030-00940-3.

Bochtis, D., Green, O., & Sørensen, C. G. (2011). Spatio-
temporal constrained planning software for field
machinery. Journal of Agricultural Machinery Science, 7(4),
399e403. Retrieved from https://dergipark.org.tr/download/
article-file/118933.

https://doi.org/10.1007/s11277-017-5092-4
https://doi.org/10.1007/s11277-017-5092-4
https://doi.org/10.1007/s00521-018-3807-4
https://doi.org/10.1007/s00521-018-3807-4
https://doi.org/10.1016/S1364-8152(00)00003-7
http://refhub.elsevier.com/S1537-5110(20)30003-9/sref4
http://refhub.elsevier.com/S1537-5110(20)30003-9/sref4
http://refhub.elsevier.com/S1537-5110(20)30003-9/sref4
http://refhub.elsevier.com/S1537-5110(20)30003-9/sref4
http://refhub.elsevier.com/S1537-5110(20)30003-9/sref4
https://doi.org/10.1109/JIOT.2018.2879579
https://doi.org/10.4018/978-1-5225-2799-2.ch007
https://doi.org/10.4018/978-1-5225-2799-2.ch007
https://doi.org/10.14569/IJACSA.2018.090458
https://doi.org/10.14569/IJACSA.2018.090458
http://www.rfidjournal.com/articles/view?4986
http://www.rfidjournal.com/articles/view?4986
https://doi.org/10.1109/IOT-TUSCANY.2018.8373043
https://doi.org/10.1109/IOT-TUSCANY.2018.8373043
https://doi.org/10.1109/LCOMM.2018.2855211
https://doi.org/10.1109/LCOMM.2018.2855211
http://www.cigrjournal.org/index.php/Ejounral/article/view/1939
http://www.cigrjournal.org/index.php/Ejounral/article/view/1939
https://doi.org/10.3390/machines6030038
https://doi.org/10.3390/machines6030038
https://doi.org/10.13031/trans.59.11173
https://doi.org/10.13031/trans.59.11173
https://doi.org/10.1109/IOT-TUSCANY.2018.8373022
https://doi.org/10.1109/IOT-TUSCANY.2018.8373022
https://doi.org/10.1016/j.biosystemseng.2016.06.014
https://doi.org/10.1016/j.biosystemseng.2016.06.014
http://www.farminstitute.org.au/publications-1/farm-policy-journals/2015-autumn-from-little-data-big-data-grow/agricultural-big-data-utilisation-to-discover-the-unknown-and-instigate-practice-change
http://www.farminstitute.org.au/publications-1/farm-policy-journals/2015-autumn-from-little-data-big-data-grow/agricultural-big-data-utilisation-to-discover-the-unknown-and-instigate-practice-change
http://www.farminstitute.org.au/publications-1/farm-policy-journals/2015-autumn-from-little-data-big-data-grow/agricultural-big-data-utilisation-to-discover-the-unknown-and-instigate-practice-change
http://www.farminstitute.org.au/publications-1/farm-policy-journals/2015-autumn-from-little-data-big-data-grow/agricultural-big-data-utilisation-to-discover-the-unknown-and-instigate-practice-change
http://www.farminstitute.org.au/publications-1/farm-policy-journals/2015-autumn-from-little-data-big-data-grow/agricultural-big-data-utilisation-to-discover-the-unknown-and-instigate-practice-change
https://doi.org/10.1007/978-3-030-00940-3
https://doi.org/10.1007/978-3-030-00940-3
https://dergipark.org.tr/download/article-file/118933
https://dergipark.org.tr/download/article-file/118933
https://doi.org/10.1016/j.biosystemseng.2019.12.013
https://doi.org/10.1016/j.biosystemseng.2019.12.013


b i o s y s t em s e ng i n e e r i n g 1 9 1 ( 2 0 2 0 ) 6 0e8 4 79
Bochtis, D. D., & Sørensen, C. G. (2009). The vehicle routing
problem in field logistics part I. Biosystems Engineering, 104(4),
447e457. https://doi.org/10.1016/j.biosystemseng.2009.09.003.

Bochtis, D., & Sørensen, C. G. (2014). Special issue: Operations
management - operations management in bio-production
systems. Operations Management in Bio-Production Systems, 120,
1e116. Retrieved from https://www.sciencedirect.com/
journal/biosystems-engineering/vol/120/suppl/C.

Bochtis, D. D., Sørensen, C. G. C., & Busato, P. (2014). Advances in
agricultural machinery management : A review. Biosystems
Engineering, 126, 69e81. https://doi.org/10.1016/
j.biosystemseng.2014.07.012.

Brewster, C., Roussaki, I., Kalatzis, N., Doolin, K., & Ellis, K. (2017).
IoT in agriculture: Designing a europe-wide large-scale pilot.
IEEE Communications Magazine, 55(9), 26e33. https://doi.org/
10.1109/MCOM.2017.1600528.

Brinkhoff, J., Hornbuckle, J., Quayle, W., Lurbe, C. B., & Dowling, T.
(2017). WiField , an IEEE 802 . 11-based agricultural sensor data
gathering and logging platform. In Eleventh International
conference on sensing technology (ICST).

Bünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., De
Deyn, G., De Goede, R., et al. (2018). Soil quality e a critical
review. Soil Biology and Biochemistry, 120(February), 105e125.
https://doi.org/10.1016/j.soilbio.2018.01.030.

Burton, L., Dave, N., Fernandez, R. E., Jayachandran, K., &
Bhansali, S. (2018). Smart gardening IoT soil sheets for real-
Time nutrient analysis. Journal of the Electrochemical Society,
165(8), 3157e3162. https://doi.org/10.1149/2.0201808jes.

Busato, P., Berruto, R., & Saunders, C. (2007). Optimal field-bin
locations and harvest patterns to improve the combine field
Capacity : Study with a dynamic simulation model. In CIOSTA
07 001. Vol. IX. Agricultural engineering International: The CIGR
ejournal. Retrieved from https://ecommons.cornell.edu/
handle/1813/10619.

Cadavid, H., Garz�on, W., P�erez, A., L�opez, G., Mendivelso, C., &
Ramı́rez, C. (2018). Towards a smart farming Platform :
From IoT-based crop sensing. In Colombian conference on
computing CCC 2018, communications and information science CCIS
(Vol. 885, pp. 237e251). https://doi.org/10.1007/978-3-319-
98998-3.

CEMA. (2017). Digital farming: What does it really mean?. Retrieved
March 22, 2018 http://cema-agri.org/sites/default/files/CEMA_
Digital Farming - Agriculture 4.0_ 13 02 2017.pdf.

Chatzikostas, G., Matic, D., Van Damme, D., Rakers, P.,
Vangeyte, J., De Visscher, A., et al. (2019). Smart agri hubs D3.1
innovation experiment guidelines. Retrieved from https://
smartagrihubs.eu/Deliverables/pdfs/D3.1_IE Guidelines_final.
pdf.

Christensen, S., Søgaard, H. T., Kudsk, P., Nørremark, M., Lund, I.,
Nadimi, E. S., et al. (2009). Site-specific weed control
technologies. Weed Research, 49, 233e241. https://doi.org/
10.1111/j.1365-3180.2009.00696.x.

Christiansen, P., Nielsen, L. N., Steen, K. A., Jørgensen, R. N., &
Karstoft, H. (2016). DeepAnomaly : Combining background
subtraction and deep learning for detecting obstacles and
anomalies in an agricultural field. Sensors, 16(1904), 1e21.
https://doi.org/10.3390/s16111904.

Costa, C., Antonucci, F., Pallottino, F., Aguzzi, J., Sarri�a, D., &
Menesatti, P. (2013). A review on agri-food supply chain
Traceability by means of RFID Technology. Food and Bioprocess
Technology, 6(2), 353e366. https://doi.org/10.1007/s11947-012-
0958-7.

Dhall, R., & Agrawal, H. (2018). An improved energy efficient duty
cycling algorithm for IoT based precision agriculture. Procedia
Computer Science, 141, 135e142. https://doi.org/10.1016/
j.procs.2018.10.159.

Dhinari, L. L., Newe, T., Lewis, E., & Nizamani, S. (2017). Cloud
computing and Internet of Things fusion: Cost issues. In
Eleventh International conference on sensing technology (ICST) (pp.
2e7).

Diedrichs, A. L., Bromberg, F., Dujovne, D., Brun-laguna, K., &
Watteyne, T. (2018). Prediction of frost events using machine
learning and IoT sensing devices. IEEE Internet of Things Journal,
5(6), 4589e4597. https://doi.org/10.1109/JIOT.2018.2867333.

Djelveh, S., & Bisevac, V. (2016). D3.7. Smart-AKIS policy gaps and
briefs. Retrieved from https://www.smart-akis.com/wp-
content/uploads/2018/08/SmartAKIS_D3.7_Final.pdf.

Edwards, G. T. C., Hinge, J., Skou-Nielsen, N., Villa-Henriksen, A.,
Sørensen, C. A. G., & Green, O. (2017). Route planning
evaluation of a prototype optimised infield route planner for
neutral material flow agricultural operations. Biosystems
Engineering, 153, 149e157. https://doi.org/10.1016/
j.biosystemseng.2016.10.007.

Edwards, G., White, D. R., Munkholm, L. J., Sørensen, C. G., &
Lamand�e, M. (2016). Modelling the readiness of soil for
different methods of tillage. Soil and Tillage Research, 155,
339e350. https://doi.org/10.1016/j.still.2015.08.013.

El Jarroudi, M., Kouadio, L., El Jarroudi, M., Junk, J., Bock, C.,
Diouf, A. A., et al. (2017). Improving fungal disease forecasts in
winter wheat: A critical role of intra-day variations of
meteorological conditions in the development of septoria leaf
blotch. Field Crops Research, 213(August), 12e20. https://doi.org/
10.1016/j.fcr.2017.07.012.

Elijah, O., Member, S., & Rahman, T. A. (2018). An overview of
Internet of Things (IoT) and data analytics in Agriculture :
Benefits and challenges. IEEE Internet of Things Journal, 5(5),
3758e3773. https://doi.org/10.1109/JIOT.2018.2844296.

Estrada-L�opez, J. J., Castillo-Atoche, A. A., V�azquez-castillo, J., &
S�anchez-Sinencio, E. (2018). Smart soil parameters estimation
system using an autonomous wireless sensor network with
dynamic power management strategy. Sensors Journal, 18(21),
8913e8923. https://doi.org/10.1109/JSEN.2018.2867432.

Faraci, G., Raciti, A., Rizzo, S., & Schembra, G. (2018). A 5G
platform for unmanned aerial monitoring in rural areas:
Design and performance issues. In IEEE international conference
on network softwarization (NetSoft 2018) - technical sessions (Vol.
1, pp. 237e241). IEEE. https://doi.org/10.1109/
NETSOFT.2018.8459960.

Ferr�andez-Pastor, F. J., Garcı́a-Chamizo, J. M., Nieto-Hidalgo, M., &
Mora-Martı́nez, J. (2018). Precision agriculture design method
using a distributed computing architecture on Internet of
Things context. Sensors, 18(1731), 1e21. https://doi.org/
10.3390/s18061731.

Ferr�andez-Pastor, F., Garcı́a-Chamizo, J., Nieto-Hidalgo, M., Mora-
Pascual, J., & Mora-Martı́nez, J. (2016). Developing ubiquitous
sensor network platform using Internet of Things: Application
in precision agriculture. Sensors, 16(8), 1141. https://doi.org/
10.3390/s16071141.

Ferreira, D., Corista, P., Gi~ao, J., Ghimire, S., Sarraipa, J., & Jardim-
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