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A B S T R A C T

Cancer is a rising and major health issue around the world. The acquisition of resistance to chemotherapeutic
drugs is a great obstacle for the effective treatment of nearly all cancers. Drug resistance is regulated by multiple
factors and mechanisms including genetic mutations, abnormal expression of some cellular transporters such as
multidrug resistance (MDR) transporters, changes in apoptotic pathways, cancer stem cells, tumor micro-
environment, and noncoding RNAs (ncRNAs). Evidence clearly indicates a key role for sirtuins in several
characteristics of cancer drug resistance. Recent studies demonstrated the crucial impact of some ncRNAs on
sirtuins expression leading to modulation of chemotherapy resistance in cancers. In this review, we will focus on
the current findings about the impacts of ncRNAs on the sirtuins pathway and their role in drug resistance of
cancer.

1. Introduction

Cancer is considered a complex disease associated with some ge-
netic mutations, deletions, epigenetic alterations and chromosomal
translocations that are involved in cancer initiation, promotion, me-
tastasis and drug resistance (Bach and Lee, 2018). Chemotherapy is one
of the most widely used therapies for the treatment of cancer and im-
proves the lifespan of patients. However, prolonged utilization of che-
motherapeutic drugs. may lead to drug resistance which is a major issue
in cancer treatment (Szakacs et al., 2006). Based on statistical reports,
over than 90% of deaths in patients with different types of cancer are
associated with chemotherapeutic drug resistance (Li et al., 2008;
Longley and Johnston, 2005). Cancer cells apply many different me-
chanisms to impede drug treatment, including the genetic mutations,
cell cycle alterations, apoptosis induction, drug metabolism, efflux al-
terations and DNA methylation (Balch et al., 2004; Gillet and
Gottesman, 2010; Xia and Hui, 2014). NcRNAs have been reported to
play an essential role in determining drug sensitivity or restoring drug
sensitivity in resistant cells in many cancers. (Kapranov et al., 2010).

NcRNAs are RNA molecules that do not code any protein. However,
they exert an important impact on the expression of more than 60% of
human genes. They are classified into two main groups including the
most studied microRNAs (miRNAs) and the long non-coding RNAs
(lncRNA) (Kapranov et al., 2010). MiRNAs are single-stranded RNAs,

19-23bp in length and account for approximately 30% of gene ex-
pression regulation. MiRNAs can bind to the 3′ untranslated regions
(UTRs) of their target mRNAs and regulate gene expression. The most
important function of miRNAs is the suppression of gene expression
(Omidkhoda et al., 2019; Szulwach et al., 2010).

lncRNAs are transcripts with 200 nt to ~100 kb in length. They do
not have any significant open reading frames. lncRNAs are poly-ade-
nylated and located within the cell nucleus or cytosol. They can reg-
ulate the expression of genes by cis-acting or trans-acting regulation.
Cis-acting lncRNAs affect the expression of neighboring genes by acting
at the site of transcription, while trans-acting lncRNAs affect the ex-
pression of genes by acting away from the site of synthesis (Barangi
et al., 2019; Batista and Chang, 2013).

Many reports demonstrated that the dysregulation of specific
ncRNAs lead to cancer drug resistance via different mechanisms in-
cluding overexpression of multidrug resistance (MDR) genes, changes
in apoptotic pathways, alterations in drug targets, hindering the com-
ponents of DNA repair pathway, regulating genes related to autophagy
and drug-metabolizing enzymes (e.g. the cytochrome P450) and
Epigenetic alterations (Liao et al., 2018; Ye et al., 2018). Their potential
role in cancer drug resistance has been studied in many types of cancers
such as colorectal, hepatocellular, prostate, ovarian, lung, and breast
cancers as well as some leukemias and lymphomas (Bach et al., 2017;
Sameiyan et al., 2019).
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Sirtuin (silent mating type information regulation 2, S. cerevisiae,
homolog) 1 are class III NAD-dependent histone deacetylases (HDACs).
Sirtuins are present in many living organisms from yeast to mammals
(Guarente, 2013). Studies on humans revealed that sirtuins are involved
in the development of many diseases such as cancers. Sirtuins have a
variety of functions in cellular processes such as differentiation, cell
adhesion, cell–cell communication, inflammation, cancer progression,
and metastasis (Chalkiadaki and Guarente, 2012). Sirtuin family consists
of seven forms of sirtuin genes, SIRT1-7. They have a conserved
NAD + domain that is catalytic and binding domain. However, they are
different in cellular localization and function. It has been documented
that, all mammalian sirtuins except SIRT5 are involved in tumorigenesis.
SIRT1 has been extensively studied in the field of cancer drug resistance.
SIRT1 is expressed ubiquitously and is preliminarily located in the nu-
cleus. However, it can switch between the nucleus and cytoplasm uti-
lizing its two nuclear localization signals (NLS) and two nuclear export
signals (NES) (Rifai et al., 2018). The overexpression of SIRT1 has been
reported to be associated with cancer progression and drug resistance in
several types of cancers (Chu et al., 2005; Karbasforooshan et al., 2018;
Lim, 2007; Mostoslavsky et al., 2006; Wang et al., 2008).

SIRT1 adjusts target gene expression by removing the acetyl group
from the ε-amino group of lysine residues in histones proteins as well as
non-histone proteins (Zhang et al., 2009). SIRT1 promotes drug re-
sistance in tamoxifen-resistant breast cancer cells, and also liver and
prostate cancers (Chen et al., 2011; Choi et al., 2013; Wang et al., 2011;
Yuan et al., 2013). The fundamental role of SIRT1 in the progression
and drug resistance of chronic myelogenous leukemia (CML) has also
been observed (Wang et al., 2013). According to some recent experi-
ments, SIRT1 could inhibit cancer progression. Recent studies show a
dual role for SIRT1 in cancer promotion and suppression (Bosch-
Presegue and Vaquero, 2011). Based on these studies, overexpression of
SIRT1 lead to suppression of breast cancer development in mesench-
ymal stem cells, while downregulation of SIRT1 leads to increased
metastasis by Smad4 deacetylation in breast cancer cells.

Therefore, whether SIRT1 acts as an oncogene or a tumor suppressor
gene remains controversial (Simic et al., 2013; Yu et al., 2016). Here,
we aim to review the impact of different ncRNAs on the sirtuin pathway
and their role in drug resistance of cancers (Table 1).

2. Noncoding RNAs and sirtuins function in cancer drug
resistance

2.1. Breast cancer

According to the GLOBOCAN 2018 database, breast cancer is the
most common cancer around the world, contributing 12.3% of the total
number of newly diagnosed cases in 2018 (World Health Organization).
While targeted chemotherapy can eliminate the mortality of breast
cancer, drug resistance remained a challenge in the treatment of this
disease (Davuluri et al., 2014; Kirsh et al., 2011).

Several studies reported that miR-34a is involved in chemosensi-
tivity through inhibition of SIRT1, Bcl2, CD44, Rac1, Fra1, various
cyclins and CDKs, MYC and MYCN expression. The miR-34a can act as a
tumor suppressor and inhibits cell proliferation, migration, and inva-
sion. It also causes cell cycle arrest, senescence, and triggers apoptotic
pathways (Ghawanmeh et al., 2011; Heinemann et al., 2012;
Hermeking, 2010; Liu et al., 2011; Sotillo et al., 2011; Sun et al., 2008;
Yamakuchi et al., 2008; Zauli et al., 2011).

Downregulation of miR-34a expression in a wide range of cancer
tissues and cell lines have been studied (He et al., 2009). In various
types of cancers miR-34a plays an effective inhibitory role and directly
suppresses the expression of SIRT1 and Bcl2. In an experiment con-
ducted by Li et al., miR-34a was shown to be frequently downregulated
in MDA-MB-231 and MDA-MB-435 breast cancer cell lines. They also
found that miR-34a upregulation can sensitize the tumor cells to 5-
fluorouracil (5-FU) treatment through downregulating Bcl2 and SIRT1

expression, thus suppressing cell proliferation and inducing apoptosis
(Li et al., 2013).

A study by Ma et al. suggested that miR-34a upregulation or SIRT1
downregulation prevents the proliferation and colony formation of the
MCF-7 breast cancer cell lines, as well as breast cancer stem cells. In an
experiment on nude mice xenografts, SIRT1 downregulation was shown
to be positively correlated with reduced expression of breast cancer
stem cell markers and decreased cancer development (Ma et al., 2015).

Zou et al. revealed that miR-22 could negatively regulate SIRT1 in
the MCF-7 cell line (Zou et al., 2017). Another in vitro study by Zhang
et al. demonstrated that miR-22 overexpression blocks cancer cell
proliferation and enhances the sensitivity of breast cancer cells to
radiotherapy through targeting SIRT1. The authors claimed that SIRT1
knockdown triggers apoptosis by downregulating Bcl2 and enhances
the sensitivity of breast cancer cells to radiotherapy by suppressing
DNA damage repair (Zhang et al., 2017c).

Tormo et al. investigated that miRNA-449a is overexpressed in pa-
tients with triple-negative breast cancer (TNBC). SIRT1 is one of the miR-
449a targets. In sensitive breast cancer cells, treatment with doxorubicin
lead to miR-449a upregulation as well as DNA-damage responder factors
(E2F1 and E2F3), while their expression does not change in resistant
ones. Overexpression of miR-449 results in the downregulation of genes
including CDK2, E2F1, and E2F3 and promotion of apoptosis in doxor-
ubicin-resistant cells leading to increased doxorubicin sensitivity. Hence,
miR-449a could have clinical application for the treatment of chemore-
sistant breast cancers (Tormo et al., 2019).

Emerging evidence indicates that some lncRNAs may serve as
competing endogenous RNA (ceRNA) and inhibit the miRNA expression
and biological functions (Tano and Akimitsu, 2012). Liang et al. found
that lncRNA-PRLB knockdown results in inhibition of cell migration,
overexpression of epithelial markers (E-cadherin), downregulation of
mesenchymal markers (N-cadherin, vimentin, and fibronectin) and
enhanced the 5-FU-induced cell apoptosis via caspase-8 and caspase-3.
lncRNA-PRLB overexpression leads to miR-4766-5p downregulation
and enhanced expression of SIRT1. Collectively, lncRNA-PRLB pro-
motes breast cancer cell proliferation and drug resistance through miR-
4766-5p mediated regulation of SIRT1 signaling (Liang et al., 2018).

2.2. Colorectal cancer

Nowadays, colorectal cancer is the third common cancer in the
world with 1.8 million new cases in 2018. 5-FU is frequently used drug
for metastatic colorectal cancer therapy (Kurkjian and Kummar, 2009).
Recently, more effective chemotherapeutic agents such as oxaliplatin
and the monoclonal antibodies panitumumab and cetuximab have been
applied in clinical practice (Jemal et al., 2011). Radiotherapy is another
approach to colorectal cancer therapy. Thus far, drug resistance is the
most serious challenge in the treatment of colorectal cancer (Kurkjian
and Kummar, 2009).

Downregulation miR-34a is associated with resistance to 5-FU in
human colorectal cancer. Therefore, chemoresistance to 5-FU could be
attenuated by miR-34a overexpressing, which in turn downregulated
the expression of SIRT1 and E2F3 (a critical component of the apoptotic
process). Anti-apoptotic pathways such as PI3K may contribute to drug
resistance. Inactivation of PI3K/AKT signaling significantly results in
the upregulation of miR-34a and growth impediment (Akao et al.,
2011).

SIRT1 has an inhibitory effect on p53 by its deacetylation. Inhibition
of SIRT1 by miR-34a contribute to increased levels of acetylated p53
and expression of p21 and PUMA. Thus, triggering apoptosis in 5-FU
resistant cancer cells. Conclusively, miR-34a could be applied in the
treatment of 5-FU resistance in human colorectal cancers (Yamakuchi
et al., 2008).

It has been confirmed that downregulation of miR-29b was asso-
ciated with drug resistance. The miR-29b targets SIRT1 and reverses
colorectal cancer cells oxaliplatin resistance through ROS/JNK
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pathway. An important way to obtain the acquired drug resistance in
cancer cells is inactivation of reactive oxygen species (ROS) (Goldberg
et al., 2004). SIRT1 inhibits reactive oxygen species formation in cells
via increasing the expression of cellular antioxidants such as superoxide
dismutase (Cheng et al., 2014). Studies showed that the JNK pathway is
a molecular linkage between oxidative stress and apoptotic pathways.
JNK activation upregulates the expression of pro-apoptotic proteins and
blocks the function of Bcl2 which is an important anti-apoptotic protein
(Dhanasekaran and Reddy, 2008). Therefore, overexpression of miR-
29b may inhibit SIRT1 expression, promotes reactive oxygen species
generation and JNK mediated cell apoptosis leading to increased ox-
aliplatin-sensitivity (Liu and Cheng, 2018).

Under metabolic and therapeutic stress such as chemotherapy, au-
tophagy helps the tumor cells to survive via sequestering proteins and
organelles in autophagic vesicles and delivering these vesicles to lyso-
somes for degradation. Therefore, autophagy inhibitors can enhance
the efficacy of chemotherapy for many cancers (Zhang et al., 2017a).
H19 is a lncRNA that is upregulated in colorectal cancer and increased
the 5-FU resistance through triggering autophagy. H19 promotes au-
tophagy via SIRT1 upregulation and miR-194-5p down-regulation. H19
has a sequence that can directly attach to miR-194-5p, suggesting that
the suppression of H19 via miR-194-5p may result in diminished au-
tophagy and increased 5-FU sensitivity (Wang et al., 2018).

2.3. Prostate cancer

Prostate cancer is a common cancer among men and is a major
contributing factor of cancer-related mortality (Tian et al., 2018). Re-
cent investigations have illustrated that miR-221 and miR-222 are up-
regulated in some cancers, such as prostate cancer, resulted in the
downregulation of SIRT1 and inhibition of autophagy and angiogenesis.
Thus, miR-221 and miR-222 may have therapeutic effects for the
treatment of prostate cancer (Karbasforooshan et al., 2018; Yang et al.,
2014).

Urothelial carcinoma-associated 1 (UCA1) is a lncRNA, up-regulated
in many cancers such as prostate cancer. UCA1 downregulation leads to
increased miR-204 expression and suppresses SIRT1 expression.
Therefore, UCA1/miR-204/SIRT1 axis activate the docetaxel-induced
caspase-3 activation and triggers apoptosis in 22RV1/DR cells (Wang
et al., 2016).

Fujita et al. suggested that miR-34a could suppress cell growth and
stop cell cycle at the G1 phase in PC3 prostate cancer cells. Their in-
vestigation also revealed that miR-34a expression is decreased in p53-
null PC3 and p53-mutated DU145 cells compared with normal cancer
cells. An increase in miR-34a expression results in downregulation of
SIRT1 and E2F1 as well as Bcl2, E2F3, Cyclin D1, and CDK6. Thus,
inhibiting cell growth and enhancing apoptosis leading to camptothecin
sensitivity in resistant cells (Fujita et al., 2008).

Kojima et al. reported that miR-34a performs on the 3’-UTR of BCL2
and SIRT1 mRNAs directly and indirectly and downregulates their ex-
pression resulting in increased apoptosis in paclitaxel resistant PC3 cells
and sensitize them to chemotherapy (Kojima et al., 2010). Fig. 1 shows
a schematic representation of ncRNAs impact on sirtuins that lead to
chemosensitivity in different cancers.

2.4. Ovarian cancer

Ovarian cancer with a 5-year survival rate is an aggressive gyne-
cological cancer. Because of being diagnosed at late stages, high risk of
recurrence and resistance to the current chemotherapeutic drugs.
(Norouzi-Barough et al., 2018).

Recently, Shuang et al. found that the upregulation of SIRT1 ex-
pression results in poor prognosis and drug resistance in epithelial
ovarian cancer (Shuang et al., 2015). Besides, Mvunta et al. illustrated
that SIRT1 can promote invasion in ovarian cancer cells (Mvunta et al.,
2017). It has been found that miR-142-3p plays an important role in

several common cancers as a tumor suppressor (Colamaio et al., 2015;
Ghanbari et al., 2015). Gao et al. showed that miR-142-3p promotes
apoptosis and enhances the cisplatin sensitivity of SKOV3/DDP cells via
downregulation of SIRT1. Conclusively, miR-142-3p could be a suitable
choice for the treatment of ovarian cancer (Gao et al., 2018).

2.5. Pancreatic cancer

Among all malignant cancers, pancreatic cancer is placed in the
fourth rank worldwide, because of high mortality, invasiveness, early
metastasis and lack of specific symptoms. The average survival time is
only 3–6 months (Chitkara et al., 2015; Duguang et al., 2017). Several
number of ncRNAs are related to biological behavior and signaling
pathways in pancreatic cancer (Fu et al., 2017). Chemotherapy is an
essential treatment strategy in most pancreatic cancers. However, drug
resistance is a big challenge that leads to treatment failure (Lv and
Huang, 2019). The upregulation of miR-494 negatively regulates c-MYC
and SIRT1 expression directly by binding to the 3′-UTR of c-MYC and
SIRT1 and inhibits drug-resistant pancreatic cancer cell proliferation in
vitro and in vivo. Therefore miR-494 bears therapeutic potential in the
treatment of 5-FU and Gemcitabine resistance in pancreatic cancer (Liu
et al., 2015).

2.6. Hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is one of the most widespread
cancers in the world, placed as the second leading cause of cancer-re-
lated death because of its high invasiveness and metastatic risk. Several
ncRNAs are associated with HCC progression and drug resistance
(Carter, 2014; Wei et al., 2019; Wu et al., 2015).

Highly upregulated in Liver Cancer (HULC) is a type of lncRNAs that
has a key role in the carcinogenesis and promotion of HCC and acts as
an oncogenic lncRNA. Through overexpressing the SIRT1 protein,
HULC can cause autophagy in HCC cells. SIRT1 induced autophagy
through suppressing the acetylation of the autophagy-related proteins
including ATG5 and ATG7. HULC reduces miR-6886-3p, miR-6845-5p
and miR-6825-5p expressions and contribute to USP22 and SIRT1 up-
regulation. As mentioned before, autophagy has an important role in
tumor chemoresistance. Therefore, downregulation of HULC by miR-
6886-3p, miR-6845-5p and miR-6825-5p contribute to the down-
regulation of SIRT1 and make HCC cells sensitive to the chemother-
apeutic agents such as Tetrahydropalmatine (THP), oxaliplatin and 5-
FU (Xiong et al., 2017).

2.7. Gastric cancer

Gastric cancer is one of common malignancies in East Asian counties
(Wang et al., 2012; Yin et al., 2012). Resistance to cisplatin has been a
major problem in the treatment of gastric cancer for a long time. Cancer
stem cell-like cells (CSCs) are responsible for many features of tumors
such as drug resistance. CSCs possess many stem cells characteristics
which distinguish them from the other tumor cells. CSCs are very tu-
morigenic and resistant to chemotherapy and could be accountable for
post-therapy tumor relapse. An experiment on CSCs demonstrated that
miR-132 is upregulated in Lgr5+ CSCs. The expression of miR-132
leads to the downregulation of SIRT1 expression. ABCG2 which is a
member of ABC transporter family genes is involved in the chemore-
sistance of gastric cancer. Downregulation of SIRT1 leads to increase in
the level of acetylated CREB which in turn raise the ABCG2 signaling
pathway (Zhang et al., 2017b).

2.8. Bladder cancer

The miR-34a has been shown to target CDK6 and SIRT1 in TCC
bladder cancer cell lines and sensitizes cells to cisplatin treatment. MiR-
34a can simultaneously targetmultiple components of p53-Rb signaling
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axis. Cdk6, in complex with Cdk4 and cyclin D1, is a key regulator of Rb
activity and thereby G1/S transition. There is a positive correlation
between senescence and increased chemo-sensitivity (in both clinical
and in vitro studies). Thus, targeting of CDK6 by miR-34a is directly
responsible for G1/S arrest and induction of senescence. This finding
indicates that manipulation of miR-34a expression could have ther-
apeutic potential for patients with bladder cancer (Vinall et al., 2012).

Recent studies have illustrated that horizontal transfer of genetic
components could be a way for communication between heterogeneous
tumor cell populations. Therefore, this phenomenon alters the sus-
ceptibility of cancer cells to chemotherapeutic drugs. Raji et al. found
that cisplatin-resistant HepG2 cells can make HeLa cells resistant to
cisplatin by horizontal transfer of miR-106a/b via exosomes. They
found that miR-106a/b overexpression can decrease SIRT1 protein ex-
pression. Inhibition of SIRT1 decreases the expression of MDR1 and
ABC transporter p-glycoprotein via FOXO1 deacetylation resulting in
enhanced sensitivity to cisplatin (Raji et al., 2017).

2.9. Multiple myeloma

Dexamethasone has a key role in the chemotherapy of multiple
myeloma. However, when used as monotherapy, it does not cause
significant cytotoxicity. Dexamethasone induces the miR-34a over-
expression. The miR-34 can downregulate SIRT1 and activation of p53.
Therefore, p53/miR-34a/SIRT1 signaling pathway is responsible for
dexamethasone sensitivity in cancer cells via induction of apoptosis.
The miR-125b can enhance the miR-34a levels. Using dexamethasone
combined with miR-125b-mRNAs could increase cancer cell apoptosis
via activation p53/miR-34a/SIRT1 signaling pathway. These findings

help us to put more emphasis on miR-125b to manipulate B-cell
apoptosis to improve the treatment of multiple myeloma (Murray et al.,
2013).

2.10. Osteosarcoma

Osteosarcoma is a common type of bone malignancy, usually lo-
cated at the end of long bones and arises from epithelial-mesenchymal
transition. SIRT1 upregulation significantly promotes the doxorubicin-
resistance phenotype and increases the expression of multidrug re-
sistance molecule P-glycoprotein in osteosarcoma cells. The miR-204
was found to have an inhibitory effect on Saso-2 osteosarcoma cells by
downregulating SIRT1 expression thus, sensitizing cells to che-
motherapy (Li et al., 2009; Shi et al., 2015).

2.11. Synovial sarcoma

Synovial sarcoma is a type of soft tissue sarcoma that has few known
effective therapies. Pazopanib is a commonly prescribed drug for pa-
tients with synovial sarcoma. However, its efficacy is mostly restricted
by the emergence of chemoresistance (de Necochea-Campion et al.,
2017; Hosaka et al., 2012; Rajendra et al., 2013). Shiozawa et al. re-
vealed that miR-761 overexpression in extracellular vesicles of synovial
sarcoma cells is associated with pazopanib-resistance in vitro. Changes
in miR-761 expression regulates the response to pazopanib by targeting
lamin A/C (LMNA), thyroid hormone receptor interactor 6 (TRIP6), and
SIRT3 (Shiozawa et al., 2018). They demonstrated that TRIP6 knock-
down could increase drug resistance via up-regulating the phosphory-
lated cyclin-dependent kinase inhibitor 1B (CDKN1B also known as

Fig. 1. Schematic of ncRNAs impact on sirtuins leading to chemosensitivity in different cancers.
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p27Kip1) (Miao et al., 2016). Another study demonstrated that LMNA
knockdown increased aggressiveness-related genes and molecules re-
sulting in enhanced invasion and drug resistance in cells (Maresca et al.,
2012). Moreover, SIRT3 downregulation increased drug resistance,
while overexpression of SIRT3 enhanced chemosensitivity by pro-
moting chemotherapeutic-induced apoptosis via SIRT3/GSTP1/JNK
pathway. Overexpression of Glutathione S-transferase pi 1 (GSTP1) has
been reported in many cancers, such as breast, colon, kidney, lung, and
ovarian cancers (Depeille et al., 2005). GSTP1 overexpression nega-
tively regulated the sensitivity of cancer cells toward chemotherapeutic
agents, including cisplatin, doxorubicin, and epirubicin via seques-
tering the JNK kinase in a complex, thus preventing apoptosis (Di Pietro
et al., 2010; Kalinina et al., 2012). SIRT3 expression leads to GSTP1
downregulation and induces apoptosis in chemoresistant cancer cells
(Tao et al., 2016).

2.12. Glioma

Zhao et al. revealed that downregulation of MEG3 lncRNA expres-
sion is associated with a poor prognosis in patients with glioma. MEG3
can inhibit autophagy and increase apoptosis (via Bax and cleaved
caspase-3/-9 overexpression). It also inhibits cell proliferation and mi-
gration through increased SIRT7 expression and diminished the phos-
phorylated levels of PI3K/AKT/mTOR in the glioma cells (Xu et al.,
2018). Following cisplatin treatment in a glioblastoma cell line, MEG3
expression enhances cisplatin-induced apoptosis and suppresses au-
tophagy leading to increased chemosensitivity (Wu et al., 2018).

3. Future prospective and conclusion

One of the major complications in the field of cancer therapy is drug
resistance. NcRNAs including microRNAs and lncRNAs are rapidly
being accepted as fundamental regulators of gene expression in cancer.
Dysregulation of particular ncRNAs is correlated with the progression
of cancer drug resistance. The diversity and complexity of ncRNAs is an
indicator of their important regulatory role in the cell. NcRNAs are
involved in cancer drug resistance by targeting various molecules
within different signaling pathways related to cell proliferation and
apoptosis. It is now clear that sirtuins are strongly related to cancer by
several mechanisms, including those involved in cancer cell prolifera-
tion, apoptosis, genome stability and metabolism. Many ncRNAs for
activation or repression of sirtuins have been identified. Such molecules
could have the potential to enter clinical trials to overcome the chal-
lenge of drug resistance in cancer. Although the delivery of ncRNAs is
considered as a challenge and should be studied more intensively before
clinical using of miRNA therapeutics. In conclusion, further studies are
required to find more ncRNA targets and to reach a better knowledge of
the principal mechanisms of drug resistance in different types of can-
cers.
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