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Abstract 

Drug resistance is a big problem in cancer treatment and one of the most prominent 

mechanisms underlain is overexpression of ATP-binding cassette (ABC) transporters, 

particularly ABCB1, ABCC1 and ABCG2. Inhibition of ABC transporters is an important 

approach to overcome drug resistance. The inositol-requiring enzyme 1α (IRE1α), an arm of 

unfolded protein response (UPR), splices XBP1 mRNA to generate an active transcription 

factor XBP1s. UPR is implicated in drug resistance. However, the underlying mechanism is 

unclear. We found that the anticancer drugs such as 5-fluorouracil (5-FU) activated the 

IRE1α-XBP1 pathway to induce the expression of ABCB1, ABCC1 and ABCG2 in colon 

cancer cells. Inhibition of IRE1α RNase activity with small molecule 4µ8c suppressed the 

drug-induced expression of these ABC transporters and sensitized 5-FU-resistant colon 

cancer cells to drug treatment. In vivo xenograft assay indicates that administration of 4µ8C 

substantially enhanced the efficacy of 5-FU chemotherapy on 5-FU-resistant colon cancer 

cells. These results suggest that IRE1α-targeting might be a strategy to cope with drug 

resistance of colon cancer. 

Keywords: IRE1α; ABC transporter; Drug resistance; Colon cancer. 
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1. Introduction 

Cancers have the ability to develop resistance to chemotherapy, and the increasing prevalence 

of these drug resistant cancers necessitates further research and treatment development. 

Multidrug resistance is a phenomenon by which, after exposure to a chemotherapeutic agent, 

cancer cells develop resistance, and simultaneous cross-resistance, to a wide range of 

functionally and structurally unrelated chemotherapeutic drugs (1, 2). Intrinsic or acquired 

multidrug resistance is one of the main reasons for chemotherapy failure, leading to the 

recurrence of malignant tumors and ultimately, patient relapse or death (3). A variety of 

mechanisms have been attributed to multidrug resistance, such as enhanced drug efflux, 

increased DNA damage repair, reduced apoptosis, elevated autophagy, and/or altered drug 

metabolism (4-6). 

Previous studies have confirmed that multidrug resistance both in cancer cell lines and human 

tumor tissues is most often associated with the overexpression of the ATP-binding cassette 

(ABC) transporters (4, 7, 8). These ABC transporters are efflux pumps that transport various 

structurally unrelated and potentially dangerous substances out of the cells. They hydrolyze 

ATP for energy and actively pump drug components out of cells, leading to drug resistance. 

In these transporters, ABCB1 (also known as MDR1 or P-gp), ABCC1 (MRP1) and ABCG2 

(BCRP1) play an important role in drug resistance in vivo (4, 7). Developing inhibitors of 

ABC transporters is an important approach to overcoming drug resistance. Extensive efforts 

have been made to develop inhibitors targeting ABC transporters, particularly ABCB1. 

However, no such agents have been developed successfully as was initially hoped. Inhibition 

of expression of these ABC transporters is also an effective approach to overcome drug 
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resistance of cancer cells (9). 

The unfolded protein response (UPR) is a cellular stress response related to the 

endoplasmic reticulum (ER). It allows cells to manage ER stress resulting from accumulation 

of unfolded and/or misfolded proteins in the lumen of ER (10). Three ER-localized proteins, 

inositol-requiring enzyme 1 (IRE1α), pancreatic ER kinase (PERK), and activating 

transcription factor 6 (ATF6) constitute the three arms of the UPR to resolve ER stress. 

IRE1α is the most evolutionally conserved among the three UPR arms (11, 12). IRE1α is 

ubiquitously expressed and possesses both endoribonuclease and protein kinase activities. 

Upon activation, IRE1α removes a 26-bp nucleotide intron from the mRNA encoding X-box 

binding protein (XBP) 1 to generate a spliced active form of this transcription factor (XBP1s). 

XBP1s controls the expression of genes involved in protein folding, ER-associated 

degradation, protein quality control and phospholipid synthesis (13). 

Sustained activation of the UPR has been implicated in cancers (14, 15), and it is 

believed to contribute to oncogenic processes (16, 17). Chemotherapeutic agents trigger ER 

stress (18, 19). UPR is activated in response to ER stress and it may play an important role in 

tumor chemotherapy resistance (14, 20, 21). Inhibition of GRP78, an unfolded protein 

response regulator, could enhance the sensitivity of malignant gliomas (22), breast cancer 

cells (23) and renal cell carcinoma cells (24) to drugs. While, GRP78 overexpression was 

found to promote drug resistance of cancer cells (22, 25). Activation of ATF4, a downstream 

target of PERK, led to multidrug resistance (26, 27). A recent study showed that XBP1 was 

upregulated in tamoxifen-insensitive breast cancer MCF-7 cells and inhibition of XBP1 

splicing reestablished tamoxifen sensitivity to tamoxifen-resistant MCF-7 cells (28), suggest 
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that the IRE1α-XBP1 axis is involved in tamoxifen resistance of breast cancer cells. Though 

the UPR contributes to drug resistance of cancers, the underlying mechanism remains unclear. 

Drug resistance is an obstacle to a successful chemotherapy for cancers including colon 

cancer. Colon cancer is the third most common malignancy worldwide (29). Chemotherapy is 

a standard treatment for this disease (30) and drug resistance develops in nearly all patients 

with colon cancer (31). Upregulated expression of ABC transporters such as ABCB1, ABCC1 

and ABCG2 is one of the most commonly observed mechanisms contributing to drug 

resistance in colon cancer cells (32). To data, there are little efficient methods to overcome 

drug resistance of colon cancer. Hence, studying the underlying mechanism and developing 

new effective approach to overcoming drug resistance are urgently needed. Here we report 

that the anticancer drugs upregulated the expression of ABCB1, ABCC1 and ABCG2 through 

IRE1α-XBP1 axis in colon cancer cells. Inhibition of IRE1α RNase activity with small 

molecule 4µ8C inhibited the drug-induced expression of these ABC transporters and 

enhanced efficacy of drug chemotherapy on 5-FU-resistant colon cancer cells. Our results 

suggest that targeting of IRE1α is an approach to overcome drug resistance of colon cancer. 

 

 

2. Materials and Methods 

2.1. Cell culture and reagents  

Human colon cancer cells RKO and HCT116 were grown in DMEM and M5A medium, 

respectively. Human embryonic kidney 293T cells were cultured in DMEM medium. All 

medium were supplemented with 10% fetal bovine serum, 100 u/ml penicillin, and 100 µg/ml 
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streptomycin. The cells were cultured at 37°C in a 5% CO2 incubator. 5-FU was a product 

from Sigma. Capecitabine and Oxaliplatin were from Selleck and MedChemExpress, 

respectively. The IRE1α RNase inhibitor 4µ8C was a product of Selleck Chemicals. To 

establish 5-FU-resistant colon cancer cells, the cells were incubated initially in medium 

containing 5-FU at 0.25 µg/ml (1.92 µM). The concentration of 5-FU was gradually increased 

till 5-FU reached at 8 µM for RKO cells and 30 µM for HCT116 cells.  

2.2. Antibodies 

Antibodies against IRE1α(14C10) ABCB1(E1Y7B) and ABCC1(D5C1X) were from Cell 

signaling Technology. ABCG2(ab108312) and XBP1 antibodies were was from Abcam and 

BioLegend, respectively. Beta-actin(A3854) antibody was a product of Sigma.  

2.3. Quantitative real-time PCR (qPCR) 

qPCR was performed as described (33). Beta-actin was used as the internal control. The 

primers used in this work are as follows. 

ABCB1: 5’AAGCCACGTCAGCTCTGGAT3’(F); 5’CTGCATTCTGGATGGTGGAC3’(R); 

ABCC1: 5’CACGACGCCTTCATGTTCTC3’(F), 5’GGCTGGACAGGAGGAACAAC3’(R); 

ABCG2: 5’AGCAGCAGGTCAGAGTGTGG3’(F), 5’CTGAAGCCATGACAGCCAAG3’(R); 

IRE1α: 5’CTCCACTCCCTCAACATCGT3’(F), 5’CTTCTTGCAGAGGCCAAAGT3’(R); 

XBP1: 5’CTTGTAGTTGAGAACCAGGAGT3’(F), 5’CCCAACAGGATATCAGACTCTG3’(R); 

β-actin: 5’GATCATTGCTCCTCCTGAGC3’(F), 5’ACTCCTGCTTGCTGATCCAC3’(R). 

2.4. Short hairpin RNA (shRNA) and small interference RNA (siRNA)  

To inhibit the expression of human IRE1α, siRNA oligos or shRNA knockdown viruses were 

employed. The pLKO.1 vector was used to construct shRNA virus against human IRE1α. To 
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construct the hairpin siRNA expression cassette, complementary DNA nucleotides of IRE1α 

RNA interference were synthesized, annealed and inserted into pLKO.1. The control virus has 

a scrambled sequence. The targeting sequence for IRE1α and scrambled sequence are as 

described (34). The sequences of siRNA oligos against IRE1α are as follows: 

siIRE1α-1: 5’GCGUAAAUUCAGGACCUAU3’;  

siIRE1α-2: 5’GGAGAGAAGCAGCAGACUU3’; 

siXBP1-1: 5’GGAACAGCAAGUGGUAGAUTT3’; 

siXBP1-2: 5’CCAGUCAUGUUCUUCAAAUTT3’; 

Control: 5'UUCUCCGAACGUGUCACGUTT3’. 

2.5. Vector construction 

The ABCB1 promoter sequence from 793 bp upstream to 113 bp downstream of the human 

ABCB1 gene transcription start site (−793 to +113) was cloned by genomic PCR using human 

genomic DNA as a template. The ABCB1 promoter (−793∼+113) luciferase reporter plasmid 

(ABCB1-Luc) was constructed into pGL3 vector (Promega). A series of mutated ABCB1-Luc 

plasmids derived from ABCB1-Luc were also constructed. The construct encoding XBP1s 

was generously provided by Dr Yong Liu at Wuhan University (35). 

2.6. Chromatin immunoprecipitation (ChIP) assay 

ChIP assay was carried out with Millipore EZ-ChIP™ kit (Upstate) according to the 

manufacturer’s instruction. The XBP1-specific antibody was used for the ChIP assay. qPCR 

was done to quantitate the ChIP-enriched DNA. Two pairs of primers were used. The primers 

for ABCB1 promoter enrichment are as follows. 

(1) 5’ACAGAATTGGAGAGGTCGGAGT3’(F), 5’GGGCAAGTAGAGAAACGCGC3’(R); 

(2) 5’CCTGGAAAAAACACGGGCATTGA3’(F), 5’GGTCTTTCTTCAGCATGCTTGACA3’(R). 
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2.7. Cell viability assay 

Colon cancer cells were plated in 96-well plates (3000/well). The next day, anticancer drug 

was added and the cells were incubated for indicated time. The cells were stained for 4 h with 

thiazolyl blue tetrazolium bromide (MTT) dissolving in DMSO. The OD at 570 nm was read 

and cell viability was calculated as a ratio of OD values of drug-treated samples to those of 

controls. The cell viability of control cells at 24 h was designated as 1. 

2.8. Xenograft growth of colon cancer cells 

In vivo xenograft growth was performed as described (36). In brief, the 4-week-old male nude 

mice (BALB/cA-nu/nu) from Shanghai Experimental Animal Center were maintained in 

pathogen-free conditions. The mice were subcutaneously injected at each flank with colon 

cancer cells (3×106). Tumor volumes were measured with a caliper and calculated using the 

following equation: volume = a×b2×0.5326, where a is the longer dimension, and b is the 

shorter one. All animals were maintained and used in accordance with the guidelines of the 

Institutional Animal Care and Use Committee of the Institute of Nutrition and Health. 

2.9. Statistic analysis  

Statistical analysis was made using the unpaired two-tailed Student’s t-test or two-way 

analysis of variance (ANOVA) with GraphPad Prism 5.0. The data are mean ± standard 

deviation (SD). P value < 0.05 is considered statistically significant. 

 

 

3. Results 

3.1. 5-FU induces ABCB1 expression and stimulates XBP1 splicing 
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5-FU-resistant colon cancer RKO (RKO/5-FU/R) cells were selected as described in Methods. 

We found that the transcript level of ABCB1 was elevated in RKO/5-FU/R cells, as compared 

to parent RKO cells (Fig. 1A). Immunoblotting shows that the protein level of ABCB1 was 

also increased in RKO/5-FU/R cells (Fig. 1B). We treated RKO cells with 5-FU and found 

that both mRNA (Fig. 1C) and protein levels (Fig. 1D) of ABCB1 were increased. We also 

treated colon cancer HCT116 cells with 5-FU and similar results were obtained (Fig. 1C and 

D). These results imply that 5-FU induces the expression of ABCB1. 

Interestingly, we found that the splicing of XBP1 was substantially enhanced in 

RKO/5-FU/R cells (Fig. 1E). We treated RKO and HCT116 cells with 5-FU and determined 

XBP1 splicing (Fig. 1F). The results show that 5-FU treatment also enhanced the splicing of 

XBP1 in these cells (Fig. 1F). These results suggest that 5-FU activates IRE1α. 

3.2. IRE1αααα is involved in 5-FU-induced expression of ABCB1  

The aforementioned results show that 5-FU induced ABCB1 expression and activated IRE1α 

(Fig. 1). This drove us to determine whether IRE1α was involved in the induction of ABCB1 

by 5-FU. To this end, we employed 4µ8C, a specific inhibitor of IRE1α RNase in our work 

(37). We found that 4µ8C treatment decreased the expression of ABCB1 in RKO/5-FU/R 

cells (Fig. 2A). This inhibitor also blocked the induction of ABCB1 in RKO cells treated with 

5-FU for 48 hr (Fig. 2B). These results imply that IRE1α is involved in the induction of 

ABCB1 by 5-FU. To solidify this, we inhibited the expression of IRE1α by means of RNA 

interference. We found that knockdown of IRE1α decreased ABCB1 in RKO/5-FU/R cells 

(Fig. 2C) and inhibited the induction of ABCB1 in RKO cells treated with 5-FU for 48 hr (Fig. 

2D). These data suggest that IRE1α is required for 5-FU-induced expression of ABCB1. 
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3.3. XBP1s is a transcription factor of ABCB1 

Upon activation, IRE1α splices XBP1 mRNA to produce an active transcription factor 

XBP1s. Our data show that 5-FU stimulated the splicing of XBP1 and enhanced the transcript 

level of ABCB1 (Fig. 1). We therefore conjectured that 5-FU might activate the expression of 

ABCB1 through XBP1s. To know this, we treated RKO cells with 5-FU and determined the 

effect of knockdown of XBP1 on ABCB1 induction. The results show that knockdown of 

XBP1 prevented 5-FU from inducing the expression of ABCB1 (Fig. 3A), implying that 5-FU 

induces the expression of ABCB1 through XBP1s. We found that overexpression of XBP1s 

induced the expression of ABCB1 (Fig. 3B), providing an evidence that XBP1s acts as a 

transcription factor of ABCB1. 

To investigate whether XBP1s is a transcription factor of ABCB1, we constructed an 

ABCB1 promoter luciferase reporter plasmid ABCB1(−793∼113)-Luc (Fig. 3C). We found 

that overexpression of XBP1s stimulated the luciferase activities of this reporter in RKO, 

HCT116 and 293T cells (Fig. 3D). Subsequently, we constructed three truncated ABCB1 

promoter luciferase reporter vectors ABCB1(−606∼113)-Luc, ABCB1(−402∼113)-Luc and 

ABCB1(−166∼113)-Luc (Fig. 3C). Overexpression of XBP1s stimulated significantly the 

activities of ABCB1(−606∼113)-Luc and ABCB1(−402∼113)-Luc reporters (Fig. 3E). When 

the ABCB1(−166∼113)-Luc reporter was examined, overexpression of XBP1s had minor 

effect on its luciferase activity. These results suggest that the XBP1s binding sites are 

possibly located within the region of −793∼−167. We analyzed this region and found that it 

had three sites (-601ACGT-598, -307ACGT-304 and -260ACGT-257) that were similar to XBP1s DNA 

binding motif (38). We constructed ABCB1(−793∼−167)-Luc reporter (Fig. 3F) and found 
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that overexpression of XBP1s stimulated the luciferase activity of this reporter (Fig. 3G). 

Then we constructed mutated ABCB1(−793∼−167)-Luc reporter plasmids at the possible 

XBP1s binding site (ACGT→ ACTT) . Overexpression of XBP1s stimulated the activities of 

ABCB1(−793∼−167)-Luc reporter with single (G-599T, G-305T or G-258T) or double mutations 

(G-599T/G-305T) (Fig. 3G). If all these three sites were mutated (G-599T/G-305T/G-258T), 

overexpression of XBP1s could not activate the reporter activity (Fig. 3G). These results 

suggest that XBP1s may bind these sites to activate ABCB1 transcription.  

We found that 5-FU treatment stimulated ABCB1 luciferase reporter activity which was 

suppressed by 4µ8C (Fig. 3H). We also did ChIP assay in 293T and HCT116 cells to solidify 

that XBP1s could bind the ABCB1 promoter. The immunoprecipitation experiment was 

performed using XBP1s antibody or IgG. The ABCB1 promoter was amplified by two pairs of 

primer. We found that immunoprecipitation by XBP1s antibody substantially enriched 

ABCB1 promoter, but not by the IgG control antibody (Fig. 3I). These results imply that 

XBP1s binds ABCB1 promoter.  

Taken together, our results suggest that 5-FU induces the expression of ABCB1 through 

IRE1α/XBP1 axis. 

3.4. 5-FU induces the expression of ABCC1 and ABCG2 through IRE1αααα-XBP1 axis 

The ABC transporters ABCC1 and ABCG2 also play a crucial role in drug-resistance (4, 7). 

We found that ABCC1 and ABCG2 were also upregulated in RKO/5-FU/R cells (Fig. 4A). 

We treated RKO and HCT116 cells with 5-FU for 48 hr and found that the expression of 

ABCC1 and ABCG2 was increased (Fig. 4B). The results indicate that 5-FU induces not only 

ABCB1 but also ABCC1 and ABCG2. 
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We determined whether 5-FU induced ABCC1 and ABCG2 through IRE1α-XBP1 axis. 

Inhibition of IRE1α with 4µ8C decreased the expression of ABCC1 and ABCG2 in 

RKO/5-FU/R cells (Fig. 4C). This inhibitor also suppressed 5-FU-induced expression of 

ABCC1 and ABCG2 in RKO cells (Fig. 4D). Knockdown of IRE1α decreased ABCC1 and 

ABCG2 in RKO/5-FU/R cells (Fig. 4E) and repressed the induction of ABCC1 and ABCG2 

by 5-FU in RKO cells (Fig. 4F). These data suggest that 5-FU induces the expression of 

ABCC1 and ABCG2 through IRE1α. To know whether XBP1 is involved in the induction of 

these two transporters by 5-FU, we knocked down XBP1. We found that knockdown of XBP1 

prevented 5-FU from inducing ABCC1 and ABCG2 (Fig. 4G). Together, these results suggest 

that 5-FU induces the expression of ABCC1 and ABCG2 through IRE1α-XBP1 axis. 

3.5. Capecitabine and oxaliplatin induce the expression of ABCB1, ABCC1 and ABCG2 

Our results show that 5-FU induced the expression of ABC transporters through IRE1α-XBP1 

axis. This drove us to determine whether other anticancer drugs had the similar effect. To 

know this, we examined capecitabine and oxaliplatin that were often used to treat colon 

cancers clinically. We treated RKO cells with these drugs and found that both capecitabine 

and oxaliplatin enhanced the splicing of XBP1, indicating that they activate IRE1α (Fig. 5A). 

Treatment of RKO cells with these drugs induced the transcription of ABCB1, ABCC1 and 

ABCG2 (Fig. 5B). And the induction of expression of these genes by 5-FU was suppressed by 

4µ8C (Fig. 5B). These results suggest that capecitabine and oxaliplatin induce the expression 

of ABCB1, ABCC1 and ABCG2 through IRE1α.  

3.6. Inhibition of IRE1αααα overcomes drug resistance 

We determined the sensitivity of RKO and RKO/5-FU/R cells to capecitabine and oxaliplatin. 
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These cells were treated with capecitabine or oxaliplatin for different times and cell survival 

was determined by MTT assay. We found that the survivability of RKO/5-FU/R cells is much 

higher than that of RKO cells (Fig. 5C), implying that the 5-FU-resistant RKO cells also 

developed resistance to capecitabine and oxaliplatin.  

We speculated that inhibition of IRE1α might overcome drug resistance as IRE1α was 

involved in the induction of ABCB1, ABCC1 and ABCG2 by drugs. To this end, we inhibited 

IRE1α with 4µ8C and determined the survival of RKO/5-FU/R cells treated with 5-FU. As 

expected, 4µ8C decreased substantially the survival of the cells challenged with 5-FU (Fig. 

5D). We then challenged RKO/5-FU/R cells with capecitabine and oxaliplatin and found that 

4µ8C also sensitized the cells to these two drugs (Fig. 5E). These results suggest that 

inhibition of IRE1α RNase activity enhances the efficacy of drugs chemotherapy on 

5-FU-resistant cancer cells. 

3.7. Inhibition of IRE1αααα enhances 5-FU efficacy on 5-FU-resistant HCT116 cells in vivo 

Finally, we determined whether inhibition of IRE1α could enhance the efficacy of 

chemotherapy on xenograft growth of drug-resistant colon cancer cells in nude mice. We 

employed 5-FU-resistant HCT116 cells (HCT116/5-FU/R) in our work. The HCT116/5-FU/R 

cells were selected as described in Methods. Compared to HCT116 cells, the 5-FU-resistant 

HCT116 cells had elevated splicing of XBP1 (Fig. 6A) and increased expression of ABCB1, 

ABCC1 and ABCG2 (Fig. 6B). Treatment of HCT116/5-FU/R cells with 4µ8C decreased the 

protein levels of ABCB1, ABCC1 and ABCG2 (Fig. 6C). Similar to RKO/5-FU/R cells, the 

HCT116/5-FU/R cells became sensitive to 5-FU in the presence of 4µ8C (Fig. 6D). 

The HCT116/5-FU/R cells were implanted into nude mice at each flank. Tumors were 
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allowed to grow for 16 days before drug treatment. Drug administration to the mice was as 

described in Methods. Administration of 5-FU alone had minor inhibitory effect on xenograft 

growth (Fig. 6E). Administration of 4µ8C alone had moderate inhibitory effect. The 

combination of 5-FU and 4µ8C had a strong inhibitory effect on xenograft growth. These 

results suggest that inhibition of IRE1α enhances the efficacy of 5-FU chemotherapy on 

tumor growth of 5-FU-resistant HCT116 cells in vivo. Administration of 4µ8C decreased the 

protein levels of ABCB1, ABCC1 and ABCG2 in tumors (Fig. 6F) and this might be an 

important reason why the HCT116/5-FU/R cells were sensitive to 5-FU treatment in vivo. A 

working model is proposed (Fig. 6G) 

 

 

4. Discussion 

In this manuscript, we demonstrate that the anticancer drugs induce the expression of ABCB1, 

ABCC1 and ABCG2 through IRE1α-XBP1 axis. Inhibition of IRE1α RNase activity with 

4µ8C enhanced efficacy of 5-FU chemotherapy on 5-FU-resistant colon cancer cells in vitro 

and in vivo. Our results suggest that the IRE1α contributes drug resistance of colon cancer 

cells through upregulating these ABC transporters and IRE1α-targeting might be a strategy to 

cope with drug resistance of cancers. 

A few mechanisms have been attributed to drug resistance and the extrusion of anticancer 

drugs by ABC transporters is one of the most widely recognized one (2, 7, 39). UPR is also 

shown to contribute to drug resistance (14, 20, 21). However, the underlying molecular 

mechanism remains unclear. We found that the anticancer drug 5-FU, capecitabine and 
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oxaliplatin stimulated XBP1 splicing and induced the expression of ABCB1, ABCC1 and 

ABCG2. The drug-induced expression of these genes was blocked by IRE1α inhibitor 4µ8C. 

Our findings reveal a new mechanism underlying the regulation of expression of ABCB1, 

ABCC1 and ABCG2 by drugs.  

Drug resistance is a key determinant of cancer chemotherapy failure and one of the major 

causes of drug resistance is the enhanced efflux of drugs by membrane ABC transporters. 

Targeting ABC transporters projects a promising approach to eliminating or suppressing drug 

resistance in cancer treatment (4). Extensive efforts have been made to target ABC 

transporters, particularly ABCB1, for overcoming drug resistance. However, no such 

inhibitors have been developed successfully for clinical use (40). Inhibition of expression of 

ABC transporters is another approach to cope with drug resistance of cancers. Our results 

show that inhibition of IRE1α attenuated drug-induced expression of ABCB1, ABCC1 and 

ABCG2 (Fig. 2-5). Thus, targeting of IREα might be a way to overcome drug resistance. In 

fact, our results show that inhibition of IRE1α with 4µ8C sensitized the 5-FU-resistant colon 

cancer cells to drug treatment in vitro and in vivo (Fig. 5 and 6). These results suggest that 

targeting of IRE1α overcomes drug resistance through downregulating the expression of these 

ABC transporters.  

It has been demonstrated that IRE1α is involved in tumor progression (41). We reported 

recently that IRE1α plays an important role in development of colon and liver cancers (34, 

42). We found that inhibition of IRE1α RNase activity inhibited xenograft growth of colon 

cancer cells (34) and loss of IRE1α reduced the occurrence of diethylnitrosamine-induced 

hepatocellular carcinoma (42). Logue et al (43) demonstrated in triple-negative breast cancer 



 16

(TNBC) that IRE1α RNase activity contributed paclitaxel-mediated expansion of 

tumor-initiating cells and inhibition of IRE1α RNase activity increases paclitaxel- mediated 

tumor suppression in a xenograft model of TNBC. Zhao et al (44) showed in breast cancer 

cells that inhibition of IRE1α RNase activity suppressed the MYC- overexpressing tumor 

growth in vivo and IRE1α-targeting substantially enhanced the efficacy of docetaxel 

chemotherapy. These results suggest that IRE1α contributes cancer development and it may 

serve as a target for cancer treatment. 

In this manuscript, we have demonstrated that the anticancer drugs 5-FU, capecitabine 

and oxaliplatin activate IRE1α-XBP1 axis to induce the expression of ABCB1, ABCC1 and 

ABCG2 in colon cancer cells. The IRE1α RNase inhibitor 4µ8C suppressed the drug-induced 

expression of these ABC transporters and enhanced efficacy of drug treatment on 

drug-resistance colon cancer cells. Our results reveal the role and molecular mechanism of 

IRE1α-XBP1 axis in drug resistance of colon cancer cells. These findings suggest that 

targeting of IRE1α might be a strategy to cope with drug resistance of colon cancers. 
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Figure legends 

Figure 1. 5-FU induced ABCB1 expression and XBP1 splicing. 

(A) Determination of the relative ABCB1 mRNA levels in 5-FU-resistant RKO cells. (B) 

Determination of ABCB1 protein in 5-FU-resistant RKO cells. (C) Determination of relative 

ABCB1 mRNA levels in RKO and HCT116 cells treated with 5-FU (0, 10, 20 µM) for 48 hr. 

(D) Determination of ABCB1 protein levels in RKO and HCT116 cells treated with 5-FU (0, 

10, 20 µM) for 48 hr. (E) Determination of XBP1 splicing in RKO and RKO/5-FU-R cells by 

regular PCR. The primers used are 5’AGCAAGTGGTGGATTTGGAAGAAG3’(F) and  

5’AGGGTCCAACTTGTCCAGAATG3’(R). (F) RKO and HCT116 cells were treated with 

5-FU (10 µM for 48 hr). * P<0.05; ** P<0.01.  

Figure 2. 5-FU activates IRE1αααα-XBP1 signaling pathway. 

(A) RKO/5-FU-R cells were treated with 4µ8C (20 µM) for 24 hr. followed by determination 
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of mRNA (left panel) and protein (right panel) of ABCB1. (B) RKO cells were treated with 

5-FU (20 µM) or 5-FU (20 µM) plus 4µ8C (20 µM) for 48 hr, followed by determination of 

mRNA (left panel) and protein (right panel) of ABCB1. (C) RKO/5-FU-R cells were 

transfected with control or siIRE1α oligos as indicated. After 48 hr, the cells were harvested 

for determination of mRNA (left panel) and protein (right panel) of ABCB1. (D) RKO cells 

were transfected with control or siIRE1α oligos as indicated. After 24 hr, the cells were 

treated with 5-FU (20 µM) for 48 hr, followed by qPCR (left panel) and westernblot (right 

panel). *, P<0.05; **, P<0.01; ***, P<0.001. 

Figure 3. XBP1s is a transcription factor of ABCB1. 

(A) RKO cells were transfected with siXBP1 oligos as indicated. After 24 hr, the cells were 

treated with 5-FU (20 µM) for 48 hr followed by qPCR (left panel) and westernblot (right 

panel). (B) Overexpression of XBP1s induced the expression of ABCB1. (C) Construction of 

ABCB1 promoter luciferase reporter plasmids. (D) RKO, HCT116 and 293T cells were 

transfected with ABCB1(−793∼113)-Luc reporter with or without the vector encoding XBP1s. 

After 24 hr, the cells were harvested for luciferase activity assay. (E) 293T cells were 

transfected with ABCB1(−793∼113)-Luc or truncated reporters with or without XBP1s vector. 

After 24 hr, the cells were harvested for luciferase activity assay. (F) Construction of 

ABCB1(−793∼−167)-Luc and mutated ABCB1(−793∼−167)-Luc reporter vectors. (G) 293T 

cells were transfected with ABCB1(−793∼−167)-Luc or mutated reporter vectors with or 

without XBP1s plasmid. After 24 hr, the cells were harvested for luciferase activity assay. (H) 

RKO cells were transected with ABCB1 luciferase reporter construct. After 24 h, 5-FU (20 

µM) or 5-FU+4µ8C (20 µM) were added and the cells were incubated for another 24 h before 

being harvested for luciferase activity assay. (I) ChIP assay was performed in 293T and 



 23

HCT116 cells as described in Methods. *, P<0.05; **, P<0.01; ***, P<0.001. 

Figure 4. 5-FU induces ABCC1 and ABCG2 via IRE1αααα-XBP1 axis. 

(A) Expression of ABCC1 and ABCG2 in RKO and RKO/5-FU-R cells. Messenger RNA 

levels (left panel); Protein levels (right panel). (B) RKO and HCT116 cells were treated with 

5-FU (0, 10, 20 µM) for 48 hr. ABCC1 and ABCG2 mRNA (left panel) and protein levels 

(right panel). (C) RKO/5-FU/R cells were treated with 4µ8C (20 µM) for 24 hr, followed by 

qPCR (left panel) and westernblot (right panel). (D) RKO cells were incubated with 5-FU (20 

µM) in the presence or absence of 4µ8C (20 µM) for 48 hr, followed by qPCR (left panel) 

and westernblot (right panel). (E) RKO/5-FU/R cells were transfected with control or IRE1α 

siRNA oligos. After 48 hr the cells were harvested for qPCR (left) and westernblot (right). (F) 

RKO cells were transfected with control or IRE1α siRNA oligos. After 24 hr 5-FU (20 µM)  

was added and the cells were incubated for another 48 hr. The cells were harvested for qPCR 

(left) and westernblot (right). (G) RKO cells were transfected with XBP1 siRNA oligos as 

indicated. After 24 hr, the cells were incubated with 5-FU (20 µM) for 48 hr. *, P<0.05; **, 

P<0.01; ***, P<0.001. 

Figure 5. Inhibition of IRE1αααα sensitizes RKO/5-FU/R cells to drug treatment.  

(A) RKO cells were treated with capecitabine (10 µM) or oxaliplatin (10 µM) for 48 hr. 

XBP1 splicing was determined by regular PCR as described above. (B) RKO cells were 

treated with capecitabine (10 µM) or oxaliplatin (10 µM) in the presence or absence of 4µ8C 

(20 µm) for 48 hr. The cells were harvested for determining the expression of ABCB1, ABCC1 

and ABCG2 by qPCR. (C) RKO and RKO/5-FU/R cells were incubated in medium containing 

capecitabine (10 µM) or oxaliplatin (10 µM). Cell survival was determined by MTT assay. (D) 

RKO/5-FU/R cells were treated with 5-FU (8 µM) in the presence or absence of 4µ8C. 
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Survival of the cells was determined as described above. (E) RKO/5-FU/R cells were treated 

with capecitabine (10 µM) or oxaliplatin (10 µM) in the presence or absence of 4µ8C. *, 

P<0.05; **, P<0.01.    

Figure 6. Inhibition of IRE1αααα sensitizes HCT116/5-FU/R cells to 5-FU in vivo. 

(A) The splicing of XBP1 was increased in HCT116/5-FU/R cells. (B) Expression of ABCB1, 

ABCC1 and ABCG2 was increased in HCT116/5-FU/R cells. (C) HCT116/5-FU/R cells were 

treated with 4µ8C (20 µM) for 24 h, followed by westernblot. (D) HCT116/5-FU/R cells were 

treated with 5-FU (20 µM) in the absence or presence of 4µ8C (5, 10, 20 µM). Cell survival 

was determined at different time intervals by MTT assay. (E) 4µ8C enhanced the efficacy of 

5-FU chemotherapy in vivo. HCT116/5-FU/R cells were implanted onto nude mice at each 

flank (3×106). After 16 days, the mice were administrated i.p. with 5-FU (25 mg/kg, every 

two days), 4µ8C (5 µg/g, twice a week) or combination of 5-FU and 4µ8C. (F) Determination 

of the expression of ABCB1, ABCC1 and ABCG2 in tumors. (G) A proposed working model. 

*, P<0.05; **, P<0.01; ***, P<0.001.   
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Highlights 

 

1. The anticancer drugs activate IRE1α-XBP1 axis and induce ABCB1, ABCC1 and 

ABCG2 

2. XBP1 acts as a transcription factor of drug resistance gene ABCB1, ABCC1 and 

ABCG2  

3. IRE1α inhibitor 4µ8C suppresses the expression of ABCB1, ABCC1 and ABCG2 

4. Targeting of IRE1α with 4µ8C overcomes drug resistance of colon cancer cells 
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