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a b s t r a c t 

Blockchain is an emerging technology that is increasingly supporting economic-ally-critical 

systems. The execution environment of blockchain is isolated from the external world and 

thus requires “blockchain oracles”: agents that fetch information from the external world. 

Blockchain is known to be highly reliable, but oracles are off-chain components that could 

be points of failure in whole blockchain-based systems. The reliability of blockchain or- 

acles has yet to be investigated. In this paper, we propose a framework to compare and 

characterize existing blockchain oracles mechanisms from industry. Our approach for re- 

liability modelling and architecture analysis of blockchain oracle systems uses Fault Tree 

Analysis. By calculating the reliability of oracles mechanisms, we can identify weak links 

that affect the overall reliability of a blockchain-based system. 

© 2020 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

A blockchain is a decentralized, immutable digital ledger that keeps transaction data across a large network of nodes.

Blockchain has the capability to disrupt existing business models and infrastructure in many sectors [1–3] by providing a

platform for decentralizing trust for data. Blockchains can also provide decentralized trust for general computation, with

so-called smart contracts , most notably in Ethereum 

1 . 

With their increasing criticality, blockchain exchanges and platforms have also been increasingly attacked [4] . Attacks

often target the weakest link of a system, as this requires the least effort [5] . These attacks have led to losses of hundreds of

millions of dollars in total. As blockchain achieves wider adoption, we expect it to be used not just in economically-critical

contexts, but also in safety-critical contexts such as pharmaceutical supply chains and IoT system. Blockchain-based systems

must be reliable. 

A blockchain oracle is a mechanism that fetches data from the external world to include it in the isolated execution envi-

ronment of a blockchain. Blockchain oracles are generally off-chain components, so the reliability properties of blockchains

do not apply to them. Blockchain oracles are needed to bridge blockchains and the external world because of unique char-

acteristics of blockchain. Some kinds of data in the external world are inherently unable to be independently validated by

multiple distributed parties, for example because the data has restricted access, or is transient sensor data. Oracles import
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this kind of data as transactions into a blockchain. However, oracles are likely to have lower reliability than blockchain plat-

forms, and this may impact the overall reliability of a blockchain-based system that relies on an oracle. The reliability of

oracle mechanisms needs to be evaluated to assess the overall reliability of blockchain-based systems. 

In this paper, we have identified existing active blockchain platforms with oracle mechanisms from industry, reviewed

them, and compared their approaches to reliability. We propose an approach to analyse the reliability of oracle mechanisms

with Fault Tree Analysis (FTA). In the approach, activity diagrams are first created that model user queries on external data.

These activity diagrams are derived from white papers describing the oracle mechanisms, and are then transformed into a

Fault Tree Diagram (FTD) for analysis. We calculate reliability of the oracle mechanisms and identify weak links that affect

overall reliability of blockchain-based systems. Potential common causes of failure are discussed. Our contributions are: 

• Investigation, characterization, and review of oracle mechanisms provided by existing blockchain platforms. 

• An approach to model the reliability of oracle mechanisms by tailoring existing work on reliability evaluation. 

• Quantitative and qualitative analysis to compare oracle mechanisms. 

The rest of this paper is organized as follows. Section 2 gives a brief background of blockchain, blockchain oracles and

FTA. Section 4 discusses characteristics of existing blockchain oracles. Section 5 describes on our proposed approach for

reliability analysis of blockchain oracles. Section 6 discusses the results of our reliability calculations. Section 7 discusses

reliability patterns for blockchain oracles and common causes of failures. 

2. Background 

2.1. Oracles 

Many applications built on blockchain need to interact with other external systems. So, the validation of blockchain

transactions might depend on states of those external systems. Blockchain oracles provide the required data from external

systems to the blockchain, including for use in smart contracts. There are five types of oracles. 2 To preserve the deterministic

validation of blocks, normally smart contracts can only access data previously stored on the blockchain, and cannot use

external data. The use of oracles makes communication possible from the external world to the blockchain, for example by

recording external data on the blockchain in transactions. A review of existing blockchain platforms with oracle services can

be found in Section 4 . 

2.2. Reliability and architecture analysis 

Reliability analysis allows software and system engineers to quantitatively assess hardware, software, and systems in term

of probability of failure [6] . Reliability analysis is especially important to analyze potential risks to safety and economically

critical assets. FTA is one of the most commonly-used methods for reliability analysis. Architecture analysis is the process of

evaluating the fitness of an architecture for its intended purpose. Architecture analysis is usually conducted to qualitatively

analyze software, to reason about the trade-offs of different design decisions. 

3. Related work 

Dependability research has previously been conducted on blockchain platforms, but not on the individual components of

blockchain-based systems. Dependability and security are comprised of attributes like availability, reliability and integrity [7] .

Availability of Bitcoin and Ethereum has been previously investigated [8] , which found that write availability for transactions

is low in comparison with read availability. This research also identified that the commit time of a block is highly variable

and is impacted by network reordering. 

Wan et al. investigated bug characteristics in open source blockchain projects and identified 10 bugs categories in

blockchain systems [9] . Their results show that semantic bugs are the most common runtime bug category and the fre-

quency distribution of bug types has a similar trend across blockchain projects. Security bugs take the longest median time

to be fixed while performance bugs take the longest average time to be fixed. 

Yasaweerasinghelage et al. proposed architecture modelling and simulation approach to predict the latency of blockchain-

based systems [10] . The proposed model can be used for evaluation of design decision in blockchain-based systems such as

number of confirmation blocks, which can impact write latency and write availability. 

4. Review of blockchain oracles 

4.1. Overall architecture 

Fig. 1 depicts a generic overall architecture of various types of oracle mechanisms based on our investigation of existing

oracle solutions. A generic oracle mechanism starts with a requester creating a smart contract ( 1 © in Fig. 1 ) specifying the
2 https://blockchainhub.net/blockchain-oracles/ . 

https://blockchainhub.net/blockchain-oracles/
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Fig. 1. Blockchain oracle mechanism architecture diagram. 

Table 1 

Summary of blockchain oracle mechanisms. 

Platform Oracle Consensus Reliability Feature(s) Compatible 

platform 

Data 

source(s) 

Time 

interval 

Type of oracles 

Provable single N/A TLS-Notary Proof Bitcoin, Ethereum, 

Corda 

single fast Provable 

contract 

TownCrier single N/A Intel SGX Ethereum single fast TownCrier 

contract 

Corda single N/A Intel SGX Corda single fast Corda code 

MS Bletchley multiple N/A Secure container, Intel 

SGX 

Azure, AWS, 

Google 

multiple fast off-chain code 

ChainLink multiple N-of-M multi- 

signature 

off-chain aggregation, 

Reputation 

Bitcoin, Ethereum, 

Hyperledger 

multiple Slow Reporter 

Augur multiple Voting Reputation, Dispute 

windows, Fork 

Ethereum multiple Slow Voter 

Gnosis multiple Voting Ultimate oracle & 

centralized oracle 

Ethereum multiple Slow Voter 

 

 

 

 

 

 

 

 

data required to trigger the execution of the contract and deploy on the blockchain. The requester can be either a user or a

component of a software system. In certain contexts, the requester could trigger the oracle directly ( 1 © Trigger in Fig. 1 ) to

include a value into a blockchain to be used in the future. 

Centralized oracles can automatically identify requirements specified by a smart contract ( 2 © in Fig. 1 ). A distributed

oracle contain several redundant oracles that provide the same functionality to check the external state. Some oracles are

humans with a blockchain account, who can manually enter oracle data and sign transactions. 

Once an automated oracle has been deployed, it will communicate with its external data source, such as a physical

sensor or web service, to collect the required data ( 3 © and 4 © in Fig. 1 ). Oracles will inject the data into the blockchain ( 5 ©
in Fig. 1 ) and then the requester will be able to see this data in their execution of a smart contract ( 6 © in Fig. 1 ). 

Using an oracle introduces some issues: 

• Oracles introduce a trusted third-party into the decentralised blockchain system. It needs to be trusted by all the partic-

ipants involving in relevant transactions. 

• Blockchain tramsactioms are immutable, but the external state used for oracle data may change. 

4.2. Comparison of representative oracle solutions 

We have selected seven currently-active blockchain platforms with oracle mechanisms. Their characteristics are summa-

rized in Table 1 . Provable, TownCrier, ChainLink are oracle service providers while Augur and Gnosis are prediction market

leaders that leverage the capability of blockchain oracles. Provable, The columns of this table are discussed below. 
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4.2.1. Consensus 

Consensus is how multiple oracles come to a final result to be submitted to the blockchain. For a single oracle mecha-

nism, external information is fetched directly into the blockchain. For multiple distributed oracles, there are various consen-

sus protocols used by different platforms to decide on the final result. 

In ChainLink, a K-out-of-M threshold signature is used by multiple oracles to reach a consensus on the answer to be

accepted. For example, a 3-out-of-5 signature scheme requires at least three or more oracles out of five oracles to sign on

the same value for the value to be accepted as the answer. 

Voting is used by Gnosis and Augur, where the oracles are human. After an oracle reports a result back to the blockchain,

anyone with a blockchain account that does not agree with the answer reported by the oracle can dispute the result by

reporting another value as a tentative answer by staking their token. 

4.2.2. Reliability features 

Reliability features are the distinctive attributes used by blockchain platforms to achieve reliability of their oracles. Prov-

able introduces TLS-Notary 3 for fetching data from external data sources. TLS-Notary provides a cryptographic proof about

data from a HTTPS secure site. TownCrier and Corda use Intel Software Guard Extensions (SGX) for hardware attestation to

prevent unauthorized access outside of the SGX environment. TownCrier aims to establish a bridge between Ethereum and

HTTPS-enabled websites. A concise piece of data (e.g. stock quotes) served to the blockchain is called a datagram in Town-

Crier. Corda uses commands for constantly-changing data and small-size data. Microsoft Bletchley has cryplets that work

similarly to the datagrams of TownCrier. It utilizes Intel SGX hardware attestation to ensure a trusted connection for data

to be submitted to the smart contract. ChainLink allows multiple oracles to fetch information from multiple data sources.

Augur and Gnosis are both prediction marketplaces. Augur has a dispute time window that allows any user to disagree with

the answer reported by an oracle. 

Gnosis has three different oracle configurations, on chain oracle, centralized oracle and the ultimate oracle. 100 ETH is

required to trigger the ultimate oracle if any user disagrees with the reported value. ETH is used on Gnosis because it is

built on Ethereum. As of August 2018, one ETH is equivalent to $408 USD according to Coinmarketcap 

4 . 

4.2.3. Data source(s) 

Data source(s) are called by oracles to gather the information requested by the requester. A data source could be a

static web page, physical sensor, component of a system or even input from a human. Despite having multiple data sources,

some information such as the owner of a property from different resources might ultimately come from a single authorized

source. For example information about city assets might only be authoritatively derived from the asset registry of the local

city council. 

4.2.4. Time interval 

The time interval is the period between requesting data from an external data source until the data is returned back to

the blockchain. Centralized oracle configurations have the shortest time interval, while multiple oracles require longer time

intervals as data need to be aggregated. 

4.2.5. Type of oracles 

Provable, TownCrier, Corda use single oracle to fetch data from an external while MS Bletchley uses multiple oracles.

ChainLink, Augur, and Gnosis use humans as oracles to report information back to the requester. 

5. Reliability analysis framework 

5.1. Approach overview 

An overview of our proposed framework is shown in Fig. 2 . White papers, official technical articles and official blogs

of the selected blockchain platforms were studied to understand the characteristics of the oracle mechanisms and their

features. A comparison between the features of seven selected oracle mechanisms can be found in Table 1 . 

UML activity diagrams (ADs) were manually generated for all the selected oracle mechanisms. All the generated ADs

were cross-checked by another researcher to ensure they described the complete logic of the system. Any discrepancies

were discussed and resolved. Examples of the ADs are shown in Fig. 3 . 

The ADs were then transformed into FTDs. The rules used to convert the ADs were implemented from [11] . An AD was

transformed into to a success tree diagram and then inverted to form a FTD. As found out by Tiwari et al. [11] , the AD

can only be used to generate part of the FTD because not all the potential defects would be modeled in an AD. Therefore,

all the identified potential faults of a system were manually mapped to the generated FTD afterward to form a complete

FTD. Potential faults were extracted from relevant sources such as forums, github and publications. Minimum cut sets (MCS)
3 https://tlsnotary.org/pagesigner.html . 
4 https://coinmarketcap.com/currencies/ethereum/ . 

https://tlsnotary.org/pagesigner.html
https://coinmarketcap.com/currencies/ethereum/
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Fig. 2. Overview approach to model reliability of blockchain oracles. 

Fig. 3. ChainLink activity Diagrams. 

Table 2 

Summary of lower level errors. 

Type of errors Examples Failure rate 

Greedy contract 

Smart contract error Prodigal contract 0.003678 [13] 

Suicidal contract 

Server error Server hacked 0.001–0.005 

Infrastructure error (avg = 0.003) 7 

Human error Simple task Chose invalid data source 0.0005 [14] 

Routine task Client side error 0.06 [14] 

Reporter not reporting 

Hard task Update new features 0.1–0.25 [14] 

 

 

 

 

 

 

were then generated from the FTDs in order to calculate the reliability of each oracle mechanism. A minimal cut set is the

smallest list of events required to cause the top event to occur. 

Both qualitative and quantitative analysis were conducted on the FTD. Common causes of failure are identified through

qualitative analysis. For quantitative analysis, error rates of the events were used to calculate the reliability of the oracles

systems. The error rates of all the events were identified from existing publications. Any unavailable error rate for an event

in the FTD was substituted by similar traditional hardware component failure rates. All the events in the FTD were catego-

rized into groups in Table 2 to determine the applicable error rate for similar events. Sensitivity analysis was also conducted

to analyze the impact of the number of oracles on the reliability of the oracle(s) mechanism. 
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5.2. Model generation 

5.2.1. Activity diagram generation 

ADs are used to represent the logic of a single operation, use case or the flow of a business logic. An AD can be used

to visualize the dynamic behavior of a system through the different flows of activities, such as parallel and concurrent

activities. 

An AD is used here to represent the flow of oracle processes from a request to query for external information, to the

oracle fetching information off-chain, through to submitting the information back to the blockchain. The detail in the mod-

eling of these processes was kept at the same level for all oracle mechanisms to allow comparable analysis of the oracle

processes. Centralized oracle systems have a simpler AD compared with decentralized oracle systems. The AD generated for

ChainLink is shown in Fig. 3 . 

5.2.2. Success tree diagram generation 

The next step in the approach involves the generation of a Success Tree Diagram (STD) from the AD. A STD is a tree

diagram which is used to analyze and identify the required elements to achieve the intended success. The STD presents the

condition and elements to achieve the top event through a combination of various logic gates and basic events. An STD can

be converted into a FTD for reliability and risk analysis. 

From the AD shown in Fig. 3 , we can observe that five activities are required for the ChainLink oracle to succeed in

querying external information. Converting Fig. 3 gave us an STD with five events required to query the external information.

5.2.3. Fault tree diagram (FTD) 

An FTD is the complement of a STD. FTDs are commonly used in engineering to analyze the potential risks to safety

and economically-critical assets. They are also widely used in identifying risks of a software or system. FTDs are generally

directed acyclic graphs, where a component’s faults are modeled at the leaves of the graph. Logic gates represent how the

faults propagate. 

The events on the FTD are the complement from the STD, and gates are also swapped, e.g. an AND gate from the STD

is changed into an OR gate in the FTD. A limitation of generating a tree diagram from an AD is that it might not cover all

lower-level elements identified from forums, gitHub and publications 5 6 that contribute to the top event. These lower-level

elements are mapped onto the generated FTD to form the complete FTD, as shown in Fig. 4 . 

5.3. Reliability analysis 

Reliability analysis is an essential part of designing, constructing and operating economically-critical technical sys- 

tems [12] . Various methods and models have been created to support systematic analysis of the reliability and risk of a

system and FTDs are one of the most commonly used models. A FTD generated in the previous step can be used to conduct

both qualitative and quantitative analysis for reliability of blockchain oracle system. 

A cut set (CS) is a unique set of events obtained from a FTD that is sufficient to cause the top event to happen. It provides

a mechanism for probability calculations and also reveals the critical links in the system design [12] . A minimum CS (MCS)

is the CS with minimum number of events that can cause the occurrence of the top event [12] . 

By using the complete ChainLink FTD in Fig. 4 as an example, we can form the MCS equation (Eq.) for the FTD as below: 

T = P 1 + P 2 + P 3 + P 4 + P 5 + K/N[ P 6 + P 7 + P 8 + P 9 + P 10] 

ChainLink contains 10 single-component minimum cut sets. Any of the lower events from P1 to P10 is sufficient to cause

the top event T to occur. Lower events from P6 to P10 are bounded by K-out-of-N gate, hence we applied the reliability Eq.

for K-out-of-N to lower events P6 to P10 . 

To calculate reliability of blockchain oracles using FTD, we show the reliability Eq. for a system and also reliability Eq.

for K-out-of-N system. 

R = 

n ∑ 

k 

n ! 

k !(n − k )! 
(e −λt ) k (1 − e −λt ) n −k (1) 

Eq. 1 is the Eq. for K-out-of-N system 

R ChainLinkoracle = R P1 × R P2 × R Pn . . . × R P10 (2) 

Eq. 2 below is obtained from the MCS for the ChainLink FTD 

By substituting system reliability equation( R = e −λt ) and Eq. (1) into Eq. (2) , the complete Eq. can be formed: 

R P 1 ... P 5 = e −λP1 t × e −λPn t . . . × e −λP5 t 
5 https://github.com/provable-things/ethereum-api/issues/47 . 
6 https://github.com/provable-things/ethereum-bridge/issues/33 . 

https://github.com/provable-things/ethereum-api/issues/47
https://github.com/provable-things/ethereum-bridge/issues/33
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Fig. 4. Complete ChainLink FTD after the mapping of lower events. 

 

 

 

 

 

 

 

 

 

 

 

R P 6 ... P 10 = 

n ∑ 

k 

n ! 

k !(n − k )! 
(e −λP6 t ) k (1 − e −λP6 t ) n −k × . . . 

×
n ∑ 

k 

n ! 

k !(n − k )! 
(e −λP10 t ) k (1 − e −λP10 t ) n −k 

Failure rates of the components are substituted into the Eq. to calculate the overall reliability of the oracle mechanism.

Blockchain platforms and oracle services are too recent to have sufficient historical data for us to empirically calculate the

failure rate of the components. Hence, to demonstrate the approach in this paper we have used failure rates reported in the

literature for traditional software components. We also draw on some prior research on failure rates of smart contract. The

values input to our model are tabulated in Table 2 . 

There are three types of major errors, which are smart contract error, server error , and human error . All issues related to

data sources, such as server hacks and infrastructure errors, are grouped under the server failure category. 7 Human-related

error can be categorized into three different types [14] , including simplest possible task with failure rate of 0.0 0 05, routine

task with care needed with failure rate of 0.06 and complicated non-routine task with the failure rate of 0.1–0.25. 

6. Results 

The values of reliability of different oracles are shown in Table 3 . Based on the values, Augur has the highest reliability,

follow by MS Bletchley. Both TownCrier and Corda with the same reliability. The two platforms with lowest calculated

reliability involve humans. 

ChainLink designed its oracle solution with the need for humans to compete to become an oracle. Human error has the

highest failure rate, hence contributes to the lower calculated value of ChainLink reliability. Augur also uses human oracles,
7 https://forums.aws.amazon.com/thread.jspa?threadID=37676 . 

https://forums.aws.amazon.com/thread.jspa?threadID=37676
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Table 3 

Reliability of oracle(s) mechanism. 

Platform Reliability 

Augur 0.9928 

Ms Bletchley 0.9861 

TownCrier 0.9840 

Corda 0.9840 

Provable 0.9810 

ChainLink 0.9297 

Gnosis 0.8837 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

but uses both a designated reporter and open reporters. This reduces the risk of not having anyone act as reporter, because

there is the choice to choose a trusted oracle from a pre-defined list. 

Augur allows disputations of the reported value by staking 2 times the amount of the no-show bond (amount of REP

used in initial market creation). Gnosis also offers the same dispute windows but a fixed amount of 100 ETH is required

in order to dispute the reported value. This discourages spurious disputes due to the high stake required. Gnosis network’s

participants might be reluctant to dispute an incorrect reported value because of the required high stake and thus reliability

of Gnosis becomes lower than Augur. 

Provable, Town Crier, Corda and MS Bletchley have a similar oracle mechanism. They all utilize trusted hardware to

directly fetch information from an external trusted execution environment (TEE). 

Provable offers TLS-Notary proof to validate the actual data submitted by an URL, but this serves as a single point of

failure. TownCrier and Corda have a similar setup while MS Bletchley has multiple oracles that fetch data from multiple

sources, resulting in higher calculated reliability compared with the other single oracle mechanisms. 

Augur, Gnosis, MS Bletchley and ChainLink propose to have more than one oracle. Multiple oracles prevent single points

of failure. Augur and Gnosis allow voting on correct answers by any participating node, and disputes on tentative answer.

Any participant in a market has the ability to act as an oracle as long as they stake a result. MS Bletchley and ChainLink

also have multiple oracles. ChainLink implements a K-out-of-N scheme, where the final consensus on the result will only be

reached if a pre-determined K-out-of-N oracles agree on the reported value. 

6.1. Sensitivity analysis 

We conducted sensitivity analysis specifically on the K-out-of-N oracles scheme, as shown in Fig. 5 . 

By setting K as a constant to 1, the sensitivity analysis of N (blue curve) shows that the higher the N value, the lower

the probability of failure and the higher the reliability of the oracle. We also conducted a K sensitivity analysis by fixing the

number of N to 5 and change the number of K, the result (green curve) shows that the smaller the number of K, the higher

the reliability. This higher the number of K, the more oracles are required to work correctly. Any K erroneous oracles will

result in the failure of the whole system. 

Finally, we performed a N/ 2 + 1 oracle sensitivity analysis. This is the scheme proposed in ChainLink’s white paper. The

result (red curve) shows that the higher the number N, the higher the reliability of the oracles services. N can only be an

odd number because having an even number of oracles might result in deadlock if half vote for one branch and the other

half vote for another branch. 

Having more oracles reporting would increase the reliability of the services, but might incur a higher cost to be paid for

all the oracles to work. 

7. Discussion 

7.1. Reliability patterns 

During our study, we found that the designs of all oracle mechanisms are similar to various system fault-tolerance design

patterns. 

The active-active redundancy pattern is an approach to have a minimum of two nodes providing services simultane-

ously [15] . ChainLink and MS Bletchley oracle configurations are equivalent to the active-active redundancy pattern. Both

blockchain platforms have multiple active oracles that fetch external data at the same time. MS Bletchley uses automated

redundant oracles while ChainLink uses humans as redundant oracles. By having multiple active oracles fetch values into

the blockchain, the risk is reduced from a single point of failure. Acquiring data by multiple oracles also improves the reli-

ability of the final accepted value. The oracles are allowed to fetch the requested data from multiple external data sources,

improving the likelihood of getting accurate external data. 

The active-active redundancy reliability pattern has some disadvantages for cost and time. Data requesters may need to

pay more to use multiple oracles to retrieve data and submit to a blockchain. Due to the need to aggregate collected data

from multiple oracles and sources, a longer time frame is also required for all oracles to fetch values and aggregate the

obtained values into a final value. 
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Fig. 5. Sensitivity analysis of K-out-N oracles on ChainLink. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MS Bletchley has a higher reliability because ChainLink oracles require human intervention. Participants in the network

would need to bid to become an oracle. If no one is interested, the process will stuck after data is requested. Hence, the

incentive scheme plays a very vital role to ensure involvement and interest from participants in the ChainLink network. 

The active-passive redundant pattern has a minimum of two nodes, in which one acts as a standby server. The standby

server will only take over if the active server is failing [15] . Augur and Gnosis configurations are similar to the active-passive

redundancy pattern. In Augur and Gnosis, there is only one oracle reporting the value, so the initial reporting oracle is acting

as the active server. The other participants in the network have the ability to dispute the tentative value if they find that

the reported value is incorrect. The disputers act as a kind of passive server. Augur reliability is higher than Gnosis because

for participants to dispute a reported value in Gnosis, the disputers need to pay 100 ETH to trigger the ultimate oracle. This

economically discourages participants to rectify any misreported value due to the high stake required. 

TownCrier and Corda use the input guard design pattern for fault containment with Intel SGX technology. The input

guard design pattern stops the propagation of an error from the outside into the guarded component [16] . 

7.2. Common causes of failure 

All oracles utilize methods to mitigate the risk of wrong information being used in the blockchain, which might cause

incorrect execution of smart contracts. Nonetheless, the data source(s) can always be a common cause of failure. The dotted

line box in Fig. 4 shows an example where common causes of failure might affect all the three data sources. 

Consider the situation where there is a request for a weather forecast for Randwick, Sydney on a specific day. Multiple

oracles will search for sources for a weather forecast from the internet and submit back to the requester. If the Randwick

weather forecast is predicted by the Bureau of Meteorology and all sources derive the prediction from the Bureau, spoiled

sensors or reports would impact all the sources. The result received by the oracle would still be valid from the operational

point of view but the reliability of oracles in submitting accurate data would be affected. Hence, data collected from multiple

web service data sources might be solely based on a single original data source from the physical world or another web

service. 

8. Conclusion 

Blockchain oracles are a crucial component in expanding the capability of blockchain. We have selected, reviewed and

characterized seven active blockchain platforms with oracle mechanisms according to their reliability features, consensus,
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and other characteristics. Our framework can serve as a reference on deciding suitable oracle mechanisms to fulfill different

requirements. To assess reliability of blockchain-based systems using oracles, we tailored existing approaches for reliability

calculations using FTDs to model and evaluate the reliability of the selected oracle platforms. We showed the calculation

of reliability using this approach for the selected oracles based on representative failure rates of the components in the

oracle mechanisms. The result shows that decentralized oracles are more reliable than centralized oracle mechanisms, and

human-related faults are the main factor affecting the overall reliability of oracle mechanisms. 
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