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A B S T R A C T

Elastic buckling properties of thin-walled storage rack columns under compression, e.g., critical buckling loads,
are often the input parameters for analytical design solutions (e.g., the direct strength method in AISI_S100
2016). This paper deals with the accurate estimation of the elastic buckling properties of Σ-shaped rack sections
with patterned holes. The investigation of the elastic buckling behaviour of three different Σ-shaped rack sec-
tions (with and without patterned holes) under compression is presented. More than 4000 finite element si-
mulations were performed on these rack sections using the finite element program, ANSYS 18.1. The influences
of the holes, perforation pattern, number of buckling half-wavelengths, and boundary conditions on the section’
buckling behaviour were studied. An alternative method is proposed to generate signature curves for solid rack
sections, and its effectiveness has been tested to generate signature curves for perforated rack sections. Multi-
half-wavelengths method is proposed to determine the critical buckling loads and critical buckling half-wave-
lengths of perforated rack sections, which has been proved to be unbiased and accurate. The results show that by
considering the holes, the critical buckling loads of the rack sections decreased while the critical buckling half-
wavelengths increased. The alternative method failed to generate the signature curves of perforated rack sections
accurately since the shape functions used for describing the shapes of buckling modes of perforated rack columns
are significantly different from those used for solid rack sections.

1. Introduction

Rack columns are generally made of thin-walled steel sheets, and
the steel sheets are cold-formed into the desired sections of the col-
umns. The columns are used to form the upright frames of a storage
system and serve as compression members. To simplify the assembly of
the upright frames and make the intervals of shelf panels adjustable,
holes are often made at webs or flanges of rack columns along the
length uniformly.

Most rack columns have open and singly symmetric cross-sections.
It imposes difficulties on structural designers for designing such col-
umns, especially for perforated rack columns. This is because multiple
buckling modes need to be considered for rack columns in the design.
The common buckling modes of Local (L), Distortional (D),
Torsional + Flexural (TF), and Flexural (F) buckling are shown in
Fig. 1, and their definitions are given in the AISI_S100 [1]. The flexural
buckling mode around the strong principal axis of the rack section is not
available since the flexural buckling modes around the strong principal
axis are always accompanied by torsional buckling mode due to the
singly symmetric cross-section. TF and F buckling usually jointly

termed as Global (G) buckling. In a compression test, these buckling
modes may happen on a column simultaneously or at different loading
points, and hence the column presents interactive buckling modes, e.g.,
L + D, L + G, D + G, and L + D + G [2–5]. The second reason is that
the CUFSM v4.05 [6] and GBTUL 2.0 [7] are user-friendly computer
programs for determining the elastic buckling properties of solid rack
columns; however, they cannot handle perforated columns directly.

The study of the buckling behaviour of rack columns under com-
pression can be traced back to 1980s. In 1984, Hancock [8] experi-
mentally explored the distortional buckling behaviour of rack columns
under compression. It was observed that distortional buckling inter-
acted with material yielding and resulted in the ultimate loads of col-
umns lower than their elastic distortional buckling loads. In 1986,
Hancock and Roos [9] investigated the TF buckling behaviour of two
solid rack columns. The columns were assembled in a single span of
upright frame and then were compressed axially till failure. It was
observed that the column compression capacity was significantly de-
creased after losing the tightness of column-brace joints. In 1997, Da-
vies et al. [10] experimentally studied the buckling behaviour of two
types of perforated rack columns under compression. For considering
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holes, the effective thickness method was proposed and employed with
the Generalized Beam Theory (GBT) to predict the compression capa-
city of columns. In 2004, Yang and Hancock [2] physically tested solid
and high-strength rack columns under compression. The results showed
that for columns experiencing local and distortional interactive buck-
ling, columns with flanges deformed inward had lower compression
capacities than those columns with flanges deformed outward. Buckling
shapes had almost no influences on the compression capacity of those
columns subjected to local buckling. In 2011, the buckling behaviour of
perforated rack columns under compression was experimentally studied
by Casafont et al. [4]. It was found that distortional buckling modes of
the columns always accompanied by global buckling mode. Interactions
of buckling modes affected the compression capacity of columns, and
the effects varied with the column length. In 2011, Casafont et al. [11]
experimentally evaluated the accuracy of the Direct Strength Method
(DSM) (in AISI_S100 2007) for predicting the compression capacity of
perforated rack columns. Results showed that by considering the actual
boundary conditions of columns in determining critical distortional
buckling loads, the accuracy of the DSM improved. Nevertheless, the
DSM still had large errors in many columns. In 2014, Dinis et al. [5]
experimentally investigated the local and distortional interactive
buckling behaviour of solid rack columns. It was observed that inter-
active buckling modes of L + D happened on those columns with cri-
tical local buckling loads lower than critical distortional buckling loads
by 30% to 46%. In 2016, Yao and Rasmussen [12] proposed an ana-
lytical design solution (Proposed Method 2), which was claimed to be
capable of designing perforated thin-walled columns with multiple
shapes of cross-sections subject to compression.

From the literature review, two conclusions can be made. The first
conclusion is that analytical design solutions for predicting the com-
pression capacity of Σ-shaped and perforated rack columns are not
mature yet. The DSM in the AISI_S100 [1] may lack the accuracy when
applied to Σ-shaped rack columns because it was developed for columns
with lipped-channel cross-sections [13]. The second conclusion is that it
is necessary to propose an accurate and unbiased method for de-
termining the critical buckling loads and critical buckling half-wave-
lengths of perforated rack sections since these parameters are often
used as input parameters for analytical design solutions, e.g., the DSM
[1]. This paper presents a theoretical study, which investigates the
elastic buckling behaviour of Σ-shaped rack sections with and without
patterned holes. Research [14,15] shows that the compression capacity
of thin-walled columns is affected by initial geometric imperfections,
cold-forming effects (residual stresses and strength enhancements of the
material at corners) , and material nonlinearities (e.g., yielding and
strain hardening). However, this study only investigates the elastic
buckling behaviour. In this paper, four problems are identified as
shown in Table 1. While dealing with problem (a), the differences of the
elastic buckling behaviour (local, distortional, and global buckling)
between perforated and nonperforated Σ-shaped rack sections are nu-
merically investigated thoroughly in this paper. Understanding these
differences is critical for developing proper design solutions for perfo-
rated rack columns under compression. For problem (b), it is demon-
strated in this paper that trigonometric shape functions are not

applicable to describe the shape of buckling modes of perforated rack
columns. It is critical to acknowledge this since in recent years, scien-
tists [11,16] proposed simplified solutions for determining critical
elastic buckling loads for perforated rack columns using finite strip
method. The finite strip method [6] adopts trigonometric functions as
shape functions. To address the problem (c), the multi-half-wavelengths
method is proposed in this paper, which can accurately determine the
critical buckling half-wavelength and critical buckling load of local and
distortional buckling of perforated rack columns. This method can be a
robust tool for developing and/or validating simplified analytical/nu-
merical solutions for determining the critical buckling load and the
critical buckling half-wavelength of perforated rack columns. For the
problem (d), it is demonstrated in the paper that the pinned-pinned
boundary condition fails to consider the multi-half-wavelengths effect
of rack columns under compression. The pinned-pinned boundary
condition is widely used by the scientists [4,17–20] for experimentally
test perforated and nonperforated rack columns under compression,
and analytical design solutions were developed based on those results.

2. Specimens

2.1. Column profiles

Three different rack columns in North America were selected for
this study. The profile of columns and their nominal net cross-sections
are shown in Fig. 2. Along the length, patterned holes are uniformly
made at the flanges, webs, and intermediate stiffener of these columns.
The net cross-section of a perforated column is the cross-section that
has the minimum area along the length. The dimensions of column
nominal cross-sections are shown in Table 2, and these dimensions were
measured along the outer face of cross-sections while the corner radii
were measured along the middle face of cross-sections. The columns
have the same thickness of 1.80mm, and all the corners of cross-sections
are right angles.

2.2. Material properties

Material properties of the columns were determined experimentally
and are presented in [21]; Here, the results of Young’s modulus (E) are
only shown in Table 3.

3. Generation and validation of numerical models

In this section, numerical models generated using computer pro-
grams of CUFSM v4.05 [6] and ANSYS 18.1 [22] are validated using
experimental results. The generation of Finite Element (FE) models in
ANSYS 18.1 [22] is described in detail. It is worth mentioning that more
than 4000 finite element models of rack columns (including the nu-
merical models used for experimental validation) were generated in this
study. Eigenbuckling analyses were performed on these numerical
models for generating buckling curves and signature curves of the rack
sections. It was tedious to generate signature curves of solid rack sec-
tions due to the employment of constraint equations on the numerical

Fig. 1. Cross-sectional deformation of different buckling modes.
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models. To obtain one of the signature curves, 50 to 70 h were required
for generating the corresponding numerical models and performing
eigenbuckling analyses. Computers with Intel(R) Core(TM) i7 pro-
cessor, 4 cores, and 16.0 GB RAMs were used to run the simulations.
The generation of buckling curves and signature curves of perforated
rack sections was much more tedious than those of the nonperforated
rack sections since different perforation patterns had to be considered
at each length. It took more than a month to generate one of the
buckling curves/signature curves of the perforated rack sections.

3.1. Buckling curve and signature curve

Eigenbuckling analyses of rack columns are often performed by
engineers or scientists. The results of eigenbuckling analyses have a
certain degree of accuracy on the prediction of buckling modes of rack
columns. While predicting the compression capacity of rack columns,
more factors need to be considered such as initial geometric im-
perfections and material nonlinearities. From eigenbuckling analyses
results, two important characteristics: Buckling Curve (BC) and
Signature Curve (SC) can be obtained [2,3,8,11,13,23]. The BC shows a
section’s lowest elastic buckling load (corresponding to the 1st buckling
mode) against length under a given boundary condition. The Signature
Curve (SC) is proposed to quickly determine critical buckling loads and
critical buckling half-wavelengths of thin-walled sections. To generate
an SC, constraints or shape functions are applied in column models so
that shapes of buckling modes vary in a sinusoidal way along the length
[24].

3.2. Boundary condition

In structural design, the boundary conditions of rack columns are
generally idealized as Simply-Simply ( −S S) or Clamped-Clamped
( −C C) boundary conditions. For the −S S boundary condition, the
transverse displacements of column ends are restrained while the
column ends are free to warp. For the −C C boundary condition,
column ends are fixed except one of the ends (the loading end) can
move longitudinally in the form of rigid-body movements.

3.3. Finite element models

In ANSYS 18.1 [22], the accuracy of the Shell63 element and
Shell181 element on eigenbuckling analysis was compared. It was
found that the Shell63 element provided closer results when compared

to those of the CUFSM v4.05 [6] than the Shell181 element. Hence,
Shell63 element was selected in this study. The Shell63 element was
also adopted by Casafont et al. [11] for performing eigenbuckling
analysis of rack columns. An FE model with Section COOOI (shown in
Fig. 3(a)) under the −S S boundary condition is shown in Fig. 3(b). At
the two ends of the model, the Ux and Uy of all the nodes are restrained,
and a uniform compressive load is applied to them. Moreover, the Uz of
one node at the centre of the web of the central cross-section is re-
strained. Fig. 3(c) presents an FE model under the −C C boundary
condition. In this figure, at the loading end (left end), all the degrees of
freedom of the nodes are restrained except that the Uz is coupled to
allow only rigid-body movements. All the degrees of freedom of the
nodes at the right end are restrained. For all the models, the size of
2 mm was selected for meshing the cross-sections. Along the length of
the models, the meshing sizes of 1 mm, 2 mm, and 4 mm were used for
the cases presenting L, D, and TF buckling, respectively.

3.4. Validation of numerical models

Two rack specimens with the section COOOI and the length of
900 mm were experimentally investigated by Hancock [8]. Cross-sec-
tional dimensions of the specimens [8] are presented in Table 4. In the
tests, the specimens failed elastically under uniaxial compression and
presented distortional buckling modes with two half-wavelengths [8].
The ultimate loads and ultimate strength of the specimens [8] are
shown in Table 5.

Eigenbuckling analyses were performed on the two rack specimens
using the two computer programs. The −S S boundary condition was
applied to the numerical models. In the tests, the specimens were
compressed between rigid platens. The friction generated between the
rigid platens and the ends of the specimens could effectively restrain the
transverse displacements of the ends of the specimens while the
warping was not possible to be restrained. The elastic buckling stresses
of the specimens yielded from the two computer programs are com-
pared with the experimental results as presented in Table 5. For the
specimen D1, the elastic buckling stresses yielded from the two com-
puter programs are very close to the experimental ultimate strength
where only 1% differences were found between them. For the specimen
D2, the elastic buckling stresses obtained from the two computer pro-
grams are 7% greater than the experimental ultimate strength. It is
noted that the ultimate strength of the specimen D2 is 7.9% lower than
that of the specimen D1, which indicates that the specimen D2 probably
had larger initial geometric imperfections than the specimen D1. It was

Table 1
Problems addressed in the paper and the corresponding sections.

No. Problems Sections

(a) What the differences are between the buckling behaviour of solid and perforated rack columns. 4.2 and 5.2
(b) Whether the shape functions used for describing the shapes of buckling modes of solid rack columns fit the perforated rack columns. 5.2
(c) How the critical buckling loads and critical buckling half-wavelengths of perforated rack sections can be determined accurately. 4.4, 5.1, and 5.4
(d) Whether the pinned–pinned boundary condition is suitable to be used in experiments for determining the compression capacity of rack columns. 5.3

Fig. 2. Column profiles.
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observed that the buckling modes yielded from the two computer
programs agreed well with the failure modes of the specimens. The
buckling mode of the specimen D1 yielded from the ANSYS 18.1 [22] is
presented in Fig. 4(a).

Buckling curves of the section COOOI (with the geometries of the
specimen D1) under the −S S and −C C boundary conditions were
generated using the two computer programs. The length range of the
buckling curves was defined from 30mm to 4000mm so that the per-
formance of the numerical models for dealing with different kinds of
buckling modes of L, D, and TF can be evaluated. The buckling curves
under the −S S and −C C boundary conditions generated using the
ANSYS 18.1 [22] are plotted against the corresponding buckling curves
generated using the CUFSM v4.05 [6] in Fig. 4(a) and (b), respectively.
Good agreements between the curves can be observed in these figures.
The differences between the results (elastic buckling stresses) yielded
from the two computer programs are within± 2%, and the buckling
modes mutually agreed.

4. Buckling behaviour of solid rack columns

In this section, the BCs and SCs of three solid Σ-shaped sections were
generated using ANSYS 18.1 [22] and CUFSM v4.05 [6].

4.1. Generation of the BC and SC

The procedures for generating BCs of the rack sections were the
same as those introduced in Section 3. For generating the SCs of the
rack sections, constraint equations were imposed on FEM models. This
method was motivated by Casafont et al. [11] and is described in detail
here. The invention of constraint equations was referred to the shape
functions adopted in the FSM [6]. In the FSM, a model is discretized
only in the cross-section, and hence the model looks like consisted of
many longitudinal strips. Each strip is a single element in the model.
The trigonometric function of =u sin πZ L( / ) (adopted for models under
the −S S boundary condition) and =u sin πZ L( / )2 (adopted for models

under the −C C boundary condition) are adopted in the FSM to de-
scribe the membrane deformation and out-of-plane displacement of the
strip in the longitudinal direction [6,24].

In the ANSYS 18.1 [22], the depth/width ratios of elements were
controlled to be ≤ 3. Sizes among 1.5mm to 3mm were used to mesh
the cross-sections of models. In the longitudinal direction, meshing
sizes among 1.5mm to 6mm were used. The longer the models, the
larger the meshing sizes. For generating the SCs (under the −S S
boundary condition) of the rack sections, half-length models and the
SYMM boundary condition were used for efficiency. Multiple nodal
lines were selected in the FEM models, and a constraint equation (Eq.
(1)) was applied to the nodal lines. The selected nodal lines are marked
with red arrows and are shown in Fig. 5. The nodal lines were selected
such that the deformation of the whole cross-sections can be effectively
constrained and the generation of membrane stresses in the plane of the
cross-sections due to the constraint can be avoided. In each nodal line,
the node at the cross-section where the SYMM boundary condition is
applied to is the master node, and the rest of the nodes are the slave
nodes. Since the master node has the maximum out-of-plane displace-
ment in each nodal line, it is convenient to assume that the maximum
displacement to be unity ( =u 1m ). Eq. (1), consequently, can be con-
verted into Eq. (2). For generating the SCs (under the −C C boundary
condition) of the rack sections, full-length models were employed, and
Eq. (3) was employed as the constraint equation. In each nodal line, the
master node is located at the length centre. Likewise, Eq. (3) can be
converted to Eq. (4) when the um is assumed to be unity. An FEM model
of the ZA32 section with the constraint equation applied is presented
in Fig. 5(d) as an illustration. In this model, the nodes at the two ends
are excluded from the slave nodes since boundary conditions are ap-
plied here.

+ − + =u sin πZ L π u sin πZ L π( / /2) ( / /2) 0s m m s (1)

= +u sin πZ L π( / /2)s s (2)

− =u sin πZ L u sin L( / ) ( ) 0s m m
2 2 (3)

=u sin πZ L( / )s s
2 (4)

us – out-of-plane displacement of the slave node.
um – out-of-plane displacement of the master node.
Zs–Z coordinate of the slave node in the models. >Z 0s .
Zm–Z coordinate of the master node in the models. ≥Z 0m .

Table 2
Dimensions of column nominal cross-sections.

Column Dimension (mm) Radius (mm) Area (mm2)

S F W R D E a1 a2 a3 a4 Anet Agross

ZA30 19.05 79.38 36.51 9.53 9.53 44.45 4.08 432.75 499.97
ZA32 19.05 63.50 28.58 19.05 31.8 38.10 3.44 3.44 4.96 3.44 408.53 512.06
ZA42 28.58 76.20 28.58 44.45 31.8 44.45 3.44 3.44 4.97 3.44 534.26 637.78

Table 3
Column material property.

Column ZA30 ZA32 ZA42

E × MPa( 10 )5 2.06 2.08 2.06

Fig. 3. Cross-sectional profile and finite element models.
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L – full length of the model.

For the FE models under the −S S boundary condition, the SYMM
boundary condition was applied to the cross-section of =Z 0. The plane

=Z 0 can be at any of the ends of the models under the −C C boundary
condition.

4.2. Bcs and SCs of solid rack sections

The SCs and BCs of the three solid rack sections are shown in
Figs. 6–8. For the BCs in the figures: (1) column buckling modes are
indicated; (2) boundaries between adjacent two different buckling
modes are presented; and (3) few column buckling modes are selected
and shown in the right side of the figures. The critical half-wavelengths
and critical buckling loads are symbolized as − −l P( , )crl

S S
crl
S S , − −l P( , )crd

S S
crd
S S ,

− −l P( , )crl
C C

crl
C C , and − −l P( , )crd

C C
crd
C C . The subscript of these symbols indicates

the buckling mode: l is local buckling and d is distortional buckling. The
superscript of these symbols indicates the boundary condition. The
abscissas in the figures show the half-wavelength for SCs and actual
length for BCs, and they are presented in the form of a logarithmic scale
and are all ranged from 30mm to 4000mm. From these figures, few
findings are summarised below:

(1) From the BCs, it can be observed that with length increases, the
three rack sections experience the L, SD (symmetric distortional),
AD (antisymmetric distortional) + TF, and TF buckling. Under the

−S S boundary condition, the L + D buckling is observed only on
the ZA30 section (see Fig. 6(a)). The L + D buckling is observed on
the ZA30 and ZA32 sections under the −C C boundary condition
(see Fig. 6(b) and 7(b)). L + D buckling regions are located be-
tween the L and SD regions and are very narrow (widths ≤ mm20 ),

and there is no evidence of showing that the interactive buckling
modes affected the buckling loads.

(2) The appearing of AD modes of the three rack sections is always
accompanied by TF mode. At the lengths where the sections ex-
periencing AD + TF buckling, the buckling loads are lower than the
sections experiencing pure TF buckling; see the gap between the BC
and the TF-FSM curve in each figure. With the increase in length,
the participation of the AD modes decreased. The buckling modes,
therefore, approach pure TF modes and hence the gaps close gra-
dually.

(3) The critical buckling half-wavelengths and critical buckling loads of
the three rack sections are indicated in the figures and are listed in
Table 6. The SCs in Fig. 8 fails to show the − −l P( , )crd

S S
crd
S S and

− −l P( , )crd
C C

crd
C C of the ZA42 section; consequently, they were de-

termined using the methodology of −FSM cFSM l@ cr [23].
(4) For the BCs ( −C C boundary condition) of the three rack sections,

the buckling loads gradually decrease after the lengths of their
−lcrl

C Cand approach their −Pcrl
S S; see the BCs in Fig. 6(b), Fig. 7(b), and

Fig. 8(b). Hancock [25] pointed out that when multiple local or

Table 4
Measured specimen dimensions of section COOOI.

Specimen t mm( ) A mm( ) B mm( ) C (mm) D mm( ) E mm( ) F mm( ) G mm( ) Area mm( )2

D1 1.625 15.575 89.600 9.465 38.500 31.164 29.811 7.875 401.030
D2 1.630 15.170 89.500 9.492 38.400 31.672 30.406 7.970 402.557

Table 5
Failure stresses of specimens with section COOOI.

Specimen Experimental results Elastic buckling
stress MPa( )

Stress ratio

Ultimate
load kN( )

Ultimate
stress MPa( )

FSM FEM FSM/Exp FEM/Exp

D1 100.8 252.0 249.2 250.5 0.99 0.99
D2 92.9 232.0 247.4 248.7 1.07 1.07

Fig. 4. Buckling curves of specimen D1.

Fig. 5. Selected nodal lines in the FEM models.
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distortional buckling half-wavelengths occur in a column under
compression, the effect of end boundary conditions on the buckling
load is diminished. This phenomenon is termed here as the multi-
half-wavelengths effect.

(5) While experimentally determining the local buckling capacity of
rack columns, the AISI S902 [26] requires the specimen lengths
shall not be less than three times the greatest width of the cross-
section and not exceed 20 times the minimum radius of gyration (r).
This length range is presented in Fig. 6(b), Fig. 7(b), and Fig. 8(b)
by the blue and dashed lines, and the lines have a uniform ordinate
of the corresponding −Pcrl

S S. Since the local buckling of the three rack
sections all occurred at flanges, the width of flanges (F ) is used here
instead of the greatest width of the cross-sections. From Fig. 6(b),
Fig. 7(b), and Fig. 8(b) it can be observed that when the =L F3 , the
ZA30, ZA32, and ZA42 sections have the buckling loads are 5.0%,
5.5%, and 6.6% above their −Pcrl

S S, respectively. Although the dif-
ferences are not significant, the longer the lengths, the smaller the
differences.

(6) In practice, rack columns are usually braced continuously along the
length, which allows for the occurrence of multiple buckling half-
wavelengths. In the DSM [1], for considering the multi-half-wave-
lengths effect, a column piece between adjacent two bracings is
isolated and assumed to be under the −S S boundary condition.
The −Pcrl

S S, −Pcrd
S S, and global buckling loads are the input parameters

of the DSM, and this is why the SC is deemed an indispensable tool
for designing rack columns. From Fig. 6(b), Fig. 7(b), and Fig. 8(b),
it can be observed that the − −l P( , )crl

S S
crl
S S and − −l P( , )crd

S S
crd
S S are not only

shown in SCs but also shown in BCs, and the BCs coincide with the
SCs at the global buckling regions. It is noted here that the −Pcrd

S S of
the three rack sections are smaller than their −Pcrl

S S, which resulted
in those distinct minima of the − −l P( , )crd

S S
crd
S S to be shown in the BCs.

(7) In all the figures, the SCs from FEM coincide well with the SCs from
FSM in the regions of distortional and global buckling, and the
relative differences between the FEM results and the FSM results are
within ± 5%. In local buckling regions, the SCs (FEM) shift down-
wards slightly from the SCs (FSM). For the SCs under the −S S
boundary condition, the shifts were due to the warping component
caused by the end deformation was considered in the FEM models
rather than the FSM models. The FSM overestimated the local
buckling loads of rack sections under the −C C boundary condi-
tion, which caused the shifts of the SCs (FEM). The critical buckling
loads and critical buckling half-wavelengths of the three rack sec-
tions are given in Table 6 where the results captured from the SCs
(FEM) were compared with those determined from the SCs (FSM).
From Table 6, regarding the critical local buckling loads and critical
local buckling half-wavelengths, it can be observed that the FEM
results are lower than the FSM results by the relative differences of
−2.1% to −7.1% and −2.4% to −4.3%, respectively. In terms of

Fig. 6. Signature curves and buckling curves of the solid ZA30 section.
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critical distortional buckling loads and critical distortional buckling
half-wavelengths, the FEM results are very close to the FSM results
by the relative differences of −2.5% to 1.0% and −1.7% to 0.0%,
respectively. The critical buckling loads and critical buckling half-
wavelengths captured from the BCs (FEM) are almost the same with
those determined from the SCs (FEM), which are also presented in
Table 6.

(8) The width and initial length of the buckling regions of the rack
sections are apparently different under the two boundary condi-
tions. For the BCs (under the −C C boundary condition), the
widths of local buckling regions are more than two times of those of
the BCs (under the −S S boundary condition). Moreover, the col-
umns (under the −S S boundary condition) showed a single dis-
tortional buckling half-wavelength while the columns (under the

−C C boundary condition) showed multiple distortional buckling
half-wavelengths.

(9) The SCs (FEM and FSM) (under the −C C boundary condition) fail
to characterize the buckling behaviour of the rack sections. Firstly,
the SCs fail to indicate the minimum local buckling load of the rack
sections. Secondly, the SCs fail to show the distortional buckling
regions and the minimum distortional buckling loads. Moreover,
the SCs fail to present the initial length of the global buckling re-
gions and even overestimate the buckling load of the ZA32 and
ZA42 sections at the beginning of their global buckling regions.

4.3. Multi-half-wavelengths method

The effect of multi-half-wavelengths can be utilized to determine
the − −l P( , )crl

S S
crl
S S and − −l P( , )crd

S S
crd
S S of rack sections. The way is to perform

eigenbuckling analyses of a section under the −C C boundary condi-
tion, and the models have the lengths of ml and are constrained or
braced at the ends of each buckling half-wavelength. By doing this,
fixed buckling half-wavelengths can be defined, and the interactions of
local or distortional buckling with higher order buckling modes are
prevented. The m is the number of buckling half-wavelengths; the l is
the half-wavelength. Eigenbuckling analyses are performed by gradu-
ally changing the l; hence, a buckling curve can be generated. The
minimum point in the buckling curve shows the critical buckling half-
wavelength and critical buckling load. Two types of FE models can be
adopted here. Type 1 model is the column model constrained by using
Eq. (5). Odd numbers are defined for the m; hence, master nodes can be
assigned to the cross-sections at the length centre. Type 2 model is the
column models with its out-of-plane displacement of a few nodes re-
strained. The nodes are at the cross-sections of

= = ⋯ −Z nl n m( 1, 2, 3, 1), and their locations are shown in Fig. 5.
The reason for proposing the two types of models is while for de-
termining the − −l P( , )crd

S S
crd
S S , the type 2 model is only applicable to sec-

tions with their −Pcrd
S S smaller than the −Pcrl

S S.
The m should be large enough to fully diminish the restraint effect

Fig. 7. Signature curves and buckling curves of the solid ZA32 section.
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of the −C C boundary condition. Sensitivity analyses of the m on the
buckling loads of the rack sections were performed. The −lcrl

S S and −lcrd
S S

were selected for the l, respectively, and both the type 1 and type 2
models were employed. The results yielded by the two types of models
were close; hence, only the results of the type 2 models are presented in
Fig. 9. It can be observed from the figure that when m reached 11, the
ratios of −P P/ crl

S S and −P P/ crd
S S are very close to unity. One result of the

ZA42 section is not shown in Fig. 9(b) since this column showed the
local buckling when =m 3.

=u mπZ L πZ Lsin( / )sin( / )s s s (5)

= + = ⋯m n n2 1, 1, 2, 3,

The accuracy of using the multi-half-wavelengths method to de-
termine the −lcrl

S S and −lcrd
S S of the rack sections was evaluated. The

buckling curves generated by the two types of models are presented in
Fig. 10. From Fig. 10(a), (c), and (e), it can be seen that the − −l P( , )crl

S S
crl
S S

shown here are almost the same as those FSM results (see Table 6).
From Fig. 10(b), (d), and (f), it can be seen that the results of the type 1
models show the maximum differences of 3.9% and −2.3% on the −lcrd

S S

and −Pcrd
S S, respectively while compared with those FSM results in

Table 6. In the case of the type 2 models, the maximum differences are
1.2% on the −lcrd

S S and 1.8% on the −Pcrd
S S. In Fig. 10(f), the buckling

curves fail to show the − −l P( , )crd
S S

crd
S S of the ZA42 section, which agreed

well with the SC (FSM) in Fig. 8(a).

Fig. 8. Signature curves and buckling curves of the solid ZA42 section.

Table 6
Critical buckling loads and critical buckling half-wavelengths.

Parameters ZA30 ZA32 ZA42

−S S −C C −S S −C C −S S −C C

P kN( )crl FSM 259.8 358.7 415.0 567.6 325.6 437.1
FEM SC 241.3 343.2 388.4 545.8 311.4 427.8

D (%) −7.1 −4.3 −6.4 −3.8 −4.4 −2.1
BC 241.2 – 388.1 – 311.0 –
D (%) −7.1 – −6.5 – −4.5 –

l mm( )crl FSM 69.0 105.0 55.0 85.0 71.0 110.0
FEM SC 66.0 102.0 53.0 83.0 69.0 107.0

D (%) −4.3 −2.9 −3.6 −2.4 −2.8 −2.7
BC 66.0 – 53.0 – 69.0 –
D (%) −4.3 – −3.6 – −2.8 –

P kN( )crd FSM 164.9 277.8 292.8 500.8 284.2 491.3
FEM SC 165.3 272.2 295.6 489.8 286.2 479.0

D (%) 0.3 −2.0 1.0 −2.2 0.7 −2.5
BC 164.1 – 292.9 – 283.9 –
D (%) −0.5 – 0.0 – −0.1 –

l mm( )crd FSM 641.0 983.0 563.0 868.0 964.0 1470.0
FEM SC 641.0 968.0 561.0 853.0 – –

D (%) 0.0 −1.5 −0.4 −1.7 – –
BC 640.0 – 563.0 – – –
D (%) −0.2 – 0.0 – – –
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5. Buckling behaviour of perforated rack sections

In this section, the buckling behaviour of the three rack sections
with patterned holes was studied.

5.1. Perforation patterns effects

When cutting a piece from a rack column with patterned holes
uniformly distributed along the length, the holes contained in that piece
can be different. For generating the SCs and BCs of a perforated rack
section, at each half-wavelength or length, the lowest buckling load
among the buckling loads of all the possible perforation patterns should
be selected. Sensitivity analyses of buckling loads of the three perfo-
rated rack sections on perforation patterns were performed here. Two
strategies were proposed to do these analyses. Strategy 1 is illustrated in
Fig. 11, and the column shown in this figure has the perforated ZA32
section and the length of 90mm. For this perforation pattern sensitivity
analysis, 33 numerical models were generated.

It will be time-consuming to use this strategy in the generations of
SCs and BCs of the rack sections; hence, a simplified strategy (strategy
2) is proposed. For strategy 2, only five perforation patterns (perfora-
tion patterns (a) to (e)) are considered for rack sections with lengths

experiencing local buckling. For rack sections with lengths experiencing
distortional and global buckling, perforation patterns (b) to (e) are
considered. The perforation patterns (a) to (e) are described below and
examples are given in Fig. 12:

(1) Perforation pattern (a) (Fig. 12(c)) is a pair of flange holes opened
at the centre of the column.

(2) Perforation pattern (b) (Fig. 12(e)) is a pair of web holes opened at
the centre of the column.

(3) Perforation pattern (c) (Fig. 12(d)) is a pair of web holes opened at
the top end of the column.

(4) Perforation pattern (d) (Fig. 12(a)) is a pair of web holes opened at
the bottom end of the column.

(5) Perforation pattern (e) (Fig. 12(b)) is the column end opened by
web holes with the same depth of openings.

For each perforated rack section, two lengths were randomly se-
lected for the local, distortional, and global buckling (one for AD + TF
buckling and one for TF buckling). Strategy 1 was used for performing
the perforation pattern sensitivity analyses, and the ratios of the
buckling load to the minimum buckling load (P P/ min) are plotted against
the shift distance in Fig. 13. From Fig. 13(a) and (d), it can be seen that

Fig. 9. Sensitivity of buckling loads on the number of buckling half-wavelengths.

Fig. 10. Buckling curves generated by using the type 1 and type 2 models.
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the maximum values of the P P/ min are 1.11, 1.15, and 1.08 for the ZA30,
ZA32, and ZA42 sections with lengths experiencing local buckling, re-
spectively. For the rack sections with lengths experiencing distortional
buckling, the values of the P P/ min are all under 1.02 (see Fig. 13(b) and
(e)). In global buckling cases, see Fig. 13(c) and (f), the values of the
P P/ min are all less than 1.01. The local buckling loads are much more
sensitive to perforation patterns than distortional and global buckling
loads.

The performance of strategy 2 was evaluated. The yielded results of

the perforation pattern sensitivity analyses by using the two strategies
are presented in Table 7. It can be seen from Table 7 that the buckling
loads yielded by the two strategies are almost the same, and the relative
differences are no more than 0.3%. The perforation patterns yielded the
minimum buckling loads in strategy 2 are given in the sixth column of
Table 7. It is interesting to find that in the local buckling cases, all the
minimum buckling loads are obtained at the perforation pattern (a).
This indicates that the flange holes opened at the peak of buckling
halfwaves has the most significant effect on the columns’ local buckling

Fig. 11. Flowchart of strategy 1.
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loads. It is proved here that strategy 2 is unbiased and accurate for
performing the perforation pattern sensitivity analysis; hence, it is
employed in the generations of SCs and BCs of the three perforated rack
sections.

5.2. SCs and BCs of perforated rack sections

The BCs (under the −C C boundary condition) of the three perfo-
rated rack sections were generated using the ANSYS 18.1 [22]. It is
assumed that the shape function (Eq. (4)) of solid rack columns applies
to perforated rack columns, and the SCs (under the −C C boundary
condition) of the perforated rack sections were generated as well.
Strategy 2 was employed here for conducting the perforation pattern
sensitivity analysis while one change was made: only the perforation
pattern (b) was considered for the rack sections with lengths

experiencing global buckling. The reason for making this change is it
has been proved that the global buckling loads of the three rack sections
are not sensitive to perforation patterns. It is found that the perforation
pattern (the one yields the minimum buckling load) of the rack columns
can be different from that of the same columns but with different
constraints applied on them. As a result, the perforation pattern sensi-
tivity analysis was performed in the generations of the SCs and BCs of
the rack sections, individually.

The SCs and BCs of the three perforated rack sections are shown in
Figs. 14–16. For the BCs: (1) the column buckling modes are indicated
in the figures; (2) the boundaries between adjacent two different
buckling modes are presented; and (3) few column buckling modes are
selected and shown in the right side of the figures. The SCs and BCs
shown here were compared with those of the solid rack sections under
the −C C boundary condition, and the influences of the holes on the

Fig. 12. Perforation patterns of the ZA32 column.

Fig. 13. Perforation pattern effects on columns’ buckling loads.
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buckling modes and buckling loads are discussed below:

(1) The distortional buckling of the perforated rack sections takes place
at relatively shorter lengths compared to those of the corresponding
solid rack sections. The lengths start to show distortional buckling
are 926mm, 1020mm, and 2606mm for the solid ZA30, ZA32, and
ZA42 sections, respectively. The perforated rack sections start to
show distortional buckling at the length of 820mm for the ZA30
section, 711mm for the ZA32 section, and 2198mm for the ZA42
section. Moreover, the widths of the distortional buckling regions
are increased by the holes from 992mm to 1149mm (15.8% incre-
ment) for the ZA30 section, from 276mm to 624mm (126.1% in-
crement) for the ZA32 section, and from 82mm to 211mm (157.3%
increment) for the ZA42 section.

(2) The initial lengths of global buckling regions were postponed by the
holes from 1918mm to 1969mm for the ZA30 section and from
1296mm to 1335mm for the ZA32 section. On the contrary, the
perforated ZA42 section shows the global buckling firstly at the
length of 2409mm, which is 279mm shorter than that of the solid
ZA42 section (2688mm).

(3) The length ranges (x) of F r[3 , 20 ] are presented in Figs. 14–16 with
uniform ordinates of the −Pcrl

S S of the corresponding perforated rack
sections. The determinations of the −Pcrl

S S of the perforated rack
sections are illustrated in Section 5.4. At the lengths of F3 , the
buckling loads of the perforated ZA30, ZA32, and ZA42 sections are
5.7%, 3.3%, and 8.1% above their −Pcrl

S S, respectively.

(4) The SCs fail to characterize the buckling behaviour of the three
perforated rack sections under the −C C boundary condition (see
the gap between the SC and BC in Figs. 14–16). This is similar to
what has been found on the solid rack sections while the SCs here
do not coincide with the BCs even at the lengths before the first
minimum of the SCs. By checking the buckling modes (without
constraint equation applied), it is observed that the buckling shapes
of the perforated rack columns are not following the shape of the
sinusoidal curve (Eq. (4)) in the longitudinal direction.

The buckling loads of the perforated rack sections yielded from the
perforation pattern sensitivity analyses while generating the BCs are
analyzed here. The ratios of the maximum buckling load to the
minimum buckling load (P P/max min) are plotted against the ratios of the

−l l/ crl
S S in Fig. 17. It can be observed from the figure that the ratios of the

P P/max min become less than 1.01 when the ratios of the −l l/ crl
S S go beyond

the 3.8, 3.6, and 4.7 for the ZA30, ZA32, and ZA42 sections, respec-
tively. The shortest specimen length required in the AISI S902 [26] for
determining the local buckling capacity of rack columns is F3 . How-
ever, from the current study, it is observed that if the length is changed
to −l5 crl

S S, the considerations of the effects of perforation pattern are not
necessary and the yielded buckling loads are more conservative. The
columns start to show distortional buckling after the ratios of the −l l/ crl

S S

reached the 10.79, 12.26, and 28.55 for the ZA30, ZA32 and ZA42
sections, respectively. Beyond these lengths, the ratios of the P P/max min
are very close to unity. This explains why only the pattern (b) was

Table 7
Perforation pattern sensitivity analyses results.

Buckling mode Column Length (mm) Strategy 1 Strategy 2 Difference (%)

P kN( ) P kN( ) Perforation pattern

Local ZA30 102 288.44 – (a) –
73 339.48 (a)

ZA32 90 413.48 (a)
83 418.11 (a)

ZA42 108 341.39 (a)
120 339.62 (a)

Distortional ZA30 966 211.74 211.82 (b) 0.04
1125 207.18 207.18 (b) 0.00

ZA32 853 322.97 – (c) –
759 334.37 335.14 (b) & (e) 0.23

ZA42 1470 371.10 – (d) –
700 671.43 671.43 (e) 0.00

Global ZA30 2300 124.04 124.08 (d) 0.03
3000 78.35 78.36 (d) 0.02

ZA32 1650 211.45 211.65 (c) 0.09
3000 87.19 – (c) –

ZA42 2500 253.25 – (b) –
3500 158.86 158.90 (b) & (e) 0.02

Note: ‘-‘ means the results yielded by strategy 2 are the same as those yielded by strategy 1; () & () means two perforation patterns occurred in a model simulta-
neously.

Fig. 14. Signature curve and buckling curves of the perforated ZA30 section.
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considered for the global buckling cases while generating the SCs and
BCs.

5.3. Columns under Pinned-Pinned boundary condition

It is difficult to test rack columns under the −S S boundary con-
dition experimentally; therefore, the boundary condition of Pinned-
Pinned ( −P P) is generally employed by scientists to determine the
compression capacity of rack columns. The −P P boundary condition is
to restrain the cross-sectional deformation, torsion, and warping of a
column’s ends, but the column ends can rotate about the two principal
axes of the cross-section. To date, however, scientists failed to justify
the applications of the −P P boundary condition in experiments since
the erosion of the buckling load of rack columns due to the multi-half-
wavelengths effect may not be properly considered.

Eigenbuckling analyses were performed to generate the BCs of the
three perforated rack sections under the −P P boundary condition. An
FE model with the ZA42 section is shown in Fig. 18. In this figure, the
column ends are rigidly attached to two steel loading plates, and the
thickness of the loading plates is 30mm. At the top face of each loading
plate, there is a steel block at the centre. The depth of the steel blocks is
40mm, and their centroids coincide with the effective centroid of the
column. The effective centroid is a point on the cross-section of a rack
column that the column can reach the maximum capacity when a
concentrated compressive force applied on this point. The details of the
determination of the effective centroid of the three perforated rack
sections can be found in [21]. The Solid185 element was used for the
loading plates and steel blocks, and the Shell63 element was used for
the column. The column ends share the nodes with the loading plates at
the two interfaces, and a layer of the Shell63 elements is assigned to
each interface since the nodes of the Solid185 element have none of the
rotational degrees of freedom, and hence, can not prevent the rotations
of the nodes of the Shell63 element. The boundary condition −P P is
applied to the nodes at the top face of each steel block. The left end of
the model is the loading end. At the loading end, a unit force

( =F kN1z ) is applied to the node at the centroid of the steel block (see
the white arrow), and theUx andUy of this node are restrained. Another
two nodes with theirUx having restrained are collinear with the loading
node. The right end of the model is restrained likewise except the Uz of
the node at the centroid of the steel block is restrained.

The BCs of the three perforated rack sections under the −P P
boundary condition are shown in Figs. 14–16, and the following find-
ings are summarized:

(1) The BCs under the −P P boundary condition coincide well with the
BCs under the −C C boundary condition from the very beginning,
and then the two curves start to separate from the lengths of
1653mm, 626mm, and 1254mm for the perforated ZA30, ZA32, and
ZA42 sections, respectively. After the separations, the BCs under the

−P P boundary condition drop fast. The sections under the −P P
boundary condition start to show different buckling modes, which
are responsible for the separations. To be specific, at the length of
1653mm, the perforated ZA30 section under the −C C boundary
condition is close to the end of its distortional buckling region while
the section under the −P P boundary condition starts to show the
AD + TF buckling. At the length of 626mm, the perforated ZA32
section under the −C C boundary condition is close to the end of its
local buckling region, whereas the section under the −P P
boundary condition starts to show the distortional buckling. The
perforated ZA42 section under the −C C boundary condition re-
mains in the local buckling region at the length of 1254mm while
the section under the −P P boundary condition starts to show the
SD + F buckling. For those rack sections under the −P P boundary
condition, the distortional buckling or global buckling occurrs at
shorter lengths than those rack sections under the −C C boundary
condition.

(2) The global buckling modes of the perforated ZA32 and ZA42 sec-
tions under the −C C boundary condition are AD + TF or TF
buckling modes while the two rack sections showed the SD + F
buckling mode under the −P P boundary condition.

Fig. 15. Signature curve and buckling curves of the perforated ZA32 section.

Fig. 16. Signature curve and buckling curves of the perforated ZA42 section.
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(3) The probable estimation of the critical distortional buckling load
( −Pcrd

S S) of a rack section using the −P P boundary condition is
checked here. Two methods were proposed, and their performances
were evaluated. The first method is to perform an eigenbuckling
analysis on a rack section under compression, and the rack section
has the length two times its critical distortional buckling half-wa-
velength ( −l2 crd

S S) and is under the −P P boundary condition. The
buckling load of the first buckling mode serves as an estimation of
the −Pcrd

S S. The determinations of the − −l P( , )crd
S S

crd
S S of the three per-

forated rack sections are presented in Section 5.4. The second
method is to use the buckling load of a rack section with the length
at its end of the distortional buckling region as the estimation of the

−Pcrd
S S. The results (buckling load P and buckling mode) obtained

from the two methods are presented in Table 8 where the ratios of
−P P/ crd

S S are shown as well. It can be observed from the table that
most of the ratios of the −P P/ crd

S S are far away from 1.0. There are
two cases, not shown in Table 8, where the distortional buckling
mode (SD) of the perforated ZA32 section under the −P P
boundary condition gradually transfers to the global buckling mode
(SD + F) along the length, which made the end of the distortional
buckling region very difficult to determine. For the perforated ZA42

section under the −P P boundary condition, distortional buckling
mode is not observed since the column presents global buckling
(SD + F mode) right after the local buckling region. The two
methods failed to provide accurate estimations of the −Pcrd

S S of the
rack sections; consequently, it can be concluded that the −P P
boundary condition is not suitable for determining the critical dis-
tortional buckling load of rack columns.

5.4. Determination of critical buckling loads

The SCs of the three perforated rack sections under the −S S
boundary condition were not generated since the results of trial simu-
lations showed that along the length, the out-of-plane displacement of
the columns’ buckling modes failed to follow the shape of a single half-
sinewave. The multi-half-wavelengths method (by using the type 2
models), consequently, was used here to determine the − −l P( , )crl

S S
crl
S S and

− −l P( , )crd
S S

crd
S S of the three perforated rack sections, and the perforation

pattern effects were considered. The results are presented in Table 9,
and the buckling curves are shown in Fig. 19. It may be argued that like
solid rack sections, the critical buckling loads and critical buckling half-
wavelengths of perforated rack sections could be determined by gen-
erating their buckling curve under the −S S boundary condition. This
method could be more efficient to determine the critical buckling load
compared to that of the multi-half-wavelengths method. The reason to
use type 2 models is that the BCs (under the −S S boundary condition)
underestimated the − −l P( , )crl

S S
crl
S S of the solid rack sections due to the

influence of the warping of the loading end. Whereas, the −S S
boundary condition is proposed for solid thin-walled columns, which
may not be applied to perforated rack columns.

The − −l P( , )crl
S S

crl
S S and − −l P( , )crd

S S
crd
S S of perforated rack sections were

compared with those of solid rack sections, and the relative differences
are presented in Table 9. The results show that after considering the
holes, the critical local buckling loads are decreased by −11% to
−17%. The critical distortional buckling loads are dropped more sig-
nificantly than the critical local buckling loads where the decrements
are −18.0%, −27.5%, and −23.1% for the ZA30, ZA32, and ZA42
sections, respectively. On the contrary, the critical local buckling half-
wavelengths and critical distortional buckling half-wavelengths are
increased due to the holes, and the increments are close to or less than
10%. In the case of the perforated ZA42 section, it was difficult to de-
termine the − −l P( , )crd

S S
crd
S S . The −Pcrd

S S of this section can be properly

Fig. 17. The ratios of the maximum buckling loads to the minimum buckling loads.

Fig. 18. A FEM model with the perforated ZA42 section under pinned–pinned
boundary condition.

Table 8
Estimations of the −Pcrd

S S of the perforated rack sections using the −P P boundary condition.

Column Method 1 Method 2

Length (mm) Buckling mode P kN( ) −P P/ crd
S S Length (mm) Buckling mode P kN( ) −P P/ crd

S S

ZA30 1362 SD 179.56 1.33 1652 SD 164.52 1.22
ZA32 1136 SD 198.83 0.94 – – – –
ZA42 1928 SD + F 144.88 0.66 – – – –

P. Zhang and M.S. Alam Engineering Structures 212 (2020) 110469

14



estimated using the buckling load of the perforated section at the −lcrd
S S of

the solid ZA42 sections. This is because the holes do not significantly
change the distortional buckling half-wavelengths of the ZA30 and
ZA32 sections, whereas the buckling curve of the perforated ZA42
section is quite flat (see Fig. 19(f)).

6. Conclusion

This paper introduces the elastic buckling behaviour of the rack
columns with three different Σ-shaped sections under uniaxial com-
pression. Two scenarios were considered: the sections without holes
and the sections with patterned holes distributed along the length
uniformly. The buckling behaviour of the rack sections under these two
scenarios was compared by generating their buckling curves. The
ANSYS 18.1 [22] was successfully used for generating the signature
curves of the three solid rack sections. The sensitivity analyses of per-
foration patterns on the buckling loads of local, distortional, and global
buckling were performed, and the perforation pattern effects were well
considered in the generations of the signature curves and buckling
curves of the perforated rack sections. The critical buckling loads and
critical buckling half-wavelengths of both the solid and perforated rack
sections under the −S S boundary condition were accurately de-
termined using the multi-half-wavelengths method. The possibility of

using the pinned-pinned boundary condition for estimating the critical
distortional buckling load (under the −S S boundary condition) was
checked. The following conclusions are made from this study:

(1) The boundary conditions have significant effects on rack sections’
buckling load, buckling mode, and the region of buckling modes.
The pinned-pinned boundary condition is not suitable to determine
the critical distortional buckling load (under the −S S boundary
condition) of rack sections.

(2) The multi-half-wavelengths effect should be properly considered in
the experimental tests and structural design of rack columns. The
pinned-pinned boundary condition should be used with caution for
experimentally determining the distortional buckling capacity of
rack columns under compression since it may not be able to prop-
erly consider the effect of multi-half-wavelengths.

(3) After considering the holes, the critical local buckling load and
critical distortional buckling load of the three rack sections (under
the −S S boundary condition) are decreased by more than 10%. On
the contrary, the critical local buckling half-wavelength and critical
distortional buckling half-wavelength are increased, and the in-
crements were close to or less than 10%.

(4) The multi-half-wavelengths method has been proved to be unbiased
and accurate for determining the critical buckling loads and critical
buckling half-wavelengths of perforated rack sections under the

−S S boundary condition, and the type 2 model and the number of
buckling half-wavelengths of 11 are suggested.

(5) Signature curves (under the −C C boundary condition) failed to
characterize the buckling mode and buckling load of the rack sec-
tions under compression; hence, they are not suggested to be the
references for predicting the compression capacity of rack columns
under the −C C boundary condition.

(6) Perforation pattern effects on the local buckling load of the three
rack sections are significant when these columns have lengths less
than five times the critical local buckling half-wavelength ( −lcrl

S S).
The effects on the distortional and global buckling loads of the three
rack sections are minor and can be ignored.

(7) The trigonometric shape functions adopted in the finite strip

Table 9
Critical buckling loads and half-wavelengths of perforated rack sections.

Section Buckling properties

−P kN( )crl
S S −l mm( )crl

S S −P kN( )crd
S S −l mm( )crd

S S

ZA30 229.4 76.0 135.2 681.0
D (%) −11.7 10.1 −18.0 6.2
ZA32 345.0 58.0 212.3 568.0
D (%) −16.9 5.5 −27.5 0.9
ZA42 273.1 77.0 218.6* 964.0*
D (%) −16.1 8.5 −23.1 0.0

Note:
* means the value is an estimation.

Fig. 19. Buckling curves of the three perforated rack sections.
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method failed to describe the buckling shapes of perforated rack
columns accurately and hence, should be avoided.

(8) To determine the local buckling capacity of a rack column experi-
mentally, it is suggested here that the specimen lengths shall not be
less than five times the critical local bucking half-wavelengths
( −lcrl

S S) and not exceed 20 times the minimum radius of gyration (r).

Currently, the development of simplified methods for determining
the critical elastic buckling properties of thin-walled perforated rack
sections under compression are being pursued by scientists. The multi-
half-wavelengths method is proposed in this paper, which can accu-
rately determine the critical elastic buckling properties of Σ-shaped
perforated rack sections under compression. This method can be a ro-
bust tool to be employed for validating the simplified methods. Future
research will look into its applicability to other shapes of rack sections
(e.g., channel and Ω). The results of this paper provide a strong basis for
the design (the selection of input parameters), experimental tests (the
selection of boundary conditions), and numerical simulations (the
generation of robust numerical models) of both solid and perforated
rack columns under compression. This paper, however, only focusses on
the elastic buckling behaviour of rack columns under compression.
Further research works are needed for developing guidelines on the
selection of input parameters (elastic buckling properties) in analytical
design solutions of rack columns under compression. Moreover, to fa-
cilitate the design of perforated rack columns, it is necessary to propose
design formulas for determining critical elastic buckling properties of
rack sections with various arrangements of opening patterns, dimen-
sions, and spacing.
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