
Contents lists available at ScienceDirect

Artificial Intelligence In Medicine

journal homepage: www.elsevier.com/locate/artmed

Automated machine learning: Review of the state-of-the-art and
opportunities for healthcare

Jonathan Waringa,b,*, Charlotta Lindvallc,d, Renato Umetona,b,e

a Dana-Farber Cancer Institute, Department of Informatics & Analytics, Boston, MA, 02215, United States
bHarvard T.H. Chan School of Public Health, Department of Biostatistics, Boston, MA, 02215, United States
c Dana-Farber Cancer Institute, Department of Pyschosocial Oncology and Palliative Care, Boston, MA, 02215, United States
d Brigham and Women’s Hospital, Department of Medicine, Boston, MA, 02215, United States
eMassachusetts Institute of Technology, Cambridge, MA, 02139, United States

A R T I C L E I N F O

Keywords:
Machine learning
Deep learning
Automated machine learning
AutoML
Healthcare

A B S T R A C T

Objective: This work aims to provide a review of the existing literature in the field of automated machine
learning (AutoML) to help healthcare professionals better utilize machine learning models “off-the-shelf” with
limited data science expertise. We also identify the potential opportunities and barriers to using AutoML in
healthcare, as well as existing applications of AutoML in healthcare.
Methods: Published papers, accompanied with code, describing work in the field of AutoML from both a com-
puter science perspective or a biomedical informatics perspective were reviewed. We also provide a short
summary of a series of AutoML challenges hosted by ChaLearn.
Results: A review of 101 papers in the field of AutoML revealed that these automated techniques can match or
improve upon expert human performance in certain machine learning tasks, often in a shorter amount of time.
The main limitation of AutoML at this point is the ability to get these systems to work efficiently on a large scale,
i.e. beyond small- and medium-size retrospective datasets.
Discussion: The utilization of machine learning techniques has the demonstrated potential to improve health
outcomes, cut healthcare costs, and advance clinical research. However, most hospitals are not currently de-
ploying machine learning solutions. One reason for this is that health care professionals often lack the machine
learning expertise that is necessary to build a successful model, deploy it in production, and integrate it with the
clinical workflow. In order to make machine learning techniques easier to apply and to reduce the demand for
human experts, automated machine learning (AutoML) has emerged as a growing field that seeks to auto-
matically select, compose, and parametrize machine learning models, so as to achieve optimal performance on a
given task and/or dataset.
Conclusion: While there have already been some use cases of AutoML in the healthcare field, more work needs to
be done in order for there to be widespread adoption of AutoML in healthcare.

1. Introduction

The extensive collection of health data through electronic health
records (EHRs), genomic sequencing, and digital health wearables has
led to an exponentially growing amount of biomedical “big data” [1–3].
The amount of digital information available to clinicians is becoming
simply too much to process: within the timespan of 20−40 min that are
generally assigned per visit, it is virtually impossible to review 80+
megabytes (equivalent to 20,000+ pages of free text) worth of patient
data captured in the average individual EHR [4]. Machine learning, and

more recently deep learning, are key techniques that have demon-
strated the ability to translate these large health datasets into actionable
knowledge. In general, the use of machine learning models could im-
prove patient safety [5–7], improve quality of care [8–10], and reduce
healthcare costs [11–13]. Specifically, machine learning has the cap-
ability to augment the work of clinicians by processing the billions of
patient data points that are stored in EHRs, and it has been successfully
applied in many clinical applications already, such as identifying pa-
tients at high risk of being transferred to the ICU [14], diagnosing re-
spiratory conditions from chest X-rays [15], detecting early signals of

https://doi.org/10.1016/j.artmed.2020.101822
Received 8 October 2019; Received in revised form 17 January 2020; Accepted 17 February 2020

⁎ Corresponding author at: Dana-Farber Cancer Institute, Department of Informatics & Analytics, Boston, MA, 02215, United States.
E-mail addresses: jonathan_waring@dfci.harvard.edu (J. Waring), charlotta_lindvall@dfci.harvard.edu (C. Lindvall),

renato_umeton@dfci.harvard.edu (R. Umeton).

Artificial Intelligence In Medicine 104 (2020) 101822

0933-3657/ © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

http://www.sciencedirect.com/science/journal/09333657
https://www.elsevier.com/locate/artmed
https://doi.org/10.1016/j.artmed.2020.101822
https://doi.org/10.1016/j.artmed.2020.101822
mailto:jonathan_waring@dfci.harvard.edu
mailto:charlotta_lindvall@dfci.harvard.edu
mailto:renato_umeton@dfci.harvard.edu
https://doi.org/10.1016/j.artmed.2020.101822
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artmed.2020.101822&domain=pdf

lung cancer [16], and detecting fraudulent and abusive health in-
surance claims [17]. While machine learning in healthcare is a very
active research topic [18,19], most of the health data collected is never
used for building predictive models that are successively integrated in
the clinical setting [20] with only 15 % of hospitals currently and
routinely using machine learning for even limited purposes [21].

While machine learning has a lot of demonstrated benefit, the suc-
cessful utilization of machine learning requires a large effort from
human experts given that no algorithm can achieve good performance
on all possible problems (i.e., No Free Lunch [22]). Even though
healthcare researchers are familiar with clinical data, they still often
lack the machine learning expertise necessary to apply these techniques
to big data sources. Healthcare researchers can and do work with expert
data scientists [18,19], but the interactive process generally takes a lot
of time and effort from both parties. Not only that, but data and human
expertise are generally not readily available, especially in healthcare
settings [23]. Therefore, it is difficult to devise and deploy machine
learning solutions as the whole exercise begins with a lengthy data
provisioning process, continues with finding the right collaborators,
and involves a continuous back-and-forth between ML experts and
domain experts. Automating some of the components requiring human
expertise would allow the healthcare industry to more rapidly build,
validate, and deploy machine learning solutions, and therefore more
readily reap the benefits of improving the quality of health care for
patients. Motivated by this goal across industries, AutoML has emerged
as a new research field with the goal of automatically optimizing parts
of the machine learning pipeline, as shown in Fig. 1.

Different AutoML solutions have emerged in recent years to opti-
mize one or more of these components, several of which are the product
of AutoML Challenge competitions between 2015 and 2018. The
ChaLearn AutoML Challenges1 focus on solving supervised machine
learning problems without any human intervention given some com-
putational constraints. These computational constraints were slightly
different across the challenges, but usually included a time limit (∼20
min for training and testing) and memory usage limitations (24GB RAM
for the first three rounds, and 56GB thereafter). Some of the competi-
tions included a GPU track, but submissions to these tracks were sparse.
The goal of this series of challenges is to create a black box that removes
most of the requirements for human expertise in applying machine
learning to a wide array of problems, and to help alleviate the potential
shortage of data scientists and empower those with domain knowledge.
There have already been three series of challenges, each with slightly
different problem formulations and datasets, and there is currently an
ongoing challenge for temporal relational data,2 as well as a future
challenge for computer vision. A detailed analysis of the AutoML
challenges from 2015 to 2018 is reviewed in [24].

Although a formal definition and review of AutoML exists [25], it is
aimed at an audience of generalists. Here we will address how AutoML
is specifically useful for the healthcare field. We decided to organize
this review based on what authors are attempting to automate: auto-
mated feature engineering, hyperparameter optimization, pipeline op-
timizers (addresses more than one component), and neural architecture
search. We will look at each of these four categories separately and
discuss how they can be applied in a healthcare setting.

2. Methods

We conducted a search for papers published between 2012 and
2019 discussing the field of automated machine learning (AutoML) in
four academic journal databases, including Scopus, Google Scholar,
Microsoft Academia, and CrossRef using a set of keywords, in disjunc-
tion. Specifically, we searched the following keyphrases: "automated

machine learning", "automl", "automatic machine learning", "auto ma-
chine learning" (see Suppl. Tab. 1 for the resulting AutoML paper col-
lection). We chose to exclude closed-source systems from this review.
We also chose to only review papers for which there was available
source code or links to project repositories. Papers with limited citation
counts (< 5 citations) or AutoML systems with fewer than 10 followers
on GitHub were also excluded. One author (JW) reviewed titles and
abstracts identified from the database search to verify that a paper
actually discussed a topic relevant to the field of AutoML. Identified
papers were then read in full and the reference lists were searched for
additional sources of review. Additionally, papers were further orga-
nized into two topics: classical machine learning algorithms and deep
neural networks. There has been substantial work done in both fields,
and we have organized our review with dedicated sections describing
both subfields of interest. For a detailed count of the papers included
and excluded at each stage, refer to Fig. 2.

3. Automated feature engineering

When given a supervised machine learning problem, a data scientist
is often tasked with creating explanatory variables, otherwise known as
features, that are predictive of the outcome of interest. Successful fea-
ture engineering requires the creation of features that not only provide
useful insights into the data itself, but also takes into account any
limitations of the learning algorithm that is being used. It is important
to note that this is not a trivial task, as the performance of a given
machine learning algorithm is heavily dependent upon the quality of
the input features [26]. The creation of these features often requires
extensive domain knowledge, and therefore is usually performed
manually by a human expert in a trial-and-error fashion. This makes
feature engineering a critical and time-consuming step in the machine
learning pipeline.

In order to help alleviate the difficulties that come with feature
engineering, automated feature engineering frameworks have emerged
with the goal of constructing novel feature sets that improve the per-
formance of subsequent machine learning tools. Notably, platforms like
Kaggle3, Grand Challenges in Biomedical Image Analysis4, and others,
can help alleviete this part too, by outsourcing the required effort via
open competitions, but do require lenghtly efforts around data anon-
ymization. Automated feature engineering differs from the field of re-
presentation learning [27], which employs deep learning techniques to
find a useful feature space for unstructured data types, such as images,
text, and audio/video. While representation learning is not considered
an AutoML technique, it still plays an important role in the machine
learning pipeline for these unstructured data formats, especially in
healthcare where it has been shown to provide useful representations of
EHR data that facilitates clinical predictive modeling [28,29].

The task of automated feature engineering can be more formally
explained as follows. Given a set of m features, = …F f f f[, , ,]m1 2 , a target
vector, y, and a machine learning algorithm,M , let P F y(,)M reflect the
model performance on the given features and target vector. Let us also
consider k transformation functions, …t t t, , , k1 2 , and a sequence of
transformations = …s t t f(())i1 2 . Our goal is to find a set of sequences of
transformations = …S s s[, ,]r1 to produce = +F F Snew

' where ⊂F F'

which satisfies

P F yargmax (,)
S

newM

Each set of transformations requires training and evaluating a model
in order to verify its performance, and therefore it is clearly computa-
tionally infeasible to verify all possibilities. Several different ap-
proaches have emerged over the last couple of years in order to deal

1 http://automl.chalearn.org/
2 https://www.4paradigm.com/competition/kddcup2019

3 https://www.kaggle.com/
4 https://grand-challenge.org/

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

2

http://automl.chalearn.org/
https://www.4paradigm.com/competition/kddcup2019
https://www.kaggle.com/
https://grand-challenge.org/

with this issue.
The first approach is the so-called “expand-reduce” method, which

was first introduced by Kanter et al. in their development of the Data
Science Machine (DSM) [30]. Speaking generally, this method works by
applying all feature transformations at once to obtain … ×f f f[, , ,]m1 2

… = ×t t t m k[, , ,]k1 2 features. This is then followed by a feature se-
lection step and hyperparameter tuning. The upside of this approach is
that there is only one modeling step, excluding the feature selection.
However, this approach does not consider compositions of functions
and has a performance bottleneck in the feature selection step, given
the large number of features to consider. After it was originally in-
troduced, several variations of the “expand-reduce” method have been
published, including ExploreKit [31], the One Button Machine (OBM)
[32], and most recently AutoLearn [33]. Additionally, the original
creators of the DSM have since released Featuretools [34], an open-
source implementation of their automated feature engineering algo-
rithm, and FeatureHub [35], a collaborative data science platform in
which skilled data scientists may contribute code to perform feature
engineering and present experimental results on how crowd-generated
features perform with an AutoML model. ExploreKit and AutoLearn also
have open source implementations. These algorithms vary slightly in
how they perform the feature selection step and in which feature
transformations they apply, but there is no clear winner for which one
universally performs the best.

A second approach to this problem is to use genetic programming,
an evolutionary algorithmic technique. The main idea behind genetic
programming is to encode a computer program as an artificial “chro-
mosome” and to evaluate the fitness of this encoding with respect to
some pre-defined task, and ideally improve performance over time. In
terms of a feature engineering task, Tran et al. [36] proposed genetic
programming using a tree-based representation that can be used for
both feature construction and implicit feature selection. While this
method did provide favorable results in certain experiments, it also
provides an unstable solution in which overfitting frequently occurs.
However, their method did provide a slight improvement in speed
compared to the expand-reduce approach.

Other approaches to the feature engineering problem include a
hierarchical organization of transformations, meta learning, and re-
inforcement learning. Khurana et al. proposed the “Cognito” system
[37] which explores various feature construction choices in a hier-
archical manner, while progressively maximizing the accuracy of the
model through a greedy search strategy. This is done by constructing a
directed acyclic transformation graph and applying transformations to
all valid input features. This emulates a human trial-and-error process,
allowing one to use data-level transformations as logical blocks for
measuring performance over time. It has the added benefit of allowing
compositions of transformations. The same authors later proposed a
similar strategy that employs reinforcement learning [38], whereby a
transformation graph is explored via a reinforcement learning agent.

The most recent contribution of these authors to the field of automated
feature engineering is their “Learning Feature Engineering” (LFE)
technique [39] which uses meta learning. LFE works by learning how
effective a given transformation (e.g., arithmetic or aggregate opera-
tors) on numerical features truly is by learning from past feature en-
gineering experiences. Given a new dataset, LFE recommends a set of
useful transformations to be applied without model evaluation or an
explicit feature expansion/selection step. This approach uses a sub-
stantially lower amount of computational resources and was shown to
improve upon previous feature engineering approaches on a majority of
the datasets it was tested on. (Table 1)

4. Hyperparameter optimization

Every machine learning model has two types of parameters: hy-
perparameters that the model designer must manually set prior to
training, and normal parameters that are optimized in the training of
the model. These hyperparameters are settings that control the beha-
vior of the machine learning algorithm in some way, often in a way that
is highly specific to that algorithm. The most basic task of AutoML is to
automatically set these hyperparameters to optimize model perfor-
mance. The performance of most machine learning methods can depend
critically upon these hyperparameter settings, and thus it is one of the
most important tasks in machine learning [40].

Hyperparameter optimization is often considered an “art”, requiring
practitioner's experience, general rules of thumb, and sometimes just a
brute-force search. In order to make machine learning more accessible
to non-technical professionals, computer science researchers have
proposed several different automatic hyperparameter selection
methods. These methods attempt to quickly find an optimal, or at least
an effective, combination of hyperparameter values that maximizes
some performance metric for the given machine learning task. These
methods are also often given a specified computational resource limit,
such as a limited search time or limited memory usage. Using an au-
tomatic hyperparameter selection method can greatly reduce the
burden on those building a machine learning solution, and several se-
lection algorithms have been shown to find hyperparameter values that
are equally good or better than manual tuning by machine learning
experts [41,42].

The problem of hyperparameter optimization can be more formally
defined as follows. Let M denote some machine learning algorithm
with N hyperparameters. The domain of the i-th hyperparameter is
denoted as Λi with the overall hyperparameter configuration space
being = …Λ Λ , ,Λn1 . Let any given combination of hyperparameters be

∈λ Λ and the machine learning model instantiated with this particular
configuration of hyperparameters be λM . The domain of a hyperpara-
meter can be real-valued, integer-valued, binary, or categorical. For
integer- and real-valued hyperparameters, the domains are typically
bounded. It is also important to realize that the configuration space can

Fig. 1. Typical components of a machine learning problem pipeline. The first step consists of preparing the data. This involves loading and cleaning the data for use in
the system, as well as applying any transformations, normalizations, or encodings. The next step involves selecting features to be used in creating the model. This
might also involve feature engineering, which is the process of using domain knowledge to create new features to help improve the machine learning model. The next
stages involve an iterative process in which one builds, trains, optimizes, validates, and selects a given machine learning algorithm to use for a given problem.

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

3

contain conditionality if a given hyperparameter is only relevant if
another hyperparameter takes on a certain value. Given some dataset
D , the goal is to find

=⋆ Vλ argminE[(, , ,)]
λ

λL M D Dtrain valid

where V (, , ,)λL M D Dtrain valid measures the loss of the model

Fig. 2. The number of papers included/excluded at each stage in the screening phase of this literature review.

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

4

generated by algorithmM with hyperparameters λ on the training data
Dtrain and validated on validation data Dvalid .

The simplest and most naive hyperparameter optimization strate-
gies make no assumptions about the search space. Grid search is the
simplest way to perform hyperparameter optimization, as it is a brute-
force method in which the user specifies a finite set of values for each
hyperparameter, and then evaluates the Cartesian product of these sets.
This algorithm clearly suffers from the curse of dimensionality, as the
search space grows exponentially with the size of the configuration
space, and therefore it is often not a suitable choice given its large time
requirements. A simple alternative to grid search is random search.
Random search relies on sampling hyperparameter configurations from
a user-specified set of hyperparameter values until a certain budget for
the search is exhausted. Despite the fact that random search does not
search as many configurations as grid search, it has still been shown to
perform empirically better than grid search [43]. While grid search and
random search are simple techniques that can serve as a useful baseline,
neither of these methods make use of past performance evaluations and
are therefore inefficient at exploring the search space.

Another class of hyperparameter optimization methods are “opti-
mization from samples” methods [44], which are guided searches that
iteratively generate new configurations based on the previous perfor-
mance of prior configurations. Two popular examples of these types of
methods are particle swarm optimization (PSO) [45] and evolutionary
algorithms [46], both of which are inspired by biological behaviors.
PSO is inspired by how biological communities interact at both the
individual and the social level. PSO works by updating the configura-
tion space at each iteration by moving the solution towards the best
individual configurations and searching the neighboring configurations
in later iterations. In contrast, evolutionary algorithms are inspired by
biological evolution, and work by maintaining a population (config-
uration space) and improves the population by applying mutations
(small perturbations) and crossover (combining individual solutions) to
obtain a “generation” of better configurations. One of the best im-
plementations of these population-based methods is the covariance
matrix adaption evolution strategy (CMA-ES) [47], which samples
configurations from a multivariate Gaussian distribution whose mean
and covariance are updated in each generation.

In recent years, Bayesian optimization has emerged as the state-of-
the-art optimization framework for AutoML systems. Bayesian optimi-
zation is a probabilistic, iterative algorithm with two main components:
a surrogate model and an acquisition function. Bayesian optimization
builds a probabilistic surrogate model, usually in the form of a Gaussian
process [42,48] or a tree-based model [49,50], which is used to map the
different hyperparameter configurations to their performance with
some measure of uncertainty. Using this surrogate model, an acquisi-
tion function is then defined to determine the potential utility of a given
configuration, and therefore balance exploration and exploitation
during the search process. Bayesian optimization has a strong theore-
tical justification, and has been shown to work very well in practice
[42,51–54] making it the most widely used method for optimizing
hyperparameters. Several different open source implementations of

Bayesian optimization exist, including Hyperopt [55], an unofficial
implementation of Google Vizier [56], SMAC [50], Spearmint [57],
Hyperas [58], and Talos [59]. For those interested in a more detailed
explanation of Bayesian optimization, we refer to [60].

While much of the research done on hyperparameter optimization is
impressive, most of these methods are still limited in efficiency within
the context of large biomedical data environments. The amount of time
required to search for optimal hyperparameters grows quite rapidly as
the configuration space, dimensionality, and number of data points
grows. In order to overcome some of these limitations, Zeng and Luo
[21] propose an implementation of Bayesian optimization that uses
progressive sampling [61] with the goal of building a tool to enable
healthcare researchers to perform machine learning on their own. Si-
milarly, the BOHB algorithm [62] has combined the principles of
Bayesian optimization and Hyperband [63], a bandit search strategy
that employs successive halving [64], in an attempt to build a more
robust and efficient hyperparameter optimizer that works at scale. For
those interested in learning more about the limitations of hyperpara-
meter optimization in healthcare, we refer to [65]. Finally, for anyone
interested in a more detailed look at the intricacies of hyperparameter
optimization, we refer to [66].

5. Pipeline optimizers

The previous two sections only discussed methods that attempt to
handle one component of the machine learning pipeline. However, in
order for a machine learning system to be truly usable “off-the-shelf” by
a non-expert, there is a need for AutoML systems that can be used to
handle a variety of different tasks. In this section, we will consider these
systems and refer to them as pipeline optimizers. Each pipeline opti-
mizer performs one or more tasks in order to help automate the ma-
chine learning process.

The first pipeline optimizer we will consider is Auto-WEKA [67], an
AutoML system based on the popular machine learning and data mining
platform, WEKA [68]. Auto-WEKA was the first AutoML system that
considered the problem of simultaneously selecting a machine learning
algorithm and optimizing its hyperparameters; a problem which the
creators dubbed the combined algorithm selection and hyperparameter
optimization (CASH) problem. The CASH problem can be viewed as a
single hierarchical hyperparameter optimization problem, where the
choice of algorithm is itself a hyperparameter. The CASH problem can
be more formally defined as follows.

First, let us consider the model selection problem. Let us consider a
set of machine learning algorithms, M , and some limited amount of
training data = …y y[(x ,), , (x ,)]n n1 1D . Our goal is to find the algorithm

∈⋆M M that gives us optimal performance. That is, we want to find

∑∈⋆
=k

argmin 1 (, ,)
i

k

1
() ()M L M D D

M
train
i

valid
i

where (, ,)() ()L M D Dtrain
i

valid
i is the loss achieved by M when trained

on ()Dtrain
i and evaluated on ()Dvalid

i . This approach uses k-fold cross-
validation [69] for assessing model performance. Using this formula-
tion of the model selection problem, and the formulation of the hy-
perparameter optimization problem given in section II, we can define
the CASH problem formally as follows.

Given a set of algorithms = …M M[, ,]k(1) ()M with associated hy-
perparameters spaces …Λ , ,Λk(1) () , the CASH problem is defined as

∑∈⋆
=

⋆ k
argmin 1 (, ,)

i

k

λ 1 λ
() ()

λ

M L M D D
M

train
i

valid
i

Given this formulation, the authors were able to exploit Bayesian
optimization methods to obtain high quality results in a reasonable
amount of time. The Auto-WEKA platform utilizes the SMAC [50] op-
timization algorithm and solves the CASH problem using the learners
and feature selectors implemented in the WEKA platform. Extensive
empirical experiments on 21 prominent datasets showed that Auto-

Table 1
Summary of the different automated feature engineering tools discussed in this
section.

Method Feature Engineering Technique Citation Count

Deep Feature Synthesis [30] Expand-Reduce 141
ExploreKit [31] Expand-Reudce 53
One Button Machine [32] Expand-Reduce 32
AutoLearn [33] Expand-Reduce 16
GP Feature Construction [36] Genetic Programming 68
Cognito [37] Hiearchrial Greedy Search 38
RLFE [38] Reinforcement Learning 21
LFE [39] Meta-Learning 34

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

5

WEKA often outperformed standard algorithm selection and hy-
perparameter optimization methods, especially on large datasets. Since
its original release, the creators have made considerable improvements
to the system and have dubbed the newer version as Auto-WEKA 2.0
[70]. Auto-WEKA 2.0 now supports regression problems (not just
classification), optimization on all metrics available in WEKA, and is
now fully integrated within the WEKA ecosystem rather than being a
standalone piece of software.

The next pipeline optimizer we will consider is Auto-sklearn [71],
which is often considered the state of the art for AutoML systems. The
Auto-sklearn platform is based on the popular Python machine learning
library scikit-learn [72]. Auto-sklearn also attempts to solve the CASH
problem defined previously by the Auto-WEKA paper, and contains two
improvements to the previous AutoML approach. The first improve-
ment is a meta-learning step that is meant to warmstart the Bayesian
optimization procedure [73] and therefore create a boost in efficiency.
This meta-learning approach works by first evaluating a set of meta-
features for 140 different datasets in the OpenML repository [74] (i.e.
number of data points, number of features, data skewness, etc.) and
then applying Bayesian optimization to determine and store a machine
learning pipeline with strong empirical performance for each dataset.
Then, when given a new dataset, the algorithm computes its meta-
features, ranks all the other datasets by L1 distance to D in the meta-
feature space, and selects the stored machine learning pipelines for the

=k 25 nearest datasets for evaluation before starting Bayesian optimi-
zation. The second improvement made by Auto-sklearn was the auto-
mated ensemble construction of models evaluated during optimization.
While Bayesian optimization is data-efficient, it is also a wasteful pro-
cedure given that all the models it trains during the course of a given
search are typically lost, including models that perform almost as well
as the best performer. Rather than discarding these models, Auto-
sklearn stores them and uses a post-processing method to construct an
ensemble out of them. This ensemble construction avoids having to
stick to one pipeline configuration and is therefore more robust and less
prone to overfitting. It can also improve performance given the well-
known tendency for ensembles to outperform individual models [75].
In empirical experiments, the Auto-sklearn system performed better
than or equally as well as the Auto-WEKA system in 86 % of cases and
also won first place in the previously mentioned ChaLearn AutoML
challenge [76]. Despite its good performance, the original Auto-sklearn
platform is limited to handling datasets of relatively modest size and
has since been extended to handle larger datasets. The newest release of
the system, known as PosSH Auto-sklearn [77], makes use of the BOHB
algorithm described in section II, and has created a large increase in
speed for the Auto-sklearn system. This PoSH Auto-skelarn system won
the second iteration of the ChaLearn AutoML challenge. Nonetheless,
Auto-sklearn and Auto-WEKA are still not well equipped to handle large
clinical datasets, and we will elaborate on this problem in section VI.

A third popular pipeline optimizer is one that was originally de-
veloped to automate biomedical data science, but which has now been
implemented to handle any machine learning task. This platform,
known as the Tree-based Pipeline Optimization Tool (TPOT) [78], is an
open source genetic programming-based AutoML system that is meant
to handle feature preprocessing, model selection, and hyperparameter
optimization tasks for a given machine learning problem. TPOT is a
wrapper for scikit-learn, the Python machine learning library; therefore
every machine learning operator corresponds to a machine learning
algorithm that is present in that library. The TPOT system specifically
uses supervised classification operators (i.e. Random Forest, KNN, Lo-
gistic Regression, etc.), feature preprocessing operators (i.e. Scalers,
PCA, Polynomial Featurization, etc.), and feature selection operators
(i.e. Variance Thresholders, RFE, etc.). In order to combine these op-
erators into a full-fledged pipeline, they are all treated as genetic pro-
gramming primitives, and genetic programming trees are constructed
from them. To automatically generate and optimize these pipelines, the
authors used a genetic programming algorithm described by [79],

which is implemented in the Python package DEAP [80]. In empirical
experiments conducted with the TPOT system, TPOT frequently dis-
covered pipelines that performed statistically significantly better than a
baseline Random Forest model, but the authors provided no comparison
to other AutoML systems. The TPOT system was also run with a guided
search and a random search mechanism, and they found that the
random search mechanism often achieved comparable accuracy to the
guided search mechanism. TPOT also provides a more flexible machine
learning pipeline than the original Auto-sklearn system, but this
sometimes causes the pipelines to be overfit on the data. Despite some
of these drawbacks, TPOT receives regular improvements, and is still
one of the most popular AutoML systems used to date.

While Auto-WEKA, Auto-sklearn, and TPOT are the three dominant,
open-source AutoML pipeline optimizers to date, other attempts at
approaching the problem have emerged in the past few years. The first
we will discuss is the TuPAQ system [81], which was first published a
year after the Auto-WEKA system. While essentially attempting to solve
the same CASH problem, the authors frame joint model selection and
hyperparameter optimization problem as a query optimization problem
of their search space. TuPAQ uses a bandit search for its optimization
based of properties of the data and the user-defined computational
budget and is built upon the MLbase architecture [82]. Next, we have
Auto-Tuned Models (ATM) [83], which is meant to be a distributed,
collaborative, and scalable system for AutoML. The ATM platform is
meant to allow data scientists to simply upload a dataset, select a de-
sired machine learning method, and choose a hyperparameter range to
search over. ATM then uses either a hybrid Bayesian/bandit optimiza-
tion system or a model recommender system that uses meta-learning to
optimize the pipeline. This system comes from the same authors as the
DSM, which was mentioned in section III, and thus ATM also employs a
feature engineering step. ATM is meant to be an automated feature
engineer and a hyperparameter optimizer, which was demonstrated to
match or exceed regular human performance on hundreds of different
datasets, and take approximately 1/1000th of the time. Around the
same time as the ATM system was published, a different technique
known as “Automatic Frankensteining” [84] emerged to solve the CASH
problem using ensemble learning. Similar to the Auto-sklearn approach,
the Automatic Frankensteining framework builds and selects well-op-
timized models, and then ensembles them to further boost prediction
performance, as well as reduce the input space for the subsequent
model selection component. When compared to Auto-WEKA and Auto-
Sklearn on 80 different classification datasets from the UCI Machine
Learning repository [85], this framework was able to outperform its
competitors on the majority of datasets in the same CPU time, further
demonstrating the usefulness of ensemble learning.

In the last year alone, several different approaches to the AutoML
pipeline optimization problem have been developed. ML-Plan [86] uses
hierarchical task networks (HTNs) [87], which have been used as an AI
planning tool in the past [88]. ML-Plan encodes an HTN problem that
divides the AutoML problem into two phases: algorithm selection and
algorithm configuration. Their preliminary results show that ML-Plan is
somewhat competitive with Auto-WEKA, but less so with Auto-sklearn.
The authors are currently working to simultaneously optimize over
pipelines with algorithms from the WEKA and scikit-learn libraries
[89]. Autostacker [90], which was inspired by the ensemble learning
technique known as stacking [91], uses an evolutionary algorithmic
approach to perform hyperparameter optimization over hierarchical
stacked machine learning models. This makes it similar to the TPOT
approach, but it uses ensemble learning. Autostacker does not perform
any data preprocessing or feature selection/engineering, yet it still
performs competitively with TPOT, and is much faster. AlphaD3M [92]
takes a reinforcement learning approach to the pipeline optimization
problem by representing the model discovery process as a single-player
game in which the “player” iteratively builds a pipeline by inserting,
deleting, or replacing pipeline parts. This inherently makes the re-
sulting pipeline incredibly interpretable, as it includes all the actions

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

6

and decisions which led to final pipeline creation. The authors use a
sequence modeling technique that employs deep neural networks and
Monte Carlo tree searches (MCTS), similarly to [93], to solve the op-
timization problem. AlphaD3M performs competitively on regression
and classification problems from the OpenML repository, and compu-
tation times are an order of magnitude faster than other AutoML sys-
tems. One last notable approach uses probabilistic matrix factorization
to tackle the AutoML problem [94] by modeling the problem of pre-
dicting machine learning pipeline performance as a collaborative fil-
tering problem [95], which is frequently used in recommender systems.
The empirical results indicate that this strategy can outperform Auto-
sklearn in a majority of cases. These pipeline optimization methods are
all summarized in the table below based on their capabilities.(Table 2)

6. Neural architecture search

In recent years, machine learning has been revolutionized by re-
search in the field of deep learning [96]. Broadly speaking, deep
learning is concerned with the construction of computational models,
known as neural networks, that are composed of several different
processing layers to learn representations of input data and map it to its
associated output. Deep learning methods have significantly improved
the state-of-the-art in perceptual learning tasks such as speech re-
cognition [97,98], natural language processing [99–101], visual re-
cognition [102,103], etc., as well as in tasks with large volumes of big
data, such as genomics [104,105]. These deep learning algorithms use
“neural networks” to find associations between inputs and outputs, and
the basic structure of these networks are shown in Fig. 3.

A neural network is composed of three types of layers: an input
layer, hidden layers, and an output layer. All layers are composed of
nodes, which are sometimes called neurons. In the case of the hidden
layer, the nodes are called hidden units. The input layer takes in some
numerical representation of the data. The output layer produces a
prediction. The hidden layers perform transformations on the data
which are usually nonlinear. The outputs of each neuron are then fed
into the subsequent layers, with different weights along the connections
between the different neurons. For more detail on how these networks
work, see [106]. The previously mentioned state-of-the-art neural net-
works are much larger than the network in Fig. 3, and often have much
more complex network “architectures”. Often thought of as a “black
box” computational model, these networks can be incredibly complex,
consisting of hundreds of millions of parameters to train, and their
performance is highly dependent on their architecture and choice of
hyperparameters [107–109]. The widespread success of these deep
neural networks has created a need for architecture engineering, where
data scientists are tasked with manually designing increasingly complex
neural architectures. This has led to an increased interest among Au-
toML researchers to invest their time in the field of neural architecture
search (NAS), which aims to find the best neural network architecture

Ta
bl
e
2

Su
m
m
ar
y
of

th
e
di
ff
er
en

t
A
ut
oM

L
Pi
pe

lin
e
op

ti
m
iz
er
s
di
sc
us
se
d
in

th
is

se
ct
io
n.

M
et
ho

d
O
pt
im

iz
at
io
n
A
lg
or
it
hm

D
at
a
Pr
e-
Pr
oc

es
si
ng

Fe
at
ur
e
En

gi
ne

er
in
g

M
od

el
Se

le
ct
io
n

H
yp

er
pa

ra
m
et
er

O
pt
im

iz
at
io
n

En
se
m
bl
e
Le

ar
ni
ng

M
et
a-
Le

ar
ni
ng

C
it
at
io
n
C
ou

nt

A
ut
o-
W
EK

A
[6
7,
70

]
Ba

ye
si
an

O
pt
im

iz
at
io
n
(S
M
A
C
)

✓
✓

✓
70

3
A
ut
o-
Sk

le
ar
n
[7
1,
77

]
Jo

in
t
Ba

ye
si
an

O
pt
im

iz
at
io
n
an

d
Ba

nd
it
Se

ar
ch

(B
O
H
B)

✓
✓

✓
✓

✓
54

2

TP
O
T
[7
8]

Ev
ol
ut
io
na

ry
A
lg
or
it
hm

✓
✓

✓
✓

84
Tu

PA
Q

[8
1]

Ba
nd

it
Se

ar
ch

✓
✓

94
A
TM

[8
3]

Jo
in
t
Ba

ye
si
an

O
pt
im

iz
at
io
n
an

d
Ba

nd
it
Se

ar
ch

✓
✓

✓
29

A
ut
om

at
ic

Fr
an

ke
ns
te
in
in
g
[8
4]

Ba
ye

si
an

O
pt
im

iz
at
io
n

✓
✓

✓
12

M
L-
Pl
an

[8
6]

H
ie
ra
rc
hi
ca
l
Ta

sk
N
et
w
or
ks

(H
TN

)
✓

✓
✓

24
A
ut
os
ta
ck
er

[9
0]

Ev
ol
ut
io
na

ry
A
lg
or
it
hm

✓
✓

✓
18

A
lp
ha

D
3M

[9
2]

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

/M
on

te
C
ar
lo

Tr
ee

Se
ar
ch

✓
✓

✓
8

C
ol
la
bo

ra
ti
ve

Fi
lt
er
in
g
[9
4]

Pr
ob

ab
ili
st
ic

M
at
ri
x
Fa

ct
or
iz
at
io
n

✓
✓

✓
✓

29

Fig. 3. The basic structure of a neural network, composed of input, hidden, and
output layers.

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

7

for any given learning task and dataset. NAS is an important subfield of
AutoML, with some overlap with hyperparameter optimization, and it
will be the topic of discussion in this section.

As discussed in [110], NAS methods are best categorized by three
factors: search space, search strategy, and performance estimation
strategy. The search space refers to the potential neural architectures
that can be represented by the NAS algorithm, whereas the search
strategy refers to how this space is explored. Lastly, the performance
estimation strategy refers to how the NAS algorithm evaluates a given
architecture’s performance on some task given some training dataset.
All three of these components are non-trivial and come with important
trade-offs to consider. The search space is susceptible to potential
human bias if one tries to simplify the search with some sort of meta-
learning technique, but the NAS may be slower if it does not do so. On
the other hand, the search strategy must balance the notorious ex-
ploration-exploitation trade-off [111] as it aims to find the optimal
architecture quickly without reaching a premature sub-optimal solu-
tion. Finally, performance estimation can be done simply by doing a
standard training and validation of a neural architecture, but this is
computationally expensive to carry out. We will now consider how
different NAS algorithms address these issues.

6.1. Search space

The choice of search space significantly determines how difficult the
optimization problem of NAS becomes, as optimization in this case is
often non-continuous and usually high dimensional, given that more
complex models tend to perform better. The simplest of search spaces is
that of simple feed-forward neural networks [112], as demonstrated in
Fig. 3, where the neural architecture A is written as a sequence of n
layers, where the ith layer Li receives its inputs from layer i – 1 and its
output serves as the input for layer i + 1. This search space is therefore
parameterized by the number of layers n, the type of operation each
layer can execute (i.e. nonlinear transformations, convolutions,
pooling, etc.), and the hyperparameters associated with these opera-
tions (i.e. kernel and stride size for convolutional layers), thus making
the search space a conditional one of non-fixed length. However, these
simple feed-forward networks are often outperformed by more complex
architectures. This has led to more recent NAS work [113–117] which
focuses on incorporating modern neural design elements, such as skip
connections [118], to search over the space of multi-branch networks
[119]. Given that a lot of hand-crafted neural architectures use certain
repeated motifs [115], some more recent NAS methods [114,120–123]
propose searching for motifs, also known as cells or blocks, rather than
for whole architectures. This motif search space significantly reduces
the search space, while also achieving better performance than previous
work [124] and lending itself more easily to transfer learning. There-
fore, this has become the dominant method for establishing a search
space in NAS.

6.2. Search strategy

As discussed previously in section II, Bayesian optimization has
become the state-of-the-art for hyperparameter optimization, and early
on that was the case for NAS as well. Bayesian optimization led to state-
of-the-art computer vision architectures [125,126], and the first auto-
matically tuned network to outperform human experts in a competition
[127]. However, NAS really took off when Zoph and Le [124] framed
NAS as a reinforcement learning (RL) [128] problem and obtained
competitive results on the benchmark CIFAR-10 [129] and Penn Tree-
bank [130] datasets. In this RL framework, the generation of a neural
architecture is considered the agent’s action and the action space is the
search space. The agent’s reward mechanism is then determined by the
performance estimation strategy of the given NAS algorithm. Different
RL approaches [114,121,124,131] differ in the agent’s learning policy
and how it is optimized.

An alternative to the popular RL approach is neuro-evolutionary
approaches that use evolutionary algorithms for exploring the search
space. NAS evolutionary algorithms [132–138] evolve a population of
neural networks, and in every evolution step, at least one model from
the population is sampled and serves as a parent to generate offspring
by applying mutations to it. These mutations could be adding or re-
moving a layer, altering hyperparameters, adding a skip connection,
etc. After the offspring are generated, their fitness is evaluated using the
performance estimation strategy, and they are added to the population
of models. Different neuroevolutionary approaches vary by how they
sample parent architectures, update populations, and generate off-
spring.

Given that RL and evolutionary algorithms are the dominant ap-
proaches for NAS, a recent study by Real et al. [139] compared the two
methods along with a random search approach. Their results indicate
that RL and evolutionary algorithms perform equally well in terms of
prediction performance, but evolutionary approaches had a slight speed
advantage and could find smaller models that perform just as well as
more complex ones. While both methods outperformed random search,
the margin was rather small with random search achieving a 4% test
error on CIFAR-10, and RL and evolutionary approaches achieving 3.5
%.

While RL and neuroevolution are the standard for NAS, other search
strategies have been suggested as well. Haifeng et al. recently proposed
Auto-Keras [140], which is built upon the popular deep learning library
Keras [141] and uses Bayesian optimization and network morphisms
[142], a technique to alter the architecture of a network but keep its
functionality, to speed up their search strategy [116]. and [143] also
use network morphisms, but not Bayesian optimization. AdaNet [144]
adaptively learns both the structure of the network and its weights.
PNAS [123] uses sequential-model based optimization to search for
structures in order of increasing complexity. DeepHyper [145] and
[146] attempt to use Bayesian optimization to jointly learn network
structure and hyperparameters to speed up the typical process of se-
parating these two tasks. DeepArchitect [147] and [148] model the
search space in a tree-structure and use Monte Carlo Tree Search. NASH
[116] and GNAS [149] propose a greedy search method by moving in
the direction of better performing architectures using a hill climbing
approach. Finally, NAO [150] and DARTS [120] use a continuous re-
laxation of the search space constraints, thereby enabling the use of
gradient-based optimization, which allows for the convex combination
of multiple operations to be applied to the architecture at each itera-
tion.

6.3. Performance estimation strategy

In order to guide these previously mentioned search strategies, a
NAS algorithm needs a way to measure the performance of a given
architecture that is being considered. While it would be very simple to
train a given architecture on training data and evaluate its performance
on a validation set, this is computationally expensive, sometimes taking
thousands of GPU days [124,136]. In order to reduce this computa-
tional burden, several different techniques have been proposed. Some
simple techniques include estimating performance with shorter training
times [114,146], using a subset of the full training data [51], or using
lower resolution images in computer vision tasks [151], but these
techniques also introduce bias into the performance estimates. This bias
isn’t necessarily problematic as long as the relative rankings stay stable,
but recent work suggests that this may not always be the case [146].
Another recent proposal for estimating performance is to use learning
curve exploitation [126,152,153], which attempts to predict from the
initial learning curves those architectures that will have a poor per-
formance, and terminate those architectures to speed up the search
[123]. also proposes performance prediction, but rather than using
learning curves, the predictions are based on past performance of si-
milar architectural/cell styles. The problem with performance

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

8

prediction is that in order to be useful, it requires good predictions in a
very large search space with only a few evaluations. Another promising
method to speed up performance estimation is to use a “one shot”
method [117,120,121,154] that treats all neural architectures as sub-
graphs of a larger super-graph, and shares weights between archi-
tectures that have edges of this super-graph in common. Therefore, only
the weights of a single model in the subgraph need to be trained, and
any subsequent architectures in this same subgraph can be evaluated
without any separate training. This method significantly speeds up
performance estimation of architectures, but this method also suffers
from severe bias. Despite this apparent flaw, it is has been shown to
rank architectures reliably [154].

It is important to note that while NAS have achieved impressive
performance on a variety of different tasks, it fails to provide any in-
sights on why specific architectures work well. It has also been difficult
to compare the different methods for NAS, as measuring architecture
performance depends on a lot of factors other than the architecture
itself. However, the results of several different NAS algorithms on the
CIFAR-10 dataset is provided in Table 3. For those seeking a more
detailed review of NAS, please see [110].

7. Automated machine learning in healthcare

Despite the growing research in the field of AutoML, there has been
little work done in applying these techniques to the healthcare field
despite demonstrated need [65]. There are several key challenges to
applying machine learning in the healthcare space that make it very
difficult to deploy AutoML solutions. An important challenge in any
machine learning problem is assembling a high-quality, representative,
and diverse dataset. Ideally, the machine learning model would be
trained with data that exactly matches the format and quality of data
that would be used at a later point. In a clinical context, this is often
data in the electronic health records (EHR) format, which is proble-
matic because EHR data is known to be unreliable and prone to un-
wanted variability [156,157]. These problems exist mainly because
EHRs were originally designed for billing and coding and not necessa-
rily for analytics nor to actively improve quality of care [158]. Fur-
thermore, many health systems report using EHR systems that are only
partially interoperable [158], making it difficult to obtain full patient
histories. Not only is it difficult to apply any of the automated feature
engineering techniques discussed in this paper on EHR data, but
training machine learning models on this highly noisy data source may
lead to undesirable results anyways.

While the lack of high-quality data is one potential impediment to
deploying an AutoML system, a much bigger issue is the lack of trans-
parency in these black-box AutoML systems. This lack of transparency
in small decisions made by the system, such as what model configura-
tions have been searched, leads machine learning experts and novices
alike to question the automatic results. If users do not trust the AutoML
system they are attempting to use, they will hesitate to apply the results
of AutoML in critical applications [159], especially in healthcare where
interpretability and transparency of algorithms are crucial for a system
to be adopted into a work-flow [160]. In order to combat this issue,
Wang et al. have recently proposed the ATMSeer system [161] as an
interactive visualization tool that allows users to more easily analyze
and refine the search space for an AutoML system. ATMSeer offers vi-
sual summaries of the searched models to improve transparency, while
also allowing users to modify the search space in real time to improve
the controllability of AutoML systems. While ATMSeer was integrated
with the ATM system [83] described earlier, the authors state that
ATMSeer is algorithm agnostic and should be able to integrate with a
variety of AutoML frameworks. This is one example of a key tool that
can be used to overcome some of the current limitations of AutoML.

Another potential reason for the lack of AutoML solutions in the
healthcare space is that the current methods for machine learning pi-
peline optimization are inefficient for the type of large datasets that areTa

bl
e
3

Th
e
pe

rf
or
m
an

ce
of

se
ve

ra
l
di
ff
er
en

t
N
A
S
al
go

ri
th
m
s
on

th
e
C
IF
A
R
-1
0
da

ta
se
t.

N
A
S
A
lg
or
it
hm

Se
ar
ch

Sp
ac
e

Se
ar
ch

St
ra
te
gy

Pe
rf
or
m
an

ce
Es
ti
m
at
io
n
St
ra
te
gy

N
um

be
r
of

Pa
ra
m
et
er
s

Se
ar
ch

Ti
m
e
(G

PU
-d
ay

s)
Te

st
Er
ro
r
(%

)

La
rg
e-
sc
al
e
Ev

ol
ut
io
n
[1
36

]
Fe

ed
-F
or
w
ar
d
N
et
w
or
ks

Ev
ol
ut
io
na

ry
A
lg
or
it
hm

N
aï
ve

Tr
ai
ni
ng

an
d
V
al
id
at
io
n

5.
4M

26
00

5.
4

EA
S
[1
43

]
Fe

ed
-F
or
w
ar
d
N
et
w
or
ks

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

an
d
N
et
w
or
k
M
or
ph

is
m

Sh
or
t
Tr
ai
ni
ng

an
d
V
al
id
at
io
n

23
.4
M

10
4.
23

H
ie
ra
rc
hi
ca
l
Ev

ol
ut
io
n
[1
38

]
C
el
l
M
ot
if
s

Ev
ol
ut
io
na

ry
A
lg
or
it
hm

Tr
ai
ni
ng

an
d
V
al
id
at
io
n
on

pr
op

os
ed

C
N
N

C
el
l

15
.7
M

30
0

3.
75

N
A
S
v3

[1
24

]
M
ul
ti
-b
ra
nc

he
d
N
et
w
or
ks

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

N
aï
ve

Tr
ai
ni
ng

an
d
V
al
id
at
io
n

37
.4
M

22
40

0
3.
65

PN
A
S
[1
23

]
C
el
l
M
ot
if
s

Se
qu

en
ti
al

M
od

el
-B
as
ed

O
pt
im

iz
at
io
n
(S
M
BO

)
Pe

rf
or
m
an

ce
Pr
ed

ic
ti
on

3.
2M

22
5

3.
41

EN
A
S
[1
21

]
C
el
l
M
ot
if
s

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

O
ne

Sh
ot

4.
6M

0.
45

2.
89

R
es
N
et

+
R
eg

ul
ar
iz
at
io
n
[1
55

]
H
um

an
Ba

se
lin

e
26

.2
M

–
2.
86

D
A
R
TS

[1
20

]
C
el
l
M
ot
if
s

G
ra
di
en

t-
Ba

se
d
O
pt
im

iz
at
io
n

Tr
ai
ni
ng

an
d
V
al
id
at
io
n
on

pr
op

os
ed

C
N
N

C
el
l

3.
4M

4
2.
83

N
A
SN

et
-A

[1
14

]
C
el
l
M
ot
if
s

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

N
aï
ve

Tr
ai
ni
ng

an
d
V
al
id
at
io
n

3.
3M

20
00

2.
65

EE
N
A

[1
37

]
C
el
l
M
ot
if
s

Ev
ol
ut
io
na

ry
A
lg
or
it
hm

Pe
rf
or
m
an

ce
Pr
ed

ic
ti
on

8.
5M

0.
65

2.
56

Pa
th
-L
ev

el
EA

S
[1
15

]
C
el
l
M
ot
if
s

R
ei
nf
or
ce
m
en

t
Le

ar
ni
ng

Sh
or
t
Tr
ai
ni
ng

an
d
V
al
id
at
io
n

14
.3
M

20
0

2.
30

N
A
O

[1
50

]
C
el
l
M
ot
if
s

G
ra
di
en

t-
Ba

se
d
O
pt
im

iz
at
io
n

Pe
rf
or
m
an

ce
Pr
ed

ic
ti
on

12
8M

20
0

2.
11

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

9

so common in the biomedical environment. In order to address some of
these issues, Luo has proposed two software systems, MLBCD [162] and
PredicT-ML [163], that are designed to automate machine learning for
big clinical data. These systems are meant to specifically address effi-
ciency issues [21], as well as common properties of clinical data in
EHRs, such as temporal aggregation of clinical variables or processing
data stored in the Entity-Attribute-Value (EAV) model [164], that
sometimes limit the application of AutoML in healthcare. However,
despite these systems’ promising designs, they have not yet been
clinically implemented, to our knowledge.

While the MLBCD and PredicT-ML systems have not been im-
plemented, there have been some smaller use cases of AutoML in
healthcare. Recently, AutoPrognosis [165] has emerged as a system for
automatically constructing a machine learning pipeline that is tailored
to the task of clinical prognosis. This system makes use of Bayesian
optimization techniques to search the model and hyperparameter
space, and even provides clinicians with association rules that link
patients’ clinical data to their predicted risk strata. The AutoPrognosis
system also performs missing data imputation and feature preproces-
sing, and is able to handle different types of clinical data including
longitudinal and time-to-event data. The creators of this system per-
formed empirical experiments that showed that their AutoML technique
outperformed traditional clinical scores, Auto-sklearn, Auto-WEKA, and
TPOT in terms of Area Under the Curve (AUC) for prognostic modeling.
Recently, the AutoPrognosis system has been shown to improve the
accuracy of cardiovascular disease risk prediction [166], as well as
cystic fibrosis prognostication [167], compared to scoring systems
based on conventional risk factors. While the creators of AutoPrognosis
created their own AutoML system, Orlenko et al. used the TPOT system
for clinical metabolic profiling of patients exposed to metformin
monotherapy [168]. Both of these examples point to the potential for
AutoML to become a critical tool for helping healthcare practitioners
and researchers turn large clinical data into actionable insights that
help improve the quality of care.

8. Conclusion

Automated machine learning is an emerging research field within
computer science that has the potential to help non-experts use ma-
chine learning off-the-shelf. We have reviewed the literature on a wide
array of AutoML techniques, including hyperparameter optimization,
automated feature engineering, pipeline optimization, and neural ar-
chitecture search. While the ChaLearn AutoML Challenges have been
able to benchmark a handful of AutoML pipeline optimizers on stan-
dardized hardware and specific machine learning tasks, there is still an
opportunity for other benchmarking platforms, such as Kaggle, to step
in and better evaluate other existing tools/systems in a standardized
manner in order to guide users when selecting which tools to use. It is
worth mentioning that while our review has focused on open source
AutoML tools, there are several industry products as well, including
Google Cloud’s AutoML system [169], Amazon SageMaker [170] and
Amazon Comprehend [171], Microsoft Azure AutoML [172], H20 Dri-
verless AI [173], BigML’s OptiML [174], and DataRobot [175]. There
has been some work that attempts to benchmark the open-source auto-
sklearn and TPOT systems against H20′s product and the results favored
auto-sklearn for classification and TPOT for regression [176]. However,
as mentioned previously, more work needs to be done in this regard. We
identify some limitations of current AutoML approaches, in particular
how they fail to handle the size and variety of data within biomedical
environments. While there have already been some use cases of AutoML
in the healthcare field, more work needs to be done for there to be a
widespread adoption of AutoML in healthcare. This survey should act as
a basic guide for healthcare researchers interested in applying data
science techniques to their domain of interest.

Declaration of Competing Interest

All authors declare that they have no significant competing fi-
nancial, professional, or personal interests that might have influenced
the performance or presentation of the work described in this manu-
script.

Acknoledgement

Authors would like to thank Edward Moseley, Gregory Antell, Chih-
Ying Deng, Jacob Rosenthal, Clyde Bango, and Jason Johnson for their
support and suggestions that improved this work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.artmed.2020.101822.

References

[1] Luo J, et al. Big data application in biomedical research and health care: a lit-
erature review. Biomed Inform Insights 2016;8. p. BII. S31559.

[2] Toga AW, et al. Big biomedical data as the key resource for discovery science. J Am
Med Inform Assoc 2015;22(6):1126–31.

[3] Murdoch TB, Detsky AS. The inevitable application of big data to health care. Jama
2013;309(13):1351–2.

[4] Brown, N. Healthcare Data Growth: An Exponential Problem. 2015 5/22/2019;
Available from: https://www.nextech.com/blog/healthcare-data-growth-an-ex-
ponential-problem.

[5] Lundberg SM, et al. Explainable machine-learning predictions for the prevention of
hypoxaemia during surgery. Nat Biomed Eng 2018;2(10):749.

[6] Saria S, Koller D, Penn A. Learning individual and population level traits from
clinical temporal data. Proceedings of Neural Information Processing Systems.
2010.

[7] Marella WM, Sparnon E, Finley E. Screening electronic health Record–Related
patient safety reports using machine learning. J Patient Saf 2017;13(1):31–6.

[8] Kuo C-C, et al. Automation of the kidney function prediction and classification
through ultrasound-based kidney imaging using deep learning. Npj Digit Med
2019;2(1):29.

[9] Rumsfeld JS, Joynt KE, Maddox TM. Big data analytics to improve cardiovascular
care: promise and challenges. Nat Rev Cardiol 2016;13(6):350.

[10] Liang H, et al. Evaluation and accurate diagnoses of pediatric diseases using ar-
tificial intelligence. Nat Med 2019:1.

[11] Bates DW, et al. Big data in health care: using analytics to identify and manage
high-risk and high-cost patients. Health Aff 2014;33(7):1123–31.

[12] Özdemir A, Barshan B. Detecting falls with wearable sensors using machine
learning techniques. Sensors 2014;14(6):10691–708.

[13] Lo-Ciganic W-H, et al. Using machine learning to examine medication adherence
thresholds and risk of hospitalization. Med Care 2015;53(8):720.

[14] Escobar GJ, et al. Piloting electronic medical record–based early detection of in-
patient deterioration in community hospitals. J Hosp Med 2016;11:S18–24.

[15] Rajpurkar P, et al. Chexnet: Radiologist-level pneumonia detection on chest x-rays
with deep learning. arXiv preprint arXiv:1711.05225. 2017.

[16] Ardila D, et al. End-to-end lung cancer screening with three-dimensional deep
learning on low-dose chest computed tomography. Nat Med 2019.

[17] Kose I, Gokturk M, Kilic K. An interactive machine-learning-based electronic fraud
and abuse detection system in healthcare insurance. Appl Soft Comput
2015;36:283–99.

[18] Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med
2019;380(14):1347–58.

[19] Beam AL, Kohane IS. Big data and machine learning in health care. Jama
2018;319(13):1317–8.

[20] Weintraub WS, Fahed AC, Rumsfeld JS. Translational medicine in the era of big
data and machine learning. Circ Res 2018;123(11):1202–4.

[21] Zeng X, Luo G. Progressive sampling-based Bayesian optimization for efficient and
automatic machine learning model selection. Health Inf Sci Syst 2017;5(1):2.

[22] Wolpert DH, Macready WG. No free lunch theorems for optimization. Ieee Trans
Evol Comput 1997;1(1):67–82.

[23] Auffray C, et al. Making sense of big data in health research: towards an EU action
plan. Genome Med 2016;8(1):71.

[24] Guyon I, et al. Analysis of the AutoML Challenge series. 2017. p. 2015–8.
[25] Quanming Y, et al. Taking Human Uut of Learning Applications: A Survey on

Automated Machine Learning. arXiv preprint arXiv:1810.13306. 2018.
[26] Domingos PM. A few useful things to know about machine learning. Commun ACM

2012;55(10):78–87.
[27] Bengio Y, Courville A, Vincent P. Representation learning: a review and new

perspectives. IEEE Trans Pattern Anal Mach Intell 2013;35(8):1798–828.
[28] Miotto R, et al. Deep patient: an unsupervised representation to predict the future

of patients from the electronic health records. Sci Rep 2016;6:26094.
[29] Rajkomar A, et al. Scalable and accurate deep learning with electronic health

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

10

https://doi.org/10.1016/j.artmed.2020.101822
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0005
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0005
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0010
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0010
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0015
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0015
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0025
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0025
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0030
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0030
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0030
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0035
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0035
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0040
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0040
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0040
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0045
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0045
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0050
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0050
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0055
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0055
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0060
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0060
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0065
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0065
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0070
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0070
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0075
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0075
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0080
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0080
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0085
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0085
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0085
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0090
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0090
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0095
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0095
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0100
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0100
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0105
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0105
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0110
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0110
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0115
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0115
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0120
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0125
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0125
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0130
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0130
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0135
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0135
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0140
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0140
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0145

records. Npj Digit Med 2018;1(1):18.
[30] Kanter JM, Veeramachaneni K. Deep feature synthesis: towards automating data

science endeavors. 2015 IEEE International Conference on Data Science and
Advanced Analytics (DSAA). 2015.

[31] Katz G, Shin ECR, Song D. Explorekit: automatic feature generation and selection.
2016 IEEE 16th International Conference on Data Mining (ICDM). 2016.

[32] Lam HT, et al. One button machine for automating feature engineering in rela-
tional databases. arXiv preprint arXiv:1706.00327. 2017.

[33] Kaul A, Maheshwary S, Pudi V. Autolearn—Automated feature generation and
selection. 2017 IEEE International Conference on Data Mining (ICDM). 2017.

[34] FeatureLabs. Featuretools. Available from:https://github.com/featuretools/fea-
turetools.

[35] Smith MJ, Wedge R, Veeramachaneni K. FeatureHub: towards collaborative data
science. 2017 IEEE International Conference on Data Science and Advanced
Analytics (DSAA). 2017.

[36] Tran B, Xue B, Zhang M. Genetic programming for feature construction and se-
lection in classification on high-dimensional data. Memetic Comput
2016;8(1):3–15.

[37] Khurana U, et al. Cognito: automated feature engineering for supervised learning.
2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW).
2016.

[38] Khurana U, Samulowitz H, Turaga D. Feature engineering for predictive modeling
using reinforcement learning. Thirty-Second AAAI Conference on Artificial
Intelligence. 2018.

[39] Nargesian F, et al. Learning feature engineering for classification. Ijcai. 2017.
[40] Hoos H, Ca U, Leyton-Brown K. An efficient approach for assessing hyperpara-

meter importance. International Conference on Machine Learning. 2014.
[41] Komer B, Bergstra J, Eliasmith C. Hyperopt-sklearn: automatic hyperparameter

configuration for scikit-learn. ICML workshop on AutoML. Citeseer; 2014.
[42] Snoek J, Larochelle H, Adams RP. Practical bayesian optimization of machine

learning algorithms. Advances in neural information processing systems. 2012.
[43] Bergstra J, Bengio Y. Random search for hyper-parameter optimization. J Mach

Learn Res 2012;13:281–305. Feburary.
[44] Conn AR, Scheinberg K, Vicente LN. Introduction to derivative-free optimization

Vol. 8. Siam; 2009.
[45] Escalante HJ, Montes M, Sucar LE. Particle swarm model selection. J Mach Learn

Res 2009;10:405–40. Feburary.
[46] Back T. Evolutionary algorithms in theory and practice: evolution strategies,

evolutionary programming, genetic algorithms. Oxford university press; 1996.
[47] Hansen N. The CMA evolution strategy: A tutorial. arXiv preprint

arXiv:1604.00772. 2016.
[48] Wistuba M, Schilling N, Schmidt-Thieme L. Scalable Gaussian process-based

transfer surrogates for hyperparameter optimization. Mach Learn
2018;107(1):43–78.

[49] Bergstra JS, et al. Algorithms for hyper-parameter optimization. Advances in
neural information processing systems. 2011.

[50] Hutter F, Hoos HH, Leyton-Brown K. Sequential model-based optimization for
general algorithm configuration. International Conference on Learning and
Intelligent Optimization. Springer; 2011.

[51] Klein A, et al. Fast bayesian optimization of machine learning hyperparameters on
large datasets. arXiv preprint arXiv:1605.07079. 2016.

[52] Dahl GE, Sainath TN, Hinton GE. Improving deep neural networks for LVCSR using
rectified linear units and dropout. 2013 IEEE international conference on acous-
tics, speech and signal processing. 2013.

[53] Melis G, Dyer C, Blunsom P. On the state of the art of evaluation in neural language
models. arXiv preprint arXiv:1707.05589. 2017.

[54] Snoek J, et al. Scalable bayesian optimization using deep neural networks.
International conference on machine learning 2015.

[55] Bergstra J, Yamins D, Cox DD. Hyperopt: a python library for optimizing the hy-
perparameters of machine learning algorithms. Proceedings of the 12th Python in
science conference. 2013.

[56] Golovin D, et al. Google vizier: A service for black-box optimization. Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2017.

[57] Group, H.I.P.S. Spearmint. Available from: https://github.com/HIPS/Spearmint.
[58] Pumperia, M. Hyperas. Available from: https://github.com/maxpumperla/hy-

peras.
[59] Autonomio. Talos. Available from: https://github.com/autonomio/talos.
[60] Shahriari B, et al. Taking the human out of the loop: a review of bayesian opti-

mization. Proc Ieee 2016;104(1):148–75.
[61] Provost F, Jensen D, Oates T. Efficient progressive sampling. Proceedings of the

Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 1999.

[62] Falkner S, Klein A, Hutter F. Bohb: Robust and efficient hyperparameter optimi-
zation at scale. arXiv preprint arXiv:1807.01774. 2018.

[63] Li L, et al. Hyperband: A novel bandit-based approach to hyperparameter opti-
mization. arXiv preprint arXiv:1603.06560. 2016.

[64] Jamieson K, Talwalkar A. Non-stochastic best arm identification and hyperpara-
meter optimization. Artificial Intelligence and Statistics. 2016.

[65] Luo G. A review of automatic selection methods for machine learning algorithms
and hyper-parameter values. Netw Model Anal Health Inform Bioinform
2016;5(1):18.

[66] Feurer M, Hutter F. Hyperparameter optimization. Automatic Machine Learning:
Methods, Systems, Challenges. Springer; 2018. p. 3–38.

[67] Thornton C, et al. Auto-WEKA: combined selection and hyperparameter optimi-
zation of classification algorithms. Proceedings of the 19th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining. 2013.
[68] Holmes G, Donkin A, Witten IH. Weka: A machine learning workbench. 1994.
[69] Kohavi R. A study of cross-validation and bootstrap for accuracy estimation and

model selection. Ijcai. 1995. Montreal, Canada.
[70] Kotthoff L, et al. Auto-WEKA 2.0: automatic model selection and hyperparameter

optimization in WEKA. J Mach Learn Res 2017;18(1):826–30.
[71] Feurer M, et al. Efficient and robust automated machine learning. Advances in

neural information processing systems. 2015.
[72] Pedregosa F, et al. Scikit-learn: machine learning in Python. J Mach Learn Res

2011;12:2825–30. October.
[73] Feurer M, Springenberg JT, Hutter F. Initializing bayesian hyperparameter opti-

mization via meta-learning. Twenty-Ninth AAAI Conference on Artificial
Intelligence 2015.

[74] Vanschoren J, et al. OpenML: networked science in machine learning. Acm Sigkdd
Explor Newsl 2014;15(2):49–60.

[75] Lacoste A, et al. Agnostic bayesian learning of ensembles. International Conference
on Machine Learning 2014.

[76] Guyon I, et al. Design of the 2015 ChaLearn AutoML challenge. 2015 International
Joint Conference on Neural Networks (IJCNN). 2015.

[77] Feurer M, et al. Practical automated machine learning for the automl challenge
2018. International Workshop on Automatic Machine Learning at ICML 2018.

[78] Olson RS, et al. Automating biomedical data science through tree-based pipeline
optimization. European Conference on the Applications of Evolutionary
Computation. 2016.

[79] Banzhaf W, et al. Genetic programming: an introduction Vol. 1. San Francisco:
Morgan Kaufmann; 1998.

[80] Fortin F-A, et al. DEAP: evolutionary algorithms made easy. J Mach Learn Res
2012;13:2171–5. July.

[81] Sparks ER, et al. Automating model search for large scale machine learning.
Proceedings of the Sixth ACM Symposium on Cloud Computing. 2015.

[82] Kraska T, et al. MLbase: a distributed machine-learning system. Cidr. 2013.
[83] Swearingen T, et al. ATM: a distributed, collaborative, scalable system for auto-

mated machine learning. 2017 IEEE International Conference on Big Data (Big
Data). 2017.

[84] Wistuba M, Schilling N, Schmidt-Thieme L. Automatic frankensteining: creating
complex ensembles autonomously. in Proceedings of the 2017 SIAM International
Conference on Data Mining. 2017.

[85] Asuncion A, Newman D. UCI machine learning repository. 2007.
[86] Mohr F, Wever M, Hüllermeier E. ML-Plan: automated machine learning via

hierarchical planning. Mach Learn 2018;107(8–10):1495–515.
[87] Ghallab M, Nau D, Traverso P. Automated Planning: theory and practice. Elsevier;

2004.
[88] Nau DS, et al. SHOP2: an HTN planning system. J Artif Intell Res

2003;20:379–404.
[89] Mohr F, et al. Towards the automated composition of machine learning service.

IEEE International Conference on Services Computing. 2018.
[90] Chen B, et al. Autostacker: a compositional evolutionary learning system.

Proceedings of the Genetic and Evolutionary Computation Conference. 2018.
[91] Wolpert DH. Stacked generalization. Neural Netw 1992;5(2):241–59.
[92] Drori I, et al. AlphaD3M: machine learning pipeline synthesis. AutoML Workshop

at ICML. 2018.
[93] Rakotoarison H, Sebag M. AutoML with Monte carlo tree search. Workshop

AutoML 2018@ ICML/IJCAI-ECAI. 2018.
[94] Fusi N, Sheth R, Elibol M. Probabilistic matrix factorization for automated ma-

chine learning. Advances in Neural Information Processing Systems. 2018.
[95] Sarwar BM, et al. Item-based collaborative filtering recommendation algorithms.

Www 2001;1:285–95.
[96] LeCun Y, Bengio Y, Hinton G. Deep learning. nature 2015;521(7553):436.
[97] Hinton G, et al. Deep neural networks for acoustic modeling in speech recognition.

IEEE Signal Process Mag 2012;29.
[98] Graves A, Mohamed A-r, Hinton G. Speech recognition with deep recurrent neural

networks. 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing. 2013.

[99] Collobert R, et al. Natural language processing (almost) from scratch. J Mach
Learn Res 2011;12:2493–537. August.

[100] Jean S, et al. On using very large target vocabulary for neural machine translation.
arXiv preprint arXiv:1412.2007. 2014.

[101] Bordes A, Chopra S, Weston J. Question answering with subgraph embeddings.
arXiv preprint arXiv:1406.3676. 2014.

[102] Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems.
2012.

[103] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556. 2014.

[104] Alipanahi B, et al. Predicting the sequence specificities of DNA-and RNA-binding
proteins by deep learning. Nat Biotechnol 2015;33(8):831.

[105] Asgari E, Mofrad MR. Continuous distributed representation of biological se-
quences for deep proteomics and genomics. PLoS One 2015;10(11):e0141287.

[106] Bishop CM. Neural networks for pattern recognition. Oxford university press;
1995.

[107] Yue-Hei Ng J, et al. Beyond short snippets: deep networks for video classification.
Proceedings of the IEEE conference on computer vision and pattern recognition
2015.

[108] He K, et al. Identity mappings in deep residual networks. European conference on
computer vision. 2016.

[109] Che Z, et al. Recurrent neural networks for multivariate time series with missing

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

11

http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0145
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0150
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0150
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0150
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0155
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0155
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0160
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0160
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0165
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0165
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0175
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0175
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0175
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0180
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0180
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0180
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0185
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0185
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0185
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0190
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0190
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0190
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0195
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0200
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0200
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0205
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0205
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0210
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0210
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0215
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0215
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0220
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0220
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0225
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0225
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0230
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0230
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0235
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0235
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0240
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0240
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0240
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0245
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0245
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0250
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0250
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0250
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0255
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0255
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0260
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0260
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0260
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0265
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0265
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0270
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0270
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0275
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0275
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0275
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0280
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0280
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0280
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0300
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0300
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0305
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0305
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0305
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0310
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0310
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0315
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0315
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0320
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0320
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0325
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0325
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0325
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0330
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0330
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0335
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0335
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0335
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0340
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0345
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0345
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0350
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0350
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0355
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0355
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0360
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0360
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0365
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0365
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0365
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0370
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0370
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0375
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0375
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0380
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0380
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0385
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0385
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0390
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0390
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0390
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0395
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0395
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0400
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0400
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0405
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0405
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0410
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0415
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0415
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0415
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0420
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0420
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0420
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0425
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0430
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0430
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0435
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0435
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0440
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0440
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0445
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0445
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0450
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0450
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0455
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0460
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0460
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0465
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0465
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0470
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0470
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0475
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0475
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0480
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0485
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0485
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0490
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0490
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0490
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0495
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0495
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0500
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0500
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0505
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0505
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0510
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0510
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0510
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0515
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0515
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0520
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0520
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0525
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0525
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0530
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0530
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0535
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0535
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0535
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0540
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0540
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0545

values. Sci Rep 2018;8(1):6085.
[110] Elsken T, Metzen JH, Hutter F. Neural architecture search: a survey. J Mach Learn

Res 2019;20(55):1–21.
[111] March JG. Exploration and exploitation in organizational learning. Organ Sci

1991;2(1):71–87.
[112] Svozil D, Kvasnicka V, Pospichal J. Introduction to multi-layer feed-forward neural

networks. Chemom Intell Lab Syst 1997;39(1):43–62.
[113] Elsken T, Metzen JH, Hutter F. Efficient Multi-objective Neural Architecture

Search via Lamarckian Evolution. arXiv preprint arXiv:1804.09081. 2018.
[114] Zoph B, et al. Learning transferable architectures for scalable image recognition.

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
2018.

[115] Cai H, et al. Path-level network transformation for efficient architecture search.
arXiv preprint arXiv:1806.02639. 2018.

[116] Elsken T, Metzen J-H, Hutter F. Simple and efficient architecture search for con-
volutional neural networks. arXiv preprint arXiv:1711.04528. 2017.

[117] Brock A, et al. SMASH: one-shot model architecture search through hypernet-
works. arXiv preprint arXiv:1708.05344. 2017.

[118] Drozdzal M, et al. The importance of skip connections in biomedical image seg-
mentation. Deep Learning and Data Labeling for Medical Applications. Springer;
2016. p. 179–87.

[119] Yamashita T, et al. Multi-branch structure of layered neural networks. Proceedings
of the 9th International Conference on Neural Information Processing, 2002.
ICONIP’02. 2002.

[120] Liu H, Simonyan K, Yang Y. Darts: Differentiable architecture search. arXiv pre-
print arXiv:1806.09055. 2018.

[121] Pham H, et al. Efficient neural architecture search via parameter sharing. arXiv
preprint arXiv:1802.03268. 2018.

[122] Zhong Z, et al. Practical block-wise neural network architecture generation.
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
2018.

[123] Liu C, et al. Progressive neural architecture search. Proceedings of the European
Conference on Computer Vision (ECCV) 2018.

[124] Zoph B, Le QV. Neural architecture search with reinforcement learning. arXiv
preprint arXiv:1611.01578. 2016.

[125] Bergstra J, Yamins D, Cox DD. Making a Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision Architectures. 2013.

[126] Domhan T, Springenberg JT, Hutter F. Speeding up automatic hyperparameter
optimization of deep neural networks by extrapolation of learning curves. Twenty-
Fourth International Joint Conference on Artificial Intelligence 2015.

[127] Mendoza H, et al. Towards automatically-tuned neural networks. Workshop on
Automatic Machine Learning. 2016.

[128] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 2018.
[129] Krizhevsky A, Nair V, Hinton G. The CIFAR-10 dataset 55. 2014. online: http://

www.cs. toronto.edu/kriz/cifar.html.
[130] Marcus M, Santorini B, Marcinkiewicz MA. Building a Large Annotated Corpus of

English: The Penn Treebank. 1993.
[131] Baker B, et al. Designing neural network architectures using reinforcement

learning. arXiv preprint arXiv:1611.02167. 2016.
[132] Stanley KO, et al. Designing neural networks through neuroevolution. Nature

Machine Intelligence 2019;1(1):24–35.
[133] Liang J, et al. Evolutionary Neural AutoML for Deep Learning. arXiv preprint

arXiv:1902.06827. 2019.
[134] Miikkulainen R, et al. Evolving deep neural networks. Artificial Intelligence in the

Age of Neural Networks and Brain Computing. Elsevier; 2019. p. 293–312.
[135] Suganuma M, Shirakawa S, Nagao T. A genetic programming approach to de-

signing convolutional neural network architectures. Proceedings of the Genetic
and Evolutionary Computation Conference. 2017.

[136] Real E, et al. Large-scale evolution of image classifiers. Proceedings of the 34th
International Conference on Machine Learning-Volume 70. 2017.

[137] Zhu H, et al. EENA: Efficient Evolution of Neural Architecture. arXiv preprint
arXiv:1905.07320. 2019.

[138] Liu H, et al. Hierarchical representations for efficient architecture search. arXiv
preprint arXiv:1711.00436. 2017.

[139] Real E, et al. Evolutionary algorithms and reinforcement learning: a comparative
case study for architecture search. Proceedings of Machine Learning Research,
ICML 2018 AutoML Workshop 2018.

[140] Jin H, Song Q, Hu X. Efficient neural architecture search with network morphism.
arXiv preprint arXiv:1806.10282. 2018.

[141] Chollet F. Keras. 2015.
[142] Wei T, et al. Network morphism. International Conference on Machine Learning

2016.

[143] Cai H, et al. Efficient architecture search by network transformation. Thirty-
Second AAAI Conference on Artificial Intelligence 2018.

[144] Cortes C, et al. Adanet: adaptive structural learning of artificial neural networks.
Proceedings of the 34th International Conference on Machine Learning-Volume
70. 2017.

[145] Balaprakash P, et al. deepHyper: asynchronous hyperparameter search for deep
neural networks. 2018 IEEE 25th International Conference on High Performance
Computing (HiPC). 2018.

[146] Zela A, et al. Towards Automated Deep Learning: Efficient Joint Neural
Architecture and Hyperparameter Search. arXiv preprint arXiv:1807.06906. 2018.

[147] Negrinho R, Gordon G. Deeparchitect: Automatically Designing and Training Deep
Architectures. arXiv preprint arXiv:1704.08792. 2017.

[148] Wistuba M. Finding Competitive Network Architectures within a Day Using UCT.
arXiv preprint arXiv:1712.07420. 2017.

[149] Huang S, et al. GNAS: A Greedy Neural Architecture Search Method for Multi-
Attribute Learning. 2018 ACM Multimedia Conference on Multimedia Conference.
2018.

[150] Luo R, et al. Neural architecture optimization. Advances in Neural Information
Processing Systems. 2018.

[151] Chrabaszcz P, Loshchilov I, Hutter F. A downsampled variant of imagenet as an
alternative to the cifar datasets. arXiv preprint arXiv:1707.08819. 2017.

[152] Baker B, et al. Accelerating neural architecture search using performance predic-
tion. arXiv preprint arXiv:1705.10823. 2017.

[153] Rawal A, Miikkulainen R. From nodes to networks: evolving recurrent neural
networks. arXiv preprint arXiv:1803.04439. 2018.

[154] Bender G, et al. Understanding and simplifying one-shot architecture search.
International Conference on Machine Learning 2018.

[155] Gastaldi X. Shake-shake regularization. arXiv preprint arXiv:1705.07485. 2017.
[156] Hersh WR, et al. Caveats for the use of operational electronic health record data in

comparative effectiveness research. Med Care 2013;51(8 0 3):S30.
[157] Elmore JG, et al. Pathologists’ diagnosis of invasive melanoma and melanocytic

proliferations: observer accuracy and reproducibility study. bmj 2017;357:j2813.
[158] Polite BN, et al. State of Cancer care in America: reflections on an inaugural year.

American Society of Clinical Oncology 2019.
[159] Luhmann N. Trust and power. John Wiley & Sons; 2018.
[160] Luo G. Automatically explaining machine learning prediction results: a demon-

stration on type 2 diabetes risk prediction. Health Inf Sci Syst 2016;4(1):2.
[161] Wang Q, et al. ATMSeer: increasing transparency and controllability in automated

machine learning. arXiv preprint arXiv:1902.05009. 2019.
[162] Luo G. MLBCD: a machine learning tool for big clinical data. Health Inf Sci Syst

2015;3(1):3.
[163] Luo G. PredicT-ML: a tool for automating machine learning model building with

big clinical data. Health Inf Sci Syst 2016;4(1):5.
[164] Dinu V, Nadkarni P. Guidelines for the effective use of entity–attribute–value

modeling for biomedical databases. Int J Med Inform 2007;76(11–12):769–79.
[165] Alaa AM, van der Schaar M. Autoprognosis: automated clinical prognostic mod-

eling via bayesian optimization with structured kernel learning. arXiv preprint
arXiv:1802.07207. 2018.

[166] Alaa AM, et al. Cardiovascular disease risk prediction using automated machine
learning: a prospective study of 423,604 UK Biobank participants. PLoS One
2019;14(5):e0213653.

[167] Alaa AM, van der Schaar M. Prognostication and risk factors for cystic fibrosis via
automated machine learning. Sci Rep 2018;8(1):11242.

[168] Orlenko A, et al. Considerations for automated machine learning in clinical me-
tabolic profiling: altered homocysteine plasma concentration associated wtih
metformin exposure. Pac symp biocomput. World Scientific; 2017.

[169] Cloud AutoML. 5/20/2019]; Available from: https://cloud.google.com/automl/.
[170] Amazon SageMaker. 5/20/2019]; Available from: https://aws.amazon.com/sa-

gemaker/.
[171] Amazon Comprehend 5/20/2019]; Available from: https://aws.amazon.com/

comprehend/?nc=sn&loc=2&dn=1&exp=b.
[172] Mukunthu D. Announcing automated ML capability in azure machine learning.

Microsoft Azure 2018.
[173] H2O Driverless AI. 5/20/2019]; Available from: https://www.h2o.ai/products/

h2o-driverless-ai/.
[174] Jesus M, Release Big ML. Automatically find the optimal machine learning model

with OptiML!. BigML 2018.
[175] Automated Machine Learning. 5/20/2019]; Available from: https://www.datar-

obot.com/platform/automated-machine-learning/.
[176] Balaji A, Allen A. Benchmarking Automatic Machine Learning Frameworks. arXiv

preprint arXiv:1808.06492. 2018.

J. Waring, et al. Artificial Intelligence In Medicine 104 (2020) 101822

12

http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0545
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0550
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0550
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0555
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0555
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0560
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0560
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0565
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0565
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0570
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0570
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0570
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0575
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0575
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0580
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0580
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0585
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0585
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0590
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0590
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0590
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0595
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0595
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0595
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0600
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0600
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0605
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0605
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0610
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0610
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0610
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0615
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0615
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0620
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0620
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0625
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0625
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0630
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0630
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0630
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0635
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0635
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0640
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0645
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0645
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0650
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0650
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0655
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0655
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0660
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0660
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0665
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0665
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0670
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0670
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0675
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0675
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0675
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0680
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0680
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0685
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0685
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0690
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0690
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0695
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0695
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0695
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0700
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0700
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0705
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0710
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0710
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0715
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0715
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0720
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0720
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0720
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0725
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0725
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0725
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0730
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0730
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0735
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0735
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0740
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0740
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0745
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0745
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0745
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0750
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0750
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0755
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0755
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0760
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0760
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0765
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0765
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0770
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0770
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0775
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0780
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0780
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0785
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0785
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0790
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0790
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0795
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0800
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0800
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0805
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0805
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0810
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0810
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0815
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0815
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0820
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0820
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0825
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0825
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0825
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0830
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0830
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0830
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0835
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0835
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0840
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0840
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0840
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0860
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0860
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0870
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0870
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0880
http://refhub.elsevier.com/S0933-3657(19)31043-7/sbref0880

	Automated machine learning: Review of the state-of-the-art and opportunities for healthcare
	Introduction
	Methods
	Automated feature engineering
	Hyperparameter optimization
	Pipeline optimizers
	Neural architecture search
	Search space
	Search strategy
	Performance estimation strategy

	Automated machine learning in healthcare
	Conclusion
	mk:H1_12
	Acknoledgement
	Supplementary data
	References

