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Abstract

Progress in genetic engineering led to the ememe@icsome viruses as potent
anticancer therapeutics. These oncolytic virusembioe self-amplification with dual
antitumor action: oncolytic (destruction of canaalls) and immunostimulatory (eliciting
acquired antitumor response against cancer epitopes any other viruses, they trigger
antiviral response upon systemic administration.

Mesenchymal stem cells are immature cells capalie salf-renewing and
differentiating into many cell types that belongtioee germinal layers. Due to their inherent
tumor tropism mesenchymal stem cells loaded wittotytic virus can improve delivery of
the therapeutic cargo to cancer sites. Shieldingnoblytic viral construct from antiviral host
immune response makes these cells prospectiveedglivehicles to even hard-to-reach
metastatic neoplastic foci.

Use of mesenchymal stem cells has been criticizesome investigators as limiting
proliferative abilities of primary cells and ince#ag the risk of malignant transformation, as
well as attenuating therapeutic responses. Howewajority of preclinical studies indicate
safety and efficacy of mesenchymal stem cells asechrriers of oncolytic viruses. In view of
contradictory postulates, the debate continues.

The review discusses mesenchymal stem cells agrsafor delivery of genetically
engineered oncolytic constructs and focuses oresystapproach to oncoviral treatment of

some deadly neoplasms.
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1. Introduction

Despite unquestionable progress in cancer treatreeweéral malignancies still tend to
elude successful cure or medically-induced remmsspntinued rise in morbidity in the last
twenty years for gliomas, melanoma or pancreaticeamakes them a major public health
concern and a research challenge. Although raglicatiproved outcomes might be
unattainable yet, stepwise progress is likely withvel or improved treatments involving
immunotherapy, cell-based therapeutics, oncolytmtherapy and hybrid approaches.

Intriguing recoveries from cancer following natuvaial infection (e.g. measles) have
been known to medicine since early"2&entury but this early lead based on use of wipbt
adenovirus, poliovirus or Coxsackie virus was ndhrog virus-associated morbidity and
complications and was later abandongelly et al., 2007). Clinical utility of oncolytic
viruses has been steadily regaining ground sineelatter part of the 2bcentury with
advances in genetic engineering. Current generafiomany oncolytic viral constructs allows
targeting and destroying cancer cells while tositto surrounding normal tissues are
minimized.

A concurrent development in cell-based anticanicerapies has led to the concept of
oncoviral viruses’ delivery to tumoxga cellular carriers. It assumes that certain tydesetis
pre-loadedex vivo with some curative cargo can be administered systdly, delivered to
and released in target tissues.

This review highlights therapeutic use of mesendiystem cells (MSCs) preloaded
ex vivo with oncolytic viral cargo to deliver the virus tomor foci following reinfusion into
bloodstream Kig. 1). This “Trojan horse” approach fits well with cam cells that possess
natural tropism or are targetable to disseminatetistatic tumor beds.

2. Mesenchymal stem cells: an overview
2.1. Origin, phenotype and differentiation

Friedenstein and colleagues identified in the 19Z0ssubpopulation of non-
hematopoietic cells in bone marrow with morpholadyn to that of fibroblasts; these cells
were able to form colonigs vitro, and came to be known as CFU-F (colony forming-uni
fibroblastoid) cells (Friedenstein et al., 1976)ecBuse of their ability to renew and
differentiate, these multipotent stromal cells dedi from bone marrow were agreed upon as
stem cells and dubbed mesenchymal stem cells (MS@ISEs occurring in bone marrow
constitute a heterogeneous population that congpasaixture of hematopoietic progenitors
originating from mesoderm and constituting onlynaall percentage of self-renewing stem
cells (Uccelli et al., 2008). In 2005 and 2006, TS@nternational Society for Cellular
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Therapy) recommended replacing the term “stem” wsthomal” and considering candidate
cells as MSCs only if they could demonstrate sodaierent replication and presented (or
lacked) the following surface antigens: CD73+, CBOCD105+, CD14-, CD34-, CD45-
CD11b-, CD19- and CD%9, together with the ability to differentiate int@seous, cartilage
and adipose cells. MSCs also express low level ajbrmhistocompatibility complex (MHC)
class | molecules and do not express MHC class lthe cell surface, rendering allogeneic
transplants feasible. Despite the ISCT recommenidathe term “stem” still remains in
general common use to define MSCs (Dominici et28106; Lv et al., 2014).

MSCs derived from various tissues share commomnuifeatbut they can vary in their
differentiation and angiogenic properties. Bone nmar and adipose tissues are the main
common sources of MSCs (called BM-MSCs and ADSEspectively), chiefly due to the
ease of material collection, but MSCs can alsosoéaied from e.g. umbilical cord blood,
menstrual blood, Wharton’s jelly, placenta and salveother tissues. Lv et al. have
demonstrated that only a small fraction of thescellisolated MSC populations are genuine
stem cells with potential fdoona fide three-dimensional differentiation. They also pregub
other specific markers to stress the stemness @dvificluding Stro-1, SSEA-4 and CD146
(Lv et al., 2014)Significant differences were claimed between MS€&sved from newborn
and adult tissues, with the former showing lesgedehtiation and higher survival potential
(Hass et al., 2011). A specific marker was recagphiwith respect to MSCs source: CD271
was recommended to be used when characterizing M&Cised from bone marrow
(Alvarez-Viejo et al., 2015).

Rather unsurprisingly, MSCs isolated from othercg®e do not have the same
phenotype as those of human origin. It is generadlgepted that all MSCs lack CD45, a
hematopoietic marker, as well as CD31, an endathedarker. Variations in surface antigen
expression can in addition result from factorsasézl by helper cells at the initial stages of
subculture. Alspin vitro expression of certain MSC markers is not alwayscoadant with
theirin vivo expression (Nery et al., 2013; Lv et al., 2014).

2.2. Collection and safety

MSCs isolated from adult tissues can help resol@oge ethical issues raised with
use of stem cells. From the economic perspectilmical applications of ADSCs seem
advantageous to BM-MSCs due to higher (several taaiafbld) intrinsic yield; adipose tissue
is also more abundant and more easily accessedgxtmple during liposuction. In some
cases, however, clinical benefits of BM-MSCs migtavail if particular cell populations are
used (Strioga et al., 2012).
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Clinical use of MSCs requires rather large quastitdf these cells, which translates
into extensivein vitro cell culture (Wang et al., 2012). Cases of docuetergenomic
instability of isolated stem cells were reportedgdther with acquiescence of neoplastic
features; since this might affect tumor prolifepatit would also be a problem for anti-cancer
therapies based on MSCs (Hanahan and Weinberg; Rdhlet al., 2015). BM-MSCs were
also reported to acquire chromosomal aberratiomss endlergo spontaneous transformation
during longin vitro culture, resulting in tumor formatiaon vivo (Wang et al., 2005).

Both preclinical and clinical data seem to indictite safety of using BM-MSCs and
ADSCs. The vast majority of small-sized clinicahls conducted with MSCs in regenerative
medicine applications has not reported any maj@theconcerns, suggesting that MSCs-
mediated therapies are relatively safe (Herbertsalgt 2011; Lukomska et al.,, 2019).
Biological activities such as proliferation and tpotency of human adipose-derived adult
stem cells (as opposed to embryonic ones) wereleatly affected by wild-type reovirus
challenge as evidenced by survival, osteogenicaaiabgenic differentiation potential assays
following treatment with this onolytic reoviruseBark and Kim, 2017). In the context of
MSCs used solely as carriers of oncolytic conssrtice dimension of the safety issue could
thus be somewhat less stringent. The results stgpoical use of human adipose-derived
stem cells as an effective cell carrier of oncalyBovirus to maximize their tumor tropism
and anti-tumor activity. The concerns about theppred ability to promote tumor growth
and metastasis and overestimated therapeutic ptehtMSCs pertain rather to the field of
regenerative medicine (Volarevic et al., 2018). &tbeless, in view of many contradictory
postulates, the debate continues concerning safatging MSCs in anticancer research and
in clinical setting (Sensebé et al., 2012; Kundsahtal., 2016).

Four clinical trials using oncolytic virus-infectédSCs were undertaken to date. All
were/have been phase | studies. Three of them Uisacd BM MSCs and adenovirus and one
study used ADSCs and measles virus; their detaridbe found in Table 2.

2.3. Tissuetropism

Several studies have shown that injected MSCsapalde of migrating directionally
(homing) to specific tissues, including injury atumor sites. Migration of MSCs towards
tumor bed is triggered by a signaling cascade amiib that in wounds that do not heal
(Dvorak, 1986). In addition to MSC-intrinsic facsofcell culture conditions, cell population
heterogeneity, expression of migratory moleculds), tropism of MSCs towards cancerous
tissues is affected by tumor site-intrinsic projsrtsuch as oxygenation status, degree of

vascularization, inflammatory status, etc. (Najaale 2016).
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Several types of molecules affecting MSCs migsatmerhavior have been identified.
They include growth factors and their receptorg, epidermal growth factor (EGF), vascular
endothelial growth factor A (VEGF-A), fibroblast aywth factor (FGF), platelet derived
growth factor-AB (PDGF-AB), hepatocyte growth fac{élGF), transforming growth factor
B1 (TGF-B1) or insulin-like growth factor 1 (IGF- 1); cytates such as tumor necrosis factor
a (TNF-a), Interleukin 6 (IL-6) and Interleukin 8 (IL-8)hemokines e.g. CXCL-12 (C-X-C
Motif Chemokine Ligand 12), CCL-2 (C-C Motif Chemok Ligand 2), CCL-3 (C-C Motif
Chemokine Ligand 3) and their receptors, for exan@ICR4 (C-C Motif Chemokine
Receptor 4) or CXCR4 (C-X-C Motif Chemokine Recept); also vascular cell and
intercellular adhesion molecules (VCAM and ICAMspectively) have been implicated
(Musiat-Wysocka, et al., 2019).

Tissue homing of MSCs following systemic injectigasults from interactions
between their surface proteins (such as integmvif) blood vasculature components and
target site-specific receptors or adhesion moleculecluding extracellular matrix (ECM)
proteins such as collagen, fibronectin or laminin.

Migratory patterns of MSCs largely depend on vasioytokine / receptor pairs such
as SDF-1 (stromal cell-derived factor 1) / CXCRLFS(stem cell factor) / c-Kit (tyrosine
kinase receptor), HGF / c-Met (hepatocyte growtitdiareceptor or HGFR), VEGF / VEGFR
(vascular endothelial growth factor receptors), FO®DGFR (platelet derived growth factor
receptor), MCP-1 (Monocyte chemoattractant profgin- CCR2 (C-C Motif Chemokine
Receptor 2) and HMGB1 (high-mobility group protelih / RAGE (receptor for advanced
glycosylation end) (Momin et al., 2010; Shah, 2014)

Among these cytokine/receptor pairs the SDF-1 faetnd its receptor CXC-4
(CXCR4) are important mediators of stem cell relonent to tumors (Suarez-Alvarez et al.,
2012). It was demonstrated that expression of CX@R4urned off during cell culture
(Phinney and Prockop, 2007), but induction of cytek (HGF, IL-6), underoxygenation
conditions or its direct introductiona viral vectors restores its expression (Bobis-Wazaw
et al., 2011).

Other important signaling pathways, affecting suaviand stability of MSCs, include
PI3K (Chen et al., 2013), urokinase-type plasmimogetivator receptor (Gutova et al., 2008;
Vallabhaneni et al., 2011) and proteinase activitdtP1 receptor 1 (Ho et al., 2009).

Effective MSCs migration was demonstrated e.g. glioma (Smith et al., 2015),
breast cancer (Ma et al., 2015) and liver cancee @€{ al., 2017). Tissue tropism confers

MSCs with significant potential to advance anti@mniteatment since it makes these delivery
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vehicles particularly attractive for targeting ars therapeutic agents. For example natural
tropism to tumors shown by MSCs adds to betteraspd viruses if MSC-derived progeny
particles can be producedsitu (Koks et al., 2015).

2.4. Immunological properties

Immunological properties of MSCs affect signifidgrtheir therapeutic potential. Low
immunogenicity of allogeneic MSCs allows them tmidvrecognition and adverse immune
response. Lack of co-stimulatory molecules expoessind ensuing low immunogenicity of
MSCs results in no need for immunosuppression durallogenic transplantation
(Chulpanova et al.,, 2018). However, MSCs perhapsuldh not be considered truly
immunologically privileged (at least not to the ext claimed) but rather “immune evasive”
as they could elicit a humoral and cellular immuesponsen vivo (Ankrum et al., 2014).
These authors suggested also various strategig®tect MSCs from immune detection and
to prolong their persistende vivo by engineering MSC expression of immunosuppressive
and immunoevasive factors.

Little is still known about cellular componentsefting immunogenicity of MSCs but
the mechanisms of MSCs immunomodulation (releassolfble factors, anergy, apoptosis
induction) appear to be coordinated with homeasfatictioning of the immune systevia a
complex network of expression and cytokine resp®r(&nglish, 2013; Hoogduin, 2015).
Immunomodulation of MSCs by activated cells of themune system is brought about by
released proinflammatory cytokines and is mediabgdadhesion molecules (integrins)
expressed on MSCs surface (Wang et al., 2015). makapg on kind and concentration of
these cytokines, the immunomodulatory effects diffevealing inherent plasticity profiles of
MSCs. Sizeable variability of such effects has deen linked to donor source (Mattar and
Bieback, 2015). microenvironment. Evidence is nonerging that there exist a cross-talk
between MSCs and the status of local microenviraime€he latter appears to be key in
making MSCs immunosuppressive. It is clear that M®&@n also modulate both innate and
adaptive responses. Even though MSCs themselvesoddirectly influence the immune
system they are capable of “re-educating” immuriés.c&xpression of numerous integrin
family receptors, as well as various adhesion mibés; allows MSCs to interact with
immune cells. This leads to generation of reguilatdr lymphocytes (Treg) and B
lymphocytes (Breg), as well as antigen-presentally ¢APCs) and natural killer cells (NKs).
Such upregulation contributes to tolerogenic turanvironment and ultimately results in

immune tolerance; it is interleukin-10 (IL-10) rated by these cells that plays the central
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role in multiple-pathway immunomodulation exertegd BISCs (Franquesa et al., 2012;
Ribeiro et al., 2013; Najar et al., 2016).

To obtain a balanced therapeutic effect when uemgplytic viruses in combination
with MSCs, the expression (under conditions minmigkphysiological settings) of MSC-
related immunogenic and immunosuppressive facteesis to be taken under consideration,
along with expression of therapeutic susceptibbitynarkers (Josiah et al., 2010; Sensebé et
al., 2013; Aurelian, 2016). The immunosuppressea&tures of MSCs, together with active
shielding of the viral cargo from immune systemvsillance add to the prevention of
inflammatory processes accompanying virotherapy laoabt destructive power of oncolytic
viruses.

2.5. Pro- and anti-cancer properties

The mechanisms underlying the relationship betwd&TCs and immune cells in the
tumor microenvironment are not fully understood aadhain a field of active research in
order to gain a more coherent picture of theseant®ns (Rivera-Cruz et al., 2017; Lin et al.,
2019). Studies have claimed MSCs to promote (a.greast and colon cancers) or to inhibit
(e.g. in liver, lung and pancreatic cancer) tumorgpession and metastasis using various
mechanisms, mainly by release of soluble factoas &ctivate or inhibit innate and adaptive
immune responses (e.g. Yulyana et al., 2015; Lal.eP016; Zhong et al., 2017), stimulate or
inhibit angiogenesis and maintenance of cancer stthmiche (Lin et al., 2019).

On the one hand, following accumulation of MSCssites of tumor growth they
differentiate into pericytes or tumor-associatdatdblasts (TAF) and can co-form a growth-
enhancing microenvironment (Musiat-Wysocka et 2019). Some researchers claim that
MSCs can support malignant transformation, estiavlent and maintenance of cancer cells,
promotion of angiogenesis and neovascularizati@asing neoplastic tissues, metastasis
formation and chemoresistance to drugs (Nwabo Karatlal., 2017) and releasing cytokines
such as vascular endothelial growth factor (VEGQRderleukin-6 and 8 (IL-6 and IL-8),
transforming growth factop (TGF{3), epithelial growth factor (EGF) and platelet-ded
growth factor (PDGF) (Chulpanova et al., 2018 aj e contrary, MSCs infected with
oncolytic viruses do not seem to exert any of timrstumorigenic effects (see Table 2). This
does not contradict tumor microenvironment trigggrplasticity mechanisms in MSCs, so
that they contribute to the formation of cancenstll niche and support stemness (Nwabo
Kamdje et al., 2017).

On the other hand, the unique tropism of native amodified MSCs towards

inflammatory tissues continues to be exploited hyveh anti-cancer strategies. Some
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researchers who tested unmodified MSCs have sttébs@ anti-cancer properties (Chanda
et al., 2009; Abd-Allah et al., 2014; Nasuno et 2014). MSCs are believed to inhibit tumor
growth by arresting cell cycle, suppressing pradif®n, blocking PI3K/AKT pathway and
expressing suppressor genes (Chulpanova et a3, 01Unmodified MSCs were shown to
exert antineoplastic effect boithvitro and in various animal tumor models; this was ascti
to MSCs-released factors dampening proliferatiomglafma, breast cancer and liver cancer
cells (Ho et al., 2013; Xie et al., 2013; Leng let 2014; Wu et al., 2016). Correct karyotype
and no malignant transformatiomvivo were reported for BM-MSCs (Kim et al., 2009; Jones
et al., 2013) while chromosomal instability maytjusflect cell ageing (Tarte et al., 2010).
The latter, resulting in irreversible halt of cejrowth, is a problem, however, when
propagating MSCs (Ohtani and Hara, 2013). It lipitsliferative capabilities of primary cells
(Shvarts et al., 2002), attenuates therapeuticnpiatg Sepulveda et al., 2014) and increases
the risk of malignant transformation (Shay and Rean, 2004; Gosselin et al., 2009).

Akimoto et al. (2013) reported that MSCs derivealrirdifferent tissues could either
stimulate or dampen the proliferation of gliomadsdh addition, MSCs from the same source
and culturedn vitro, promoted or inhibited tumor formation dependingtio@ administration
mode used (Jazedje et al., 2015). Intravenoustiojeof BM-MSCs, conversely, repressed
tumor growth in a murine Kaposi's sarcoma modeldkdo et al., 2006). Such contradictory
results have been noted bothvitro andin vivo for various types of tumors as well as for
tumor cell lines (Wu et al., 2016; Larmonier et @003). Similar to BM-MSCs, MSCs from
adipose tissue (ADSCs) also exhibit dual (pro- anti-cancer) properties; this was reported
for breast cancer (Kucerova et al., 2013) and ptestancer (Cavarretta et al., 2010). Since
conflicting reports have been published concertinggapeutic use of ageing MSCs it should
be borne in mind that this type of cell favors raigyn and proliferation of cancer ceilga
galectin secretion (ADSCs) (Li et al., 2015)via secretion of IL-6 in the case of umbilical
cord-derived MSCs (UC-MSCs) (Di et al., 2014). Heee when these UC-MSCs with pro-
tumoral properties were initially treated with IL-they started to exert anti-tumoral effects
(Wang et al., 2015). On the contrary, it was dertrated that ageing ADSCs inhibited tumor
growth but when they were stimulated by cancersctikir therapeutic benefits vanished
(Ozcan et al., 2015). Also, ageing BM-MSCs wereortgnl to induce ageing of adjacent
proliferating MSCs (Severino et al., 2013).
3. Engineered MSCs

Despite low immunogenicity MSCs are believed notptsist for long following

systemic administration; therefore viral and noralviengineering strategies have been

9
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employed to protect MSCs from immune detection iadice immunoevasive factorBhey
include forced expression of decoy or inhibitorcagtors through covalent conjugation
chemistry or through insertion of antibody fusiorotgins into the cell membranaa
palmitated protein G (PPG); increased persisterae also be achieved through using
immunoevasins or sustained release of immunosugipestactors (Ankrum et al., 2019).

MSCs have been successfully engineered to expeegsug therapeutic agents: small
chemicals such as paclitaxel or cisplatin (Lin et 2019), proapoptotic and suicide genes
(Mueller et al., 2011; Altaner et al., 2014), aatigiogenesis factors (Chu et al., 2014) and
immunomodulatory cytokines like interleukin-12, tormecrosis factor (TNF}, interferons
B andy (Ryu et al., 2011; Shahrokhi et al., 2014; Zhangl.e 2015).

Some neoplasms may be deficient or downregulatespétific miRNAs therefore
exosomes, which contain a variety of miRNAs, orchhtan be enriched in them, can transfer
such cargo to cancer cells. MSCs, or rather exosategved from MSCs, can be thus used as
carriers for such therapeutic miRNAs. However, iew of somewhat discordant results of
this approach it has been postulated that MSCsldHwst be engineered in order to obtain
stable expression of some cancer killer genes defwosomes’ isolation (Liu et al., 2019).
MSCs engineering has created new prospects for ioatdns of MSC-based cell therapies
with other therapeutic modalities, e.g. immune &pemt blockade (Corny et al., 2018),
nanotherapeutics (Lawer et al., 2017; Garofalol.et2818; Kalimuthu et al., 2018). These,
and other therapeutic approaches have been extgnsi@scribed elsewhere (e.g. Bitsika et
al., 2013; Chulpanova et al., 2018 a). Some ofelstisdies have advanced from preclinical to
phase I/l clinical trials; however, cell-based rdq@es have a number of potential
disadvantages mediated by the properties of dehsilpanova et al., 2018 b).

4. Engineered oncolytic viruses

The renewed interest in clinical development ofadytic viruses is in part the result
of genetically modified viral constructs that camfter increased tissue specificity and initiate
apoptosis of cancer cells, induce specific anteeanmesponses or render cancer cells more
sensitive to specific chemotherapies or to radiaine

Examples of such weaponized and improved vectarkide: recombinant HSV-1
virus for treatment of metastatic breast carcin@mnanelanoma; recombinant measles virus
(MV) for treatment of myeloma and prostate cancecombinant Newcastle disease virus
(NDV) stimulating immune system and cytokine reteas liver cancer; vesicular stomatitis
virus (VSV) exploiting defective interferon pathwiycancer cells; HSV-1 virus with deleted

thymidine kinase gene or Ad5/84 adenovirus modified to bind to integrieng33 andavp5
10
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(highly expressed on ovarian cancer cells), andclwvhs currently being investigated in
clinical trials (Kaufman et al., 2015). The immensatential of oncolytic virotherapy has
been convincingly demonstrated by recombinant lsespaplex virus type 1 (HSV-1), called
Talimogene laherparepvec (T-VEC) approved in 2GStreatment of metastatic melanoma
(FDA in the US, Reuters. 27 October 2015; EMA ie #®U, (http://www.onclive.com/web-
exclusives/t-vec-approved-in-europe-for-unreseetaletastatic-melanoma). T-VEC efficacy
is rooted in the deletion of two nonessential vgahes resulting in selective viral replication
ability and promotion of regional and systemic @miior immunity; expression of human
granulocyte macrophage colony-stimulating factorM(GSF) allows local GM-CSF
production triggering recruitment and activationamitigen-presenting cells with subsequent
induction of tumor-specific T-cell responses. Thawback of T-VEC is that its efficacy
against disseminated disease appears contingentinfpalesional administrations (Senzer et
al., 2009; Andtbacka et al., 2015). This, rathepleatically, accentuates the rationale behind
efforts to further improve systemic oncovirotherapy

T-cell effector functions can be enhanced by deligginto tumor microenvironment
certain transgenasa genetically engineered oncolytic viruses. Speafiigen expression on
tumor cells can be combined with action of CAR-TIscexpressing a receptor recognizing
specifically cancer-associated antigen. Promisasylts were reported in preclinical studies
combining CAR-T cells with oncolytic viruses arm&dh cytokines, chemokines, BIiTEs (Bi-
specific T-cell engagers), or immune checkpointibitbrs (Guedan and Alemany, 2018;
Harrington et al., 2019).
5. Immune checkpoint inhibitors and oncolytic ther apy

The recent approval by the US Food and Drug Adrratisn (FDA) of two different
CAR-T cell therapies (for the treatment of leukemming lymphoma) represents a landmark in
the development of cancer immunotherapies. CAR{E @e revolutionizing the field of
cancer therapy, together with immune checkpointkdde therapy (Guedan and Alemany,
2018).

Immune checkpoint inhibitors unblock T cell inhidmy signals and trigger antitumor
T-cell responses. Checkpoint proteins targetablehleyapeutic antibodies include proteins
found on T cells or cancer cells, e.g. PD-1/PD-hdl €TLA-4/B7-1/B7-2 (e.g. Russell et al.,
2018).

Oncolytic viruses lyse tumor cells as part of viraplication cycle; by inducing
changes in the tumor microenvironment (“cold” irffteot” tumor transformation) they can

also increase locally the number of immune effectdis. This outcome can sensitize tumors
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to checkpoint inhibitors involving e.g. PD-1/PD-ahd CTLA-4/B7-1/B7-2 molecules and/or
antibodies. The effectiveness of such improved @ggr was demonstrated in metastatic
melanoma for intralesional injections of oncolyticus (T-VEC) and anti-PD-1 treatment
(Haanen et al., 2017).

Administration of checkpoint inhibitors (either ssmnically or via viral transgene
expression) along with oncolytic vectors has prowermcessful in multiple clinical and
preclinical models (LaRocca and Warner, 2018; Sanalam et al., 2019). Synergy gain could
also be expected with oncolytic virus-loaded MS@snined with immune checkpoint
inhibitors. Interestingly, a novel recombinant mga virus construct (vPD1) designed to
secrete a soluble form of PD-1 from host cells vegently reported to be able to accumulate
in tumor tissue; MYXV synergy with PD-1 blockadesuéed in complete response in ca. 60%
of mice (Bartee et al., 2017). All these novel cambon regimens will likely have a
dramatic impact in the years to come.

Two clinical trials exploring oncolytic virus comation with checkpoint inhibitor
stand prominently and both involve T-VEC. The tiralolving combination with Ipilimumab
(an anti-CTLA-4 antibody) yielded significantly thgr response rates of the combination
therapy arm than those of the monotherapy arm aitbdow dose-limiting toxicities.
Importantly, half of the patients demonstrated apat responses in distant, non-injected
visceral lesions (Cheney et al., 2018). The clinigal involving T-VEC combination with,
pembrolizumab (an anti-PD-1 antibody) also yieldegbressive objective response rate of
62% while in 33% of patients the response was cetaplThe combination therapy yielded
elevated PD-L1 protein expression and increased+CD8ells on several tumor cell subsets
suggesting that oncolytic virotherapy did improves tefficacy of anti-PD-1 therapy by
altering the tumor microenvironment (Ribas et2017).

6. Non-systemic anticancer therapy with oncolytic virus-loaded M SCs

Use of MSCs as a non-systemic carrier of oncoltiases has been attempted with
varying success in the therapy of glioma, coloostate, ovary, breast, liver and lung cancer,
lymphoblastic leukemia and also in treating melaaonetastases to the brain (e.g. Stuckey
and Shah, 2014; Ramirez et al., 2015; Nowakowsal.eR2016; Brittany et al., 2017; Russell
et al., 2018).

The results of preclinical studies involving norst®mic administration of MSCs
infected with various “armed” oncolytic viral constts are included ifable 1.

Oncolytic herpes simplex virus (0HSV) has been agnitve most frequently tested in

conjunction with MSCs encapsulated in biocompatsylethetic extracellular matrix (SECM).
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Duebgen showed that MSCs-sECM were able to su@poplification of the tested oHSV-
TRAIL construct (TNF-related apoptosis-inducingaligl) and triggering apoptosis in glioma
cell lines nonpermissive to oHSV and resistant RAIL. MSC-mediated delivery could
overcome the problem associated with direct onmlitus injection into resection cavities
and negligent curative effect (Duebgen et al., 2014

A few studies demonstrated circumvention of prestxg anti-viral immunity and
enhanced therapeutic outcomes when using oncoWtics-infected MSCs. Mader and
colleagues tested MV-infected MSCs (adipose tiskresd) in mice bearing different
orthotopic human ovarian tumor xenografts. Intréapeeally administered virus-loaded
MSCs were shown to traffic to and co-localize vthile xenografts transferring measles virus
infection and significantly extending survival ofaa passively immunized with antimeasles
antibodies (Mader et al., 2009).

Various adenoviral constructs have been extensiestied in non-systemic therapies
in conjunction with MSCs. Using the syngeneic mer@MT64 lung cancer cell line to create
a human adenovirus semi-permissive tumor model¢cdriret al. demonstrated the homing
capacity of adenovirus-loaded murine mesenchyneh stells (mCelyvir) to the induced
tumors. A combined treatment with mCelyvir and at@imoral injections of ICOVIR5 (the
adenoviral construct itself) showed synergy comghare ICOVIRS alone. The therapeutic
effects of combined therapy were accompanied bkeased tumor infiltration by recruited
CD8+ and CD4+ T lymphocytes (Rincon et al., 2017).

Antitumor efficacy studies of syngeneic or allogemaurine mesenchymal stem cells
infected with oncolytic adenovirus ICOVIRS (i.e. @ar system) have suggested that the use
of both types of Celyvirs leads to higher infiltcat of CD45+ cells and leukocytes in the core
of murine lung adenocarcinontamors (Morales-Molina et al., 2018).

Peritoneal cavity delivery of a conditionally regaltive survivin promoter-driven
adenovirus by allogeneic neural stem cells was shtwimprove treatment of cisplatin-
resistant ovarian metastatic tumors. The survivionmter was used to drive the oncolytic
construct since this protein is highly expressedvarian cancer cells (Mooney et al., 2018).

An oncolytic adenoviral construct “armed” with eprdhal growth factor receptor
(EGFR)-targeting bispecific T-cell engager (cBiTégmbined by Barlabé and colleagues
with menstrual blood-derived mesenchymal stem ¢dlenSCs) resulted in stronger anti-
tumor potency of such armed ICOVIR15 construct botvitro andin vivo, as compared to
the unarmed ICOVIR15 virus (Barlabé et al., 2019).
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Suppression of prostate cancer tumor growth in @aneous murine xenograft model
was reported for intratumoral administration of lammesenchymal stem cells modified with
E1 A/B adenoviral genes (necessary for viral rgpian) and used as carrier for replication-
defective adenovirus expressing p14 and p53 oritondlly replicating oncolytic adenovirus
(Muhammad et al., 2019).

CXCR4 promoter-driven conditionally replicating ahgtic adenovirus (CRAd)
loaded into human mesenchymal stem cells (hMSCs) wgmd for intracranial treatment
targeting glioblastoma, the most deadly brain turivanus-loaded hMSCs were demonstrated
to migratein vitro and release CRAdSs that infected U87MG glioma c&liken injected at a
distance of 5 mm anterido the tumor site, virus-loaded hMSCs were ableigrate to the
tumor site and deliver 46-fold more viral copies,c@mpared to the injection of adenovirus
alone (Sonabend et al., 2008).

Martinez-Quintanilla et al. reported that intratuadoinjections of conditionally
replicating adenovirus expressing soluble hyalutase (ICOVIR17) mediated degradation of
hyaluronic acid (HA), a component of extracellutaatrix (ECM) and enhanced viral spread
bringing about major antitumor effect; however, Q17 loaded into human ADSC
encapsulated in biocompatible synthetic extracalluhatrix (SECM-MSC) demonstrated
even greater efficacy in a clinically relevant meusnodel of GBM resection (Martinez-
Quintanilla et al., 2015).

Studies of ADSCs infected with myxoma virus (MYXVQ, promising nonhuman
poxvirus candidate for oncovirotherapy demonstr#itetl upon intracranial administration the
infected cells were able to migrate to and cro$seinexperimental glioblastoma multiforme
(GBM) foci, even away from the primary tumor si@giah et al., 2010). Subsequent study of
Pisklakova and colleagues convincingly showed kiéXV knock-out construct devoid of a
viral gene called M11L regulating apoptosis cagderr increased cell death in infected brain
tumor-initiating cells (BTIC) which are largely pansible for deadliness of glioblastoma.
Their elimination resulted in enhanced survivalimimunocompetent mice burdened with
BTIC-seeded glioma (Pisklakova et al., 2016). Thaminal result was achieved with
orthotopic delivery of the virus which only emplmes the dormant potential of cell-mediated
delivery of such myxoma construct.

Adipose tissue-derived stem cells (ADSCs) usedlagsginia virus-amplifying Trojan
horse were claimed by Draganov et al., claim howévat allogeneic differences associated
with the induction of anti-stem cell cytotoxicityné thus allogeneic responses from both

innate (NK)- and adaptive (T)- immune cells mightmpromise therapeutic efficacy through
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438 direct elimination of the stem cells or the indantof an anti-viral state, which can block the
439 potential of the Trojan horse to amplify and deliwaccinia virus to the tumor; assays
440 detecting important patient-specific differenceshia immune responses to the virus and stem

441 cells were postulated (Draganov et al., 2019).

442 7. Systemic anticancer therapy with oncolytic virus-loaded M SCs

443 The results of preclinical studies involving systemdministration of MSCs infected
444  with various “armed” oncolytic viral constructs am@mmarized iMable 1.

445 In order to eliminate disseminated melanoma metastan the brain, Du and al.
446 developed suitable models in immunocompromised iamdunocompetent mice and tested
447  the efficacy of oncolytic herpes simplex virus detied by MSCs. Intracarotid administration
448 of MSC-oHSV, but not of oHSV alone, effectively dke@d to metastatic lesions and
449 significantly prolonged the survival of brain turdmearing mice. A combination of MSC-
450 o0oHSV and PD-L1 blockade in a syngeneic model irsgdaFN-producing CD8+ tumor-
451 infiltrating T lymphocytes resulted in significaptihcreased survival (Du et al., 2017).

452 A combination involving MSCs from different sourcaad infected with a HER2-
453 retargeted oncolytic HSV and evaluated in two meirmodels of metastatic cancers following
454  a single iv. injection of infected MSCs showed tighest concentration of carrier cells and
455 viral genomes in the lungs. Viral genomes persititealighout the body for at least two days.
456 The treatment significantly inhibited growth of o:en cancer lung metastases in nude mice
457 and reduced by more than one-half the burden ie chbreast cancer metastases to the brain
458 in NSG mice (Leoni et al., 2015).

459 A study of orthotopic hepatocellular carcinoma mMadeSCID mice immunized with
460 human neutralizing antibodies and treated withnatiéed MV and BM-hMSCs has shown
461 that cell-associated MVs were protected from arglvantibodies. The authors claimed this
462 strategy may elude immunity against MV in mostre tancer patients (Ong et al., 2013).
463 Human BM-MSCs were also demonstrated to efficientieliver measles
464 oncovirotherapy to precursor B-lineage acute lynigidmstic leukemia (ALL) cells in a
465 xenograft model. BM-MSCs were successfully loadeith wV ex vivo, and MV was
466 amplified intracellularly without signs of toxicityFollowing systemic treatment 16 adults
467 with acute lymphoblastic leukemia and receiving inmosuppressive drugs developed high-
468 titer anti-MV antibodies (Castleton et al., 2014).
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More than a decade ago MSCs loaded with oncolg@naviruses were demonstrated
to improve the bioavailability of systemically iefed oncolytic adenoviruses in orthotopic
murine models of lung and breast cancer (Hakkanagtel., 2007).

hMSCs were shown to be effective cell carriers dgstemic delivery of a relaxin
(RLX)-expressing oncolytic Ad (0Ad/RLX) which is k@b to degrade dense tumor
extracellular matrix of highly desmoplastic pantie@ancer overcoming poor delivery of
0Ad. Complex with biodegradable polyethyleneimimeyagated polymer enhanced the
internalization of oAd into hMSC, leading to superiviral production and release from
hMSCs, along with high RLX expression. Systemic suilsiration of oAd/RLX-PCDP-
treated hMSCs yielded strong antitumor effect ingpeatic tumor model due to superior viral
replication (Na et al., 2019).

Application of human umbilical cord-derived MSCs UMSCs) was reported in
eliminating postsurgical residuals and metastasigpatocellular carcinoma. Stem cells were
loaded with a conditionally replicative adenovir(GRAd) containing E1A gene dually
regulated byo-fetoprotein promoter and microRNA-122 target semee Besides showing
production of CRAd by differentiated HUMS@svitro Yuan et al. demonstrated hepatocyte-
like transformation of HUMSC in the microenvironnienf orthotopic or heterotopic
hepatoma and inhibition of growth of both orthotogind subcutaneous hepatic xenograft
tumors in mice (Yuan et al., 2016).

Effectiveness of systemically delivering a hepallata carcinoma-targeted oncolytic
adenovirus encoding Whnt-inhibiting decoy recepeguence (WNTi) and loaded into MSCs
(HCC-0Ad-WNTI/MSC) was compared to control hepatlutar carcinoma (HCC)-targeted
oncolytic adenovirus (HCC-0Ad) shielded by mesemnchlystem cells. Intravenously injected
HCC-0Ad-WNTI/MSC therapeutic system homed to HC@awus and led to high virion
accumulation in the tumors, ultimately resulting effective growth inhibition.In vitro
oncolysis of HCC cells was demonstrated under builhmoxic and hypoxic conditions
confirming HCC-0Ad-WNTi hypoxia responsiveness (Yiaet al., 2019).

Engineered chimeric oncolytic adenoviruses were alsed in studies targeting
colorectal tumor cells with menstrual blood-deriv&#SCs. Such adenoviruses indeed
accumulated in colorectal tumors and mediated ndairkebitory effects (Guo et al., 2019).

Owing to suppressed production of interfeforff=N-y) by activated T cells, an
improved delivery, enhanced dissemination and as®d persistence of adenovirus delivered
by MSCs was observed in a breast fibrosarcoma maodetn compared to virus

administration alone (Ahmed et al., 2010).
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In testing therapeutic strategies for metastatieabtr cancer, the effectiveness of
homing to the tumor site and extended animal salwwere compared between intravenous
injections of conditionally replicating Ad (CRADd$paded into hMSCs and CRAd alone
using the MDA-MB-231 murine pulmonary breast metast model (Stoff-Khalili et al.,
2007).

A significant therapeutic effect obtained isystemic treatment of gallbladder
carcinoma (GBC) was observed using human BM-MSQsciad with myxoma virus
(MYXV), almost matching intratumoral injections MYXV. This demonstrated MYXV to
be effectively delivered by MSCs to sites distaonf the injection site, making intravenous
injection of MYXV a possible therapeutic approachtieating GBC tumors (Weng et al.,
2014).

Improved survival and eradication of glioma was ontgd for Delta-24-RGD
adenoviral construct loaded into GFP-labeled hM&@s$ delivered into intracarotid artery of
mice harboring orthotopic U87MG or U251-V121 xeradtg via infection of human glioma
and release of Delta-24-RGD improving survival amehor eradication (Yong et al., 2009).
This demonstrated that glioma can be successfalyeted systemically. Myxoma virus was
also capable of restoring apoptosis in brain tumdrating cells (BTIC) by transfer of a
knockout construct devoid of MO11L viral gene thegulates apoptosis (Pisklakova et al.,
2016). Although this result was not achieveid systemic administration with MSCs,
attempts at systemic delivery using this constanetnow underway in our laboratory.

8. Limitations of MSC use in systemic ther apy

One of the barriers encountered by oncolytic visuggon intravenous administration
(as for any other viruses), is the host responseulating antibodies, cytokines, complement
proteins and immune cells in the bloodstream elat@rthe viral particles; those that manage
to reach particular organs are then scavenged byime system cells. This largely explains
the generally ineffective outcome of intravenoubkveey of unshielded virus and tumor tissue
targeting Fig.1.). This is especially crucial when contemplatingptherapy of disseminated
or hard-to-reach tumor sites. In the case of intratral administration, even though anti-viral
response from the immune system is diminished, themunosuppressive tumor
microenvironment still can drastically limit repditon of the therapeutic oncolytic construct.
Thus, the ideal systemic cell carrier should belyeasfected ex vivo by the therapeutic
oncolytic virus, without being overly permissiveg.iwithout cytotoxicity profile preventing
transit of the therapeutic agent to target) yeatvelhg replication of progeny virus to infect

targeted cancer cells (Harrington et al., 2019).
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MSCs have been extensively reported as carriersrfoolytic viruses providing them
with effective shield against neutralizing hosteefs and targeting them to tumor sites (e.g.
Bosu and Kiperos, 2008; Willmon et al., 2009; Shetyal., 2010; Josiah et al., 2010; Sensebé
et al., 2013; Zhao Q et al., 2015; Leoni V et2015; Aurelian 2016).

Some researchers have raised, nonetheless, tleedssimited persistence of MSCs
upon systemic injection and, actually, low effi@gnn targeting damaged/inflamed tissues
(Lee et al., 2009; Bahr et al., 2012; Ranganatd.e2012). ). Poor expression of adhesion or
homing ligands responsible for inflammation sitenirog can be negatively affected durimg
vitro expansion of MSCs (Wu and Zhao, 2012; Hocking,520Enhanced homing of MSCs
to inflammation sites, can be engineered by coningaspecific antibodies or by other
approaches such as triggering transient overexpress CD44, the hyaluronic acid (HA)
receptor (Corradetti et al., 2017). Other therapeapproaches to enhance systemic delivery
of MSCs include: engineered hyaluronidase-mediategradation of extracellular matrix
(ECM), ultrasound cavitation or temporal vasoddatienhanced viral delivery (Martinez-
Quintanilla et al., 2015; Harrington et al., 2018@phnversely, blocking CD44 with antibodies
or engineering CD44 on the MSC membrane should ceedooming of intravenously
administered MSC to inflammatory sites.

Intravenous administration of cell-shielded ondalytiruses is not a very invasive
procedure, whereas local injections in some ingwntan be difficult to achieve. Lung
capillaries can form, however, a first-pass barfterMSCs because of their size. Although
this might be beneficial for treating certain mediconditions (e.g. oncolytic therapy of lung
neoplasia) it could also be a barrier for systetnerapy of peripheral tumors (Fischer et al.,
2009). Intravenous administration of MSCs leadsttong initial accumulation in the lungs
(Gholamrezanezhad et al., 2011). Adhesion molecatesapillary endothelium probably
contribute to retention of MSCs in the lung; bloakiCD49d decreases the number of lung-
trapped MSCs (Nystedt et al., 2013). Interestinglghesion of MSCs to lung endothelium
can be attenuated by treatment with pronase faligwvhich they are found elsewhere in
greater numbers (Kerkela et al., 2013).

The first-pass problem with intravenous adminigtratcould perhaps be solved or
reduced by intraarterial infusion of MSCs. Thisgedure avoids the first-pass lung retention
effect and results in decreased accumulation of M@&dungs (Walczak et al., 2008; Makela
et al., 2015), thus legitimizing this procedure wheying to achieve improved targeting of
tissues in peripheral locations. Available datagesy that intraarterial administration of

MSCs contributes to tissue biodistribution and t#kbility of MSCs in clinically relevant
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settings. This might have important implications ti@ating pathologies such as gliomas, for
example. It has been shown that delivery of MSQeuth the internal carotid artery
facilitates their migration and homing into injurbcain areas compared with administration
via the femoral vein (Nakazimo et al., 2005; Walczi&le 2008; Doucette et al., 2011).

Improvements in engineering of viral constructs M®ICs, coupled with the “Trojan
horse” concept has led to a wealth of novel tharpeossibilities. With precautions and
barriers to overcome, MSC-mediated delivery coddme a promising therapeutic delivery
platform.

9. MSC-mediated oncolytic virotherapy - clinical studies

There have been a few clinical studies combining @lse of various MSCs and
oncolytic viruses (see Table 2).

The first clinical study (EudraCT Number: 2008-0603L6) was based on an
exploratory study (Garcia-Castro et al., 2010) gSBELYVIR (autologous MSCs infected
with ICOVIR-5, a modified adenovirus with replicati restricted to cells with an activated
RB pathway) to treat metastatic neuroblastoma ahdrqediatric refractory malignancies
(Ewing's sarcoma with bone or bone marrow metastiasetastatic osteogenic sarcoma,
metastatic soft tissue sarcoma, metastatic rhabdsangoma) as well as on a more detailed
study (see: Melen et al., 2016). The clinical stugs prematurely ended and no results seem
available.

Another study with CELYVIR, NCT 01844661 (Phasealso made use of bone
marrow-derived autologous mesenchymal stem cefected with ICOVIR-5 for systemic
treatment of metastatic solid tumors in childred adults; the study was completed in 2016.
The combination of MSCs and oncolytic adenovirus Waaund to be safe warranting further
evaluation in the phase Il setting. No further mfation is available.

The NCT 02068794 trial is a phase I/l study ofesidffects and best dose of
intraperitoneal administration of adipose tissuavdel mesenchymal stem cells (ADSC)
infected with oncolytic measles virus encoding thgal sodium iodide symporter (MV-NIS);
the trial is set for recurrent ovarian cancer pasieThe study is ongoing.

Yet another study exploring ICOVIR-5 is EudraCT Naen2019-001154-26 in which
allogeneic BM-MSCs have been used (AloCELYVIR); it a feasibility trial of the
combination of AlIoCELYVIR with chemotherapy and @itierapy used to treat children and
adolescents with relapsed or refractory extractaaizd tumors. The study is ongoing.

Another study involving administration of allogendbone marrow-derived human

mesenchymal stem cells loaded with oncolytic viesuSICT03896568; in this instance carrier
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BM-hMSCs are infected with DNX-2401, an oncolytideaovirus with integrin binding
RGD-4C motif (Delta-24-RGD); the therapeutic counstris administered by transfemoral
super-selective endovascular intracranial injecfian intraarterial) to patients with recurrent
glioblastoma (GBM), gliosarcoma or wild-type IDHahaplastic astrocytoma.

Also neural stem cells loaded with construct hagenbexplored in a clinical setting
(NCT03072134) to deliver CRAd-survivin-pk7 a comdliially replicative oncolytic
adenovirus with survivin promoter and fiber-modifiavith polylysine (Kyokawa and
Wakimoto, 2019).

10. Futuredirections

Even though the preclinical studies are highly psomg, effectiveness of oncolytic
virotherapy remains suboptimal, with only a frantiof patients undergoing complete tumor
regression (called “elite responders”) but the mijatill do not (Bell and McFadden, 2014).
Effectiveness of virotherapy ultimately relies oliménating factors that impede efficient
virus delivery to the target sites, particularly thsseminated cancer burden (e.g., insufficient
numbers of tumor-penetrating viral particles) (Manc et al., 2015).

Future advances in oncolytic virotherapy will liketome from engineered viral
constructs and their increasingly sophisticatediea:. transgene-armed oncoviral platforms
interfering with host cellular defenses (e.g. bynipalating cellular DEAD box RNA
helicases (e.g. Rahman et al., 2017) or allowigglegion of intracellular signaling pathways
restoring apoptosis (e.g. in brain tumor initiatinglls, see Pisklakova et al., 2016), or
focusing on some highly overexpressed targets (aadhterleukin 13 and ephrin receptors in
glioblastoma) with ligand-cytotoxic agent combioatiwarheads or encapsulating carrier cells
infected with oncolytic viruses in synthetic exeHdalar matrices that would allow prolonged
release of therapeutic agents (Kauer et al., 2012).

As of the end of 2019, therapy of the deadliestces continues to be a challenge
although breakthroughs seem to be within reachl, &ir systemic oncolytic virotherapy
there remains a stern firewall: effective delive8ynart cellular carriers, includirengineered
MSCs, stand a good chance to become the platfolomiah authorized access of viral

oncolytics to metastatic lesions through this fiadw
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1274 Table 1. Examples of preclinical anticancer therapy usM8Cs as carrier for oncolytic virus

Preclinical studies

Route of virus-

Tumor/host Cédl line HEEE anolytlc loaded M SCs Reference
source  virustype o .
administration
_ Sloplasioma | Gligevill-GFl,  BM- LSy ’ Duebgen et
mice LN229-GFlI MSC al., 2014
Brain metastatic Du et al
melanomas/ SCID, MeWo, M12 hMSC HSV ica, iv 2017 "

C57BL6 mice

Lung and brain SK-OV-3, :
metastases/ nude, MDA-MB- I\Ijll\\S/lC RHLf/I\é49 iv Leoznalest al.,

NSG mice 453- EGFP
Ovarian cancer/ SKOV3, Mader et al.,
athvmic mice A2780, ADSC MV ip 2009; Mader
y OVCARS5 et al., 2013
Hepatocellular
. BM- . Ong et al.,
carcmor_na/ SCID HCC MSC MV iv 5013
mice
Lymphoblastic
) BM- . Castleton et
Ieukem_la/ SCID Nalm-6 MSC MV iv al.. 2014
mice
LEPS;;?EZ?,LST LNM35/EGF, I\Eglc Adenovirus, iv Hakkarainen
NMRI nude mice M4A4-LM3 ADSC Ad5/3 et al., 2007
) Adenovirus,
e pspea BN Thamoe W M
PCDP
Adenovirus,

Hepatocellular AdAFPp- Yuan et al
carcinoma/Balb/c HepG2 HUMSC E1A and v 2016 N
athymic nude mice AdAFPp-

E1A-122
Hepatocellular Adenovirus,
carcinoma/athymic Hep3B BM- HCC-o0Ad- Y Ve e all,
. MSC . 2019
nude mice WNTiI
Lung carcinoma/ CMT64-6 BM- Adenovirus, i Rincoén et al.,
C57BL/6 mice MSC ICOVIR5 2017
Lung carcinoma,  cyirea6  BM-  Adenovirus, | Morales-
metastatic/ MSC ICOVIR5 ip Molina et al.,

C57BL/6J mice 2018

2e6

Ovarian cancer/ OVCARS8.EGF Adenovirus,

. : . Mooney et
athymic nude mice, P.ffluc, NSC CRAd-S- ip, it al 2018
NOD-SCID mice OVCARS.EGF pk7 "

P.ffluc

1275
1276
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Table 1. (continued)

M SCs Oncolytic Route of virus-

Tumor/host Cdl line . loaded M SCs Reference
source  virustype o .
administration
Lung
adenocarcinoma/ Adenovirus, . Barlabé et
NOD scid gamma /249 MenSC \covirs 'P al., 2019
(NSG) mice
Prostate cancer/ . Adenovirus, . Muhammad
Babl/c nude mice NEE e CRAd L et al., 2019
Malignant gliomas/ USTMG BM- Adenovirus, ic Sonabend et
Nu/nu mice MSC CRAd al., 2008
Glioblastoma AdEenovirus Martinez-
multiforme/ nude u87 ADSC ’ it Quintanilla
) ICOVIR17
mice et al., 2015
Colorectal cancer/ Adenovirus, L Guo et al.,
Balb/c nude mice ~ >"/020 MenSC crads/F11 V. 1P 2019
Breast cancer/ CR Adenovirus,
rat (cotton rat LCRT 20 CRAd-S- iv AR EE
MSC al., 2010
model) pk7
Adenovirus, Stoff-
Metastatic breast CRAd . -
cancer/ SCID mice MPA-MB-231 hMSC -, 45/3 cxc v Khalili et
R4 al., 2007
(?rl:&tt)ilf?)srﬁga U87MG, BM- Adenovirus, - Yong et al.,
N U251-v121 MSC A24-RGD 2009
athymic mice
Gallbladder cancer GBC-SD, BM- Wena et al
andglioblastoma/ SGC-996, MSC vMyx-GFP v, ip 2814 "
CD-1 nude mice U251
Glioblastoma Josiah et al
multiforme/ uU-87 ADSC  vMyx-GFP ic 2010 y

athymic nude mice

1277
1278 HSV — Herpes simplex virus; MV — Measles virus; wW@FP — Myxoma virus,expressing

1279 green fluorecence protein; hMSC — human mesenchytah cells; BM-MSC — bone
1280 marrow mesenchymal stem cells; ADSC — adipose-ddrstem cells; MenSC — menstrual
1281 blood-derived stem cells; HUMSC — human umbilicaddzderived mesenchymal stem cells;
1282 FM-MSC - fetal membrane mesenchymal stem cells; NS@eural stem cells; iv —

1283 intravenous; ip — intraperitoneal; ic — intracrdniea — intracarotid; it — intratumoral.
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1284

1285

1286

1287

1288

1289

1290

Table 2. Clinical trials of anticancer therapy using MSGscarrier for oncolytic virus.

Clinical studies
Route of
Clinical trial Tumor MSC Oncolytic  virus-loaded Reference
(status) source  virustype MSCs
administration
EudraCT Garcia-
Number: 2008- Pediatric ) Castro et
000364-16 atients wit :
CELYVIR I?efractory or BM- Adenovirus, iv al., 2010;
MSC ICOVIR5 Melen et
(ended recurrent al. 2016
prematurely) solid tumors "
Measles
NCT 02068794 Ovarian ADSC virus (MV- in Mader et
(ongoing) cancer NIS) al., 2013
NCT 01844661, Metastatic
CELYVIR and refractory BM- Adenovirus, iv Ramirez et
(completed) tumors MSC ICOVIR5 al., 2015
EudraCT
Number: 2019- Relapsed or
001154-26 refractory BM- Adenovirus, o n/a
AloCELYVIR extracranial MSC ICOVIR5
(ongoing) solid tumors
Recurrent K'yOnga
NCT03896568  high-grade  BM-  Adenovirus, a Wa‘;‘i?noto
(ongoing) glioma MSC DNX-2401 '
2019
Newly ST, Kiyokawa
NCT0307213 di CRAd-
) lagnosed L . and
(ongoing) . NSC survivin- icv :
glioblastoma, ok7 Wakimoto,
astrocytoma 2019

BM-MSC - bone marrow mesenchymal stem cells; ADSflipose-derived stem cells; NSC
— neural stem cells; iv — intravenous; ip — intripeeal; ia —intraarterial; icv — intracavitary
n/a — not available; MV-NIS — measles virus encgdinyroidal sodium iodide symporter;
CELYVIR — bone marrow-derived autologous MSCs itdedcwith ICOVIR5 (adenoviral

construct); AloCelyvir — allogeneic bone marrowided autologous MSCs infected with
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1291 ICOVIR5; DNX-2401 — adenovirus with integrin bindirRGD-4C motif;, CRAd-survivin-
1292 pk7 - conditionally replicative adenovirus with gwin promoter and fiber-modified with
1293 polylysine.
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1295

1296

1297

1298

1299

1300

1301

1302

1303

@g@%@@

unshlelded oncolytlc virus shielded oncolytic virus
(e.g. myxoma virus) (e.g. myxoma virus-infected MSCs)
systemic injection l l systemic injection

clearance of unshielded virus transit of shielded virus into tumor bed
(antiviral response)

no oncolytic action oncolytic action
(killing of cancer cells; followed by antitumor
immune response)

Legend

= <‘%’{g & = -

myxoma virus virus-infected MSCs  cancer cells immune cells oncolytic action

Figure 1. Advantage of systemic administration of oncolytic virus shielded by M SCs.
Unshielded oncolytic virus (e.g. myxoma virus), whadministered intravenously, elicits
antiviral response (NK cells, cytokines, mononuciglaagocyte system (MPS), complement
activation) leading to virus clearance thus no dytaoaction. On the contrary, shielding of
viruses by suitable protective carrier e.g. mesgmeth stem cells (MSCs) allows effective
delivery to tumor bed and oncolytic action. Usehaf therapeutic system ("Trojan horse”) i.e.
MSCs infected with oncolytic virus enhances onaslgsmd boosts acquired immune response

augmenting overall antitumor effect.
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