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a b s t r a c t 

We propose a novel coupled mappings method for low resolution face recognition using deep convolu- 

tional neural networks (DCNNs). The proposed architecture consists of two branches of DCNNs to map the 

high and low resolution face images into a common space with nonlinear transformations. The branch 

corresponding to transformation of high resolution images consists of 14 layers and the other branch 

which maps the low resolution face images to the common space includes a 5-layer super-resolution 

network connected to a 14-layer network. The distance between the features of corresponding high and 

low resolution images are backpropagated to train the networks. Our proposed method is evaluated on 

FERET, LFW, and MBGC datasets and compared with state-of-the-art competing methods. Our extensive 

experimental evaluations show that the proposed method significantly improves the recognition perfor- 

mance especially for very low resolution probe face images (5% improvement in recognition accuracy). 

Furthermore, it can reconstruct a high resolution image from its corresponding low resolution probe im- 

age which is comparable with the state-of-the-art super-resolution methods in terms of visual quality. 

© 2019 Published by Elsevier Ltd. 
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. Introduction 

In the past few decades, face recognition has shown promis-

ng performance in numerous applications and under challeng-

ng conditions such as occlusion ( Jia & Martinez, 2009 ), varia-

ion in pose, illumination, and expression ( Martínez, 2002 ). While

any face recognition systems have been developed for recogniz-

ng high quality face images in controlled conditions ( Zhao, Chel-

appa, Phillips, & Rosenfeld, 2003 ), there are a few studies focused

n face recognition in real world applications such as surveil-

ance systems with low resolution faces ( Pnevmatikakis & Poly-

enakos, 2007 ). One important challenge in these applications is

hat high resolution (HR) probe images may not be available due

o the large distance of the camera from the subject. Here, we fo-

us on addressing the problem of recognizing low resolution probe

ace images when a gallery of high quality images is available.

here are three standard approaches to address this problem. (1)

own sampling the gallery images to the resolution of the probe

mages and then performing the recognition. However, this ap-

roach is suboptimal because the additional discriminating infor-

ation available in the high resolution gallery images is lost. (2)
∗ Corresponding author. 
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he second approach is to obtain higher resolution probe images

rom the low resolution images, which are then used for recog-

ition. Most of these super-resolution techniques aim to recon-

truct a good high resolution image in terms of visual quality and

re not optimized for recognition performance ( Simonyan & Zisser-

an, 2014 ). Some of the well known methods of this category are

iu, Shum, and Freeman (2007) ; Liu, Lin, and Tang (2005) ; Zou and

uen (2012) and Yang, Wright, Huang, and Ma (2010) . (3) Finally,

he third approach simultaneously transforms both the LR probe

nd the HR gallery images into a common space where the cor-

esponding LR and HR images are the closest in distance; ( Biswas,

owyer, & Flynn, 2012; Hennings-Yeomans, Baker, & Kumar, 2008;

ian & Lam, 2015; Zhou, Zhang, Yi, Lei, & Li, 2011 ) are the well

nown methods of this approach. Fig. 1 summarizes the three gen-

ral ways for low resolution face recognition (LR FR) problems.

n this paper, we use the third approach and propose a method

hat employs deep convolutional neural networks (DCNNs) to find

 common space between low resolution and high resolution pairs

f face images. Despite previous works that used linear equation as

bjective function to find two projection matrices, our work finds

 nonlinear transformation from LR and HR to common space. In

he proposed method, the distance of transformed low and high

esolution images in the common space is used as an objective

unction to train the deep convolutional neural networks. The pro-

osed method also reconstructs good HR face images which are

https://doi.org/10.1016/j.eswa.2019.112854
http://www.ScienceDirect.com
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Fig. 1. Three general approaches for low resolution face recognition. 
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optimum for the recognition task. We evaluated the effectiveness

of the proposed approach on the FERET ( Phillips, Moon, Rizvi, &

Rauss, 20 0 0 ), LFW ( Huang, Ramesh, Berg, & Learned-Miller, 2007 ),

and MBGC ( Phillips et al., 2009 ) datasets. Our results show the pro-

posed approach improves the matching performance significantly

compared to other state-of-the-art methods in the low resolution

face recognition and other state of the art face recognition meth-

ods. The improvement becomes more significant for very low res-

olution probe images. The main contributions of this study can be

summarized as: 

• We proposed a novel nonlinear coupled mapping archi-

tecture using two deep convolutional neural networks to

project the low and high resolution face images into a com-

mon space. 
• The proposed method offers high recognition accuracy com-

pared to other state-of-the-art competing methods espe-

cially when the probe image is extremely low resolution.

Please see Table 7 which summarizes the comparisons. 
• The proposed coupled mappings method also offers high

resolution version of the low resolution input image because

of an embedded super-resolution CNN in its architecture. 

2. Previous works 

In this section, we briefly review the related works in the

literature of low resolution face recognition and also introduce

deep convolutional neural networks. To resolve the mismatch be-

tween probe and gallery images, most of studies concentrated on

super-resolution approaches. The aim of these approaches is to ob-

tain a HR image from the LR input and then use the obtained

HR image for recognition. To achieve good reconstruction results,

Liu et al. (2007) presented a two-step statistical modeling ap-
roach for hallucinating a HR face image from a LR input im-

ge. In Yang et al. (2010) , the authors suggested a sparse coding

ethod to find a representation of the LR input patch in terms of

ts neighboring image patches; then the same representation co-

fficients were used to reconstruct the target HR patch based on

he corresponding neighboring HR patches. In Li, Prieto, Mery, and

lynn (2019) , the authors implemented a framework to improve

uper resolution methods using generated LR images from a Gen-

rative Adversarial Network (GAN). While the super resolved im-

ges generated by these methods were improved in terms of vi-

ual quality, they were not optimized for face recognition perfor-

ance. Yu, Fernando, Hartley, and Porikli (2018) proposed a super-

esolution method for mapping of a LR image to a HR one using

n exemplar dataset. They generated multiple HR face images from

ach LR image, then their method combined these candidate HR

ace images to generate one HR image. This method improved the

erformance of recognition slightly, when the LR face image was

ot very low resolution. 

In Heinsohn, Villalobos, Prieto, and Mery (2019) , the authors

ntroduced a new dataset (called AR-LQ) for low resolution face

ecognition, and proposed a new method based on sparse repre-

entations to reconstruct a super resolution face image from LR

ne using a dictionary that is trained on different levels of image

lurriness. He, Cao, Song, Sun, and Tan (2019) proposed a method

hat combines the output of a texture inpainting component and a

ose correction component. Their inpainting component inpaints a

uper-resolution face image from near infrared visible image tex-

ures. Their pose correction component maps any pose in NIR im-

ge to frontal pose. 

The other category of works on LR FR is known as coupled

appings methods. These methods learn the transformations us-

ng a training set consisting of HR images and LR images of

he same subjects. Given training data, the goal is to find a
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ransformation which minimizes the distances between the trans-

ormed LR and HR feature vectors, x l 
i 

and x h 
i 
, respectively. Most of

oupled mappings methods use linear objective function as follow-

ng ( Li, Chang, Shan, & Chen, 2010 ): 

(W L , W H ) = 

n ∑ 

i =1 

n ∑ 

j=1 

|| W 

T 
L x 

l 
i − W 

T 
H x 

h 
j || 2 P i j (1)

here n is the number of training images and { x h 
i 
} i =1 

n 
and { x l 

i 
} i =1 

n 
re corresponding extracted features of the HR and LR images, re-

pectively. W L and W H denote the linear mappings of low reso-

ution and high resolution feature vectors to the common space,

espectively. P is a n × n penalty weighting matrix that preserves

he local relationship between data points in the original feature

paces and it is defined on the neighborhoods of the data points

s follows: 

 i j = 

⎧ ⎨ 

⎩ 

exp 

(
−|| x h 

i 
−x h 

j 
|| 2 

σ 2 

)
j ∈ C(i ) 

0 otherwise 

(2) 

ere, C ( i ) contains the indices of k nearest neighbors of x h 
i 

in high

esolution space and σ is Gaussian function width which is defined

s 

= 

α
∑ 

i, j || x h i 
− x h 

j 
|| 2 

n 

2 
(3) 

here α is a scale parameter. Since it is assumed that HR feature

pace has more discriminative information, the goal of the above

bjective function is to find a common feature space similar to HR

eature space. Finally, after optimizing the above objective function,

 L and W H will be found, and low and high resolution images can

e transformed into the common space with these mappings, re-

pectively. 

Huang and He (2011) proposed a method which finds a com-

on space for low resolution probe and high resolution gallery im-

ges and an objective function that guarantees the discriminabil-

ty in the new common space. Biswas et al. (2012) used multidi-

ensional scaling transformation learning to find both low resolu-

ion and high resolution projection matrices. The objective function

f optimization problem enforces the same distance between low

esolution and high resolution image pairs of a class in the com-

on space as the distance of high resolution image pairs of that

lass. Yang, Yang, Gao, and Liao (2018) proposed a method based

n MDS method ( Biswas et al., 2012 ), but with changing of opti-

ization problem formulation and embedding intraclass and be-

ween class metrics they achieve a better performance than MDS

ethod. Huang and He (2011) used canonical correlation analysis

CCA) to project low resolution and high resolution images into a

ommon space where a low resolution image and its correspond

igh resolution image are as close as possible. Mudunuri and

iswas (2016) proposed a coupled mappings method that at first

ligned faces by detecting eyes and then computed the SIFT de-

criptor of probe faces to transform them to a common space.

tereo matching cost function is then used to preserve distance in

he transformed space across different illumination, pose and reso-

ution. The authors of Lu, Jiang, and Kot (2018) suggested a frame-

ork for face recognition that implements a Residual Network for

atching two low and high resolution face images into common

pace, but they did not use any super resolution method for LR im-

ge super resolving purpose. Abdollahi Aghdam, Bozorgtabar, Ke-

al Ekenel, and Thiran (2019) proposed a deep convolutional neu-

al network (DCNN) for low resolution face recognition. They used

ight DCNNs with different training datasets and employed the

eatures in the last layer of these networks for matching between

R probe face and gallery HR faces. In this method, they show us-
ng training face images with various resolutions will improve the

erformance of any DCNN-based face recognition method. 

In summary, coupled mappings methods achieve better recog-

ition performance than super-resolution methods, but these

ethods do not aim at reconstructing a high resolution image from

he low resolution input image. On the other hand, the main ob-

ective of super-resolution methods is to reconstruct a high quality

mage for visualization purposes which may not necessarily offer

etter recognition accuracy. In the next section, we propose a cou-

led mappings method using deep convolutional neural networks

or nonlinear mapping to a common space. The proposed method

imilar to other successful methods that use deep convolutional

eural networks, benefits from the above mentioned advantages.

n addition to offering high recognition performance, the proposed

ethod also produces high resolution images from low resolution

nput images. 

. Proposed method 

Due to the difficulty of solving a nonlinear optimization prob-

em, objective functions in previous coupled mappings methods (as

iscussed in Section 2 ) were modeled with a linear transforma-

ion. However, a nonlinear transformation of low resolution and

igh resolution to a common space can possibly result in a bet-

er performance. Here, we propose a nonlinear coupled mappings

pproach which uses two deep convolutional neural networks (DC-

Ns) to extract features from low resolution probe images and

igh resolution gallery images and project them into a common

pace. We use gradient based optimization to minimize the dis-

ance between the mapped HR and LR image pairs in the common

pace with updating the weights of DCNN by backpropagation of

he error. Fig. 2 shows the overview of the proposed architecture.

n training phase, we use a training image set that contain pairs

f low resolution and high resolution images of the same person

hich can vary in different images under different conditions of

llumination, pose and expression (not necessarily the same image

nly with different resolutions). In the next section, we present the

rchitecture of the proposed method in detail. 

.1. Networks architecture 

The proposed method has a two branch architecture that one

f them projects high-resolution images to the common space and

he other one maps low-resolution images into this common space.

n our method we use a DCNN known as VGGnet ( Simonyan & Zis-

erman, 2014 ). The most well-known configuration of this network

as sixteen layers with thirteen convolutional layers and three fully

onnected layers. The last fully connected layer of VGGnet used

or a specific classification task. In the top branch of our method

 Fig. 2 ), we dropped out two last fully connected layers of this

GGnet and called it feature extraction convolutional neural net-

ork (FECNN). The input image of the top branch of our method is

he high resolution image ( I h 
i 

) that has to be in 224 × 224 dimen-

ions (whenever input image size is different from 224 × 224, we

se traditional bicubic interpolation method to obtain the required

ize). The output from the last layer is a feature vector with 4096

lements. 

In the bottom branch of our method, we use a DCNN previously

sed for super-resolving low resolution images following by a sec-

nd network which has a similar architecture as the network in

he top branch. The first subnet has a similar architecture as DCNN

hat proposed by Dong, Loy, He, and Tang (2014) , but we extended

his architecture from three layers to five layers, although the au-

hors show there is no difference between a three layer architec-

ure and a five layer one in terms of visual quality of reconstructed

mages, we found increasing of layers from three to five improves
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Fig. 2. Overview of the proposed method. M and N denote dimensions of HR and LR images, respectively, and M > N . 

Fig. 3. Architecture of two deep convolutional neural networks in two branches of our proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Number of used weights in layers of SRFECNN. 

Layer set Parameters Number of weights 

Conv0_1 F = 9 × 9 3 × 9 × 9 × 96 = 23 , 328 

Depth = 696 

Conv0_2 F = 1 × 1 96 × 1 × 1 × 64 = 6144 

Depth = 64 

Conv0_3 F = 1 × 1 64 × 1 × 1 × 48 = 2928 

Depth = 48 

Conv0_4 F = 1 × 1 48 × 1 × 1 × 32 = 1536 

Depth = 32 

Conv0_5 F = 5 × 5 32 × 5 × 5 × 3 = 2400 

Depth = 3 

Conv1 (2 Convs) F = 3 × 3 2(3 × 3 × 3 × 64) = 3456 

Depth = 64 

Conv2 (2 Convs) F = 3 × 3 2(64 × 3 × 3 × 128) = 147 , 456 

Depth = 128 

Conv3 (3 Convs) F = 3 × 3 3(128 × 3 × 3 × 256) = 884 , 736 

Depth = 256 

Conv4 (3 Convs) F = 3 × 3 3(256 × 3 × 3 × 512) = 3 , 538 , 944 

Depth = 512 

Conv5 (3 Convs) F = 3 × 3 3(512 × 3 × 3 × 512) = 7 , 077 , 888 

Depth = 512 

FC6 Depth = 4096 7 × 7 × 512 × 4096 = 102 , 760 , 448 

All layers 114 , 449 , 264 ≈ 114 M

 

 

 

the recognition performance of our method. We call the first sub-

net of our bottom branch super-resolution net (SRnet). The output

of the first subnet is fed into the second subnet (FECNN). There-

fore, the top branch net of our method consists of fourteen layers

and the bottom branch includes nineteen layers as shown in Fig. 3 .

The input of bottom branch net is the low resolution image( I l 
i 
) that

has to be interpolated with the traditional interpolation method

to the size of 224 × 224. Also, the output of SR subnet is an im-

age with the size of 224 × 224. As mentioned above, the FECNN

net has the same architecture as VGGnet excluding the last two

fully connected layers. Although the super resolution and feature

extraction convolutional neural network (SRFECNN) has eighteen

convolutional layers and one fully connected, the entire number of

weights used in SRFECNN is much less than VGGnet. Table 1 shows

all used weights for SRFECNN. 

Even though our proposed SRFECNN includes eighteen convo-

lutional layers, because of less number of fully connected layers

compared to VGGnet, it has less number of weights than VGGnet

(141 M weights). Thus in testing phase when we need to load SR-

FECNN weights on memory, our proposed method needs much less

space than VGGnet. This is an important feature which makes our

proposed method applicable on systems with lower memory. 

3.2. Common subspace learning 

We trained our network in three stages as summarized below: 

• First, we used trained VGGnet on face dataset

( Parkhi, Vedaldi, & Zisserman, 2015 ) and then dropped
the last two fully connected layers, because they are specific

to the classification task the network is trained on. We

called this network pre-trained FECNN and used it in both

top and bottom branches of our architecture. 
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Table 2 

Learning rate changes in all layers in all 3 steps. 

Network SRNet FECNN 

Layer Set Conv0 Conv1,2 Conv3,4 Conv5 FC 

Initial value 10 −5 10 −6 5 × 10 −6 10 −5 5 × 10 −4 

Final value 10 −6 5 × 10 −8 10 −7 5 × 10 −7 10 −s 6 

4

 

p  

c  

i  

p  

N  

s  

l  

t  

w  

i  

t  

t  

p  

e  

e  

p

4

 

a  

v  

F  

u  

e

 

(  

(  

d  

j  

(  

a  

i  

c  

t  

d  

1  

p  

f  

g  

b  

c  

a  

r

4

 

a  

F  

t  

n  

i  

t  
• In the second step, we trained the SRnet of the bottom

branch with a dataset of high and low resolution face im-

age pairs. The details of used datasets are presented in the

experimental evaluation section. 
• The third step is the main training phase. We merged the

two subnets namely SRnet and FECNN and a training dataset

that contains pairs of low resolution and high resolution of

same persons was fed into the bottom and top branches, re-

spectively. 

We considered the top branch FECNN net and the bottom

ranch SRFECNN net as two nonlinear functions that project a high

esolution image and low resolution image to a 4, 096 dimensional

ommon space: 

h 
i = F H (I h i ) (4) 

l 
i = F L (I l i ) (5) 

here I h 
i 

∈ R M×M and I l 
i 
∈ R N×N that N < M . During this phase of

raining F H (I h 
i 
) was considered fixed and did not change, but F L (I l 

i 
)

as trained to minimize the distance between low and high res-

lution images of same subjects in the common space. With this

im, the distance was backpropagated into the bottom branch net

both FECNN and SRnet) as an error. 

The main training procedure was repeated many times for all

airs of training images. We reduced learning rate of all layers to

ne-tune the weights obtained in the first two training phases.

owever, the learning rate of first layers of FECNN is less than

ast layers of it, because in a specific problem, last layers of a

CNN have more discriminant information about the problem and

he first layers of it have more general features that can change

parsely ( Zeiler & Fergus, 2014 ). 

.3. Reconstruct input image 

Additionally, our method can reconstruct a high resolution im-

ge from the low resolution probe image. First subnet of the bot-

om branch used for super-resolution to produce a high resolution

ace image from the low resolution probe face to feed into FECNN.

n the test phase, after feeding low resolution probe image into

he bottom net we can extract corresponding high resolution face

mage from the last layer of SRnet. 

.4. Test phase 

At first in the testing phase, all high resolution gallery images

re fed to the top branch net and mapped into the common space

nd the probe image is fed into the bottom branch net. The label

f probe image is determined by following formulae 

abel(I l i ) = Label(I h k ) (6)

here k determined by 

 = arg min 

j 
{ d i, j } N G j=1 

(7)

here I l 
i 

is the low resolution probe image, I h 
k 

is the k t h high res-

lution gallery image and N G denotes number of high resolution

ace gallery images. 

.5. Implementation 

All the experimental evaluation run on Intel Core i7-5930K,

VIDIA Titan X, and Pytorch with cudnn 5.1.10 is selected as the

eep framework for implementing the proposed method. In All Ex-

eriment Stochastic Gradient Descent(SGD) is the optimizer, also

sed distance function is L2norm and learning rate for each layer

s changed based on Table 2 . 
. Experimental evaluation 

The experiments are designed to compare performance of the

roposed method against the state-of-the-art super-resolution and

oupled mappings approaches when the resolution of probe face

mage is very low, and further how robust the proposed approach

erforms against variations in expression, illumination, and age.

ext, in two experiments, we show the role of super-resolution

ubnet in recognition accuracy and reconstructing the high reso-

ution face image. Finally, the proposed method is compared with

he state-of-the-art high resolution face recognition using in the

ild datasets. For a fair comparison, in all experiments presented

n this section, the proposed method and competing methods are

rained and evaluated following the same procedure. Please note

hat in our experiments we used the trained weights of the com-

eting methods for initialization, and then we trained their mod-

ls on the same training dataset as our proposed method and then

valuated them with exactly the same methodology as our pro-

osed method. 

.1. Data description 

Training dataset: The details of datasets we used for training

re presented in Table 3 . In total we used 90,897 face images with

ariations in pose, expression, illumination and age for training.

rom FERET dataset ( Freeman, Pasztor, & Carmichael, 20 0 0 ), we

sed 10,585 images in training and the rest (3541 images) in the

valuation phase. 

Evaluation datasets: We carried out our evaluations on LFW

 Huang et al., 2007 ), MBGC ( Phillips et al., 2009 ), and FERET

 Phillips et al., 20 0 0 ) face dataset. The LFW ( Huang et al., 2007 )

ataset contains 13,233 face images of 5749 subjects. 1680 sub-

ects of this dataset have two or more face images. The MBGC

 Huang et al., 2007 ) dataset includes images and videos. One im-

ge of each 147 subjects used as gallery, and the captured face

mages from videos used as probe set. The FERET face dataset

ontains 14,126 face images from 1199 individuals. A subset of

his dataset including 3541 images is assigned for evaluation. This

ataset includes four probe categories. The FB probe set includes

195 frontal face images with different expressions. The second

robe category which is called duplicateI contains all duplicate

rontal images in the FERET dataset (722 images). The third cate-

ory is called fc which includes 194 images taken on the same day,

ut with a different camera and illumination condition. The fourth

ategory called duplicateII consists of duplicate probe images which

re taken at least with one year difference with acquisition of cor-

esponding gallery image (different age condition). 

.2. Training phase 

We used the pre-trained VGGnet weights ( Parkhi et al., 2015 )

nd dropped the last two fully connected layers to construct our

ECNN. Also, before training of our two branches architecture, we

rained SRnet on the training datasets described in Table 3 . For SR-

et training, we first down-sampled faces from all of the training

mages to make the LR faces for the corresponding HR images in

he dataset. The SRnet includes five convolutional layers and we
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Table 3 

List of datasets used for training and their description in terms of number of images and their variability in conditions such as 

E:expression, I:illumination, P:pose, and R:race. ∗ Please note that FERET dataset contains 14,126 images and we used 10,585 image 

for training, and the rest, 3541 images, for evaluation. 

Datasets # of images Highlights 

300-W ( Sagonas, Tzimiropoulos, Zafeiriou, & Pantic, 2013 ) 600 in the wild, variations in E&I&P 

HELEN ( Le, Brandt, Lin, Bourdev, & Huang, 2012 ) 2330 in the wild, variations in E&I&P 

IBUG ( Sagonas et al., 2013 ) 135 in the wild, variations in E&I&P 

AFW ( Zhu & Ramanan, 2012 ) 250 in the wild, variations in E&I&P 

Georgia Tech DB ( Freeman et al., 2000 ) 750 variations in E&I&P 

PubFig ( Kumar, Berg, Belhumeur, & Nayar, 2009 ) 58, 797 in the wild, variations in E&I&P 

UMIST ( Graham & Allinson, 1998 ) 564 gray scale, variations in P&R 

YALE B ( Georghiades, Belhumeur, & Kriegman, 2001 ) 5760 gray scale, variation in P&I 

AT&T ( Samaria & Harter, 1994 ) 400 wearing eyeglasses, variation in E&I 

FERET ( Freeman et al., 2000 ) 14, 126 ∗ variation in P&I&E 

CK + ( Lucey et al., 2010 ) 10, 708 variation P&E 
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trained the network with 90,897 pairs of LR and HR face images.

After training of FECNN and SRnet separately, we connected the

pre-trained SR and FECNN subnets. Then we trained our proposed

architecture using 90,897 faces. In this main part of the training

phase, we reduced learning rate of each layer in bottom branch to

fine-tune the bottom net on training for coupled mappings pur-

pose. 

4.3. Robustness against expression, illumination and age variations 

In this experiment, we evaluated our proposed method on

the four categories of FERET evaluation datasets described in

Section 4.1 . Since the FB images have different expression condi-

tions, the fc set includes probe images with different illumination

conditions and duplicateII set contains probe images with differ-

ent age conditions compared to the corresponding gallery images,

we can evaluate the robustness of our proposed method against
Fig. 4. Comparison of our proposed method with CLPM ( Li et al., 2010 ), MDS ( Biswas 

ecognition rates. Cumulative match curves on (a) FB, (b) fc, (c) duplicate I, and (d) dupli
hese variations as well. In this experiment, the HR face images

ith the size of 72 × 72 pixels are aligned with the positions of the

wo eyes. The LR images with size of 12 × 12 pixels are generated

y the operation of down-sampling and smoothing on aligned HR

ace images. Fig. 4 shows the cumulative match curve (CMC) for

ur method and four competing methods, DSR ( Zou & Yuen, 2012 ),

DS ( Biswas et al., 2012 ), NMCF ( Huang & He, 2011 ), and CLPM

 Li et al., 2010 ). The cumulative match score for rank k is a face

dentification measure which is defined as the recognition accu-

acy of the probe images when at least one of the k nearest neigh-

ors of the HR gallery images belongs to the same individual as

he LR probe image. The results presented in Fig. 4 shows that

he recognition performance of our method is significantly better

han other state-of-the-art methods. Fig. 4 (a) depicts the cumula-

ive match curves on the FB dataset. As we explained in Section 4.1 ,

his dataset includes probe images different from gallery im-

ges only in terms of expression. The recognition accuracy of our
et al., 2012 ), DSR ( Zou & Yuen, 2012 ) and NMCF( Huang & He, 2011 ) in terms of 

cate II datasets. 
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Table 4 

Comparison of Rank-1 recognition accuracy across different probe image res- 

olutions on FERET dataset. 

6 × 6 12 × 12 24 × 24 36 × 36 

CLPMs ( Li et al., 2010 ) 64.4% 90.1% 93.4% 95.2% 

MDS ( Biswas et al., 2012 ) 57.3% 87.4% 90.2% 92.2% 

NMCF ( Huang & He, 2011 ) 60.3% 84.4% 88.4% 91.1% 

DSR ( Zou & Yuen, 2012 ) 69.4% 88.5% 90% 93% 

DMS ( Yang et al., 2018 ) 76.4% 91.5% 97% 99.4% 

bASR ( Heinsohn et al., 2019 ) 74.1% 88.3% 93.6% 96.9% 

CSF ( He et al., 2019 ) 76.7% 91.4% 95.9% 98.1% 

Our method 81.4% 92.1% 96.7% 99.2% 

4

 

o  

w  

a  

s  

T  

c  

3  

d  

n  

m  

F

s

roposed method in the Rank-1 is 92.1%, while the best perfor-

ance of the competing methods belongs to CLPM ( Li et al., 2010 )

ith 90.1% recognition accuracy. Our proposed method outper-

orms the competing methods with 2% difference. Fig. 4 (b) depicts

he CMC results on fc dataset. The probe images in this dataset

ary in illumination compared to gallery images. Our proposed

ethod outperform competing methods across all ranks signifi-

antly. In Rank-1, our method demonstrates an increase of 5.1%

ompared to the best competing method on fc dataset. This ba-

ically shows the efficiency of deep convolutional neural networks

n feature extraction and generalization even in different illumina-

ion conditions. While the performance of our method is robust

gainst the changes in illumination, the other competing meth-

ds performance drops significantly on fc dataset compared to FB.

uplicateI includes images in similar condition as the gallery, but

ith slightly expression variation. On this dataset, the performance

f our method is slightly better than competing method (DSR

ou & Yuen, 2012 ) ( Fig. 4 (c)). The duplicateII contains probe im-

ges with different age condition compared to gallery images. Our

roposed method outperforms the best competing method (here

DS Biswas et al., 2012 ) on Rank-1 with 5.9% recognition accu-

acy ( Fig. 4 (d)). Again, this shows the robustness of our proposed

ethod against variations in age. 

Taken together, our proposed method shows the best perfor-

ance on all probe sets FB, fc, duplicateI , and duplicateII . Also our

ethod shows robustness against variations in expression, illumi-

ation and age as shown in Fig. 4 (b) and (d). 
ig. 5. Configurations with different super-resolution modules. Modules with violet colo

eparated from SRFECNN. (c) Using sparse coding for SR ( Yang et al., 2010 ) (d) Using only
.4. Evaluation on different probe resolutions 

Here, we evaluated the effectiveness of our proposed method

n probe images with very low resolutions. In this experiment,

e compared the performance of our method with state-of-the-

rt methods on FB probe set which all probe faces of this set are

imilar to gallery faces, but with slightly variation in expression.

hus appropriate to study the effect of variations in resolution. We

onsidered four different resolutions, 6 × 6, 12 × 12, 24 × 24, and

6 × 36. Each time, we trained the SRnet separately on training

ata with reduced images resolutions and then connected the SR-

et to FECNN and retrained the bottom branch of our proposed

ethod on each resolution condition separately. Table 4 shows the
r are involved in training phase. (a) Configuration of our method. (b) SR subnet is 

 bicubic interpolation. 
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Table 5 

Comparison of Rank-1 recognition accuracy for different SR module 

configurations across different probe image resolutions. 

6 × 6 12 × 12 24 × 24 36 × 36 

Only Bicubic 66.8% 81.9% 88.9% 93.6% 

Separated SR Subnet 75.8% 89.3% 95.4% 97.6% 

SR via Sparse Coding 74.1% 88.5% 94.4% 96.8% 

Our Method 81.4% 92.1% 96.7% 99.2% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Reconstructed Faces by different configurations in Fig. 5 . 
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Rank-1 recognition accuracy of our method compared to the com-

peting methods on different resolution conditions evaluated on FB

set. As can be seen, our proposed method outperforms all the com-

peting methods on all four resolution conditions. The most signif-

icant improvement (12%) is on the very low resolution of 6 × 6

where our proposed method beats DSR ( Zou & Yuen, 2012 ), a

method specifically proposed for the recognition of very low face

images. 

4.5. The role of SR subnet 

As explained, the bottom branch net is consist of two nets, SR

and FECNN. In training phase, both SR and FECNN nets are involved

in the main training phase. In this experiment, we aim to study the

impact of using SRnet and also its fine-tuning on the recognition

performance of our method. 

Fig. 5 shows three different configurations that we compared

our proposed method with them. Our proposed method config-

uration is depicted in Fig. 5 (a) where both SR and FECNN sub-

net are trained during the main training phase. In the configura-

tion shown in Fig. 5 (b), SRnet is separated from FECNN in bottom

branch, and in the main training phase weights of SRnet are kept

fixed. The configuration shown in Fig. 5 (c) employs sparse coding

( Yang et al., 2010 ) method instead of the SRnet. Again only the

FECNN is trained during the main training phase. The configuration

illustrated in Fig. 5 (d) uses only a bicubic interpolation to map the

low resolution input image to an image of size 224 × 224 and thus

no super-resolution net is used. Therefore, in the training phase,

only FECNN weights are updated. Table 5 shows, the Rank-1 recog-

nition accuracy of the four different configurations (see Fig. 5 ).

These results illustrate that using the SRnet in the configuration

improves the performance (see the second row of Table 5 ). Fur-

thermore, involving the SRnet in the main training phase improves

the recognition performance considerably (our proposed method in

Table 5 ). Especially, when the resolution of probe set is very low,

the recognition performance of our method is considerably higher

than other configurations. Together, we can conclude the employ-

ment and training of SRnet improves the recognition performance

of our proposed method architecture especially for probe images

with very low resolutions. 

4.6. Evaluation on reconstructed HR face 

Despite other coupled mappings methods, our proposed

method can also reconstruct a high resolution face from the low

resolution one. In this experiment, we aim to evaluate our method

in terms of high resolution face reconstruction. Here, we again

compare the performance of our method with the three config-

urations introduced in Fig. 5 in terms of visual quality of recon-

structed face images. The size of low resolution images used in

this section is 24 × 24 pixels. Fig. 6 shows some examples of recon-

structed face images by each method. To compare visual enhance-

ment of the four methods, peak signal to noise ratio (PSNR), struc-

tural similarity index (SSIM) and weighted peak signal to noise ra-

tio (WPSNR Voloshynovskiy, Herrigel, Baumgaertner, & Pun, 1999 )

metrics are used. As shown in Fig. 7 , when SRnet is separated
rom FECNN net, the reconstructed face images have the best vi-

ual quality and sparse coding is the second. Our method places

n the third position in these results, however the differences be-

ween reconstructed face images by our method in comparison

ith the top two methods is small. As discussed in Section 4.5 , the

ecognition accuracy of our proposed method is much better com-

ared to other configurations. This shows that the visual quality

f super-resolved face images is compromised for better recogni-

ion performance in our proposed method. One interesting point is

hat the variance of PSNR and SSIM is higher for our method com-

ared to other three competing methods. This shows that in some

ases like the first two examples (on the left) in Fig. 6 , the visual

uality has improved while in others like the other two examples,

he quality has degraded. In other words, the changes in SRnet has

een in a direction to help the recognition performance eventually

hich is not necessarily in the direction of visual enhancement. 

.7. Compare on LFW 

In this experiment, we compare the proposed method perfor-

ance with state-of-the-art deep convolutional neural networks

n face recognition. Also we evaluate performance of the pro-

osed method when faces are in the wild. In this experiment

e compare the proposed method with state-of-the-art meth-

ds in Low Resolution Face Recognition(LRFR) such as Reference

RFR ( Mudunuri & Biswas, 2016 ), NMCF ( Huang & He, 2011 ),

SR ( Zou & Yuen, 2012 ) and in High Resolution Face Recog-

ition(HRFR) such as DeepFace-Ensemble ( Taigman, Yang, Ran-

ato, & Wolf, 2014 ), DeepID ( Sun, Wang, & Tang, 2014 ), MMDFR
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Fig. 7. Visual quality comparison of reconstructed HR faces in terms of PSNR, SSIM and WPSNR, while scale factor is 3. 

Fig. 8. ROC curve for LRFR on LFW dataset. 
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Fig. 9. Sample images of MBGC dataset. First row shows some gallery images. Sec- 

ond row shows some probe images taken from videos of corresponding individual. 
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 Ding & Tao, 2015 ), ConvNet-RBM ( Sun, Wang, & Tang, 2013 ),

aceNet ( Schroff, Kalenichenko, & Philbin, 2015 ). 

We used unconstrained configuration of LFW protocol

uang and Learned-Miller (2014) for testing that allows the

roposed method to be trained with another training dataset. For

est procedure, we split all LFW images into 10 sets randomly and

ach evaluation set consists of 300 matched and 300 mismatched

airs. In this experiment, first image of each pair down-sampled

o 8 while the size of the second image of this pair is 64. Finally

verage of recognition accuracies for 10 evaluation sets shown

n Fig. 8 . Results show the proposed method outperforms state-

f-the-art methods on high resolution and low resolution face

ecognition tasks. Although the HRFR methods which compared

n this experiment, resulted in good accuracy on LFW dataset

or high resolution face recognition, their performance drops
Table 6 

Comparison of average Rank-1 accuracy on MBGC( Ph

Method 

CLPM ( Li et al., 2010 ) 

MDS ( Huang & He, 2011 ) 

KISSME ( Koestinger, Hirzer, Wohlhart, Roth, & Bis

Reference LRFR ( Mudunuri & Biswas, 2016 ) 

SA ( Yu et al., 2018 ) 

Heterogeneous LRFR ( Mudunuri & Biswas, 2017 ) 

DCR ( Lu et al., 2018 ) 

bASR ( Heinsohn et al., 2019 ) 

CSF ( He et al., 2019 ) 

Our method 
 Mudunuri & Biswas, 2016 ) significantly when input faces are low

esolution. 

.8. Compare on MBGC 

In this experiment we evaluate the proposed method on Mul-

iple Biometric Grand Challenge ( Phillips et al., 2009 ) to demon-

trate its performance when images taken by surveillance cameras.

his dataset consists images and videos from 147 subjects that all

mages are frontal and only one image per subject used as gallery

mages and 5 captured faces per subject from videos used as probe

mages. Thus probe set consists frontal and non-frontal face im-

ges, with poor resolution and illumination. Fig. 9 shows some

ample images of gallery and probe set. 

We did not use MBGC ( Phillips et al., 2009 ) dataset in train-

ng phase. The experiment repeated 10 times and in each time 70

andomly subjects were used for testing. Table 6 shows average

ank-1 accuracy of the proposed method and other state-of-the-

rt methods for low resolution face recognition. 

In this experiment, we compared the proposed method with

ther state-of-the-art low resolution face recognition methods. The
illips et al., 2009 ) dataset. 

Average Rank-1 accuracy 

41.19% 

39.48% 

chof, 2012 ) 49.15% 

50.57% 

62.41% 

60.52% 

67.13% 

64.71% 

66.93% 

68.64% 
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Table 7 

Summary Table. Comparison of all state-of-the-art methods with the proposed method. 

Super resolution based Coupled mapping based HR based trained on LR images 

DSR a SA b CLPM 

c MDS d DMS e DCR f Deep-Face g Face-Net h MMDFR i Our method 

FERET 6 × 6 69.4% 74.8% 64.4% 57.3% 76.4% 76.3% 63.0% 61.7% 62.2% 81.4% 

FERET 12 × 12 88.5% 90.1% 90.1% 87.4% 91.5% 91.7% 89.7% 88.0% 87.5% 92.1% 

FERET 24 × 24 90.0% 96.4% 93.4% 90.2% 97.0% 95.8% 94.3% 97.2% 95.6% 96.7% 

LFW 8 × 8 66.6% 71.8% 62.8% 65.4% 70.1% 73.4% 59.8% 67.2% 61.4% 76.3% 

MBGC 12 × 12 52.9% 62.4% 41.2% 36.5% 63.6% 67.1% 62.7% 61.9% 60.5% 68.64% 

a Zou and Yuen (2012) . 
b Yu et al. (2018) . 
c Li et al. (2010) . 
d Biswas et al. (2012) . 
e Yang et al. (2018) . 
f Lu et al. (2018) . 
g Parkhi et al. (2015) . 
h Schroff et al. (2015) . 
i Ding and Tao (2015) . 
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proposed method outperforms on Deep Coupled Residual Network

( Lu et al., 2018 ) that reported the best recognition accuracy on

MBGC ( Phillips et al., 2009 ) with more than 1.5%. This experiment

illustrates the efficient performance of the proposed method when

probe images are in the wild or taken by surveillance cameras. 

5. Discussion and conclusion 

In this paper, we presented a novel coupled mappings ap-

proach for the recognition of low resolution face images us-

ing deep convolutional neural networks. The main idea of our

method is to use two DCNNs to transform low resolution probe

and high resolution gallery face images into a common space

where the distances between all faces belong to the same indi-

vidual are closer than distances between faces belong to differ-

ent persons. We evaluated our proposed method in 8 experiments

on FERET ( Phillips et al., 20 0 0 ), LFW ( Huang et al., 2007 ), and

MBGC ( Phillips et al., 2009 ). Comparisons of the proposed method

with 9 state-of-the-art methods which are grouped in three ap-

proaches are summarized in Table 7 . These three approaches in-

clude (1) super resolution based methods which first generate a

HR face image from LR probe face, then use this super resolved

face images for matching with HR Gallery images; (2) common

space mapping methods which map LR probe face and HR gallery

faces into a common space where they are comparable and can

be tested for matching; (3) methods that are designed for HR

face recognition task, but we trained them on LR face images to

be comparable with our method.Our proposed method demon-

strates significant improvement in recognition accuracy compared

to the state-of-the-art coupled mapping methods (CLPM Li et al.,

2010 , NMCF Huang & He, 2011 , MDS Biswas et al., 2012 , DSM

Yang et al., 2018 , Reference LRFR Mudunuri & Biswas, 2016 , Het-

erogeneous LRFR Mudunuri & Biswas, 2017 ), discriminative super

resolution (DSR Zou & Yuen, 2012 ), Mapping using Supplementary

Attributes ( Yu et al., 2018 ), and deep residual network ( Lu et al.,

2018 ) method. As shown in Table 7 , the proposed method outper-

forms the other state-of-the-art methods especially when probe

face image has very low resolution. Our proposed method shows

significant improvement and robustness against variations in ex-

pression, illumination and age. Our method also outperforms com-

peting methods across various resolutions of probe images and

it shows even more considerable performance improvement (5%)

when applied on very low resolution images of 6 × 6 pixels.The

proposed method shows the best performance when faces are in

the wild and also taken by surveillance cameras. Although the

state-of-the-art high resolution face recognition methods achieved

well performance on challenging datasets, this category of meth-
ds cannot compete with the state-of-the-art low resolution face

ecognition methods, like our proposed method on low resolution

ace images. Our proposed method also offers HR image recon-

truction which its visual quality is comparable with state-of-the-

rt super-resolution methods. 
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