
Computer Communications 157 (2020) 124–131

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Optimized data storage algorithm of IoT based on cloud computing in
distributed system
Mingzhe Wang, Qiuliang Zhang ∗

China Academy of Railway Sciences, Beijing 100081, China

A R T I C L E I N F O

Keywords:
Cloud computing
Data access
Storage
Hash algorithm
Network topology

A B S T R A C T

The existing Internet of Things(IoT) uses cloud computing data access storage algorithms, that is, the hash
algorithm has defects of low data processing efficiency and low fault tolerance rate. Therefore, HDFS is
introduced to optimize cloud computing data access storage algorithms. HDFS is first used to optimize the data
access storage architecture according to problems of data access storage architecture in the Internet of Things,
in which factors of data access storage distribution in the IoT are fully considered, and hash values are used to
optimize the configuration of data access information storage locations, so that data access storage distribution
strategy can be optimized. Then, the topology of the IoT is optimized, and data block size is also optimized with
effect algorithm. Finally, the design of file storage is optimized. Through simulation experiments, it is proved
that the optimized cloud storage method has obvious performance advantages in file read and write speed
as well as memory usage. Compared with the traditional hash algorithm, optimization algorithm proposed in
the paper greatly improves file upload and download efficiency, data processing efficiency and fault tolerance
rate, which fully demonstrates that the proposed cloud computing data access storage optimization algorithm
is more superior.

1. Introduction

Cloud computing is mainly based on the Internet technology and
provides users with services, uses, and interactions. Generally, dynamic
and proliferative and virtualized resources are provided through the
Internet. Among them, ‘‘Cloud’’ is a metaphor for the Internet and the
network, which is mainly an abstract representation of the Internet and
infrastructure. There are many definitions for cloud computing, and
most of them are accepted by the American Institute of Technology.
Today, cloud computing is a payment-based model that provides con-
venient, available, on-demand network access, and it only required less
effort to interact a bit with the vendor if access to a configurable pool
of computing resources is needed. Besides, cloud computing has the
large quantity of advantages, such as ultra-large scale, virtualization,
high reliability, versatility, high scalability, on-demand service, low
cost and so on. Moreover, cloud computing can provide storage services
in addition to computing services. Due to its multiple advantages,
cloud computing is widely used in many fields. Many enterprises use
cloud computing to store their own data access information, which has
certain privacy, but there are still potential dangers. Therefore, data
access storage optimization in cloud computing has become one of the
key research topics among scholars today [1–3].

As one of the many services provided by cloud computing, cloud
storage which is widely welcomed because of its high efficiency, flex-
ibility and pay-as-you-go allows users to store and share data on

∗ Corresponding author.
E-mail address: zhangqiuliang816@163.com (Q. Zhang).

the platform. However, data stored in cloud platform is in an un-
controllable domain, and data owner (DO) loses the control of data,
which takes great risk on security. When users want to obtain the
data through cloud platform after encryption data are uploaded to the
cloud platform, they have own the access rights. That is why it is
important to establish a reasonable access policy for the cloud storage
platform. If traditional public key encryption mechanism is adopted
when DO uploads data with encryption operation, DO needs to perform
a data encryption operation for each user which not only increases
the computing burden on DO side, but also cloud service provider
(CSP) has to repeat the operation every time after sharing the stored
data. The workload is huge. To solve above problems, an attribute-
based encryption scheme (ABE) which uses identity features of users
as attributes to select some or all the attributes to encrypt and decrypt
data was proposed by Sahai and Waters. ABE allowed DOs to share
data without using public keys of others, which reduced computation
amount, but cannot prevent collusion attacks among multi-user. More-
over, based on ABE scheme, Key-Policy Attribute Based Encryption
(KP-ABE) scheme where DO constructed access structure in user key,
and attribute set was utilized to perform encryption operations on data
was proposed by Goyal et al. in which Fine-grained access control and
flexibility in managing user rights could be achieved, but the solution
required updating all of the user’s keys in key revocation. Besides it,

https://doi.org/10.1016/j.comcom.2020.04.023
Received 24 February 2020; Received in revised form 27 March 2020; Accepted 13 April 2020
Available online 16 April 2020
0140-3664/© 2020 Published by Elsevier B.V.

https://doi.org/10.1016/j.comcom.2020.04.023
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2020.04.023&domain=pdf
mailto:zhangqiuliang816@163.com
https://doi.org/10.1016/j.comcom.2020.04.023


M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

based on ciphertext and simplifying key revocation process, Bethen-
court et al. proposed Cipher-text Policy Attribute Based Encryption
(CP-ABE), whose computational overheads were much more compared
with KP-ABE scheme [4–6].

Cloud data sharing service designed to enhance privacy protection
was proposed by Sabrina et al. which converted the access control
structure into a binary access control tree. However, due to structural
constraints, the flexibility of the solution is limited and the storage
efficiency is not significantly improved.

Based on data mining technology and genetic algorithm, Karimi
et al. proposed a combination of QoS-aware services in cloud com-
puting whose requirements must be dynamically implemented, and
it requires a trade-off between the best performance state and the
execution speed of service portfolio. In order to achieve this goal,
the combination of methods in previous studies has been used to
maximize and optimize results in the shortest possible time. However,
as the number of services was increasing, and the search space for
problems was expanding, there was no enough efficiency for tradi-
tional methods to combine the required services in reasonable time.
So, the genetic algorithm is adopted to globally optimize the service
level agreement. In addition, service clustering is used to reduce the
search space of the problem, and according to its history association
rules are utilized for the composite service to improve the service
composition efficiency. Shila et al. [7] proposed a secure mobile stor-
age system called cloud computing storage system. Although these
literatures have made certain sharing of cloud computing and data
optimization, cloud computing models mainly provide cloud computing
services with a set of dedicated and expensive machines, which can
result in huge investments in capital expenditures and ongoing costs.
Cloud computing is a revolutionary paradigm with efficient resource
utilization and advanced manageability, which provides services from
data storage and processing to software computing resource process on
the network. Nowadays, popular cloud computing model includes a set
of dedicated and expensive machines which provide cloud computing
services and result in huge investments in capital expenditures and
ongoing costs. The cost-effective solution is to leverage the capabilities
of ad hoc clouds consisting in distributed and dynamically undeveloped
local resources, and the paper adopts a distributed system solution.
It can be further divided into static and mobile clouds. Static clouds
utilize computing resources that are underutilized by general-purpose
machines, and mobile clouds utilize idle computing resources of mobile
devices. However, the dynamic and distributed nature of ad hoc clouds
poses a challenge to system management [8].

As far as the existing research is concerned, data access storage
algorithms in cloud computing have the defects of low data processing
efficiency and low fault tolerance, which cannot meet the needs of
today’s society for data access storage. Therefore, HDFS which refers
to a distributed file system, which is highly fault-tolerant and can be
connected to inexpensive machines is introduced to design data access
storage optimization algorithm in cloud computing. Meanwhile, HDFS
can also provide high-throughput data access, which is ideal for storage
applications of data access information. The application of HDFS can
greatly improve the data processing efficiency and fault tolerance rate
of IoT data access storage optimization algorithm, which provides more
effective technologies for the storage of IoT data access information.

2. Data mining structure in large cloud storage system

Cloud computing implements a componentized Web 2.0 application
system and a cloud computing-based information platform. In order to
achieve resource access and data mining for large cloud storage system,
it is necessary to build an overall model at the beginning. Then through
construction of resource access in large-scale cloud storage system,
information exchange and resource integration of multi-source data are
realized, and multi-dimensional business services and multi-function
control are provided as well. Finally, cloud storage system under digital

Fig. 1. Data mining framework in Hadoop platform.

information service is monitored by the multi-channel data query and
network data through the memory management mechanism, which can
improve the efficiency and security performance of network data access
and scheduling. What is more, in order to establish the dynamic balance
of the QoS access system and serve in the digital information of the
MAC layer, the overall model of data mining framework in Hadoop
platform is constructed in the paper, which is shown in Fig. 1 [9].

In Fig. 1, JDBC (Java Database Connectivity) represents a random
read and write operation interface under large cloud storage system,
which provides standardization tools for reading and writing programs
in cloud storage system when resource scheduling is performed, and it
has parallel processing capability. Resource integration for large cloud
storage systems with cloud computing as the core. However, frequent
large-data query operations in cloud storage system result in increasing
load pressure on the cached data in parsing engine, and scheduling
design [10] in resource access will be required. For data mining task 1
to task n, when 𝑦(𝑛) is the Gaussian time sequence that each element
is independently generated from Gaussian pseudo-random number in
large cloud storage system query response, 𝐴 =

{

𝐴1,𝐴2, … , 𝐴𝑚
}

is
the attribute of data classification, and the maximum trust value is 1,
the longer the interval is, the smaller the impact of the trust value
on current situation will be in data mining and resource scheduling
design combined with the data in the framework diagram, and the
time-decreasing function is 𝑇𝑠𝑖𝑚 ∈ (0, 1]. Moreover, the obtained edge
inverse vector is used to represent the rank of the original data 𝑥 (𝑛),
and the state reorganization of the multi-source data queried by digital
information service under cloud storage system in parallel is achieved
through amplitude-adjusted Fourier transformation. Then, the cloud
storage system is built with the help of Hadoop to mine massive high-
dimensional data flows. Finally, distributed code execution and the
KD tree data indexing method are used to distribute task code to
multipath monitoring node. In the paper, based on the limit separation
theorem of auto-correlation function, the cache permutation function
is constructed in this paper to establish the dynamic balance in the KD
tree, and the obtained cache permutation function is as follows [11,12].

𝑀𝑇𝑇𝐴 =
𝑀,𝑛,𝑁
∑

𝑖,𝑗,𝑙=1,1,1
𝑑𝑖𝑗𝑙 ⋅𝑄

(

𝑑𝑖𝑗
)−1

⋅ 𝑇
(

𝑠𝑙
)

∕ (𝑁 − 1) (1)

where 𝑑𝑖𝑗𝑙 is the state parameter of resource scheduling in cloud storage
system with equal spacing, 𝑄

(

𝑑𝑖𝑗
)

is the linear program-controlled
branch vector of data block 𝑑𝑖𝑗 , and 𝑇

(

𝑠𝑙
)

is the time function of
node movement in cloud storage system. In a word, data mining in
large cloud storage systems is realized through design structure model

125



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Fig. 2. Optimization diagram of data access storage architecture.

mentioned above, which provides an accurate data foundation for
resource scheduling access.

3. Optimize algorithm design for IoT data access storage

Data access information is critical for each domain or device. Cus-
tomers and devices can be analyzed based on the data access infor-
mation to ensure customer satisfaction and device security. Therefore,
data access information needs to be stored, and IoT data access storage
system has following characteristics.

(1) Practical performance. According to different data information,
data port needs to be provided, and the complete monitoring
system is used for real-time monitoring, which maintains close
contact with the outside world and ensures good application
experience of users.

(2) Low cost. IoT data access storage system expansion equipment is
simple, and maintenance and economic costs are getting lower
and lower with the continuous development of technology.

(3) Scalablity. The number of servers for the IoT data access storage
systems can reach hundreds, and the greater the number is, the
more scalable the storage system will be.

All mentioned above have put higher requirements on the IoT data
access storage algorithm [13]. However, existing data access storage al-
gorithms cannot meet these requirements, so they need to be optimized
accordingly. The specific process is shown below.

3.1. Optimization of data access storage architecture

In order to improve the data processing efficiency of storage al-
gorithm, HDFS is first introduced to optimize the data access storage
architecture first according to the characteristics of the IoT data access
information, the advantages of cloud computing, and the requirements
of data access storage. Data access storage architecture is optimized as
shown in Fig. 2 [14–18].

As shown in Fig. 2, after the data access storage architecture is
optimized, it is mainly divided into three parts, which are the in-
formation access of data access, calculation and storage. The client
software for accessing data access information can generate access

information and acquire functional areas. What is more, the computing
core is a distributed storage system with Linux operating system, which
Xen virtual machine whose key part is the storage part. The HDFS
cluster managed by the NameNode correspondingly stores the data
access information, and it can store and manage massive data access
information.

IoT data access information can be transferred to HDFS file or stored
in database by the IoT data access information access and calculation
part according to different requirements, both of which can realize the
persistent storage of the data access information. Meanwhile, HDFS
referenced at the same time can greatly reduce the delay of data access
and increase user experience [19].

3.2. Strategy optimization in data access storage distribution

Based on the above optimized data access storage architecture,
the hash algorithm is adapted to re-optimize the data access storage
distribution strategy.

In the process of data access information storage, HDFS is in-
troduced to perform distributed storage for data access information.
However, a key issue is how to distribute data access information on
IoT nodes, namely the distribution strategy of data access storage which
has a direct and large impact on data processing efficiency.

In order to improve the efficiency of data processing, the hash
algorithm with high performance and low maintenance cost on data
structure is used to optimize the data access storage distribution strat-
egy, which can greatly reduce the failure of IoT nodes and data access
information migration caused by the increase of nodes.

3.2.1. Factors affecting data access storage distribution
After the data access information is accessed, it can be divided into

multiple data blocks and distributed on IoT nodes according to certain
rules. It is found through research that the main factors affecting the
distribution of data access storage are mainly divided into three. The
details are shown below.

(1) Load balancing. In the process of storage distribution, data
access information should be evenly distributed as evenly as possible
on the nodes to maintain the load balance of the nodes, so that the
data access information can be processed in parallel to improve the
data processing efficiency. If the storage distribution is not balanced,
there will be a ‘‘data skew’’ in data access information. What is worse,
it will be impossible for nodes to perform parallel processing, which
will have a greater impact on data access information storage.

(2) Node failure. For HDFS clusters, it is a frequent problem that
its nodes are out of order. Therefore, optimization algorithm in data
access storage needs to be much greater fault tolerance, so that data
access information can be stored in a balanced manner.

(3) Storage operation performance. The effect of data access storage
is directly affected by operation performance. In general, only net-
work transmission operation is considered. If the operation on network
transmission is simple, communications among nodes in the execution
process of data access storage algorithm can be greatly reduced, and
the compression efficiency of data access information can be effectively
improved [20–23].

According to the above analysis and correlation among data access
information, the hash algorithm is applied to map and store the related
data on the same node, and the related data access information is
aggregated, so that query and analysis on subsequent data access
information is facilitated [24,25]].

126



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Fig. 3. Schematic diagram of hash algorithm.

3.2.2. Hash value configuration for data access information storage loca-
tion

The schematic diagram of the hash algorithm is shown in Fig. 3.
As it can be seen from Fig. 3, the hash algorithm is divided into four

areas: module A, module B, module C, and module D, which correspond
to DataNode1, DataNode3, DataNode5, and DataNode7. The loop of
hash algorithm is completed by calculating the hash value [26,27].

Since the hash algorithm loop, distribution strategy in data access
storage is optimized. The specific steps are as follows.

First, relevance of data access information and the number of redun-
dant copies need to be set, and the calculation formula of correlation
degree on data access information is

𝛿 =
∑𝑛

𝑖=1 𝑥𝑖 ∗ 𝛼
𝑛2 + 1

(2)

where 𝛿 represents correlation degree among data access information,
𝛼 indicates the number of redundant copy that is set to 3 according to
related literature, and 𝑛 is the total number of data access information.

Second, node hash value in HDFS cluster is accordingly calculated
and configured into hash loop interval. The calculation formula on
nodes hash value is expressed as

𝜔 = ∫

𝑚

𝑡=1

2
√

𝑝 ⊗ 𝛽 (3)

where 𝜔 represents nodes hash value, 𝑝 is the node, 𝑚 indicates total
number of nodes, and 𝛽 represents the calculation parameter of nodes
hash value [28].

Then, according to the correlation of data access information, data
hash value is correspondingly calculated, and the calculation formula
is expressed as

𝜇 =
∫ 𝑛
𝑖=1

2
√

𝑥 ⊗ 𝛿

𝑛2
(4)

where 𝜇A represents the hash value of data access.
Finally, the storage location of data access information is configured

according to the obtained hash value of the nodes and data, and the
configuration result is obtained as

𝑓 (𝑥) =
∏

𝑖=1,𝑡=1

𝜔∕𝜇 ∗ 𝜒 (5)

where 𝜒 represents configuration parameter.

Fig. 4. Optimization diagram of IoT network topology.

3.3. Optimization on IoT network topology

Since it is stored by cloud computing in storage process of the data
access, the network topology will have a great impact on the storage
effect. A good network topology can greatly improve the efficiency
of data access storage and speed up data access storage. Existing IoT
data access storage algorithm network topologies have major problems.
Therefore, the scheduler network topology is used for optimization. The
specific process of optimization is as follows [29].

The nodes in the network topology are mainly arranged in a tree,
and each node(such as d1, d2,. . . ) is connected to the switching node
(such as E0, E1, E2, . . . )of the computer. The optimization diagram of
network topology is shown in Fig. 4.

As it is shown in Fig. 4, the distance between each node and the
switch is the shortest after IoT network topology is optimized, which
can greatly improve the speed of data access information access and
storage, and advance the performance of data access information stor-
age. What is more, optimization in network topology can be achieved
preferably.

3.4. Optimization on data block size

Storing data access by using HDFS, actually, divides access data into
data blocks for distributed storage. Therefore, it is seen that the data
block size also directly affects the data access storage. In order to make
the data access storage larger and faster, the effect algorithm is used to
optimize data block size.

Optimization formula for data block size is

𝑒𝑓𝑓𝑒𝑐𝑡 (𝛾) = 𝑓 (𝑥)℘ 𝑡𝑟𝑎𝑛𝑠_𝑡𝑖𝑚𝑒
𝑡𝑟𝑎𝑛𝑠_𝑡𝑖𝑚𝑒 − 𝑠𝑒𝑒𝑘_𝑡𝑖𝑚𝑒 (6)

where 𝑡𝑟𝑎𝑛𝑠_𝑡𝑖𝑚𝑒 indicates the access time of data access information
and 𝑠𝑒𝑒𝑘_𝑡𝑖𝑚𝑒 B is the storage location configuration time of data access
information [25,30].

According to the above formula, the optimal size of the data block is
obtained, and data access information is correspondingly stored based
on it.

Through the above process, the optimization of data access storage
in cloud computing is realized, which can greatly improve the data
processing efficiency and fault tolerance of data access storage, and
provide more advanced technical support for data access storage and
management.

127



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Fig. 5. Mapping relationship between FBM files and user files.

Fig. 6. Schematic diagram of file optimization scheme.

4. Optimization methods of file storage

4.1. Optimization scheme design of file storage

Original HDFS architecture and block management mode are main-
tained to introduce the meta data information server File-Block-Map-
pin(FBM) for storing IoT user space. What is more, FBM records the
file size and the offset value of user file stored in HDFS, and any user
on HDFS has its own user file and stores all its files. Besides it, each file
name corresponds to user ID, whose mapping relationship is shown in
Fig. 5, and file optimization is shown in Fig. 6.

The optimized file scheme mainly accesses customers and data
nodes through FBM and master nodes respectively. The improved effect
based on the parallel management scheme can shorten the response
time of the system. And the file meta data information of a storage
system occupies most of the entire system file meta data information,
but it occupies a small amount of storage memory. Therefore, this type
of file storage system is used as optimization object.

4.2. Read and write process of file optimization program

(1) File writing process is shown in Fig. 7.
Client sends a request, ① File request j is written, which is not

interacted with NameNode, but ② k is interacted with FBM. Then, ③

offset value l is recorded, and ④ FBM is marked as record success m.
Meanwhile, ⑤ Client sends write stream of user files to NameNode, ⑥

which returns this stream to Client. At this time, ⑦ Client interacts with
NameNode to perform actual data write operation p, and ⑧ new file
writes to the ending q.

(2) Process of user reading file is shown in Fig. 8.
Client interacts with FBM and NameNode in a two-way method,

and the three sides can communicate with each other fully. First,
Client requests to read file name ①, then interacts directly with FBM
to obtain meta data information ②. Moreover, Client requests to read

Fig. 7. File writing process diagram.

Fig. 8. Process of reading files.

input stream ③ of user file according to ②, and file returned from
NameNode is read, which is presented to Client ④.

(3) IoT users delete files without directly deleting original file data,
but store their meta data information in FBM, for which delete flag is
set.

4.3. Problems caused by file optimization solution

IoT users repeatedly adding and deleting operations will produce a
lot of fragmentation. Therefore, a threshold is set, which is equal to
the ratio of file fragmentation to all files. Given that the threshold is
exceeded, system will sort out fragment. In other words, a new user
file will be created for the user, the user’s original file will be copied,
and the corresponding FBM index file will be established for the new
file as well. Moreover, the new file is named the original user file, and
the corresponding new index file is also renamed original index file
instead of the original file.

4.4. Implementation on file optimized storage

In order to optimize storage of small files, the SmallFileStatus class
is introduced into small file meta-data information based on the original
HDFS, which adds the offset and size attributes of small files in user
files based on FileStatus. Moreover, the core class of small file storage
optimization design is FBM class, its core attributes is fileMap that
belongs to HashMap type. Additionally, key–value pair is the file name
whose key is small file, and the value is its meta-data information,

When the system starts, FBM loads each user’s text file information
and small file index entries. Then, the system loads user meta-data in-
formation into memory so that client can locate the file information by
the file path. The disadvantage is that too much meta-data information
is loaded in the memory, which may lead to the FBM memory overhead
to be too high. To solve the problem of persistent storage of FBM,
relational database is adopted to store related meta data information

128



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Table 1
Experimental system configuration.

Configuration Type

IoT server CPU Intel Xeon W-3175X 28-core 3.1G
RAM 32GDDR4*4

IoT node
CPU Intel i7-9700K Core Eight Core 3.6G
RAM 16GDDR4*2
hard disk Seagate Galaxy Exos 7E88 TB 256 MB 7200 RPM

in the database space, which has the advantages of easy deployment
and reduces FBM memory consumption will be reduced, but relational
databases cannot be deployed in a cluster. In addition, a single point
of limitation may make the database prone to performance bottlenecks
to a certain extent. Besides it, NoSQL non-relational database, such as
MongoDB database can be used to store file and folder information.
This database can be deployed in a distributed cluster, which has
certain difficulties in deployment, but MongoDB database can more
effectively solve the problem of single point limitation.

When new IoT users register, they will have their own user files.
User files slowly accumulate to a certain level and become large files.
Therefore, in an HDFS cluster, when Na-meNode node only has one
userID.file meta data information, memory consumption of the NameN-
ode will be greatly reduced.

When the user performs delete a operation, a delete flag 1 is set in
userID.FBM, and userID.file is retained. In other words, when the user
wants to access the file of the IoT, the userID.FBM positioning mark
will be used to indicate that the file does not exist. This file still exists
in HDFS that cannot be accessed by index, which is fragmented area.
Besides, a new file is added at the end of the user file. This process
continues to operate, and the fragmentation of user files is increased,
which leads the storage efficiency of the entire HDFS cluster to de-
crease. Therefore, corresponding fragmentation management methods
are adopted to perform fragmentation management on user files.

The above threshold is set to 20%, and a fragment calculation is
performed for each deletion, while Compared with the total file size,
as long as the sum of file size in meta data information with deletion
flag 1 is greater than 20%, disk management program will be run to
write meta data information corresponding to deletion flag bit other
than 1 into temporary file. Meanwhile, storage entity of user files are
written to temporary files which are renamed and replaced to original
file.

5. Performance test of optimization algorithm of IoT data access
cloud storage

The above process realizes the design of the cloud storage optimiza-
tion algorithm for IoT data access, but further verification is required to
determine whether it can solve the problems of the existing algorithms
needs to be further verified. Therefore, a simulation experiment is de-
signed to compare the performance of data access storage optimization
algorithm in the cloud computing, which mainly reflects algorithm
performance by the data processing efficiency and fault tolerance.

5.1. Environment configuration

Test experiment for file optimized storage only improves NameN-
ode, which does not involve DataNode. Therefore, HDFS is constructed
on a physical machine, and a simulation experiment scenario is con-
structed in OPNET Modeler, which is equipped with 3 IoT server nodes
and connected to communication equipment for experiments operating.
The system configuration is shown in Table 1.

In the course of the simulation comparison experiment, in order to
ensure the accuracy of the experimental results, the external parameters
are kept the same during the experiment. The specific experimental
results analysis process is shown below.

Table 2
Experimental parameter settings.

User scale Number of files created File size (w)

1000

100

10
2000 20
3000 40
4000 60
5000 80
6000 100

Fig. 9. Comparison of NameNode memory before and after file optimization.

5.2. Result analysis

In order to evaluate the performance of the method of adding the
FBM optimization files to the IoT of, 6 sets of comparative experiments
are performed on the improved HDFS and the original HDFS. The
experimental parameters are shown in Table 2.

5.2.1. Namenode process memory comparison
The memory size of the NameNode process is recorded during the

experiment, and the experimental results are shown in Fig. 9, in which
the abscissa represents the file size and the ordinate represents the
memory size of the NameNode process whose unit is KB.

As can be seen from Fig. 9, the NameNode process itself has a
certain memory consumption. During file storage, when the file size
is the same, the memory of the original NameNode memory is larger
than that of the improved system NameNode. Moreover, with the
increase in the number of file size. The original NameNode memory
consumption is very fast, but the improved system NameNode memory
consumption is relatively slow and there is no significant increase
trend. The experiments show that in terms of memory consumption,
especially when the file size is more than 40 kb, the memory footprint
effect is better, the performance of the optimization scheme proposed
in the paper is better than the original scheme, and name space of the
HDFS cluster is extended as well.

5.2.2. Comparison on file upload efficiency
File reading and writing scale are set to 1000, 3000, 5000, 10 000

and 15 000, respectively; and time consumed by file reading and writ-
ing is tested. The two solutions before and after the improvement
are compared in terms of creating files without writing data. The
comparison results are shown in Fig. 10.

It can be seen from Fig. 10 that under the same meta data informa-
tion, the difference between the two schemes in the previous period is
not obvious. As the meta data information increases, the writing speed
of the two schemes for creating files slowly decreases. However, when
the HDFS improved HDFS optimization scheme is used to write Na-me
Node metadata information, as the file size increases, the write speed
increases, but the increase speed is slow, which is about 50% lower than

129



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Fig. 10. Comparison of time consumption for creating a file (without writing data).

Fig. 11. Comparison of the time consumption of creating a file (writing data).

the raw method. The speed advantage of creating files is very obvious
when writing Na-me Node meta data information.

The above experiment is the speed of creating files. In order to test
the speed of writing real data blocks, the following comparisons are
made.

As can be seen from Fig. 11, with the increase of actual data
information, the speed of the two schemes in the actual data writing
slowly decreases. When the actual data size is the same, optimization
solution by adding FBM consumes more time to write the actual data
than original solution, since HDFS does not support the operation of
appending files.

5.2.3. Comparison on file download efficiency
In addition, the speed of reading meta data information of the two

schemes is compared with each other, and file size is the same as that
of Section 5.2.2. The speed of not downloading data is shown in Fig. 12,
and the speed of downloading data is shown in Fig. 13.

As can be seen from Figs. 12 and 13, the improved scheme where
FBM is introduced can improve the speed of HDFS reading files to
a certain extent. In summary, the improved method proposed in the
paper, namely the method where FBM data structure is introduced, the
solution of merging files into large files is feasible and better than the
original HDFS method.

5.2.4. Comparative analysis on data processing efficiency
The data processing efficiency directly reflects the efficiency of the

algorithm. Generally speaking, the higher the data processing efficiency
is, the better the performance of the algorithm will be. The comparison
of data processing efficiency obtained through experiments is shown in
Table 3.

It is shown in Table 3 that when the times of experiment is small,
only 20 times, the data processing efficiency of the existing algorithm

Fig. 12. Comparison of time consumption for reading files (without downloading data).

Fig. 13. Comparison of time consumption for reading files (downloading data).

Table 3
Comparison on data processing efficiency.

Experiment times Existing algorithm Optimization algorithm

20 56% 89%
40 64% 88%
60 50% 79%
80 49% 76%
100 67% 85%
120 73% 81%
140 62% 91%
130 53% 90%
180 69% 99%
200 61% 93%

is 56%, and data processing efficiency of the optimized algorithm
can reach 89%. Moreover, with the experiment times increases, if the
number of experiments reaches 200, the data processing efficiency of
the existing algorithm is 61%, and the data processing efficiency of
optimized algorithm can reach 93%. Obviously, the data processing
efficiency of optimized algorithm is much higher than that of the
existing algorithm with different experiment times. What is more, the
optimized algorithm can achieve the maximum processing efficiency,
which is 99% after 180 experiments.

5.2.5. Comparative analysis on fault tolerance
Since node faults occur frequently in HDFS, a greater fault tolerance

can improve the storage performance of the algorithm. The comparison
of the fault tolerance obtained through experiments is shown in Fig. 14.

It can be seen from Fig. 14 that the fault tolerance of existing
algorithm ranges from 19% to 60%, and the optimized algorithm has
the minimum fault tolerance of 34% and the maximum of 96.12%.

130



M. Wang and Q. Zhang Computer Communications 157 (2020) 124–131

Fig. 14. Comparison on Fault Tolerance.

Therefore, the fault tolerance of the optimized algorithm is much higher
than that of existing algorithms.

According to the experimental results mentioned above, optimiza-
tion algorithm of IoT data access storage in cloud computing proposed
in the paper greatly improves the data processing efficiency and fault
tolerance, which fully demonstrates that the optimization algorithm of
IoT data access storage in cloud computing proposed in this paper has
better performance.

6. Conclusion

Optimization algorithm of IoT data access storage in cloud com-
puting proposed in the paper greatly improves the data processing
efficiency and fault tolerance rate, and provides more advanced tech-
nical support for the storage and management of data access. The
experimental results are analyzed by constructing simulation experi-
ment scenes in OPNET Modeler. Moreover, the experimental results
show that IoT data optimized by algorithm proposed in this paper is
superior to the original state in terms of transmission speed, system
resource occupation and response time. In addition, the maximum IoT
data processing efficiency of optimized transmission can reach 99%,
and the maximum fault tolerance rate of optimized algorithm can reach
96.12%.

Due to the setting of the parameters in the simulation experiment
process, there is a certain deviation between the experimental results
and the actual results, but the deviation does not effect the overall con-
trast trend. Therefore, the experimental results obtained are objective,
and it has been fully applied in railway 12306 website. In order to
obtain more accurate experimental data and results, further research
and optimization of the IoT data access storage optimization algorithm
in cloud computing are needed.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

CRediT authorship contribution statement

Mingzhe Wang: Conceptualization. Qiuliang Zhang: Data cura-
tion.

References

[1] Chen Guangsheng, Cheng Yiqun, Jing Weipeng, Cloud computing DBSCAN
optimization algorithm based on KD tree partitioning, Comput. Eng. 43 (4)
(2017) 21–27.

[2] Y.E. Lunqiang, Simulation of data stream storage load balancing optimization in
cloud computing, Comput. Simul. 35 (10) (2018) 256–259.

[3] Hongwen Hui, Chengcheng Zhou, Shenggang Xu, Fuhong Lin, A novel secure
data transmission scheme in industrial internet of things, China Commun. 17
(1) (2020) 73–88.

[4] Fuhong Lin, Yutong Zhou, Xingshuo An, Ilsun You, Kim-Kwang Raymond Choo,
Fair resource allocation in an intrusion-detection system for edge computing:
Ensuring the security of internet of things devices, IEEE Consum. Electron. Mag.
7 (6) (2018) 45–50.

[5] Jingtao Su, Fuhong Lin, Xianwei Zhou, Xing Lv, Steiner tree based optimal
resource caching scheme in fog computing, China Commun. 12 (8) (2015)
161–168.

[6] Li Jingwei, Sun Bo, Cloud computing task scheduling optimization algorithm
based on IDEA fusion taguchi method, Control Eng. 24 (2) (2017) 458–466.

[7] Ye Lunqiang, Simulation of data stream storage load balancing optimization in
cloud computing, Comput. Simul. 35 (10) (2018) 256–259.

[8] Jin Yu, Design of big data compatible storage system based on cloud computing
environment, Mod. Electron. Technol. 42 (1) (2019) 24–27.

[9] Luo Siwei, Hou Mengshu, Niu Xinzheng, et al., Replica placement algorithm
based on immune optimization strategy, J. Univ. Electron. Sci. Technol. China
46 (5) (2017) 741–746.

[10] Zhang Yanmin, Optimization analysis of discontinuous data path mining in cloud
computing environment, Comput. Simul. 35 (8) (2018) 148–151.

[11] Wang Wei, Design of cloud computing data optimization storage system, Comput.
Knowl. Technol. 13 (13) (2017) 26–27.

[12] Tu Junying, Li Zhimin, Design of unstructured big data storage system under
cloud computing, Mod. Electron. Technol. 41 (1) (2018) 173–177.

[13] Li Bin, Li Qiming, Optimization of chameleon hash authentication tree for data
storage security in cloud computing, Microelectron. Comput. 35 (6) (2018) 7–12.

[14] Ma Zitai, Cao Jian, Yao Yan, Workflow scheduling method using auction example
and considering intermediate data storage strategy in cloud environment, J.
Comput. Integr. Manuf. Syst. 23 (5) (2017) 983–992.

[15] Sa Rina, Cloud computing resource scheduling scheme based on ant colony
particle swarm optimization algorithm, J. Jilin Univ. Sci. 55 (6) (2017)
1518–1522.

[16] H. Books, Hephaestus Books. Articles on Network File Systems, Including:
Andrew File System, Google File System, Lustre (File System), Distributed File
System (Microsoft), DCE Di, Hephaestus Books, 2011, pp. 102–104, (09).

[17] N. Lester, J. Zobel, H. Williams, Efficient online index maintenance for
contiguous inverted lists, Inf. Process. Manage. (42) (2006) 916–933.

[18] D.J. Md, J. Ahmad, M. Mukri, The methodology on statistical analysis of data
transformation for model development, Int. J. Stat. Appl. 2 (6) (2012) 7–11.

[19] L. Ogiela, Semantic analysis and biological modelling in selected classes of
cognitive information systems, Math. Comput. Modelling 58 (5–6) (2013)
1405–1414.

[20] A. Alieldin, J. Tordsson, E. Elmroth, An adap-tive hybrid elasticity con-
troller for cloud infrastructures, in: IEEE Network Operations and Management
Sym-posium, 2012, pp. 204–212.

[21] B.B. Nandi, A. Banerjee, S.C. Ghosh, Elasticcloud resource management with
dynamic SLA: A Saa SPerspective, in: Proceedings of the 13th IFIP/IEEE
International Symposium on Integrated Network Manage-ment, 2013.

[22] C.G. Yang, Z.R. Wang, W. He, et al., Development of a fast transmission method
for 3D point cloud, Multimedia Tools Appl. 77 (19) (2018) 25369–25387.

[23] C. Moreno, M. Li, A progressive transmission technique for the streaming of point
cloud data using the Kinect, in: 2018 International Conference on Computing,
Networking and Communications (I CNC). [S.l.]: [s.n.], 2018, pp. 593–598.

[24] M. Levoy, The digital michelangelo project: creating a 3D archive of his sculp-
tures using laser scanning, in: Proceedings of the 2nd International Conference
on 3-D Digital Imaging and Modeling, 1999, [2018-07-08], https://graphics.
stanford.edu/papers/digmich-eva99/.

[25] Z.S. Rusinkiewic, M. Levoy, QSplat: A Multiresolution Point Rendering System
for Large Meshes, SIGGRAPH 2000, ACM, New York, 2000, pp. 343–352.

[26] Gong Zhen, Research on Point Cloud Processing Method of 3D Laser Scan
Technology, China University of Geoscience, Wuhan, 2017.

[27] Zhang Hongwei, Lai Bailian, Features of 3D laser scanning technology and it’s
application prospects, Bull. Surv. Mapp. (S1) (2012) 320–322, 337.

[28] G.G. Shi, X.H. Dang, X.G. Gao, Research on adaptive point cloud simplification
and compression technology based on curvature estimation of engery function,
Rev. Fac. Ing. 32 (4) (2017) 336–343.

[29] C. Moreno, M. Li, A progressive transmission technique for the streaming of point
cloud data using the Kinect, in: 2018 International Conference on Computing,
Networking and Communications (I CNC). [S.l.]: [s.n.], 2018, pp. 593–598.

[30] M. Levoy, The digital michelangelo project: creating a 3D archive of his sculp-
tures using laser scanning, in: Proceedings of the 2nd International Conference on
3-D Digital Imaging and Modeling, 1999, https://graphics.stanford.edu/papers/
digmich-eva99/.

131

http://refhub.elsevier.com/S0140-3664(20)30464-3/sb1
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb1
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb1
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb1
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb1
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb2
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb2
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb2
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb3
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb3
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb3
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb3
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb3
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb4
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb5
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb5
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb5
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb5
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb5
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb6
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb6
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb6
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb7
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb7
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb7
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb8
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb8
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb8
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb9
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb9
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb9
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb9
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb9
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb10
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb10
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb10
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb11
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb11
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb11
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb12
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb12
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb12
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb13
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb13
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb13
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb14
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb14
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb14
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb14
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb14
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb15
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb15
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb15
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb15
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb15
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb16
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb16
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb16
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb16
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb16
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb17
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb17
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb17
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb18
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb18
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb18
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb19
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb19
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb19
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb19
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb19
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb22
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb22
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb22
https://graphics.stanford.edu/papers/digmich-eva99/
https://graphics.stanford.edu/papers/digmich-eva99/
https://graphics.stanford.edu/papers/digmich-eva99/
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb25
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb25
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb25
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb26
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb26
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb26
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb27
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb27
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb27
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb28
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb28
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb28
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb28
http://refhub.elsevier.com/S0140-3664(20)30464-3/sb28
https://graphics.stanford.edu/papers/digmich-eva99/
https://graphics.stanford.edu/papers/digmich-eva99/
https://graphics.stanford.edu/papers/digmich-eva99/

	Optimized data storage algorithm of IoT based on cloud computing in distributed system
	Introduction
	Data mining structure in large cloud storage system
	Optimize algorithm design for IoT data access storage
	Optimization of data access storage architecture
	Strategy optimization in data access storage distribution
	Factors affecting data access storage distribution
	Hash value configuration for data access information storage location

	Optimization on IoT network topology
	Optimization on data block size

	Optimization methods of file storage
	Optimization scheme design of file storage
	Read and write process of file optimization program
	Problems caused by file optimization solution
	Implementation on file optimized storage

	Performance test of optimization algorithm of IoT data access cloud storage
	Environment configuration
	Result analysis
	Namenode process memory comparison
	Comparison on file upload efficiency
	Comparison on file download efficiency
	Comparative analysis on data processing efficiency
	Comparative analysis on fault tolerance


	Conclusion
	Declaration of competing interest
	CRediT authorship contribution statement
	References


