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Background and objective: It is challenging to conduct real-time identification of myocardial infarction 

(MI) due to artifact corruption and high dimensionality of multi-lead electrocardiogram (ECG). In the 

present study, we proposed an automated single-beat MI detection and localization system using dual-Q 

tunable Q-factor wavelet transformation (Dual-Q TQWT) denoising algorithm. 

Methods: After denoising and segmentation of ECG, a fourth-order wavelet tensor (leads × subbands ×
samples × beats) was constructed based on the discrete wavelet packet transform (DWPT), to represent 

the features considering the information of inter-beat, intra-beat, inter-frequency, and inter-lead. To re- 

duce the tensor dimension and preserve the intrinsic information, the multilinear principal component 

analysis (MPCA) was employed. Afterward, 84 discriminate features were fed into a classifier of bootstrap- 

aggregated decision trees (Treebagger). A total of 78 healthy and 328 MI (6 types) records including 57557 

beats were chosen from PTB diagnostic ECG database for evaluation. 

Results: The validation results demonstrated that our proposed MI detection and localization system 

embedded with Dual-Q TQWT and wavelet packet tensor decomposition outperformed commonly used 

discrete wavelet transform (DWT), empirical mode decomposition (EMD) denoising methods and vector- 

based PCA method. With the Treebagger classifier, we obtained an accuracy of 99.98% in beat level and 

an accuracy of 97.46% in record level training/testing for MI detection. We also achieved an accuracy of 

99.87% in beat level and an accuracy of 90.39% in record level for MI localization. 

Conclusion: Altogether, the automated system brings potential improvement in automated detection and 

localization of MI in clinical practice. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Myocardial infarction (MI) is defined as myocardial cell death

ue to prolonged ischemia [1] . As one of the main causes of death

nd disability, MI is an intractable disease and can result in artery

isease. In clinical practice, many techniques, including electro-

ardiographic (ECG), biochemical markers, imaging and so on, are

sed to assist in the diagnosis of MI. Among these techniques, the

on-invasive ECG, an economic tool, is widely used in MI detec-

ion [2,3] . The ECG abnormalities of MI can be observed in the PR
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egment, the QRS complex, the ST segment or the T wave [1] .

owever, the diagnosis of MI usually requires multiple ECGs be-

ause the ECG signals are time-varying in nature with small am-

litude. Manual inspection in clinical practice is not only time-

onsuming and strenuous but also leads to inter- and intra-

valuator variability [4,5] . Therefore, a computer-aided diagnosis

ystem (CADS) of MI should be developed to realize time-saving

nd reliable analysis [6–11] . 

Good quality ECG is a guarantee of reliable CADS, while the

CG signals are often corrupted by noise [12] . The ECG signals are

sually mixed with different kinds of artifacts, such as power line

nterference, muscle artifacts, and baseline drifts. Therefore, it is

ecessary to remove artifacts by implanting denoising method in

ADS. In [13] , Fatin and colleagues removed the low frequency

–0.351 Hz and high frequency > 45 Hz from ECG with 6-level

https://doi.org/10.1016/j.cmpb.2019.105120
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cmpb
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cmpb.2019.105120&domain=pdf
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Table 1 

Numbers of records and beats from different groups. 

Type AMI ALMI IMI ASMI ILMI IPLMI H 

Records 46 42 89 76 56 19 78 

Beats 6306 6568 12,115 11,232 8280 2714 10,342 
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db6 discrete wavelet transform (DWT) decomposition in arrhyth-

mia recognition. However, the DWT fails to separate the noise

from ECG when two types of signals co-occur at the same fre-

quency band. According to the nature of waveforms in ECG, the

morphological-based algorithm should be considered in ECG de-

noising. Blanco-Velasco et al. [14] applied the empirical mode

decomposition (EMD), in which partial intrinsic mode functions

(IMFs) were reconstructed to remove noise mixed with ECG from

the MIT-BIH database. Although EMD has been widely used in ECG

denoising, it still leads to the mode-mixing problem [15] . There-

fore, it is challenging to find an effective denoising method to ob-

tain high signal-noise-ratio (SNR) ECG signal. Dual-Q tunable Q-

factor wavelet transformation (Dual-Q TQWT), a morphological-

based algorithm, was first introduced in [16–18] . Although Dual-

Q TQWT is applied to speech analysis [16] , limited attention has

been focused on ECG denoising until now. Using the resonance-

based morphological separation, the Dual-Q TQWT might provide

new sight for ECG denoising. In our study, we applied the Dual-

Q TQWT as a denoising method in MI detection and localization

system. 

Feature extraction plays an important role in CADS. Recent

studies have developed effective feature extraction methods in au-

tomated MI detection and localization system, as shown in Table 5 .

In [10] , a multiscale energy and eigenspace approach was pro-

posed based on DWT. The approach obtained an accuracy of 99.58%

in MI localization with 72 features from frame-based (4 beats)

ECG. Sun et al. [7] presented a multiple instance learning for MI

detection system based on time-domain features of ST segments

and R-R intervals from ECG. Their method obtained a sensitivity

of 92.6% in single-beat MI detection with 74 features. Similarly,

36 time-domain features of Q wave, T wave, and ST level eleva-

tion were extracted in [3] . They achieved an accuracy of 98.3% in

single-beat MI detection. In addition to linear time-domain fea-

tures, Acharya et al. [11] calculated 12 types of nonlinear fea-

tures covering different types of entropy, fractal dimension, and

Lyapunov exponent. They obtained an accuracy of 98.8% in MI

detection with 47 features based on single-beat and single-lead

ECG. However, it is still challenging to propose efficient and low

complexity feature extraction approaches to extract discriminate

and generalization features. The tensor decomposition, different

from other state-of-art feature extraction methods, can directly ex-

ploit multi-mode information contained in the tensor structure.

Using tensor decomposition, the information of inter-lead, inter-

beat, intra-beat, and inter-frequency can be considered as param-

eters. Especially, considering the lead of ECG as a parameter in-

stead of manual selection can avoid under-fitting (single-lead) or

over-fitting (12-lead). Sibasankar et al. [8] developed a third-order

tensor method (leads × beats × samples) for MI detection and lo-

calization, but they failed to achieve high performance in single-

beat ECG based on DWT. In their study, they selected discriminant

features from different tensor modes in different wavelet coeffi-

cients of DWT with visual observation, impeding the precise fre-

quency and automated data-driven analysis. In contrast, the dis-

crete wavelet packet transform (DWPT) has these advantages: each

layer has an equal number of wavelet packet coefficients; the last

layer can cover all the frequency subbands. These advantages pro-

vide the possibility of fourth-order tensor formation. 

In our present study, we presented an automated MI de-

tection and localization system equipped with Dual-Q TQWT

denoising method and fourth-order wavelet packet tensor

(leads × subbands × samples × beats). The tensor-based MPCA

was applied to reduce the dimensionality of the wavelet packet

tensor. The optimal features were classified by a classifier of

bootstrap-aggregated decision trees (Treebagger). In our system,

the MI detection, a two-class classifier, is used to distinguish MI

patients from healthy volunteers for preliminary screening. The
I localization, a multi-class classifier, is a progressive diagnosis

or different types of MI patients. The two-step MI classification is

recise and resource efficient in practice. The PTB diagnostic ECG

atabase was chosen for system evaluation. 

. Database 

The ECG signals were chosen from the Physikalisch-Technische

undesanstalt (PTB) [19] diagnostic ECG database provided by

hysioBank [20] . A total of 549 records from 290 subjects (mean

ge = 57.2 years, 209 men) were collected in the Department of

ardiology of University Clinic Benjamin Franklin in Berlin, Ger-

any. Each record contains 12 conventional leads (I, II, III, AVR,

VL, AVF, V1, V2, V3, V4, V5, V6) and 3 Frank leads (VX, VY,

Z) ECG, which were digitized at 10 0 0 Hz with 16 bit resolution

ver a range of ±16.384 mV. According to the clinical statistics,

68 subjects’ data, including eight different heart disease groups

216) and one healthy group (52), were provided in the database.

mong these groups, the myocardial infarction group diagnosed

s six different MIs (anterior: AMI, anterior-lateral: ALMI, inferior:

MI, anterior-septal: ASMI, inferior-lateral: ILMI, inferior-posterior-

ateral: IPLMI) and the healthy group (H) were chosen for MI de-

ection and localization evaluation in the present study. The num-

ers of records and beats from MI patients and healthy volunteers

ere listed in Table 1 . 

. Methods 

The present study presented a novel MI detection and localiza-

ion system using Dual-Q TQWT denoising method and wavelet

acket tensor decomposition. The diagram of detection and lo-

alization system is shown in Fig. 1 . For the preprocessing stage,

CG data were down-sampled to 250 Hz and filtered with 10 0 0-

rder 0.5 Hz high-pass and 40 Hz low-pass FIR filters implanted in

EGLAB [21] . Furthermore, a mean value was subtracted from each

ead to eliminate the offset effect [22] . The Dual-Q TQWT, apart

rom the conventional methods, was applied to ECG denoising. 

.1. Denoising with Dual-Q TQWT 

The Dual-Q TQWT is a resonance-based, rather than a fre-

uency or scale based signal decomposition algorithm, which uti-

izes sparse signal representations and morphological component

nalysis (MCA) [18] . Using this method, a signal can be decom-

osed into the sum of a high-resonance component and a low-

esonance component. Each component is represented sparsely by

QWT algorithm with high Q-factor and low Q-factor. 

TQWT is a discrete wavelet transform with flexible Q-factor

17] . Three parameters: Q-factor ( Q ), the redundancy ( r ), and de-

omposition level ( J ) should be set during TWQT decomposition.

he frequency responses and wavelets of different parameters are

isplayed in Fig. 2 . The parameter Q is related to oscillation num-

ers of wavelet, and the parameter r is an index of the overlap-

ing between adjacent frequency responses. All three parameters

re closely related. TQWT is developed as J level of two-channel

lter banks attaching to low-pass filter output, resulting in J + 1

ubbands. The low- pass (H 

( j) 
0 

(w )) and high-pass (H 

( j) 
1 

(w )) filters
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Fig. 1. Schematic diagram of MI detection and localization system. 

Fig. 2. Frequency responses and wavelets of TQWT with Q = 1, J = 4 (top) and Q = 4, J = 9 (down). 
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are defined as: 

H 

( j ) 
0 ( w ) = 

{ ∏ j−1 
m =0 

H 0 

(
w 

αm 

)
, | w | ≤ α j π

0 , α j π < | w | ≤ π
(1)

H 

( j ) 
1 ( w ) = 

{ 

H 1 

(
w 

α j−1 

)∏ j−2 
m =0 

H 

j 
o 

(
w 

αm 

)
, ( 1 − β) α j−1 π ≤ | w | ≤ α j−1 π

0 , f or others w ∈ [ −π π ] 
(2)

where low-pass scaling α ≤ 1, and high-pass scaling β ≤ 1. The

parameters Q and r are given by: 

r = 

β

1 − α
(3)

Q = 

f c 

BW 

= 

2 − β

β
(4)

where BW and f c are the bandwidth and center frequency, respec-

tively. 

Given a signal x , Dual-Q TQWT decomposes x into x 1 and x 2 
components, where x 1 consists largely of oscillations and x 2 con-

sists largely of transients. The x is the sum of x 1 and x 2 . Using

TQWT, x can be denoted as TQWT 1 and TQWT 2 with high and

low Q-factors. The constrained optimization problem can be rep-

resented as [16] : 

argmi n w 1 , w 2 

J1+1 ∑ 

j=1 

λ1 , j 

∥∥w 1 , j 

∥∥
1 

+ 

J2+1 ∑ 

j=1 

λ2 , j 

∥∥w 2 , j 

∥∥
1 

(5)

x = x 1 + x 2 = TQW T 1 
−1 

( w 1 ) + TQW T 2 
−1 

( w 2 ) (6)

where w i,j denotes subband j of TQWT i for i = 1,2. The λ1 and λ2 ,

computed from the norms of wavelets based on the mentioned

three parameters in TQWT, are the regularization parameters for

high and low Q-factor TQWT. The MCA [23] based on split aug-

mented Lagrangian shrinkage algorithm (SALSA) [24] is applied to

estimate the solution of the optimization problem. The six param-

eters, Q 1 , r 1 , J 1 for high Q-factor TQWT and Q 2 , r 2 , J 2 for low Q-

factor TQWT, should be preset considering the mathematical the-

ory of TQWT, ECG morphology, running time, and goodness-of-fit.

To prevent an excessive ringing of wavelets, the parameter r should

be set as greater than or equal to 3 [9,25] . In our study, the param-

eters r 1 and r 2 are equal to 3, consistent with literature studies

[25,26] . The low factor Q 2 is usually set to 1 [16] , while the high

factor Q 1 is set to 4 in our work. The parameters J is set as half

of the maximum of J max with J 1 = 10 , J 2 = 25 because low J cannot

cover the signal and high J leads to high dimension computations

[27–29] . 

J max = 

[
log ( βN − 8 ) 

log ( 1 − α) 

]
(7)

where N is the number of samples of ECG signal. 

After filtering and denoising, the ECG signals were segmented

into beats based on R-peak, detected by the Pan-Tompkins algo-

rithm [30] . Each beat has 162 samples including 250 ms before and

400 ms after R-peak detection. A total of 57,557 ECG beats were ob-

tained from 6 types of MI groups and 1 healthy group, as shown

in Table 1 . 

3.2. Feature extraction by DWPT 

The discrete wavelet packet transform (DWPT) has been suc-

cessfully used in ECG feature extraction [31] . Compared with the

DWT, the DWPT provides more spectral information in detail. Let

S = [ s 1 , s 2 , …, s v ] be a 12-lead ECG beat of one subject, where

v = 12 leads, Ls = 162 samples, S ∈ R 

Ls × v . In the DWPT, both the ap-

proximation and detail coefficients are decomposed in each level,
esulting in 2 J subbands at J th level decomposition. The sample

ength of the sub-band at j level is ls, where ls ∼= 

Ls /2 j . In our study,

he preprocessed ECG beats were subjected to 4 levels of DWPT us-

ng db4 mother wavelet to extract concise and distinctive features.

e chose 16 subbands at the 4th decomposition level covering all

he frequency bands, each of which contained specific character-

stics. The 16 subbands have the same number of coefficients (16

amples), which provides good feasibility for wavelet packet tensor

ecomposition analysis. The wavelet packet coefficient matrix ex-

racted from 12-lead m 

th beat is converted into wavelet packet ten-

or W m 

∈ R 

I 1 × I 2 × I 3 , where the modes of I 1 , I 2 , I 3 are the 12-lead

f ECG, the 16 subbands of DWPT at 4th level, and the 16 samples

f each subband. Hence, a total of B wavelet packet tensors from

ll subjects are represented as W = [ W 1 , W 2 , . . . , W m 

, . . . , W B ] ,

here m = 1, 2, …, B . 

.3. Dimensionality reduction by MPCA 

In the view of the high dimensionality of wavelet packet tensor,

t is necessary to reduce the dimensionality of discriminate fea-

ures to obtain a good performance of pattern recognition and to

mprove processing speed with less memory capacity. Compared

ith vector-based dimensionality reduction algorithm of princi-

al component analysis (PCA), the multilinear principal component

nalysis (MPCA) can be applied to a tensor object for feature ex-

raction and dimensionality reduction [32,33] . Although MPCA is

idely used in other fields, such as gait recognition [32] and face

ecognition [34] , the application in multivariate time series has not

een promoted [31,35] . 

The MPCA is realized following 4 steps [32] . First, the

ata are preprocessd by centralizing the input samples. Sec-

nd, data are initialized by calculating the eigen-decomposition

f the eigenvectors corresponding to the most significant

igenvalues. The input of MPCA are wavelet packet ten-

ors of B beats, ∈ R 

I 1 × I 2 × I 3 × B . Using a multilinear transfor-

ation { ̃  U 

(n ) ∈ R 

I n × I n 
′ 
, I n 

′ ≤ I n , n = 1 , 2 , . . . , N, N = 3 } , where

he ˜ U 

(n ) is the n th projection matrix, the input tensor R 

I 1 × I 2 × I 3 

f each beat W m 

can be mapped onto a low dimensionality tensor

pace R 

I 1 
′ × I 2 

′ × I 3 
′ 

to extract optimal features. The low dimension-

lity output of MPCA with maximum captured variation is repre-

ented as: 

 m 

= W m 

× ˜ U 

( 1 ) 
T ×2 

˜ U 

( 2 ) 
T ×3 

˜ U 

( 3 ) 
T 

(8)

here Y m 

∈ R 

I 1 
′ × I 2 

′ × I 3 
′ 
, B beats of outputs are Y =

 Y 1 , Y 2 , . . . , Y m 

, . . . , Y B ] , Y ∈ R 

I 1 
′ × I 2 

′ × I 3 
′ × B . The realiza-

ion of dimension reduction can be simplified as an optimal

roblem: 
 

˜ U 

( n ) 
T 

, n = 1 , 2 , 3 

} 

= argma x ˜ U ( 1 ) , ˜ U ( 2 ) , ˜ U ( 3 ) ψ Y (9)

here ψ Y is the total of B transformed tensor scatters, and ψ Y =
 B 
m =1 ‖ Y m 

− Ȳ ‖ 2 F , where the Ȳ = ( 
∑ B 

m =1 Y m 

) /B . Based on the so-

ution of Eq. (8) , the scatter of n -mode unfolding matrix is given

y: 

( n ) = 

∑ B 

m =1 

(
W 

( n ) 
m 

− W̄ 

( n ) 
m 

)
· ˜ U �(n ) · ˜ U 

T 
�(n ) (W 

( n ) 
m 

− W̄ 

( n ) 
m 

) 
T 

(10)

here W 

(n ) 
m 

is the n-mode unfolding matrix of the tensor W m 

, and
˜ 
 �(n ) can be evaluated as: 

˜ 
 �( n ) = 

˜ U 

( n +1 ) 
� ˜ U 

( n +2 ) 
� . . . � ˜ U 

( N ) 
� ˜ U 

( 1 ) 
� ˜ U 

( 2 ) . . . � ˜ U 

( n −1 ) 

(11)

here � is the Kronecker product. The optimization step is solved

sing the Eqs. (10) and (8) in the iteration. Finally, the high-

imensional data are projected into low-dimensionality tensor

pace. 
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Fig. 3. Resonance decomposition with Dual-Q TQWT. 

Table 2 

Comparisons among denoising methods. 

Filtered Dual-Q TQWT DWT EMD 

ACC 83.64% 91.36% 89.89% 91.28% 

SEN 96.73% 98.27% 97.98% 98.26% 

SPE 83.74% 91.36% 89.89% 91.27% 

Time(s) - 45.63 2.98 225.89 
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.4. Classification 

The optimal features extracted from MPCA were fed into a clas-

ifier. As a decision support tool, the decision tree (DT) utilizes

 tree-like model of decisions and possible consequences. It is a

irected graph, with three sets of decision, chance, and terminal

odes (also known as leaves) [36] . A DT, equipped with two func-

ions of denoting payoffs and probabilities, can be learned in a re-

ursive partitioning manner based on an attribute value test. Al-

hough DT has an advantage of simplicity, it is unstable and eas-

ly affected by noise. The Bootstrap-aggregated, one of the most

opular techniques for constructing ensembles to improve the ro-

ustness, takes base DT learner and invokes it many times with

eplacement samples [37] . As an important parameter of Treebag-

er, the number of trees can reach several hundreds or thousands

epending on the nature of the training sets. By taking the major-

ty votes or averaging predictions of different DTs, the Treebagger

eads to better performance than a DT. 

In our study, the performance of classifiers was measured by

ensitivity (SE), specificity (SP), and accuracy (ACC) [38] . Based

n the confusion matrix obtained from predicted class and actual

lass, the SE, SP, and ACC are evaluated as: 

E = 

TP 

TP + FN 

(12) 

P = 

TN 

TN + FP 

(13) 

CC = 

TP + TN 

TP + TN + FP + FN 

(14) 

here TP, TN, FP, and FN correspond to true positive, true nega-

ive, false positive, and false negative. The ROC (receiver operating

haracteristics) was also adopted to visualize the performance of

lassifiers [39] . 

. Results and discussion 

Using 78 healthy and 328 MI records chosen from the PTB ECG

atabase, the novel detection and localization system of MI with

ual-Q TQWT and wavelet packet tensor decomposition proposed

n our work were evaluated. First, we evaluated the performance of

hese algorithms in our system. According to the good performance

f the algorithms, we distinguished the MI patients from healthy

olunteers with single-beat ECG. Furthermore, each specific MI pa-

ient was localized at one of 6 different MI types. Finally, our au-

omated MI detection and localization system was compared with

arlier published studies. 

.1. ECG denoising and MPCA evaluation 

Based on high and low Q-factors wavelets and frequency re-

ponses, as shown in Fig. 2 , Dual-Q TQWT decomposes the filtered

CG signal into the sum of a high Q-factor component and a low

-factor component. Fig. 3 displays the decomposition results con-

isting of original and resonance waveforms. From this figure, we

ound that the high Q-factor component corresponded to sustained

scillations, consisting of low- and high-frequency bands unrelated

o typical morphology of ECG (e.g. PR segment, QRS waveform,

t al.). In contrast, the low Q-factor component corresponded to

he transients following the morphology of the original waveform,

ith high signal-noise-ratio (SNR). Due to the characteristics of

orphological segments and high SNR, the low Q-factor compo-

ent was chosen for further processing. The denoised data were

egmented into beats and decomposed into 4-level DWPT to ex-

ract features. Using 16 subbands in the fourth level, a wavelet

acket tensor (leads × subbands × samples × beats) was formed. In
ur work, the MPCA was applied to wavelet packet tensor for di-

ensionality reduction. Compared with the vector-based PCA, the

ensor-based MPCA could reserve inherent properties of features. 

To illustrate the performance of the denoising algorithm, we

ompared the Dual-Q TQWT with commonly used denoising meth-

ds discrete wavelet transform (DWT) [13] and empirical mode de-

omposition (EMD) [13] . Based on the data from healthy volun-

eers and 5 groups of MI (without IPLMI), the performance of a

ulti-class classifier of Treebagger in the record level was cho-

en as criteria of these comparisons. The comparison results are

llustrated in Table 2 . The results demonstrate that the perfor-

ance of denoising methods outperforms filter processing. Com-

ared with the state-of-art denoising methods (DWT and EMD),

ur proposed Dual-Q TQWT is comparable considering the running

ime (s/record) and performance. The good results validate the util-

ty of Dual-Q TQWT denoising in MI detection and localization sys-

em. 

For wavelet packet coefficients, we compared the results of

PT-Tensor and WPT-Vector (by reshaping wavelet packet ten-

or to vector). WPT-Vector achieved an accuracy, a sensitivity, and

 specificity of 88.73%, 97.75%, and 88.75%, respectively. We also

omputed the performance of Dual-Q TQWT time-domain features

ithout DWPT and obtained an accuracy, a sensitivity, and a speci-

city of 81.24%, 91.56%, and 80.95%, respectively. Altogether, the

ombination of Dual-Q TQWT + DWPT + MPCA yielded the high-

st performance compared with Dual-Q TQWT + DWPT + PCA and

ual-Q TQWT + MPCA. 

.2. Physiological ECG features from DWPT and MPCA 

By applying DWPT, we extracted spatial, spectral, and tempo-

al features from leads, frequency bands (subbands), and samples.

ig. 4 displays the physiological ECG waveforms in subbands 1–

 (significant variation of features) from 12 leads. We found that

he waveforms in different subbands and leads were different in 6

ypes of MI patients and healthy volunteers. The abnormalities of

I could be displayed in the PR segment, the QRS complex, the ST

egment, and the T wave in different subbands. 
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Fig. 4. DWPT features extracted from leads, sunbands, and samples of MI patients and healthy volunteers. 
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Although DWPT features are significantly different in different

types of MI and healthy volunteers, as shown in Fig. 4 , there is too

much redundancy information in the fourth-order wavelet packet

tensor. The wavelet packet tensor was subjected to MPCA and was

reduced to low-dimensional tensor using matrices of multilinear

projection. Fig. 5 displays three projection matrices in three modes.

According to multilinear projection, we found four components in

the spatial factor, which illustrated the multilinear combination of

12 leads. For the spectral factor, we found three components, es-

pecially subbands 1, 2, and 4, which were most important in MI

identification. Each subband covers about 8 Hz from 0.5–125 Hz.

Seven waveforms in the temporal factor were the representations

of the PR segment, the QRS complex, the ST segment, and the T

wave. The discriminant features of different types of MI patients

and healthy volunteers are located in 4 components of spatial fac-

tor, 3 components of spectral factor, and 7 components of temporal
factor.  

s  
.3. MI detection 

The MI detection was treated as a two-class classification, dis-

inguishing the MI patients from healthy volunteers. There were

7,215 instances (heart beats) from 328 MI records and 10,342 in-

tances from 78 healthy records. The dimensions (12 leads × 16

ubbands × 16 samples × 57,557 beats) of wavelet packet tensor

ere reduced to low-dimension space of 4 × 3 × 7 × 57,557 beats

y MPCA, where 90% energy was kept and the maximum number

f interaction was set as 1. A total of 84 maximum optimal fea-

ures were selected for MI detection. A Treebagger embedded with

00 trees was applied to classification. Fig. 6 shows the ROC curves

orresponding to different sets of features (according to the order-

ng index of projected features in decreasing variance) with 90%

nstances for training and 10% for testing, which demonstrates the

4 features are not overfitting or underfitting. 

We conducted training processes in both beat level (randomly

elected instances from records) with 10-fold cross validation and
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Fig. 5. MPCA matrices of multilinear projection. 

Fig. 6. ROC for MI detection with different features. 
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Table 3 

Confusion matrix of Treebagger 

for MI detection. 

H MI 

H 4162 8 

MI 0 18,852 
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s

ecord level (considered instances from a set of MI and healthy

ecords to avoid the same instance during training and testing)

ith handout method. For the training in beat level, we achieved

n accuracy of 99.98%, a sensitivity of 100%, and a specificity of

9.90%, respectively. The confusion matrix of MI detection is shown

n Table 3 . As shown in the table, all 18,852 MI beats could be cor-

ectly classified, while 8 healthy beats of ECG among 4106 beats

ere misclassified to MI patients. Using only 10 features, we could

chieve an accuracy of 99.41% for MI detection. For the training in

ecord level, we selected randomly 90% records for training and the

eft 10% records for testing. We achieved an accuracy of 97.46%, a

ensitivity of 99.09%, and a specificity of 90.26%, respectively. Com-

ared with beat level classification results, the record level results

eveal the inter-record and inter-subject variations. 
.4. MI localization 

In this section, the MI localization was seen as multi-class clas-

ification, localizing each specific group from 6 different types of

I. The 47,215 MI instances came from 46 AMI (6306), 42 ALMI

6568), 89 IMI (12,115), 76 ASMI (11,232), 56 ILMI (8280), and 19

PLMI (2714) records. The dimensions (12 leads × 16 subbands × 16

amples × 47,215 beats) of wavelet packet tensor were reduced to

ow-dimension 4 × 3 × 7 × 47,215 beats by MPCA with the same

ettings in MI detection. The same classifier and beat- and record-

evel training processes were chosen for MI localization. Fig. 7 dis-

lays the changes in average accuracy, sensitivity, and specificity

ollowing the number of features with 10-fold cross validation,

hich demonstrates the necessity of 84 features in MI localization.

or the beat level, the average accuracy, sensitivity, and specificity

ere 99.87% ( ± 0.05%), 99.97% ( ± 0.01%), and 99.88% ( ± 0.05%),

espectively. The confusion matrix of 6 types of MI is presented

n Table 4 . From the confusion matrix, we found that all the ILMI

eats could be classified correctly. Other types of MI were easily

isclassified into IPLMI, with 5 AMI beats, 2 ALMI beats, 3 IMI

eats, and 3 ASMI beats. The beats of ASMI were easily mixed with

ther types of MI. By using only 10 features, we could achieve an

ccuracy of 99.35% for MI localization. For the record level, we pre-

ented the performance with 90% records for training and the left

0% records for testing. We achieved an accuracy of 90.39%, a sen-

itivity of 98.03%, and a specificity of 90.76%, respectively. 
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Fig. 7. Performance of MI localization with different features using 10-fold cross 

validation. 

Table 4 

Confusion matrix of Treebagger for MI localization. 

AMI ALMI IMI ASMI ILMI IPLMI 

AMI 2576 2 0 1 0 5 

ALMI 2 2502 2 2 0 2 

IMI 1 1 4563 3 0 3 

ASMI 2 0 2 4798 0 3 

ILMI 0 0 0 0 1115 0 

IPLMI 0 0 2 1 0 3298 
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Table 5 

Comparison of studies using PTB ECG database. 

Ref Beat Lead Database Over-fitting Met

[6] 1 12 MI: 369 RE 

H: 79 RE 

No Mul

lear

[3] 1 12 MI: 16,960 BE 

H: 3200 BE 

Yes Tim

with

[9] 4 12 MI: 847 BE 

H: unknown 

Yes DW

eige

[10] 1 1 MI: 485,753 BE 

H: 125,652 BE 

Yes 12 n

feat

[5] 1 1 MI: 40,182 BE 

H: 10,546 BE 

Yes Dee

neu

[37] 1 1,12 MI: 485,752 BE 

H: 10,564 BE 

Yes Dee

neu

[7] 4 12 MI: 41,726 BE 

H: 9966 BE 

No DW

sing

dec

(HO

Ourwork 1 12 MI: 47,215 BE 

H: 10,342 BE 

No Dua

TQW

Tree

D is MI detection, L is MI localization. 
.5. Comparison performance 

Table 5 summarizes the studies employing different techniques

n MI detection and localization with the same PTB ECG dataset.

n our study, we down-sampled the ECG signal from 10 0 0 Hz to

50 Hz, resulting in 162 samples in each beat. The samples in each

eat are fewer than 650 samples in previous research [6,9,31] . Fur-

hermore, a denoising method was applied differently from pre-

ious conventional filtering preprocessing. In comparison to fil-

ered data and commonly used denoising methods, the advent of

ual-Q TQWT makes it possible to obtain better performance with

ewer samples in each beat. To enhance real-time MI diagnosis, our

ork, as well as some earlier studies [8,10] , was focused on single-

eat rather than frame-based (4 beats) exploration. Furthermore,

he number of ECG leads is another factor correlated with diag-

osis efficiency and computer capacity. Instead of considering all

2 leads, some researchers explored the possibility of using fewer

eads or just one single lead [6,9,11,40] . However, they only illus-

rated the single lead or 12 leads, ignoring the combination of dif-

erent leads. Wavelet packet tensor is an efficient tool, which can

ake the ECG leads as one part of features. Using dimensionality re-

uction, optimal leads are selected, avoiding a manual operation of

ver-fitting or under-fitting. Different from third-order tensor used

n [8] , our work applied a fourth-order tensor consisting of fre-

uency (taking advantage of an equal number of wavelet packet

oefficients), leads, samples, and beats. The fourth-order wavelet

acket tensor was dimensionality reduced in the tensor structure

ith MPCA, whose classification performance outperformed the

ommonly used vector-based PCA. Although feature extraction and

election were eliminated in these studies with convention neural

etwork (CNN) [6,40–43] , big data, long training time, and high

uality service were other problems introduced in their studies.

revious studies achieved good performance without considering

nter-subjects variations. Our study presented good results in both

eat level and record level training/testing. The MI detection and

ocalization system for single-beat containing fewer samples in our
hods Features Results 

tiple instance 

ning + KNN, SVM 

74 SE = 92.6%; SP = 88.1% 

e domain features 

 DWT + KNN 

36 (D,L) SE = 99.97%; SP = 99.9% (D) 

SE = 98.67%; SP = 98.71% (L) 

T multiscale energy 

nspace + SVM 

72 (D,L) ACC = 96%; SE = 93%; SP = 99% 

(D) 

ACC = 99.58% (L) 

onlinear 

ures + KNN 

47 (D) 

25 (L) 

ACC = 98.8%; SE = 99.45%; 

SP = 96.27% (D) 

ACC = 98.74%; SE = 99.55%; 

SP = 96.16% (L) 

p convolutional 

ral network 

_ ACC = 95.22%; SE = 95.49%; 

SP = 94.19% 

p convolutional 

ral network 

_ ACC = 99.78% 

T + High order 

ular value 

omposition 

SVD) + SVM 

35 (D) 

51 (L) 

ACC = 95.3%; SE = 94.6%; 

SP = 96.0% (D) 

ACC = 98.1% (L) 

l-Q 

T + DWPT + MPCA + 

bagger 

Record-level 

84 (D,L) 

Beat-level 

84 (D,L) 

10 (D,L) 

ACC = 97.46%; 

SE = 99.09%;SP = 90.26% (D) 

ACC = 90.39%; SE = 98.03%; 

SP = 90.76% (L) 

ACC = 99.98%; SE = 100%; 

SP = 99.9% (D) 

ACC = 99.87%; SE = 99.97%; 

SP = 99.88% (L) 

ACC = 99.41% (D); 

ACC = 99.35% (L) 
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ork is comparable to the earlier studies in the literature. We ob-

ained an accuracy of 99.98% in MI detection and an accuracy of

9.87% in MI localization in beat level with 84 features. By using

nly 10 features in beat level, we obtained an accuracy of 99.41%

n MI detection and an accuracy of 99.35% in MI localization. For

he record level, we achieved an accuracy of 97.46% in MI detection

nd an accuracy of 90.39% in MI localization. 

.6. Computational complexity of methods 

The proposed methods are implanted in MATLAB 2018b soft-

are in the Windows platform on a desk computer with Intel

5-7500 CPU (@ 3.4 GHz) and 8-GB RAM. For one record of ECG,

he running time of Dual-Q TQWT (45.63 s) is shorter than the

ommonly used denoising algorithm EMD (225.89 s). The running

ime of DWPT feature extraction is 11.39 s, which is easier and

ore time-saving than features combination of linear, nonlinear,

nd entropy. Compared with the time spending on PCA (1795.21 s)

sed for dimensionality reduction, the tensor-based MPCA requires

23.84 s on 408 ECG records. The training and testing processes of

reebagger classifier spend 223.13 s and 0.67 s, respectively. 

. Conclusion 

The power of machine learning and advanced signal processing

rovides an opportunity for intelligent medical assistance in clin-

cal practice. However, automated, reliable, and real-time MI de-

ection and localization is still a challenging problem because of

rtifacts corruption, high dimensionality, and inter-individual vari-

tions. In our present study, we introduced an automated MI de-

ection and localization system using Dual-Q TQWT and wavelet

acket tensor decomposition. By applying the Dual-Q TQWT de-

oising method, we achieved comparable good performance com-

ared with the filtered data and commonly used denoising meth-

ds. Based on the low Q-factor component after denoising, a

avelet packet tensor was formed and then dimensionality re-

uced by tensor-based MPCA, which showed a better result than

ector-based PCA. A total of 84 features chosen from MPCA dimen-

ionality reduction were fed into a Treebagger classifier, reaching

n accuracy of 97.46% in MI detection and an accuracy of 90.39% in

I localization considering the record variations. The high perfor-

ance of our automated detection and localization system might

e helpful in providing MI diagnosis care with minimal resources. 

In future work, we will test the robustness of Dual-Q TQWT

ith different types of artifacts mixed with ECG data. Moreover,

he automated MI detection and localization system will be applied

o other heart disease diagnosis. 
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