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2.1 Introduction

Among the three-dimensional (3D) printing, or officially known as additive
manufacturing (AM), techniques, the powder bed fusion (PBF) and directed energy
deposition (DED) are most commonly used to process metals directly as they have
the capability to produce high-quality parts that are fully dense. According to ISO/
ASTM 52900:2017, PBF is a group of AM processes in which thermal energy selec-
tively fuses regions of a powder bed, while DED is another group of AM processes in
which focused thermal energy is used to fuse materials by melting as they are being
deposited.

In the academia, there has been extensive studies applying 3D printing in tis-
sue engineering (Sudarmadji et al., 2011; Yeong et al., 2009; Wiria et al., 2007,
Yang et al., 2002). For example, tissue scaffolds for cardiac and bone have been
fabricated successfully (Chua and Yeong, 2014; Yeong et al., 2004). These appli-
cations have mainly focused on using polymers; however, in recent years, there
has been growing interest in using metallic biomaterials to create implants. This is
made possible with the advancement in 3D printing and accelerated development
of printable materials.

In this chapter the application of these two groups of AM technologies in fabrication
of metallic biomaterials is described, with specific focus on metals that are biocompat-
ible and commonly used such as 316L stainless steel, titanium-6aluminum-4vanadium
(Ti6Al4V), and cobalt-chromium-molybdenum (CoCrMo).

2.2 3D printing techniques for metallic biomaterials

2.2.1 Powder bed fusion

PBF processes melt and fuse selective regions of powder according to computer-aided
design (CAD) data using an energy source. Current commercially available systems
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use laser (for L-PBF) or electron beam (for E-PBF) as energy source. The general
steps of the PBF processes are as follows:

«  Selective melting of one powder layer (usually 20-100 pm for L-PBF and 100 pm for E-PBF
in thickness).

+ The build platform is lowered by the predetermined powder layer thickness.

» Deposition of a next layer of powder onto the build platform.

« The process is repeated with successive powder layers until the required part is built com-
pletely (Chua and Leong, 2014).

There are no sacrificial binders involved in the PBF processes, which allow them
to form near-full density parts. This gives them a critical advantage over binder jetting
processes in direct metallic part manufacturing. An overview of key steps within PBF
is shown in Fig. 2.1.

L-PBEF, also commercially known as selective laser melting (SLM) and direct metal
laser melting (DMLM), uses a fiber laser as the energy source (Rafi et al., 2013). The
whole process is carried out in an inert gas (typically argon or nitrogen)—filled cham-
ber, which ensures higher purity in the fabricated metallic parts. The inert environment
minimizes the oxygen in the environment and reduces the risk of hydrogen pickup.
The representative schematic of the L-PBF system is shown in Fig. 2.2.

The fiber laser in the L-PBF system can operate up to 1kW with various spot
diameter, depending on the laser module installed in the system (Chua and Leong,
2014). The galvanometer and F-theta lens control the beam focus and the movement
of the beam along the build platform, respectively. As mentioned a powder layer of
20-100 pm thickness is spread over the build platform during the process. The powder
is carried and spread by the powder recoater across the build platform. Preheating of
up to 400°C can be applied on the build platform for some commercial L-PBF systems
(Mertens et al., 2018). The laser is then used to selectively melt the sections of the
powder layer based on the geometry defined by the CAD file. In most L-PBF systems,
every layer of a part is melted in two steps:

1. Contouring—outer boundary of the part is irradiated by the laser and built first
2. The powder within the contour/perimeter is melted subsequently
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Fig. 2.1 Schematic of PBE.
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Fig. 2.2 Schematic of L-PBF, also known as selective laser melting (Sing et al., 2016a).

After the two steps of the melting process, another powder layer is then deposited.
This process continues until the desired 3D part is fully completed (Thijs et al., 2010).
L-PBF has been utilized to fabricate orthopedic implants such as replacements for
zygomatic bone (Rotaru et al., 2015) and finger (Merkt et al., 2014).

E-PBF, also commercially known as electron beam melting (EBM), is another
metal 3D printing technique. As the name suggests, electron beam energy is used
to melt the metal powder during the process (Parthasarathy et al., 2010). The entire
process has to take place in a vacuum chamber due to the usage of electron beam
as the energy source. The vacuum chamber provides additional advantages such
as high part purity due to the oxygen-free environment and reduction in hydrogen
pickup. This is critical for fabricating parts out of highly reactive biomaterials such
as Ti6Al4V as the low levels of interstitial elements need to be controlled during
fabrication. Furthermore, E-PBF—produced parts have lower residual stresses, and
hence, warpage and distortion as the chamber is maintained at an elevated tempera-
ture of about 700°C during the process. A schematic of E-PBF system is shown
in Fig. 2.3.

The electron gun in the E-PBF system operates at a 60kW to generate a focused
energy beam density that is above 100kW/cm?” The electromagnetic lenses and the
deflection coils control the beam focus and the movement of the beam along the build
platform, respectively. A powder layer of 100 pm thickness is spread across the build
platform during the process by the moving rake. The moving rake brings powder from
both hoopers inside at the build chamber (one at each side). Preheating of the powder
layer is achieved using the electron beam with a higher scan speed for every layer. This
is followed by the actual melting of the powder layer based on the geometry defined
by the CAD file. Like the L-PBF, every layer of a part is built in two steps, contouring
and the melting of the remaining cross section. This process continues until the desired
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Fig. 2.3 Schematic of E-PBF, also commonly known as electron beam melting
(Sing et al., 2016a).

3D part is fully completed (Rafi et al., 2013). Due to well-controlled environment,
E-PBF has been used to produce orthopedic components such as maxillofacial plates,
hip, knee, and jaw replacements (Cronskar et al., 2013; Mazzoli et al., 2009; Jardini
et al., 2014a,b).

2.2.2 Directed energy deposition

DED is a group of AM processes that adds material alongside the heat input si-
multaneously. The heat input can either be a laser, electron beam, or plasma arc.
The material feedstock is either metal powder or wire. Powders result in lower
deposition efficiency compared with metal wires as only a part of the total powder
would be melted and bonded to the substrate (Lee, 2008). Like the E-PBF, electron
beam systems in DED require vacuum and would not have high oxidation issues
and laser system and, on the other hand, require other methods to introduce inert
gases. Powder DED machines often have inert gas blown together with the powder
from the nozzles, thereby sheathing the melted region, reducing the oxidization rate
(Gokuldoss et al., 2017). Powder DED systems can use single or multiple nozzles to
eject the metal powders (Mazzucato et al., 2017). Using multiple nozzles allows the
possibility of mixing different materials to get functionally graded materials (FGM)
(Liu and DuPont, 2003; Li et al., 2017). A schematic of the DED systems are shown
in Fig. 2.4.

DED systems can differ from PBF systems as powders used are often larger in size
and require higher energy density (Yusuf and Gao, 2017; Lewandowski and Seifi,
2016). This results in faster build rates as compared with PBF system. However,
this leads to poorer surface quality that may require additional machining. Support
structures commonly used in PBF systems is seldom or never used in DED that often
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Flg. 2.4 Schematics of two DED systems (A) uses laser together with powder feedstock and
(B) uses electron beam and wire feedstock.

uses multiple axis turntables to rotate the build platform to achieve the varying fea-
tures. Without the need for a powder bed, DED systems can do repair or printing on
existing parts.

2.3 3D printed metallic biomaterials

2.3.1 316L stainless steel

316L stainless steel is a common choice for biomaterial, due to its good biocompati-
bility, availability, and low cost. As a result, it is well suited for use in prostheses and
implants when coupled with 3D printing for individualized and customized parts at
low costs.

The building accuracy and part quality such as density of orthodontic products us-
ing 316L stainless steel are investigated by Yang et al. using a self-developed L-PBF
machine. The required surface quality and mechanical properties are achieved in their
study (Yang et al., 2012). Structures with gradient porosity are fabricated and stud-
ied by Li et al. using L-PBF 316L stainless steel. The dense portion is designed for
strength, while the porous portion is designed to enhance tissue growth in biocom-
patible implants (Li et al., 2010). Using 316L stainless steel and L-PBF, Bibb et al.
(2006) fabricated denture framework. The same research group also presented four
case studies using L-PBF 316L stainless steel surgical guides in different maxillo-
facial (jaw and face) surgeries (Bibb et al., 2009). Kruth et al. (2005a) developed a
biocompatible metal framework for dental prostheses, and Wehmoller et al. (2005)
reported body implants of cortical bone, mandibular canal segment, and support
structures or tubular bone made from L-PBF 316L stainless steel. In comparison,
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medical applications using 316L stainless steel processed by E-PBF and DED are
limited at the time of writing.

2.3.1.1

The relative density of a part is often used as an indicator of the quality of the 3D
printed metallic parts. Relative density is the ratio of the density of the 3D printed part
to the theoretical density of the bulk material. Using L-PBF, Tolosa et al. (2010) were
able to obtained a relative density of 99.90%, and Yasa et al. (2011) obtained a better
relative density of 99.95% with laser remelting. However, laser remelting increases
the energy used and production time as each layer is scanned twice. With E-PBF,
Wang et al. (2018) were able to achieve a relative density of more than 98.8%, while
Zhong et al. (2017) recorded a relative density of 99.8% using the same process. Tan
et al. (2019) reported a relative density of more than 99.8% for 316L stainless steels
parts produced by DED.

Relative density

2.3.1.2 Mechanical properties

Due to its superior mechanical strength, 316L stainless steel has numerous appli-
cations. It is of interest to note that the different microstructures resulted from each
AM process lead to different properties. Due to rapid cooling in L-PBF process,
the microstructure obtained is more refined, which results in higher tensile strength
but with a reduction in ductility compared with forged counterparts. The mechani-
cal properties of 316L stainless steel parts produced by 3D printing and forging are
shown in Table 2.1.

Table 2.1 Mechanical properties of 316L stainless steel by L-PBF, E-PBF, DED, and
forging.
Properties L-PBF E-PBF DED Forging
Ultimate 480-760 437-580 533-685 450-818 (Zhang
tensile strength | (Spierings et al.,, | (Wang et al., (Wang et al., and Wang, 2014;
(MPa) 2011; Kruth 2018; Zhong 2019; Yadollahi | Venugopal et al.,
et al., 2005b; etal., 2017) et al., 2015) 1996)
Liu et al. 2014)
Yield strength 350-640 253-396 235-485 150-230 (Zhang
(MPa) (Spierings et al., | (Wang et al., (Wang et al., and Wang, 2014;
2011, 2013) 2018; Zhong | 2019; Yadollahi | Kong et al.,
et al., 2017) et al., 2015) 2009)
Elongation (%) | 10-30 (Kruth 10-59 (Wang | 12-43 50-62 (Zhang
et al., 2005b; etal., 2018; (Yadollahi and Wang, 2014;
Spierings et al., | Zhongetal., | etal., 2015) Venugopal et al.,
2013) 2017) 1996)
Microhardness 220-279 (Kruth | 165-173 182-210 (Tan 133-140 (Zhang
(HV) et al., 2005b; (Zhong et al., | etal., 2019; and Wang, 2014)
Liuetal., 2014) | 2017; Rannar | Kim et al.,
etal., 2017) 2019)
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2.3.2 Titanium-6aluminum-4vanadium

3D printing of Ti6Al4V has gained much interest in the past decade due to its various
applications, especially in biomedical industries. The high strength—to—weight ratio,
biocompatibility, and corrosion resistance make it suitable for many lightweight appli-
cations such as orthopedic implants (Murr et al., 2010). In comparison with stainless
steels and CoCrMo alloys, Ti6Al4V features a lower elastic modulus that is closer to
those of the bone, making it slightly more favorable for minimizing the stress shield-
ing effect.

Several groups have research on the mechanical properties and compatibility of ad-
ditively manufactured Ti6Al4V as body implants. The works of Murr et al. highlight
the microstructural features of AM Ti6Al4V (Murr et al., 2009a,b) and the tailorable
properties of AM porous meshes (Murr et al., 2010). Warnke et al. (2008) and Hollander
et al. (2006) showed that the Ti6Al4V scaffolds produced by L-PBF are biocompatible
and support the growth of osteoblasts (bone cells). Van Bael et al. studied the effects of
pore geometry on the behavior of human periosteum-derived cells. Based on their in vi-
tro results, it was suggested that a functionally graded scaffold containing small interior
pores for initial cell attachment and large exterior pores to avoid cell occlusion may
improve the overall scaffold quality (Van Bael et al., 2012). Pattanayak et al. (2011)
found that the bone affinity of porous titanium structures fabricated by L-PBF could be
improved through chemical and heat treatment. Taniguchi et al. (2016) and Pattanayak
et al. (2011) investigated the effects of pore sizes on the bone fixation ability and os-
teoinduction of porous titanium implants, respectively, and found that a pore size of
0.5-0.6 mm was ideal for both purposes. Furthermore, in vivo tests conducted by Van
der Stok et al. (2012) using a rat model also showed that bone formation is facilitated by
the titanium scaffolds. A similar conclusion is also drawn from the works of Biemond
et al. (2013) who studied the bone ingrowth of trabecular-like surfaces implanted into
goats. In addition, Wu et al. (2013a) found that the sheep cervical implants made from
porous Ti6Al4V cages demonstrated better osseointegration and mechanical stability
as compared with the conventional poly-ether-ether-ketone cage. Evidently, Ti6Al4V
and other Ti-based alloys have important applications as biomaterials, and this is fur-
ther complemented by the design capabilities of 3D printing processes.

2.3.2.1 Relative density

The densities of Ti6Al4V component additive manufactured via L-PBF, E-PBF, and
DED are generally very high. The highest relative density reported using L-PBF and
DED is 99.80% (Vandenbroucke and Kruth, 2007) and 99.999% (Carroll et al., 2015),
respectively. On the other hand, E-PBF-produced part has reported relative density of
99.4% by Facchini et al. (2009).

2.3.2.2 Mechanical properties

Generally the strength of L-PBF-produced Ti6Al4V parts is higher than those
produced by E-PBF, but the elongation is lower. This trade-off between strength
and ductility may be attributed to the presence of o’ phase and the higher residual
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stresses induced in the L-PBF process. On the other hand the strength and ductility
of the DED parts are comparable with those produced by PBF, respectively.

Under each processing method and operating condition, there may also be part
property variation within the component along the build direction. The repeated ad-
dition of material causes the underlying build layers to experience numerous cycles
of heating and cooling. Consequently the annealing effect is different for each build
layer. Additionally the bottom layers also tend to experience a higher cooling rate due
to its proximity to the build substrate. The accumulation of these factors leads to a
graded microstructure with slight variations in properties from the bottom to the top
of the built (Carroll et al., 2015; Tan et al., 2015). The ultimate tensile strength, yield
strength, elongation, and microhardness of Ti6Al4V parts produced by 3D printing
and casting are shown in Table 2.2.

2.3.3 Cobalt-chromium-molybdenum

CoCrMo has been studied by various groups as biomaterial using 3D printing. Using
L-PBF, Oyague et al. and Kim et al. separately evaluated the fit of dental prostheses.
However, they reached different conclusions about the suitability of the technology
for producing dental prostheses (Kim et al., 2013; Oyague et al., 2012). In terms of
hardness, elastic modulus, and strength, Ayyildiz et al. (2013) concluded that CoCrMo
produced by laser AM is suitable for dental applications.

Table 2.2 Mechanical properties of L-PBF, E-PBF, DED, and cast Ti6Al4V.

Properties L-PBF E-PBF DED Cast

Ultimate tensile | 973-1407 915-1200 920-1163 934-1173 (Wei

strength (MPa) (Kasperovich (Murr et al., (Qiu et al., etal., 2011; Ho,
and Hausmann, 2009a; 2015; Dinda 2008)

2015; Murr Facchini et al., | et al., 2008)
et al., 2009¢) 2009)

Yield strength 885-1333 830-1150 850-1105 862-999 (Wei

(MPa) (Kasperovich (Murr et al., (Qiu et al., etal., 2011; Ho,
and Hausmann, | 2009a; 2015; Dinda 2008)

2015; Murr Facchini et al., | et al., 2008)
et al., 2009¢) 2009)

Elongation (%) 5-19 13-25 (Murr 4-17 (Qiu 67 (Wei et al.,
(Kasperovich et al., 2009a; etal., 2015; 2011; Ho, 2008)
and Hausmann, | Facchini et al., | Dinda et al.,

2015; Murr 2009) 2008)
et al., 2009¢)

Hardness (HV) 381-479 (Thijs 360-460 294-360 (Ho
et al., 2010) (Murr et al., etal., 1999;

2009a) Jovanovic et al.,
2006)
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2.3.3.1 Relative density

For L-PBF, a relative density of 99.94% by L-PBF is achieved for CoCrMo (Sanz and
Navas, 2013). Tan et al. (2018) obtained a relative density of higher than 99.2% from
CoCrMo by E-PBF. Espaifia et al. (2010) reported relative density of up to 88% for
DED produced CoCrMo parts.

2.3.3.2 Mechanical properties

CoCrMo has uses in implants, but the mechanical properties of CoCrMo produced
by DED have little literature. Table 2.3 shows the mechanical properties for CoCrMo
using 3D printing techniques and casting.

2.4 Challenges, potential and current active research in
3D printing of metallic biomaterials

2.4.1 New material systems

Biodegradable metal implants can be useful in providing temporarily mechanical
support during the healing process of injured or pathological tissue (Witte et al.,
2008). The selection of materials to fulfill this purpose is highly dependent on the

Table 2.3 Mechanical properties of L-PBF, E-PBF, DED, and cast CoCrMo.

Properties L-PBF E-PBF DED Casting
Ultimate 951-1308 (Takachi 1450 591-759 (Takachi
tensile strength | etal., 2013; (Gaytan et al., 2013;
(MPa) Averyanova et al., et al., 2010) Averyanova et al.,
2011; Wu et al., 2011)
2013b)
Yield strength 562884 (Takachi 510 296-568 (Takachi
(MPa) et al., 2013; (Gaytan et al., 2013;
Averyanova et al., et al., 2010) Averyanova et al.,
2011; Wu et al., 2011)
2013b)
Elongation (%) | 10-16 (Takachi 3.6 (Tolosa 8.0-10.7 (Takachi
et al., 2013; et al., 2010) etal., 2013;
Averyanova et al., Averyanova et al.,
2011; Wu et al., 2011)
2013b)
Microhardness | 458-482 (Ayyildiz 380-495 324.0-384.8
(HV) et al., 2013; Xin (Mantrala | (Xin et al., 2013;
et al., 2013) et al., Henriques et al.,
2015) 2012)
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mechanical strength, degradation rate, and biocompatibility of the material. As they
have similar mechanical properties to natural bones, bioresorbable and noninflamma-
ble, magnesium and its alloys have great potential as biomaterials. Furthermore, they
are also osteoconductive that encourage cell attachment and bone growth (Alvarez
and Nakajima, 2009). Man’s group studied the fabrication of lightweight biodegrad-
able and bioresorbable orthopedic implants using L-PBF of magnesium (Zhang et al.,
2011; Ng et al., 2011; Ponader et al., 2010). While magnesium has been explored
as a suitable candidate as biomaterial, it has the issue of very high degradation rate
(Witte et al., 2008). In contrast, iron has the issue of having a low degradation rate
(Hermawan et al., 2010). Zinc has been a recently emerging material for biodegrad-
able implant due to its intermediate degradation rate between magnesium and iron
(Demir et al., 2017). Due to this, there is a recent surge in publications on the L-PBF
of zinc as a biodegradable material (Demir et al., 2017; Wen et al., 2018a,b; Marco
et al., 2017). In addition, Shuai et al. (2017) has even attempted to further modify the
mechanical properties and degradation behavior of L-PBF—produced zinc with the
addition of silver.

As discussed in previous sections, Ti6Al4V has been widely used as biomaterial, but
the cytotoxicity of its constituent elements certainly raises concerns. The high cytotox-
icity of vanadium has been shown (Ghosh et al., 2015), and the potential of aluminum
to cause the Alzheimer disease has been discussed (Perl and Brody, 1980). Recent focus
has been on the AM of implants using titanium alloys that can consist of nontoxic ele-
ments such as niobium, tantalum, zirconium, and tin. In addition, the alloys’ composi-
tion is usually adjusted such that they are beta or near beta stabilized, giving low elastic
modulus that reduces the stress shielding effect. Ti-24Nb-4Zr-8Sn (Ti2448) has been
examined with L-PBF (Liu et al., 2015, 2016a) and E-PBF (Liu et al., 2016a,b, 2017)
as a material with high strength—to—elastic modulus ratio. Moreover, Ti-xNb alloy has
been manufactured using L-PBF (Weinmann et al., 2018; Sharkeev et al., 2017; Fischer
et al., 2016; Schulze et al., 2018) and DED (Fischer et al., 2017) processes. Meanwhile
the Ti-xNb-yZr (Zhou et al., 2018a,b; Kreitcberg et al., 2018) and Ti-37Nb-6Sn (Chen
et al., 2018) have also been explored with the L-PBF process.

Furthermore, composite materials were studied to modify properties of titanium
implants such as biocompatibility and wear resistance. Han et al. (2017) demonstrated
the fabrication of titanium/nanohydroxyapatite composites with L-PBF to improve
the bioactivity and wear resistance of pure titanium implant but with tensile strength
significantly decreased. Functionally graded titanium/hydroxyapatite composites have
also been studied and successfully improved the hardness of titanium matrix while
sacrificing the fracture toughness (Han et al., 2018). The improvement of hardness and
wear resistance were also done by the addition of TiB (Attar et al., 2017) and TiB+TiC
(Xia et al., 2017) into titanium matrix.

The development of new materials in AM first requires sufficient process parameter
optimization to reduce the amount of porosity, which can be done experimentally with
the guidance of process simulation. With attempts to monitor the melt pool behavior in
L-PBF process (Leung et al., 2018; Zhao et al., 2017), the porosity formation of parts
built via L-PBF can be better understood. This will potentially improve the accuracy
of process simulation and speed up the process parameter optimization.
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Regardless, not all alloy compositions will have their prealloyed feedstock suitable
for 3D printing. One usual solution for this challenge is to build a part via in situ al-
loying of elemental powder blend (Fischer et al., 2016; Chen et al., 2018; Sing et al.,
2016b, 2018a). If the elements in the powder blend have drastically different melting
and boiling point, further complications to the process parameter optimization will
occur. A process window is needed to minimize the amount of unmelted particles
of refractory element and to minimize the vaporization of element with low boiling
point. A process simulation of 3D printing process on elemental powder blend can be
useful in detecting this process window but will certainly pose a challenge due to its
multimaterial nature.

2.4.2 Porous lattice structures

As free-form fabrication techniques, 3D printing has the capability to fabricate lattice
structures that have designed porosity that can be controlled. Porous cellular struc-
tures that have comparable compressive strength similar with those of cortical and
trabecular bones have been fabricated using 3D printing, with elastic modulus be-
tween 0.2 and 6.3 GPa (Cheng et al., 2012). This is crucial for biomaterial as there
are critical requirements in designs and porosity levels in biomedical applications.
It is, however, of interest to note that there is a need to balance the level of porosity
and stability of mechanical performance of the fabricated parts (Habibovic and de
Groot, 2007; Tolochko et al., 2002; Lin et al., 2007; Mour et al., 2010). For example,
the bone porosity varies radially for long bones. As such the mechanical strength of
the bone decreases gradually from the outer to inner regions and thus can be regarded
as a functionally graded structure (FGS) (Sudarmadji et al., 2011). Fortunately, 3D
printing provides the key advantage in capability to fabricate such FGS (Watari et al.,
2004). These parts possess the distinguishing feature of nonhomogeneity with regard
to strength-related properties including yield strength, fracture toughness, fatigue, and
creep behavior (Kim and Paulino, 2002).

In broad terms, these porous lattice structures can be classified into stochastic or
nonstochastic. Stochastic lattice structures have random variations in the designs
of the cells. They can differ in shape and size. On the other hand, nonstochas-
tic or periodic lattice structures have one single unit cell design that are repeated
in the lattice structures and uniform throughout (Hasib et al., 2015). Despite 3D
printing capability to produce complex geometries, there are still many challenges
in fabrication of lattice structures due to their stringent requirements. Hence the
dimensional accuracy (Cheng et al., 2012; Yan et al., 2014a,b; Sing et al., 2018b),
mechanical properties (Cheng et al., 2012; Yan et al., 2014a; Amin Yavari et al.,
2015; Wauthle et al., 2015; Murr et al., 2011), and biocompatibility (de Wild et al.,
2013; Jonitz-Heincke et al., 2013; Hrabe et al., 2013) of the fabricated porous lattice
structures are ongoing research. Studies have also been done on the development
of automated algorithm for cellular lattice structures. Samples of cellular lattice
structures fabricated using SLM is shown in Fig. 2.5. The samples shown clearly
demonstrated the capability of 3D printing in producing porous lattice structures
from CAD models in different shapes. However, key challenges have also been
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Fig. 2.5 Samples of cellular lattice structures with varying porosities fabricated by L-PBF
(Xiao et al., 2018).

identified in additional areas, such as powder adhesions to the struts (Pattanayak
et al., 2011) and the difficulty in removal of the unmelted powder within the struc-
tures (Hasib et al., 2015).

As mentioned, structures that have varying designs or nonuniform porosities can
be called FGS (Birman and Byrd, 2007; Anthoine, 2010). Due to the spatial control of
designs and porosity, they are capable to reduce bone remodeling due to the mismatch
in mechanical properties, also known as “stress shielding,” between the natural bones
and the structures when implanted. This leads to increased biocompatibility with the
bone tissues and hence maintaining the bone health (Lin et al., 2009). 3D printing has
been proven to be capable of producing very complex geometries with a porosity gra-
dient that varies radially from the center axis of the implant (Traini et al., 2008; Muller
et al., 2013). Hence the choice of property distribution in a part can be designed to
achieve specific requirements. Samples of FGS fabricated using L-PBF are shown in
Fig. 2.6. The fabricated sample has shown the versatility of 3D printing in producing
FGS with wide range of porosities.

FGS using titanium and hydroxyapatite have been fabricated by Watari et al. (1996,
2004). Gradient porosities improve both biochemical affinity to osteogenesis and bio-
compatibility as FGS can be used to control the tissue response (Watari et al., 2004).
The design of dental implants using FGS has been investigated by Lin et al. (2009).

Fig. 2.6 Samples of FGS fabricated by L-PBF (Choy et al., 2017).
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It is observed that better performance in bone turnover is achieved with lower FGS
gradient; however, there is a higher risk of damage in the early stage of healing as this
would reduce the implant stiffness (Lin et al., 2009).

2.4.3 Multimaterials

Most biomedical applications currently use parts that are composed of a single ma-
terial, sometimes with a coating layer, which is essentially uniform in composition
and structure in the longitudinal direction (Watari et al., 2004; Muller et al., 2013).
This leads to constant properties, such as strength and biocompatibility throughout
them. However, a single composition with uniform structure cannot satisfy all the
requirements needed for numerous applications (Watari et al., 1996). The properties
offered by each biomaterial are unique and have a different set of advantages and
limitations. Stainless steel has relatively low cost but has inferior corrosion resistance
compared with titanium-based and CoCrMo alloys. Titanium-based alloys have an
excellent strength-to-weight ratio and a large range of tailorable elastic modulus but
have a relatively low wear resistance. CoCrMo offers exception corrosion and wear
resistance but has an unfavorably high elastic modulus of ~220 GPa, which may lead
to stress shielding. Evidently, no single alloy could be excellent in every requirement.
However, a combination of multiple materials may be able to make up for the short-
comings of each alloy. For instance, a combination of Ti6Al4V with CoCrMo may
result in a part that possesses both lightweight properties and a superior corrosion
and wear resistance. While the potential of multimaterial parts is indeed appealing,
there are also challenges associated with the manufacturing of such components.
Specifically the dissimilar material interface may contain substantial amounts of in-
termetallic compounds, which embrittle the interface and reduce the bond strength.
An indication of the possible intermetallic compounds that could form between dif-
ferent material combinations can be obtained from the binary or multicomponent
phase diagrams. For example, the combination of steel and titanium-based alloys
results in the formation of interfacial Fe-Ti intermetallic compounds (Reichardt et al.,
2016; Sahasrabudhe et al., 2015; Bobbio et al., 2017), and the combination of tita-
nium to cobalt produces Ti-Co intermetallic compounds (Xue and Wang, 2005; Weng
et al., 2014). While these intermetallic compounds generally feature high hardness
values and may be beneficial in improving wear resistance (Xue and Wang, 2005;
Dutta Majumdar et al., 2009a), their corrosion resistance and biocompatibility re-
quires further investigation. Even though most material combinations yield brittle re-
action products, combinations where reaction phases are either absent or suppressed
also exist. Some of these compatible material combinations include cobalt and iron,
cobalt and nickel, iron and chromium, iron and nickel, nickel and copper, copper and
niobium, titanium and tantalum, and titanium and niobium (Sun and Ion, 1995). The
compatibility between cobalt and iron indicates that the wear resistance of stainless
steel may be improved through a combination with CoCrMo alloy. However, such
a combination presents little advantage over the use of a part made entirely from
CoCrMo for biomedical applications because the specific strength, corrosion resis-
tance, and stress shielding effect of stainless steel are either comparable or inferior
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with those of CoCrMo. A common approach used to bond incompatible metallic
combination is to introduce intermediate material/s between the terminal alloys such
that a direct bonding between the incompatible pair is avoided. For instance, the
formation of intermetallic compound can be completely averted by replacing the di-
rect steel/titanium bond with a steel/nickel/copper/niobium/titanium bond (Li et al.,
2012) or with a FGM (Reichardt et al., 2016; Bobbio et al., 2017; Hofmann et al.,
2014a,b; Tammas-Williams and Todd, 2017; Carroll et al., 2016). FGM are compos-
ite materials formed from two or more constituent phases with a continuously vari-
able compositions (Birman and Byrd, 2007; Anthoine, 2010). In addition, FGM has
the potential to eliminate the problems arising from mismatch in mechanical proper-
ties. FGM signifies a new class of composites, which consists of a graded pattern of
material compositions and microstructures or allows better matching of correspond-
ing mechanical properties (Lin et al., 2009; Wang et al., 2002). The resulting FGM
can have a microstructure that produces continuous or discrete change in mechanical
properties (Aboudia et al., 1999) due to variation in composition (Muller et al., 2013)
to allow better functionality as biomaterial.

At present, most of the multimaterial AM research has been conducted using the
DED technique due to the relative ease of changing powder compositions in real
time (Liu and DuPont, 2003; Reichardt et al., 2016; Sahasrabudhe et al., 2015;
Hofmann et al., 2014a,b; Tammas-Williams and Todd, 2017; Carroll et al., 2016;
Dutta Majumdar et al., 2009b; Pei et al., 2003; Vamsi Krishna et al., 2008; Balla
et al., 2009). Hofmann et al. (2014b) demonstrated that a continuous variation of ma-
terial composition can be used to produce a functional gradient between the terminal
alloys such that a gradual transition of properties is obtained. If two different pow-
der compositions are used in the DED process, the composition gradient may only
vary linearly between the terminal compositions. However, if three or more powders
are used in the DED process then the composition path between the terminal alloys
may follow any arbitrary route on the multicomponent phase diagram to avoid the
formation of brittle phases (Hofmann et al., 2014b). In comparison, such flexibilities
are not readily available in the PBF processes. Nevertheless, PBF is also capable of
producing multimaterial parts using modified powder deposition mechanisms, which
are not commercially available at present. Such a mechanism may either consist of a
recoater housing that is partitioned to hold different powders (Liu et al., 2014; Sing
et al., 2015) or comprise a series of powder containing nozzles mounted on a frame
(Al-Jamal et al., 2008; Yang and Evans, 2004). Notably the integration of the latter
powder dispensing mechanism with a conventional L-PBF system has been reported
by Wei et al. recently (Wei et al., 2018). Using their newly developed multimaterial
L-PBF technology, Wei et al. were able to introduce material variations within and
across build layers without cross contaminating the different powders. In the case
of E-PBF, the multimaterial system has yet to be introduced commercially as it re-
mains a controlled process owned by the original equipment manufacturer, Arcam
AB. Nonetheless, there has been ongoing research on the computer simulations (Yan
et al., 2016), new mechanism (Guo et al., 2015), and actual fabrication (Terrazas
et al., 2014) using E-PBF for multimaterials.
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2.5 Conclusion

With the advancement in 3D printing, it is now able to fabricate fully functional me-
tallic parts directly. These techniques provide the biomedical field the opportunities to
mass customize at a lower cost due to their ability to fabricate parts with complex and
intrinsic designs that are specific to individual patients. To summarize, this chapter
shows the immense potential of 3D printing in becoming the more preferred method
for processing metallic biomaterials. With the earlier discussed advantages and poten-
tial, exciting research will emerge to take advantage of such technologies in this field
to overcome existing challenges.
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