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- We review state of the art on similarity functions for uncertain time Series and evaluate them 

for the comparison of small, uncertain time series. 

- We introduce the Frobenius cOrrelation for uncertain Time series ushapelet discovery 

(FOTS), a new dissimilarity score based on local correlation, which has interesting properties 

useful for comparison of small, uncertain time series and that makes no assumption on the 

probability distribution of uncertainty in data. 

- We evaluate FOTS on 63 datasets on clustering task. 

- We put the source code at the disposal of the scientific community to allow extension of our 

work. 

*Highlights (for review)                   
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Abstract

An u-shapelet is a sub-sequence of a time series used for the clustering of time

series datasets. The purpose of this paper is to discover u-shapelets on uncertain

time series. To achieve this goal, we propose a dissimilarity score called FOTS

whose computation is based on the eigenvector decomposition and the com-

parison of the autocorrelation matrices of the time series. This score is robust

to the presence of uncertainty; it is not very sensitive to transient changes; it

allows capturing complex relationships between time series such as oscillations

and trends, and it is also well adapted to the comparison of short time series.

The FOTS score is used with the Scalable Unsupervised Shapelet Discovery

algorithm for the clustering of 63 datasets, and it has shown a substantial im-

provement in the quality of the clustering with respect to the Rand Index. This

work defines a novel framework for the clustering of uncertain time series.

Keywords: Clustering, UShapelet, Correlation, Time series

1. Introduction

All measurements performed by a mechanical system contain uncertainty.

Indeed, the uncertainty principle is partly a statement about the limitations of

mechanical systems ability to perform measurements on a system without dis-

turbing it [1]. Thus, time series from measurement instruments are uncertain.5

These time series produced by sensors constitute a vast proportion of the time
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series used in science, whether in medicine with ECGs, in physics with measure-

ments recorded by telescopes, in computing with the Internet of Things and so

on. Ignoring the uncertainty of the data during their analysis can lead to inac-

curate conclusions [2], hence the need to implement uncertain data management10

techniques.

Several recent studies have focused on the processing of uncertainty in data

mining. Rizvandi et al.[3] studied CPU utilization time patterns of several

MapReduce applications using Dynamic Time Warping and Euclidian distance

for comparing times series, and they investigated the minimum distance/maximum15

similarity of these applications. Their results showed the effectiveness of their

approach on a private cloud with up to 25 virtual nodes. Considering that

time series data often contain uncertainty and that DUST is one of the latest

methods that can deal with arbitrary probability distributions, but that its com-

putational cost is high particularly when the dataset is large, Hwang et al. [4]20

demonstrated that the performance of DUST was much faster using GPU than

the CPU-based implementation. Rehfeld and Kurths [5] investigated similarity

estimators that could be suitable for the quantitative investigation of depen-

dencies in irregular and age-uncertain time series like paleoclimate time series.

They concluded that age uncertainty contributes up to half of the uncertainty25

in the similarity estimation process and that their new event synchronization

function (ESF) could be suitable to study extreme event dynamics in paleo-

climate records. Orang and Shiri [6] presented an overview of deterministic

and probabilistic similarity measures and evaluate them experimentally on un-

certain time series. Their results provided useful insights and guidelines for30

researchers and practitioners in similarity search and analysis of uncertain time

series data. Orang and Shiri [7] formalized the notion of normalization and

correlation for UTS in two general settings based on the available information

at each timestamp (i.e. PDF-based UTS and multiset-based UTS) and, for

each case, they developed techniques to determine the underlying probability35

density function. Their results demonstrated the effectiveness of the proposed

techniques and the second one particularly showed a significant improvement
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in space utilization and computation time. The same authors [8] studied the

impact of preprocessing techniques on performance and effectiveness of the sim-

ilarity measures for uncertain time series. They showed that the performance40

of uncertain similarity measures can be improved through preprocessing tech-

niques, which outperformed traditional similarity measures.

This literature analysis reveals that two main approaches allow to take un-

certainty into account in data mining tasks: either during the comparison phase

by using appropriate distance functions [3, 4, 5, 6, 9, 7], or its impact is reduced45

by transformations performed on the data [8]. This latter strategy is used na-

tively by the u-shapelet algorithm.

1.1. Review of u-shapelets

Let us consider a dataset consisting of 4 time series corresponding to birds’

calls: 2 corresponding to Olive-sided Flycatcher (green time series)and 2 corre-50

sponding to calls of the White-crowned Sparrow (blue time series). When these

time series are classified using the Euclidean distance as a measure of dissim-

ilarity (Fig. 1 (a)) the obtained groups are not homogeneous; in other words,

we cannot recognize the bird from its calls. However, if we look for charac-

teristic sub-sequences (u-shapelets) to classify the time series, we obtain more55

homogeneous groups (Fig. 1 (b)).

(a) (b)

Figure 1: Example of clustering of time series using on the one hand the Euclidean distance

(a), on the other hand the shapelet (b).

Once this observation has been made, the natural question is how to find
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sub-sequences that characterize a time series group, that is, sub-sequences that

are observed only in a particular time series subgroup. The u-shapelet discovery

algorithm answers this question and proceeds as follows: the algorithm takes the60

length of the pattern as a parameter; on each time series, we drag a window of

the same length as the pattern, each new sub-sequence obtained by this process

is a candidate pattern.

Among the candidate patterns, we consider as a pattern the subsequence

able to divide the time series dataset into two subsets DA and DB such that65

DA contains all the time series that possess the pattern and DB all those which

do not contain the pattern.

Two other constraints are taken into account in the discovery of patterns:

the first one is the ability of the pattern to build subsets that are well separated;

the second one is the ability of users to build subsets that are not unbalanced.70

That is, the size of DA must be at most k times larger than that of DB and

vice versa.

Definition 1. (Unsupervised-Shapelet candidate) An unsupervised-shapelet (u-

shapelet) candidate S′ is any subsequence that has a number of data points less

than or equal to the number of data points of the shortest time series in the75

dataset [10].

The similarity between a time series and a shapelet is evaluated using a

distance function.

Definition 2. (Sub-sequence distance) The subsequence distance sdist(S, T ) be-

tween a time series T and a subsequence S is the minimum of the distances80

between the subsequence S and all possible subsequences of T of length equal to

the length of S [10].

This definition opens the question of which distance measure to use for

sdist. In general, the ubiquitous Euclidean distance (ED) is used, but it is not

appropriate for uncertain time series [6]. In the following section, we introduce85

a dissimilarity function that is more adapted to uncertainty.
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Computing the sdist between a u-shapelet candidate and all time series in

a dataset creates an orderline:

Definition 3. (Orderline) An orderline is a vector of subsequence distances

sdist(S′, Ti) between a u-shapelet candidate S′ and all time series Ti in the90

dataset [10].

The computation of the orderline is time-consuming. An orderline for a

single u-shapelet candidate is computed in time O(NMlog(M)) where N is the

number of time series in the dataset and M is the average length of the time

series. The brute force algorithm for U-shapelets discovery requires K such95

computations, where K is the number of sub-sequences. The strategy used

by [10] in Scalable Unsupervised Shapelet algorithm consists in filtering

the K candidate segments by considering only those allowing to build balanced

groups. This selection is efficiently made thanks to a hash algorithm.

Definition 4. (Unsupervised-Shapelet) A good u-shapelet candidate S′ is a sub-100

sequence having the following property: sdist between S′ and any time series in

one group DA is significantly smaller than sdist between S′ and any time series

in another group DB: sdist(S′, DA) << sdist(S′, DB) [10].

The assessment of a u-shapelet quality is based on its separation power,

which is calculated as follows :105

gap = µB − σB − (µA + σA), (1)

where µA (resp. µB) denotes the mean(sdist(S,DA)) (resp. the mean(sdist(S,

DB))), and σA (resp. σB) represents the standard deviation of sdist(S,DA)

(resp. the standard deviation of sdist(S,DB)). If DA or DB consists of only

one element (or of an insignificant number of elements that cannot represent a

separate cluster), the gap score is assigned to zero. This ensures that a high110

gap scored for a u-shapelet candidate corresponds to a true separation power.
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1.2. U-shapelets algorithm for clustering Uncertain Time Series

U-shapelets clustering is a framework introduced in [11], which suggests

the clustering of time series using the local properties of their sub-sequences

rather than using the global features of the time series [12]. Hence, u-shapelets115

clustering first computes the set of sub-sequences characteristics of the different

categories of time series, then it classifies each time series according to the

presence or absence of these typical sub-sequences in it.

Clustering time series with u-shapelets has several advantages. First, u-

shapelets clustering is defined for datasets in which time series have different120

lengths, which is not the case of most techniques described in the literature.

Indeed, in many cases, the equal length assumption is implied, and the trimming

to equal length is done by exploiting expensive human skills [10]. Secondly, u-

shapelets clustering is much more expressive regarding representational power.

Indeed, the algorithm works only on time series that can be clustered, namely,125

that are not outliers.

Furthermore, it is very appropriate to use u-shapelets clustering with un-

certain time series because it can ignore irrelevant data and thus, reduce the

adverse effects of the presence of uncertainties in the time series. Despite this

advantage, it is still highly desirable to take into account the adverse impact of130

uncertainty during u-shapelet discovery [7].

1.3. Uncertainty and u-shapelets discovery issue

Traditional measures of similarity like the Euclidean distance (ED) or the

Dynamic Time Warping (DTW) techniques [13] do not always work well with

uncertain time series data. Indeed, they aggregate the uncertainty of each data135

point of the time series being compared and thus amplify the negative impact

of uncertainty. However, ED plays a fundamental role in u-shapelet discovery

because it is used to compute the gap (Eq. 1). The discovery of u-shapelet

on uncertain time series could thus lead to the selection of a wrong u-shapelet

candidate or to assign a time series to the wrong cluster.140
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In this study, our goal is not to define an uncertain u-shapelet algorithm,

but rather to use a dissimilarity function robust to uncertainty to improve the

quality of the u-shapelets discovered and thus the clustering quality of uncertain

time series.

1.4. Summary of contributions145

• We review the state of the art on similarity functions for uncertain time

series and evaluate them for the comparison of small, uncertain time series.

• We introduce the Frobenius cOrrelation for uncertain Time series u-Shapelet

discovery (FOTS), a new dissimilarity score based on local correlation,

which has interesting properties for the comparison of small, uncertain150

time series, and makes no assumption on the probability distribution of

uncertainty in data.

• We put the source code at the disposal of the scientific community to allow

extension of our work [14].

2. Background and Related works155

2.1. Background

An Uncertain Time Series (UTS) X =< X1, . . . , Xn > is a sequence of

random variables where Xi is the random variable modeling the unknown real

value number at timestamp i. There are two main ways to model uncertain

time series: multiset-based model and PDF-based model [7].160

. In the Multiset-based model, each element Xi(1 ≤ i ≤ n) of an UTS

X =< X1, . . . , Xn > is represented as a set {Xi,1, . . . , Xi,Ni} of observed values

and Ni denotes the number of observed values at timestamp i (Fig. 2a).

. In the PDF-based model, each element Xi, (1 ≤ i ≤ n) of UTS X =<

X1, . . . , Xn > is represented as a random variable Xi = xi + Xei (Fig. 2b),165

where xi is the exact value that is unknown and Xei is a random variable

representing the error. It is this model that we consider in this work.
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time

X1 X2 X3 Xn...

(a) Multiset-based model of uncertain

time series

time

X1 X2 X3 Xn...

(b) PDF-based model of uncertain

time series

Figure 2: Uncertain Time Series models

Several similarity measures have been proposed for uncertain time series.

They are grouped into two main categories: Traditional similarity measures

and uncertain similarity measures.170

• Traditional similarity measures such as the Euclidean distance are those

conventionally used with time series. They use a single uncertain value at

each timestamp as an approximation of the unknown real value [15, 16, 17].

• Uncertain similarity measures use additional statistical information that

quantifies the uncertainty associated with each approximation of the real175

value : this is the case of DUST, PROUD, MUNICH[18]. [8] demonstrated

that the performances of uncertain similarity measures associated with

the pre-processing of data are higher than those of traditional similarity

measurements.

2.2. State of the art on uncertain similarity functions180

Uncertain similarity measures can be grouped into two broad categories : de-

terministic similarity measurements and probabilistic similarity measurements

[6].
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2.2.1. Deterministic Similarity Measures

Like traditional similarity measures, deterministic similarity measures return185

a real number as the distance between two uncertain time series. DUST is an

example of a deterministic similarity measure.

DUST. [19] Given two uncertain time series X =< X1, . . . , Xn > and Y =<

Y1, . . . , Yn > , the distance between two uncertain values Xi, Yi is defined as

the distance between their true (unknown) values r(Xi), r(Yi): dist(Xi, Yi) =190

|r(Xi)−r(Yi)|. This distance is used to measures the similarity of two uncertain

values.

ϕ(|Xi − Yi|) is the probability that the real values at timestamp i are equal,

given the observed values at that instant :

ϕ(|Xi − Yi|) = Pr(dist(0, |Xi − Yi|) = 0). (2)

This similarity function is then used inside the dust dissimilarity function:195

dust(Xi, Yi) =
√
−log(ϕ(|Xi − Yi|)) + log(ϕ(0)). (3)

The distance between uncertain time series X =< X1, . . . , Xn > and Y =<

Y1, . . . , Yn > in DUST is then defined as follows:

DUST (X,Y ) =

√√√√
n∑

i=1

dust(Xi, Yi)
2 . (4)

Chebyshev similarity. Wang et al. [9] showed that a model of uncertain time

series inspired by Chebyshev inequality reduced overall computational cost and

requires no prior knowledge. Furthermore, they propose a new similarity match-200

ing method based on Chebyshev model and analyzed their results by comparing

with prior works.

The problem with deterministic uncertain distances like DUST is that their

expression varies as a function of the probability distribution of uncertainty, but

unfortunately this probability is not always available in time series datasets.205
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2.2.2. Probabilistic Similarity Measures

Probabilistic similarity measures do not require knowledge of the uncertainty

probability distribution. Furthermore, they provide more information about the

reliability of the result. There are several probabilistic similarity functions, such

as MUNICH, PROUD, PROUDS or Local Correlation.210

MUNICH [20] . This distance function is suitable for uncertain time series

represented by the multiset based model. The probability that the distance

between two uncertain time series X and Y is less than a threshold ε is equal

to the number of distances between X and Y , which are less than ε, over the

possible number of distances:215

Pr(distance(X,Y )) ≤ ε =
|{d ∈ dists(X,Y )|d ≤ ε}|

|dists(X,Y )| (5)

The computation of this distance function is very time-consuming.

PROUD [21]. LetX =< X1, ..., Xn > and Y =< Y1, ..., Yn > be two UTS, each

one modeled by a sequence of random variables, the PROUD distance between

X and Y is d(X,Y ) =
n∑
i=1

(Xi − Yi)2. According to the central limit theorem

[22], the cumulative distribution of the distances approaches asymptotically a220

normal distribution:

d(X,Y ) ∝ N(
∑

i

E[(Xi − Yi)2],
∑

i

V ar[(Xi − Yi)2]) (6)

As a consequence of that feature of the PROUD distance, the standard

normal distribution table can be used to compute the probability that the nor-

malized distance is lower than a threshold:

Pr(d(X,Y )norm ≤ ε). (7)

A major disadvantage of PROUD is its inadequacy for comparing time series225

of small lengths like u-shapelets. Indeed, the calculation of the probability that
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the PROUD distance is less than a value is based on the assumption that it

follows asymptotically a normal distribution. Thus, this probability will be

all the more accurate as the compared time series are long (more than 30 data

points).230

PROUDS [8]. is an enhanced version of PROUD, which supposes that random

variables coming from time series are independent and identically distributed.

Definition 5. (Normal form of a time series) The normal form of a standard

time series X =< X1, . . . , Xn > is defined as X̂ =< X̂1, . . . , X̂n > in which for

each timestamp i (1 ≤ i ≤ n), we have:235

X̂i =
Xi − X̄
SX

, X̄ =
n∑

i=1

Xi

n
, SX =

√√√√
n∑

i=1

(Xi − X̄)2

(n− 1)
. (8)

PROUDS defines the distance between two normalized time series X̂ =<

X̂1...X̂n > and Ŷ =< Ŷ1...Ŷn > (Definition 5) as follows:

Eucl(X̂, Ŷ ) = 2(n− 1) + 2
n∑

i=1

X̂iŶi (9)

For the same reasons as PROUD, PROUDS is not suitable for short time

series comparison. Another weakness of PROUDS is its assumption that the240

random variables are independent : this hypothesis is heavy and particularly

inappropriate for short time series like u-shapelets. A more realistic hypothesis

with time series would be to consider that the random variables constituting

the time series are M -dependent. Random variables of a time series are called

M -dependent if Xi, Xi+1, ..., Xi+M are dependent (correlated) and the variables245

Xi and Xi+M+1 are independent. However, the M -dependent assumption could

make programming PROUDS more complex and its use more difficult because

of the choice of the parameter M .
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Uncertain Correlation. [7] : Correlation analysis techniques are useful for fea-

ture selection in uncertain time series data. Indeed, a correlation indicates the250

degree of dependency of a feature on other features. Using this information,

redundant features can be identified. The same strategy can be useful for u-

shapelet discovery. Uncertain correlation is defined as follows :

Definition 6. (Uncertain time series correlation) Given UTS X =< X1, . . . , Xn >

and Y =< Y1, . . . , Yn >, their correlation is defined as:255

Corr(X,Y ) =
n∑

i=1

X̂iŶi/(n− 1), (10)

where X̂i and Ŷi are normal forms of Xi and Yi (Definition 5), respectively. Xi

and Yi are supposed to be independent continous random variables.

If we know the probability distribution of random variables, it is possible to de-

termine the probability density function associated with the correlation, which

will subsequently be used to calculate the probability that the correlation be-260

tween two time series is greater than a given threshold.

Uncertain correlation has however some limitations :

• It is too sensitive to transient changes, often leading to widely fluctuating

scores;

• It cannot capture complex relationship in time series;265

• It requires knowledge of the probability distribution function of the un-

certainty or to make some assumption on the independence of the random

variables contained in time series.

Because of all these limitations, uncertain correlation cannot be used as it is

for u-shapelet discovery. The next paragraph presents a generalization of the270

correlation coefficient that is not an uncertain similarity function but is still

interesting for u-shapelet discovery.
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Local Correlation. [23] is a generalization of the correlation. It computes a time-

evolving correlation score that tracks a local similarity on time series based on

a local autocorrelation matrix. The autocorrelation matrix allows capturing275

complex relationships like key oscillatory (e.g., sinusoidal) as well as ape-

riodic trends (e.g., increasing or decreasing) that are present in times series.

The use of autocorrelation matrices, which are computed based on overlapping

windows, allows reducing the sensitivity to transient changes in time

series.280

Definition 7. (Local autocovariance, sliding window). Given a time series X,

a sample set of windows with length w, the local autocovariance matrix estimator

Γ̂t using a sliding window is defined at time t ∈ N as (Eq.11) :

Γ̂t(X,w,m) =
t∑

τ=t−m+1

xτ,w ⊗ xτ,w. (11)

where xτ,ω is a sub-sequence of the time series of length w and started at τ ,

x ⊗ y = xyT is the outer product of x and y. The sample set of m windows is285

centered around time t. We typically fix the number of windows to m = w.

Given the estimates Γ̂t(X) and Γ̂t(Y ) for the two time series, the next step

is to compare them and extract a correlation score. This goal is reached using

eigenvectors decomposition; The eigenvectors of the autocorrelation matrices

capture the key oscillations and aperiodic trends, even in short time series.290

Thus, the subspaces spanned by the first few (k) eigenvectors are used to locally

characterize the behavior of each series. Definition 8 formalizes this notion:

Definition 8. (LoCo score). Given two series X and Y , their LoCo score is

defined by

`t(X,Y ) =
1

2
(‖UT

XuY ‖+ ‖UT
Y uX‖) (12)
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Space formed by the k first eigenvector of        (eigenspace)

𝛼

u
Y

projection 𝑈𝑥
𝑇𝑢𝑦

|𝑐𝑜𝑠 𝛼| = ||𝑈𝑥
𝑇𝑢𝑦 ||

𝑈𝑥

Figure 3: Geometric representation of LoCo similarity.

where UX and UY are the k first eigenvector matrices of the local autoco-295

variance Γ̂t(X) and Γ̂t(Y ) respectively, and uX and uY are the corresponding

eigenvectors with the largest eigenvalue.

Intuitively, two time series X and Y will be considered as close when the

angle α formed by the space carrying the information of the time series X and

the vector carrying the information of the time series Y is zero. In other words300

X and Y will be close when the value of the cos(α) will be 1 (Fig. 3).

The only assumption made for the computation of LoCo similarity is that

the mean of time series data points is zero. This could be easily achieved with

z-normalization. LoCo similarity function has many interesting properties and

does not require to:305

• know the probability distribution of the uncertainty,

• assume the independence of the random variables or the length of u-

shapelets.

It is therefore interesting for feature selection, but we still need a dissimilarity

function to be able to discover u-shapelets. In the next paragraph, we define a310

dissimilarity function that has the same properties as LoCo and that is robust

to the presence of uncertainty.
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3. Our Approach

3.1. Dissimilarity function

The LoCo similarity function defined on two time series X and Y approxi-315

mately corresponds to the absolute value of the cosine of the angle formed by the

eigenspaces of X and Y (|cos(α)|). A straightforward idea would be to use the

sin(α) or α-value as a dissimilarity function but this approach does not work

so well; the sinus and the angle are not discriminant enough for eigenvector

comparison for clustering purpose. We thus propose the following dissimilarity320

measure (Definition. 9).

Definition 9. (FOTS : Frobenius cOrrelation for uncertain Time series u-

Shapelet discovery) Given two series X and Y , their FOTS score is defined

by

FOTS(X,Y ) = ‖UX − UY ‖F =

√√√√
m∑

i=1

k∑

j=1

(UX − UY )2ij (13)

where ‖‖F is the Frobenius norm, m is the length of time series, UX and UY325

are the k first eigenvector matrices of the local autocovariance Γ̂t(X) and Γ̂t(Y )

respectively.

Because the FOTS computation is based on the comparison of the k-first

eigenvectors of the autocovariance matrices of the time series, it has the same

desirable properties of the LoCo similarity function.330

3.2. Properties of FOTS score

• It allows to reduce the sensitivity to transient changes in time series;

• It is appropriate for the comparison of short time series.

• It allows to capture complex relationships in time series like the

key oscillatory (e.g., sinusoidal) as well as the aperiodic (e.g., increasing335

or decreasing) trends that are present in times series. The autocovariance

matrices capture trends; indeed, positive covariances correspond to similar
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variations (growths or decreases) of the two time series : here, either the

two values considered are positive or are negative. A negative covariance

corresponds to a variation of the two time series in the opposite direction340

(growth - decrease or decrease - growth): here, one value in the time series

is positive and the other is negative. Thus, a sub-matrix of the covariance

matrix with positive values corresponds to two sub-sequences of the time

series that have a common trend and a submatrix of the autocovariance

matrix with alternating positive and negative values identifies oscillations345

in the time series (Fig. 4). The autocovariance matrix thus makes it

possible to capture trends.

0 50 100 150 200 250 300
Time
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Figure 4: The autocovariance matrix is used to capture trends and oscillations in the time

series. For example, the time series of Coffee Dataset decreases between 240 and 300, we can

observe a strong correlation and when the time series oscillates between 50 and 250 and we can

observe an alternation of light and dark bands in the covariance matrix when 50 ≤ x, y ≤ 250.

The auto covariance matrices are symmetric, so there is an eigenvector

decomposition of these matrices that captures the main variations of the

auto covariance matrix [24, 25] and indirectly the main oscillations and350

trends in the time series. Indeed, the Karhunen-Love theorem [26]

stipulates that a time series can be written as a linear combination of the

eigenvectors of its covariance matrix, in a manner similar to a Fourrier

representation. Thus, these eigenvectors constitute an essential element

in the analysis of the structure of time series [27].355

Moreover, the FOTS dissimilarity function is robust to the presence of
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uncertainty due to the eigenvectors decomposition of the autocorrelation ma-

trices of the time series. The robustness of FOTS to the uncertainty is confirmed

by the theorem of Hoffman-Wielandt:

Theorem 1. (HoffmanWielandt) [28] If X and X+E are n×n symmetric360

matrices, then :

n∑

i=1

(λi(X + E)− λi(X))2 ≤ ||E||2F . (14)

where λi(X) is the ith largest eigenvalue of X, and ||E||2F is the squared of the

Frobenius norm of E.

The next section explains how FOTS is integrated in the Scalable Unsuper-

vised Shapelet discovery algorithm.365

3.3. Scalable u-shapelets algorithm with the FOTS score

In this section we do not define a new scalable u-shapelets (SUShapelet)

algorithm, but we explain how we use the SUShapelet algorithm with the FOTS

score (FOTS-SUSh) to deal with uncertainty.

The gap is an essential criterion for the selection of u-shapelet candidates.370

It is subject to uncertainty because its calculation is based on the Euclidean

distance. To remedy this, we propose to use the FOTS score instead of a

simple Euclidean distance when calculating the gap in the Scalable u-shapelet

algorithm. Algorithm 1 explains how we compute the orderline using the FOTS

score; the distance sdf between the time series s passed as a parameter and all375

the time series of the data set D is calculated and saved in the variable dis (line

5 and 6). The algorithm returns the normalized distance (line 7). Algorithm 2

calculates the orderline and sorts the time series according to their proximity

to the u-shapelet candidate (lines 2 and 3). A u-shapelet is considered present

in a time series if its distance to it is less than or equal to a given threshold.380

The algorithm selects as threshold the ones that produce a cluster with a size

between the lower bound lb and the upper bound ub (line 4). The algorithm
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then searches among the selected thresholds the one that has a maximum gap

(line 6 to 11).

Definition 10. (sub-sequence FOTS dissimilarity) The sub-sequence FOTS dis-385

similarity sdf(S, T ) between a time series T and a sub-sequence S is the

minimum of the FOTS score between the sub-sequence S and all possible sub-

sequences of T of length equal to the length of S.

Algorithm 1: ComputeOrderline

Input: u-shapeletCandidate : s,

time series dataset : D

Output: Distance between the u-shapelet Candidate and all the time

series of the dataset

1 function ComputeOrderline(s, D)

2 dis← {}
3 s← zNorm(s)

4 forall the i ∈ {1, 2, . . . , |D|} do

5 ts← D(i, :)

6 dis(i)← sdf (s, ts)

7 return dis
|s|

4. Experimental Evaluation

4.1. Clustering with u-shapelets390

There are many ways to cluster time series data described by u-shapelets. In

this experiment, the algorithm iteratively splits the data with each discovered

u-shapelet: each u-shapelet splits the dataset into two groups DA and DB . The

time series that belong to DA are considered as members of the cluster formed

by the u-shapelet and are then removed from the dataset. A new u-shapelet395

search continues with the rest of the data until there are no more time series
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Algorithm 2: ComputeGap

Input: u-shapeletCandidate : s,

timeseries dataset : D,

lb, ub : lower/upper bound of reasonable number of time series in cluster

Output: gap : gap score

1 function ComputeGap(s, D, lb, ub)

2 dis← ComputeOrderline(s,D)

3 dis← sort(dis) gap← 0

4 for i← lb toub do

5 DA ← dis ≤ dis(i), DB ← dis > dis(i)

6 mA ← mean(DA), mB ← mean(DB)

7 sA ← std(DA), sB ← std(DB)

8 currGap← mB − sB − (mA + sA)

9 if currGap > gap then

10 gap← currGap

11 return gap

in the dataset or until the algorithm is no more able to find u-shapelets. As

a stopping criterion for the number of u-shapelets extracted, the decrease in

the u-shapelet gap score is examined: the algorithm stops when the gap score

of the newly-found u-shapelet becomes less than half of the gap score of the400

first discovered u-shapelet. This approach is a direct implementation of the

u-shapelet definition.

Choosing the length N of a u-shapelet. The choice of the length of u-shapelet is

directed by the knowledge of the domain to which the time series belongs. As

part of these experiments, we tested all numbers between 4 and half the length of405

the time series. We considered as length of u-shapelet the one allowing to better

cluster the time series. Thus, the length used with the Euclidean distance may

be different from that used with FOTS. Furtherwork will be done to improve
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this choice with optimization techniques [29].

Choosing the length w of the windows . The use of overlapping windows for cal-410

culating the autocorrelation matrix makes it possible to capture the oscillations

present in the time series. During these experiments, we considered that the

size of the window is equal to half the length of the u-shapelet.

Choosing the number k of eigenvectors. A practical choice is to fix k to a small

value; we use k = 4 throughout all experiments. Indeed, key aperiodic trends are415

captured by one eigenvector, whereas key oscillatory trends manifest themselves

in a pair of eigenvectors with similar eigenvalues.

4.2. Evaluation Metric

Different measures for time series clustering quality have been reported, in-

cluding the Jaccard Score, the Rand Index, the Folkes and the Mallow index, sil-420

houette, correlation, entropy, purity, etc. However, because in our case we have

ground truth class labels for the datasets, we can use this external information

to evaluate the true clustering quality by using the Rand Index. Moreover, the

Rand Index appears to be the most commonly used clustering quality measure

[11, 10, 12], and many of the other measures can be seen as minor variants [30].425

To appreciate the quality of the u-shapelets found, we use them for a clustering

task. The quality of clustering is evaluated from the Rand Index [31], which is

calculated as follows:

Let Lc be the cluster labels returned by a clustering algorithm and Lt be

the set of ground truth class labels. Let A be the number of time series that430

are placed in the same cluster in Lc and Lt, B the number of time series in

different clusters in Lc and Lt, C the number of time series in the same cluster

in Lc but not in Lt and D the number of time series in different clusters in Lc

but in same cluster in Lt. The Rand Index is equals to :

Rand Index = (A+B)/(A+B + C +D) (15)
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4.3. Comparison with u-shapelet435

Similarly to [18], we tested our method on 17 real world datasets, we also

extend this test to 46 other datasets, such that 63 datasets taken from the UCR

archive [32] are used for our experimental evaluation. The training and testing

sets were joined to obtain bigger datasets. FOTS-SUSh performs better than

SUSh on 33 datasets, with an average Rand Index of 0.70(+/ − 0.17), SUSh440

performs better on 27 datasets with an average Rand Index of 0.67(+/− 0.15),

and the two algorithms give the same result on 3 datasets.

Table 2 presents the comparison of the two algorithms (see Appendix).

4.4. Comparison with k-Shape and USLM

k-Shape and USLM are two u-shapelets based clustering algorithms for time445

series presented in [12]. In this section, we compare the Rand Index obtained

by FOTS-SUShapelet and the one obtained by k-Shape and USLM on the only

7 datasets used in [12] and (Table 1). The results of k-Shape and USLM was

previously reported in [12]. This comparison shows that in general, FOTS-

SUShapelet performs better than k-Shape and USLM on the considering bench-450

marks.

Table 1: Comparison between k-Shape, USLM and FOTS-SUShapelet

Rand

Index
k-Shape USLM FOTS-SUSh

CBF 0.74 1 0.909

ECG200 0.70 0.76 0.866

Fac.F. 0.64 0.79 0.910

It. Pow. 0.70 0.82 0.50

Lig2 0.65 0.80 0.911

Lig.7 0.74 0.79 0.910

OSU L. 0.66 0.82 0.905
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4.5. Discussion

The use of the FOTS score associated with the SUShapelet algorithm allows

to discover different u-shapelets from those found by the Euclidean distance.

The FOTS-SUSh improves the results of time series clustering because the FOTS455

score takes into account the intrinsic properties of the time series when searching

for u-shapelets and it is robust to the presence of uncertainty. This improvement

is particularly significant when the FOTS score is used for the clustering of time

series containing several small oscillations. Indeed, these oscillations are not

captured by the Euclidean distance but are by the FOTS score whose calculation460

is based on the autocorrelation matrix. This observation is illustrated by the

result obtained on SwedishLeaf dataset (see table 1, appendix).

4.5.1. Time complexity analysis

The Euclidean distance can be computed in time O(n) and FOTS score is

computed in O(nω), 2 ≤ ω ≤ 3 due to the time complexity of the eigenvector465

decompositions [33]. The computation of FOTS score thus is more time con-

suming than ED (Fig. 5). However, it is competitive to ED for time series of

small size, and thus it remains relevant for u-shapelets research as they

are often small.

4.5.2. Robustness to uncertainty470

In order to assess the robustness of FOTS to the presence of uncertainty,

we selected two time series from the ItalyPowerDemand dataset and compared

them using the Euclidean Distance on one hand and the FOTS score on the other

hand (Fig. 6). We then added a white noise that follows a normal distribution

of zero mean and 0.1 variance to each of the time series. Then, we recomputed475

the Euclidean Distance and the FOTS score between the two time series. The

absolute value of the difference between the distance obtained with the non-noise

time series and that obtained with the noisy time series is called the error. We

observe that when the variance associated with white noise increases, the error

associated with Euclidean Distance increases, but the error associated with the480
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Figure 5: The execution time of ED and FOTS score is a function of the length of time series.

The computation time of ED is smaller than that of FOTS.

FOTS score remains almost constant and close to zero (Fig. 6 bottom). This

illustrates the robustness of the FOTS score to the presence of uncertainty in

the data. Note: In this experiment, noisy time series are considered uncertain

time series.

4.5.3. Sensitivity to the choice of the length of the UShapelet485

We assume in this work that the SUShapelet clustering algorithm is used by

a business expert who knows the length of the pattern to be considered when

analyzing time series. However, this is not the case in general. It is therefore

important to discuss the choice of this parameter.

The quality of clustering, which is measured in our case by the Rand Index,490

varies greatly depending on the choice of the UShapelet length; as illustrated in

the figure 7 and figure 8. In the case of our experiments, we tested several values

for the UShapelets length, ranging from 4 to half the length of the time series

and considered a value with a maximum Rand Index. The case where the user

does not know a priori the time series classes is not treated here, but it would495
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be possible in a future work to propose a heuristic or a meta-heuristic seeking

the UShapelet length that maximizes a metric of clustering quality that is not

dependent on the knowledge of time series classes like Silhouette coefficient,

single or complete or average linkage [34].

5. General conclusion and Future Work500

Our objective during this work was to propose a framework for cluster-

ing uncertain time series. To do this, we suggest comparing time series based

on sub-sequences called Unsupervised Shapelet (UShapelet) and we propose a

dissimilarity function robust to uncertainty, helping to discover UShapelet on

uncertain time series. The calculation of this dissimilarity function called FOTS505

is based on the comparison using the Frobenius distance of the eigenvectors of

the autocorrelation matrices of the time series and it has interesting properties:

it is not very sensitive to transient changes, it allows capturing complex relation-

ships between time series such as oscillations and trends and it is particularly

suitable for comparing short time series like UShapelet due to its high time510

complexity O(nω), 2 ≤ ω ≤ 3. The framework we present was evaluated on a

clustering task of 63 data sets from the literature and showed an improvement

in the clustering quality measured from Rand Index. However, we noted that

the quality of the results obtained is sensitive to the variation of the length of

the sub-sequence considered. As a perspective to this work, we are proposing to515

conceive a heuristic or a metaheuristic, allowing to choose wisely the length of

the sub-sequences allowing to group the time series as well as possible, we are

also proposing to reduce the computation time of the FOTS dissimilarity func-

tion based on sequential learning principles [35]. It would also be interesting to

evaluate the performance of this model on a time series classification task.520
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Appendix

Table 2: Comparaison of the Rand Index of FOTS-SUSh and SUSh on 63 datasets. SLength

stand for UShapelet Length

Dataset SLength RI FOTS SLength RI Sh

50Words 5 0.88 6 0.81

Adiac 6 0.91 4 0.79

Beef 28 0.91 7 0.89

Car 19 0.72 6 0.71

CBF 6 0.91 39 0.57

Coffee 6 0.90 24 0.78

ECG200 5 0.87 24 0.71

FaceAll 6 0.91 4 0.90

FaceFour 7 0.91 7 0.85

FISH 6 0.90 6 0.77

GunPoint 6 0.89 38 0.71

Ligthning2 6 0.91 5 0.79

Ligthning7 6 0.91 37 0.71

OliveOil 6 0.91 24 0.71

OSULeaf 6 0.91 5 0.84

SwedishLeaf 6 0.91 5 0.5

Continued on next page
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Table 2 – Continued from previous page

Dataset SLength RI FOTS SLength RI Sh

Synthetic control 5 0.90 25 0.72

ArrowHead 6 0.64 50 0.61

BeetleFly 43 0.57 18 0.61

BirdChicken 23 0.55 12 0.61

Computers 11 0.51 13 0.52

Cricket X 6 0.84 9 0.72

Cricket Y 6 0.84 8 0.79

Cricket Z 6 0.84 10 0.72

DiatomSizeReduction 15 0.69 29 0.80

DistalPhalanxOutlineAgeGroup 12 0.61 6 0.73

DistalPhalanxOutlineCorrect 15 0.52 5 0.53

DistalPhalanxTW 10 0.81 5 0.86

Earthquakes 7 0.47 20 0.59

ECGFiveDays 14 0.51 32 0.86

FacesUCR 6 0.84 10 0.33

Ham 19 0.51 43 0.51

Herring 22 0.52 9 0.52

ItalyPowerDemand 8 0.50 7 0.52

LargeKitchenAppliances 5 0.59 10 0.62

Meat 36 0.65 35 0.83

MedicalImages 7 0.66 6 0.67

MiddlePhalanxOutlineAgeGroup 15 0.74 4 0.71

MiddlePhalanxOutlineCorrect 9 0.51 37 0.49

MiddlePhalanxTW 15 0.76 5 0.82

MoteStrain 12 0.51 24 0.53

PhalangesOutlinesCorrect 9 0.52 15 0.50

Plane 6 0.79 13 0.94

Continued on next page
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Table 2 – Continued from previous page

Dataset SLength RI FOTS SLength RI Sh

ProximalPhalanxOutlineAgeGroup 13 0.74 5 0.80

ProximalPhalanxOutlineAgeCorrect 11 0.57 40 0.59

ProximalPhalanxTW 13 0.81 5 0.85

RefrigirationDevices 10 0.63 10 0.61

ScreenType 21 0.61 10 0.62

ShapesAll 6 0.90 11 0.77

ShapeletSim 10 1.00 6 1,00

SmallKitchenAppliances 4 0.64 32 0.58

SonnyAIBORobotSurface 9 0.53 27 0.84

Strawberry 10 0.51 6 0.56

ToSegmentation 40 0.50 32 0.65

Trace 10 0.83 15 1,00

ElectricDevices 6 0.36 5 0.3

SonnyAIBORobotSurfaceII 15 0.53 15 0.64

ToeSegmentation2 6 0.48 15 0.69

TwoLeadECG 15 0.55 10 0.85

Wine 10 0.52 6 0.56

WordSynonyms 6 0.84 6 0.48

Worms 10 0.57 15 0.42

WormsTwoClass 6 0.50 6 0.51
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Figure 6: Sensitivity of Euclidean Distance and FOTS to the presence of uncertainty. The

two time series come from ItalyPowerDemand dataset
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(a) RI mean:0.59, RI stdev:0.15 (b) RI mean:0.69, RI stdev:0.22

(c) RI mean:0.45, RI stdev:0.09 (d) RI mean:0.58, RI stdev:0.10

(e) RI mean:0.56, RI stdev:0.16 (f) RI mean:0.55, RI stdev:0.19

Figure 7: Analysis of the sensitivity of the SUShapelet algorithm to the choice of the length

of the UShapelet, case of the Beef, Car, Coffee data set. RI stands for Rand Index, stdev

stands for Standard Deviation.
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(a) RI mean:0.33, RI stdev:0.09 (b) RI mean:0.45, RI stdev:0.16

(c) RI mean:0.50, RI stdev:0.21 (d) RI mean:0.52, RI stdev:0.24

(e) RI mean:0.44, RI stdev:0.15 (f) RI mean:0.55, RI stdev:0.21

Figure 8: Analysis of the sensitivity of the SUShapelet algorithm to the choice of the length

of the UShapelet, case of the ECG200, FaceFour, Gun Point data set. RI stands for Rand

Index, stdev stands for Standard Deviation.
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