
Soil Dynamics and Earthquake Engineering 136 (2020) 106118

Available online 23 May 2020
0267-7261/© 2020 Elsevier Ltd. All rights reserved.

Study on seismic behaviors of a double box utility tunnel with joint 
connections using shaking table model tests 

Wengang Zhang a,b,c, Liang Han b, Li Feng b, Xuanming Ding a,b,c, Lin Wang b, Zhixiong Chen b, 
Hanlong Liu a,b,c,*, Ashraf Aljarmouzi b, Weixin Sun d 

a Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Chongqing, China 
b School of Civil Engineering, Chongqing University, Chongqing, China 
c National Joint Engineering Research Center of Geohazards Prevention in the Reservoir Areas, Chongqing University, Chongqing, China 
d Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, VIC, 3010, Australia   

A R T I C L E  I N F O   

Keywords: 
Double box utility tunnel 
Joint connection 
Shaking table test 
Seismic behaviors 

A B S T R A C T   

Shaking table model tests were carried out to study the seismic behaviors of double box utility tunnel with joint 
connections and the surrounding soil. The seismic wave obtained from 1952 Taft earthquake was employed as 
the input in this study, and its PGA has been adjusted to 0.2 g, 0.4 g, 0.8 g, and 1.2 g, respectively. In addition, a 
series of sine waves with PGA of 0.2 g and frequencies of 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, and 30 Hz were 
applied to study the effect of frequency characteristics on seismic behavior of the utility tunnel and the sur-
rounding soil. The testing results show that the laminar soil container does not impose significant boundary 
effect, and the dynamic earth pressure response is significantly influenced due to existence of the joint 
connection. Besides, the effect of soil-structure interaction on seismic behaviors is becoming even more obvious 
as the input PGA increases. The acceleration response is also significantly influenced by the dynamic property of 
the soil. Greater bending moment occurs at the corners of the structure, and its increasing ratio will decrease with 
an increasing input PGA magnitude. Lastly, the effect of frequency is significant. Therefore, it is noteworthy that 
the possible effect of natural frequency is considered when the utility tunnel is under construction.   

1. Introduction 

The role of underground lifelines (like water pipe, gas pipe, and 
electric wire) is drawing increasing attention in modern developed so-
cieties where living conditions, the economic, cultural and social ac-
tivities are increasingly dependent on a complex network of lifelines [1]. 
How to maintain the operation of these lifelines, as well as the ensurance 
of safety, becomes a key issue. Nowadays, underground utility tunnel, an 
emerging infrastructure, is gradually applied for development of city 
due to it is multifunctional and maintenance-friendly [2]. Despite that 
the seismic performance of underground structure has been paid 
attention since the 1995 Kobe-Osaka earthquake [3,4], the study on 
seismic behavior of underground utility tunnel is not systematic and 
enough. The research results of seismic behavior about other under-
ground structures are not suitable for application of the underground 
utility tunnel, because it has some extinct features, like relatively small 
cross section, shallowly buried, and relatively simple structure pattern. 
Since many pipelines for water, electricity, and natural gas, etc. will be 

put into it, the consequences are unimaginable once earthquake occurs. 
Therefore, it is essential to conduct the research on seismic behavior of 
underground utility tunnel and the surrounding soil. 

From the aspect of seismic behavior research of underground struc-
ture, many researchers have made great efforts and achieved a lot of 
achievements. Martin and Seed [5] have studied the difference of 
analysis result for the seismic response of a layered site between 
equivalent linear and non-linear methods. Gil et al. [6] proposed an 
alternative method to approximate the seismic stresses of a buried 
reinforced concrete structure, while this method is suitable for site 
subjected to compressive wave. Hashash et al. [7] thoroughly summa-
rized the current state of seismic analysis and design for underground 
structure, and the authors also presented several special design issues 
including the design of joint connections in tunnel engineering. Hashash 
et al. [8] made a comparison between two analytical solutions for esti-
mating the ovaling deformation and forces in circular tunnels due to 
soil–structure interaction under seismic effect. Tateishi [9] proposed a 
new method of seismic load application and verifies the validity through 
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numerical analyses of the underground duct. However, he assumed that 
response accelerations of the structure and the near-field are the same as 
those of the free field at the same location, which remains to be exper-
imentally verified. With the improvement of testing equipment and 
computational capacity, a series of new research means have been 
introduced into the earthquake engineering research. For instance, 
geotechnical centrifuge experiments have been applied for the research 
of seismic behavior of soil–foundation–structure interaction [10]. Wang 
et al. [11] conducted a shaking table model test to explore the seismic 
response of underground tunnel-soil-surface structure interaction sys-
tem. A multi-point shaking table test of a long tunnel subjected to 
non-uniform seismic loadings was carried out by Yu et al. [12], where 
the acceleration response of the tunnel and the tunnel joints deformation 
was investigated. For utility tunnel, Jiang et al. and Chen et al. [13,14] 
have applied the shaking table test and numerical simulation to inves-
tigate the seismic response of the structure and the surrounding soil. By 
means of shaking table test, Yan et al. [15] and Chen et al. [16] studied 
the influence of non-uniform excitation on seismic performances of a 
utility tunnel. In the research above, the single box utility tunnel without 
joint was considered only, which has a certain gap with the actual 
project. 

Based on the researches mentioned above, this study conducted a 
shaking table model test for the double box utility tunnel with a joint 
connection. Firstly, based on the similarity theory, a scaled double box 
utility tunnel with a joint connection was designed. Then, a true seismic 
wave and a series of sine wave with different frequencies were employed 
to investigate the seismic behavior of structure and the surrounding soil 
and the effect of frequency on seismic performance, respectively. 

2. Testing design and instruments 

The tests were conducted via a shaking table test system developed 
by ANCO Company in Geotechnical Laboratory Center of Chongqing 
University (see Fig. 1). This shaking table test system can sustain a peak 
acceleration which is not more than 1.2 g and a frequency of seismic 

wave ranging from 0 to 50 Hz. During the test, a laminar shearing steel 
soil container with the dimension of 0.95 � 0.85 � 0.65 m (length �
width � height) was applied to eliminate boundary effect. 

Based on Lai [17], the similarity ratios for physical and mechanical 
properties and time parameters of the test model are designed as illus-
trated in Table 1. Considering the test equipment condition, the simi-
larity ratios of geometry, strain, and stress was directly selected. Since 
the maximum vibration acceleration of this shaking table is 1.2g, the 
original acceleration in actual project is about 0.25 g with Sa ¼ 5. 
Therefore, adopting this acceleration similarity ratio (Sa ¼ 5), the 

Fig. 1. Shaking table test system.  

Table 1 
Similarity ratios for parameters chosen.   

Calculation Similarity ratio 

Geometry Sl Selected 1:15 
Strain Sε Selected 1:1 
Stress Sσ Selected 1:3 
Elastic modulus SE SE¼ Sσ/Sε 1:3 
Acceleration Sa Selected 5:1 
Density Sρ Sρ ¼ SE/(Sl⋅Sa) 1:1 
Time St St ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
Sl=Sa

p 1:8.67 

Reinforcement Keep the reinforcement ratio is consistent with the actual 
project  

Fig. 2. Schematic plot of double box utility tunnel model with joint 
connections. 

Fig. 3. Instrumentation and the joint location.  

Fig. 4. Grain size distribution curve of the standard sand [28].  
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performance of this shaking table can be fully utilized. 
Based on Table 1, the utility tunnel model is made of micro-concrete 

which is similar to concrete with the elastic modulus of 6062 MPa with 

two sections which contacted each other directly (see Fig. 2). Galvanized 
iron wire is used to simulate the reinforcement. Fig. 3 shows the diagram 
of testing model, and it can be seen that the joint was covered by HDPE 

Fig. 5. Input seismic spectrum in this study.  

Fig. 6. Layout of earth pressure meters and accelerometers at the joint cross-section.  

Fig. 7. Time history of dynamic earth pressure responses of P4 and P8 for various input PGAs.  
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black geomembrane with thickness of 0.2 mm, which indicates that this 
joint connection can be regarded as a kind of flexible connection. The 
standard sand in Fujian province was used to simulate the sand field and 
its grain size distribution curve was shown in Fig. 4. After the layered 
compaction treatment in the test, the simulated sand field density is 
approximately 1740 kg/m3. 

In this study, the seismic wave of 1952 Taft earthquake with the 
duration of 54 s and the peak ground acceleration (PGA) of 0.014 g was 
selected as the input seismic wave and its original acceleration time 
history and Fourier spectrum are shown in Fig. 5 (a). To examine the 
effect of PGA on seismic behavior of structure and the surrounding soil, 
Taft seismic spectrum has been adjusted to have the PGA of 0.2 g, 0.4 g, 
0.8 g, and 1.2 g, respectively. Besides, a series of sine waves with input 
PGA of 0.2 g and frequency of 5 Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, and 30 
Hz were employed to investigate the effect of frequency on seismic be-
haviors of structure and the surrounding soil. Fig. 5 (b) shows the input 
sine wave with PGA of 0.2 g and frequency of 5 Hz, and other sine wave 
spectrum is similar with that. 

Considering the symmetry of the testing model, the longitudinal axis 
of the utility tunnel section is the axis of symmetry, earth pressure cell 
and accelerometer were arranged on each side as demonstrated in Fig. 6 
(a). In order to study the bending moment response law of the utility 
tunnel structure, a series of strain gauges are evenly arranged on the 
outer wall of joint cross-section of the Utility tunnel as shown in Fig. 6 
(b). 

3. Analysis of testing results 

3.1. Boundary effect analysis 

The boundary effect is an essential element for the shaking table 
model test, and it can directly determine the quality of testing results. 
Therefore, it is necessary to check the boundary effect in this study. 
Generally speaking, the laminar soil container can mitigate the bound-
ary effect [18,19]. However, this soil container is relatively small than 
other researches [20–22], which means that the boundary may still take 
effect. Feng et al. (2020) has conducted shaking table tests for a 
single-box utility tunnel using the same shaking table system and 
laminar soil container, which indicates that the boundary effect can be 
well controlled [23]. For laminar soil container, Lee et al. (2012) has 
performed a comprehensive research about the boundary effect of 
laminar soil container using a series of shaking table tests [18]. Finally, 
it was concluded that the seismic responses in the tests will not be 
affected by the boundary if measuring point was arranged at a distance 
of approximately 1/20th of the model length from the end walls of 
laminar soil container and not positioned on the ground surface. Ac-
cording to the references above, the boundary effect in this study can be 
well mitigated. 

After the review of the previous research, the seismic responses will 
be employed to investigate the boundary effect in this study. To this end, 
the time history of dynamic earth pressure responses of P4 and P8 were 
plotted in Fig. 7. Based on the observation, the responses of P4 and P8 
are slightly consistent with each other, especially for the lower input 
PGA (0.2 g and 0.4 g). The Pearson correlation coefficient calculated by 
equation (1) was applied to analyze the consistence of dynamic earth 
pressure responses of the two testing points. 

ρR1;R2¼
COVðR1;R2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DðR1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
DðR2Þ

p (1)  

where R1 and R2 are the seismic responses of reference point and testing 
point, respectively; COV(R1, R2) is the covariance of R1 and R2; D(R1) 
and D(R2) are the variance of R1 and R2; and ρR1,R2 is the correlation 
coefficient of R1 and R2. 

The closer to 1 or -1 the ρR1,R2 is, the more consistent the seismic 
responses of the two measuring points are with each other. Judged by 

Pearson correlation coefficient, 0<|ρR1,R2| <0.2 means the responses are 
inconsistent; 0.2<|ρR1,R2| < 0.4 means slightly consistent; 0.4 < |ρR1, 

R2|< 0.6 means moderately consistent; 0.6 < |ρR1,R2| < 0.8 means 
strongly consistent; 0.8<|ρR1,R2|< 1.0 means highly consistent. In this 
study, we assumed that P4 is the reference point and P8 is the testing 
point. The analysis results were given in Fig. 8. Firstly, these negative 
values mean the dynamic soil responses for P4 and P8 are opposite, 
which is reasonable as the horizontal earth pressure can be larger along 
the direction of shaking. Then, the values of absolute values of ρR1,R2 of 
PGA ¼ 0.2 g, 0.4 g, and 0.8 g are generally greater than 0.7 and the value 
of PGA ¼ 1.2 g is 0.3436, hence the seismic responses of P4 and P8 are 
basically synchronous. Therefore, the analysis above further indicates 
that the boundary effect in this study is well controlled. 

3.2. Analysis of earth pressure 

As for the seismic effect and soil-structure interaction, the earth 
pressure has some extinct characteristic, compared with the static state. 
Fig. 9 shows the maximum earth pressure response in the soil adjacent to 
the side-wall. It is shown that the greater maximum earth pressure oc-
curs at the position above the top of side-wall and beneath the bottom of 
side-wall. And the maximum earth pressure at the middle part of side- 
wall is greater than that at the top and bottom part of side-wall except 
for Taft 0.8 g and 1.2 g condition. This result is beyond the general 
understanding. Generally speaking, there may be a soil arch, in which 
case the greater maximum earth pressure will occur at the top and 
bottom part of the side-wall not at the middle part. Therefore, it can be 
concluded that the soil arch did not develop (or did not fully form) due 
to the existence of joint. It still can be observed that most maximum 
dynamic earth pressure value increases with an increasing input PGA 
except for the position at the middle part of the side-wall. It can be 
implied that the soil arch effect will be more significant with relatively 

Fig. 8. Consistence testing between the seismic responses of P4 and P8.  

Fig. 9. Maximum earth pressure response in the soil adjacent to the side-wall.  
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greater input PGA. 
Fig. 10 shows the time history of dynamic earth pressure. Firstly, the 

basic law of dynamic earth pressure response for different measuring 
points is similar under four kinds of input PGA. Then, most of times, it 

can be seen that the dynamic earth pressure response of P3 and P5 is less 
than that of P4, suggesting that the horizontal soil arch did not fully 
develop due to the existence of joint. Lastly, it is clear that the earth 
pressure is greater or less than it under static condition at the end of 
earthquake, which indicates that the contact between the side-wall and 
the adjacent soil got weaken or strengthened in the shaking process. 

3.3. Analysis of acceleration response 

A series of acceleration measuring points (A3, A9, A11, A15, A12, 
and A7) are arranged to monitor the acceleration response in the soil 
adjacent to the side-wall (see Fig. 6 (a)). The result of testing shows that 
the maximum acceleration response will increase with an increasing 
input PGA at a specific depth (see Fig. 11). On the whole, it can be seen 
that the maximum acceleration response decreases with the increasing 
depth. However, when the input PGA is 0.8 g and 1.2 g, it is clearly 
observed that the maximum acceleration slightly increases from the 
bottom of the side-wall to the measuring point A7, which suggests that 
the effect of underground structure on seismic performance of soil will 
get greater as the input PGA increases. 

Amplification factor is a suitable indicator reflecting the seismic 

Fig. 10. Earth pressure time history in the soil adjacent to the side-wall.  

Fig. 11. Maximum acceleration responses and its amplification factors in the soil adjacent to the side-wall.  

Fig. 12. Relationship between dynamic shear strain γ and damping ratio D.  
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performance of site. The greater the value is, the more significance the 
seismic response is of. It is obvious that the value will decrease with 
depth and decrease as input PGA increases (see Fig. 11 (b)). Besides, 
most amplification factors under 0.2 g and 0.4 g are greater than 1.0, 
whereas it is opposite to condition of 0.8 g and 1.2 g, indicating the 
degree of amplification will diminish with an increasing input PGA. The 
phenomenon above which is consistent with the research of Jiang et al. 
[13] and Chen et al. [24] may result from the dynamic damping of soil 
(see Fig. 12). Firstly, the seismic wave with greater input PGA will 
render shearing strain increase from γ1 to γ2, and the corresponding 

damping ratio will increase from D1 to D2 so that the true maximum 
acceleration response of site will be smaller and smaller and evenly less 
than the input PGA. 

The effect of underground structure on seismic performance of soil 
has been observed (see Fig. 11 (a)). And in this part, the soil-structure 
interaction is further illustrated with the monitor data of measuring 
points (A11, A4, A15, A10, A12 and A13) (see Fig. 13). The acceler-
ometer of measuring point A4 was broken during the test so that the 
acceleration data of A4 cannot be obtained under Taft 0.8 g and 1.2 g 
condition. According to the acceleration time history and the 

Fig. 13. Comparison of acceleration time history ((a) Taft 0.2 g, (c) Taft 0.4 g, (e) Taft 0.8 g, and (g) Taft 1.2 g) and Fourier spectrum ((b) Taft 0.2 g, (d) Taft 0.4 g, (f) 
Taft 0.8 g, and (h) Taft 1.2 g) for the measuring points in the soil and structure at the same depth. 
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corresponding Fourier spectrum, it still can be seen that the acceleration 
response in the soil adjacent to the side-wall matches very well with it on 
the side-wall of the structure (see Fig. 13), which suggests that the soil 
adjacent to the side-wall has the similar motion pattern with structure 
and they did not separate with each other during the earthquake pro-
cess. This conclusion is useful for the establishment of the calculation 
theory. Additionally, the frequency ingredient in these acceleration 
response mainly ranges from 1 Hz to 30 Hz, which is within the allow-
able scope (0–50 Hz) of this shaking table system, indicating the test 
result is reliable. The acceleration response at the same time increases 
with an increasing PGA in acceleration time history as demonstrated in 
Fig. 13 (a), (c), (e), and (g), as well as the amplitude at the same fre-
quency has the similar law in Fourier spectrum as demonstrated in 
Fig. 13 (b), (d), (f), and (b). 

3.4. Analysis of structure moment response 

According to the above analysis, it can be seen that the difference of 
seismic response is significant along depth especially for the dynamic 
earth pressure response. Based on the dynamic strain responses, the time 
of greatest strain response will be firstly determined. Then, the strain 
response of each measuring point at that time was employed to calculate 
the bending moment using equation (2): 

M¼ ε⋅W⋅E⋅10� 9 (2)  

where M is the bending moment of structure per unit length, N m/m; ε is 
the strain response, 10-6; W is the section modulus in bending, mm3; E is 
the elastic modulus of the micro-concrete, MPa. 

The bending moments at the strain measuring points (S1 ~ S12) have 
been calculated as listed in Table 2. It is shown that the bending moment 
of structure displays an extinct distribution (see Fig. 14) under the effect 
of force and motion. It can be clearly seen that the bending moment 
response has an antisymmetric distribution, where the greater bending 
moment response occurred at the corners of the structure, whereas the 
bending moment responses at the middle part of each side-wall are far 
less than that at the corners. It suggests that the twist distortion exists for 
utility tunnel under earthquake condition. 

As input PGA increases, the bending moment response also become 
greater at the corresponding measuring point. Therefore, during the 
construction of underground utility tunnel, the strength of corner should 
be paid more attention than any part under static stage considering the 
seismic effect. However, as shown in Table 3, the increasing ratio of 
bending moment (IROBM) at corners decreases as the input PGA in-
creases, indicating that the whole utility tunnel was moving with 

Table 2 
Bending moments at different strain measuring points.   

Taft - 0.2 g Taft - 0.4 g Taft - 0.8 g Taft -1.2 g 

S1 5.41 11.21 20.26 23.93 
S2 0.86 1.43 2.55 2.25 
S3 � 3.90 � 9.92 � 20.34 � 22.69 
S4 � 5.12 � 9.78 � 18.85 � 21.91 
S5 � 1.66 � 3.46 � 7.47 � 8.38 
S6 7.53 13.81 23.63 27.75 
S7 4.35 8.28 16.04 18.66 
S8 � 0.98 � 2.37 � 6.26 � 7.88 
S9 � 6.58 � 12.12 � 23.95 � 28.96 
S10 � 4.91 � 9.23 � 17.08 � 20.05 
S11 0.22 � 0.30 0.82 1.80 
S12 5.21 10.37 19.18 22.67  

Fig. 14. Bending moment response of utility tunnel model.  
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relatively slight twist distortion under relatively greater input PGA. 
IROBM is calculated using equation (3). In actual project, if that case 
occurs, the failure mainly develops along its longitudinal direction, i.e., 
the utility tunnel may get damaged at some place along its longitudinal 
direction. 

IROBM¼
BM2 � BM1

BM1
�

0:2g
PGA2 � PGA1

(3)  

where PGA1 and PGA2 are the previous input PGA and the latter input 
PGA during the shaking table test, respectively; the BM1 and BM2 are the 
bending moment values at the same position of the structure under the 
earthquake with PGA1 and PGA2 respectively. 

3.5. Effect of shaking wave frequency on seismic performance 

Previous studies have revealed that the frequency ingredient of 
seismic wave plays a significant role in the seismic performance of 
structure [25,26]. For actual seismic wave, it consists of a wide range of 
frequency ingredient without regulation so that it is hard to investigate 
the effect of frequency property on seismic performance. Therefore, the 
sine wave is taken into consideration with different frequencies, Tamari 
and Towhata [27] also applied sine wave to conduct the similar 
research. To make full use of the performance of shaking table test, six 
sine waves with the input PGA of 0.2 g were chosen and frequency is 5 
Hz, 10 Hz, 15 Hz, 20 Hz, 25 Hz, and 30 Hz, respectively. The maximum 
seismic responses were extracted from the observed data of those 
measuring points to analysis the possible natural frequency for this 
whole system. 

Fig. 15, Fig. 16, and Fig. 17 show the maximum acceleration 
response, the maximum dynamic earth pressure response, and the 
maximum strain response under sine wave with various frequencies. 
From the three figures above, it can be seen that the greater maximum 
responses of the ground and the structure all occurred when the fre-
quency is 15 Hz for each measuring point, showing that the natural 
frequency may be around 15 Hz for this soil-understructure system. 

Even through the input PGA is the same, the seismic response under 
natural frequency is significant greater than that under other frequency. 
Hence, taking the natural frequency into consideration is essential 
during the construction of underground structure. 

4. Summary and conclusions 

By means of shaking table model tests, the seismic behaviors of 
double box utility tunnel with joint connections as well as the sur-
rounding soil are studied. The following conclusions are drawn:  

(1) Through the evaluation by Person correlation coefficient, the 
boundary effect is related to input PGA. The greater input PGA 
will impose the more significant boundary effect. Most of the 
absolute values of ρR1,R2 are greater 0.7, which demonstrates that 
the laminar soil container used in this test does not bring in sig-
nificant boundary effect.  

(2) According to the maximum acceleration response, it is found that 
the effect of soil-structure interaction on seismic behavior is 
growing significant as input PGA increases. And the amplification 
factor become smaller with an increasing input PGA, which may 
be due to the effect of the relationship of dynamic shear strain 
and damping ratio. The soil adjacent to the side-wall keeps the 
motion that is consistent with the structure, which is useful for 
the research of calculation theory.  

(3) Due to the existing of a joint connection, the horizontal soil arch 
does not fully form so that the maximum earth pressure at the 
middle of the side-wall is greater than it at the top and bottom of 
the side-wall. 

Table 3 
IROBM value at the corners under four kinds of input PGA conditions (%).   

0.2g–0.4 g 0.4g–0.8 g 0.8g–1.2 g 

S1 107.44 40.36 18.11 
S3 154.50 52.52 11.57 
S4 90.87 46.37 16.24 
S6 83.39 35.56 17.46 
S7 90.10 46.90 16.34 
S9 84.32 48.78 20.92 
S10 88.10 42.53 17.41 
S12 99.13 42.42 18.24  

Fig. 15. Maximum acceleration response under the sine wave with various 
frequencies. 

Fig. 16. Maximum dynamic earth pressure response under the sine wave with 
various frequencies. 

Fig. 17. Maximum strain response under the sine wave with various 
frequencies. 
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(4) For the bending moment of the structure, the greater bending 
moment will occur at the corners of the structure, and its 
increasing ratio become smaller as input PGA increases, in which 
case the failure of utility tunnel is mostly likely to take place 
along the longitudinal direction, not the cross-section.  

(5) The effect of frequency is greatly significant, and the natural 
frequency 15 Hz was determined since the seismic response under 
this frequency remains significantly greater than it under other 
frequencies. Therefore, it is worth considering the possible effect 
of natural frequency when the underground structure is under 
construction. 
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