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A B S T R A C T   

An equivalent coupled-two-beam (CTB) discrete model is presented to compute the dynamic response in time 
domain of flexible-base buildings with linear fluid viscous dampers (FVDs). The equivalent model consists of a 
flexural cantilever beam and a shear cantilever beam connected in parallel by a finite number of axially rigid 
members that allows the consideration of intermediate modes of lateral deformation. The effects of different 
lateral deformations on the pre-design stage of two high-rise buildings are showed considering four soil types 
(hard rock, dense soil, stiff soil and soft soil) and three different distribution methods for linear FVDs: uniform- 
distribution (UD), story-shear-proportional-distribution (SSPD) and story-shear-strain-energy-distribution 
(SSSED). For UD method, the damping coefficients of FVDs increase as the flexural rigidity of the building de-
creases; whereas for SSPD and SSSED methods, the damping coefficients of FVDs vary along the height 
depending on the type of lateral deformation. For the three distribution methods and the same lateral defor-
mation, the damping coefficients of FVDs decrease as the soil flexibility increases, which leads to a significant 
decrease in controlling earthquake-induced vibrations and wind-induced vibrations in the two high-rise build-
ings on a soft soil.   

1. Introduction 

Increasing urbanisation in recent decades has led to the construction 
of high-rise buildings worldwide, which are susceptible to seismic and 
wind loads. Currently, the structural design of tall buildings must satisfy 
different criteria such as strength, ductility, stability, resilience, sus-
tainability, among others. Earthquake engineering is usually governed 
by the ultimate limit state, where peak displacements are of great 
importance to avoid damage in the structure. On the other hand, wind 
engineering is usually governed by the serviceability limit state, where 
root-mean-square (RMS) accelerations are of great importance to avoid 
human discomfort. The lateral deformation of buildings strongly de-
pends on the type of lateral resisting system, which is usually depends on 
the height of the building. Accordingly, low-rise buildings usually 
deform like pure shear beams; whereas in medium-rise and high-rise 
buildings, the flexural deformation is as significant as the shear 
deformation. 

Simplified continuous models are one of the most used procedures 
for pre-design complex structures and performing parametric analyses 

to identify the most important variables during the design process. The 
continuous Timoshenko beam [1] reflects a series coupling of the 
beam’s bending and shear stiffnesses, while the coupled-two-beam 
(CTB) continuous model [2] couples the bending and shear stiffnesses 
in parallel. Dym and Williams [3] concluded that a series coupling of 
both stiffnesses do not display the correct dependence of frequency on 
building height, particularly in shear wall-frame buildings and 
tube-and-core constructions with the parallel nature of the two-beam 
model in which transverse displacements due to bending and to shear 
are identical. In conclusion, it appears that the CTB model seems the 
better model for estimating the frequencies of tall buildings because it 
provides predictions that are consistent with the observed data [3]. 

The CTB continuous model [2] has a fixed base, therefore, it is not 
applicable in those buildings where the soil-structure interaction (SSI) is 
important due to the parameters of the soil and the foundation. Cruz and 
Miranda [4,5] evaluated the effects of SSI on damping ratios of buildings 
subjected to earthquake ground motions through an equivalent 
fixed-base multistory model; however, they do not incorporate a flexible 
base in the CTB continuous model [2]. Wu, Zhao and Lu [6] 

* Corresponding author. School of Engineering, Universidad Michoacana de San Nicol�as de Hidalgo, Morelia, Mexico. 
E-mail address: hugohernandezbarrios@gmail.com (H. Hern�andez-Barrios).  

Contents lists available at ScienceDirect 

Soil Dynamics and Earthquake Engineering 

journal homepage: http://www.elsevier.com/locate/soildyn 

https://doi.org/10.1016/j.soildyn.2020.106042 
Received 13 November 2019; Received in revised form 11 January 2020; Accepted 14 January 2020   

mailto:hugohernandezbarrios@gmail.com
www.sciencedirect.com/science/journal/02677261
https://http://www.elsevier.com/locate/soildyn
https://doi.org/10.1016/j.soildyn.2020.106042
https://doi.org/10.1016/j.soildyn.2020.106042
https://doi.org/10.1016/j.soildyn.2020.106042
http://crossmark.crossref.org/dialog/?doi=10.1016/j.soildyn.2020.106042&domain=pdf


Soil Dynamics and Earthquake Engineering 131 (2020) 106042

2

incorporated a rotational spring at the base of the CTB continuous model 
[2], however, this extended CTB model does not contemplate the other 
parameters of the foundation (mass, mass moment of inertia, trans-
lational spring stiffness, translational damping coefficient and rotational 
damping coefficient). Huergo and Hern�andez [7] developed a discrete 
model equivalent to the CTB continuous model [2], which subsequently 
allowed the incorporation of SSI to the CTB model [8]. 

Passive energy dissipation devices offer an effective alternative for 
controlling the dynamic lateral response of tall buildings, a particular 
case of these devices are FVDs. FVDs are hydraulic cylinder-shaped 
devices that dissipate the kinetic energy of seismic events and wind 
loads through the reaction force of a compressible silicone fluid that 
flows through a valve system inside the device. The use of FVDs has 
gained popularity in the last few decades, mainly due to the large energy 
dissipation capability, the generation of forces that are out of phase with 
displacements and the possibility of increasing the damping ratio of a 
structure without significantly altering the inherent stiffness character-
istics [9]. Manufactured FVDs that are used in buildings can produce 
forces that vary linearly with the relative velocities between the ends of 
the dampers. However, to provide more design freedom, damper man-
ufacturers often produce dampers that can induce a force that is a 
nonlinear function of the relative velocity at the ends of the damper. 
Structural analysis of buildings equipped with nonlinear FVDs can be 
performed by the consideration of equivalent linear damping co-
efficients computed through linearization procedures [10–14]; howev-
er, for pre-design purposes, the nonlinear behavior of FVDs can be 
neglected [15]. 

Xu, He and Ko [16] performed an extensive parametric study to find 
optimum damper properties for adjacent buildings of different stiffness 
ratios and different heights, while Patel and Jangid [17] performed a 
similar parametric study for identical adjacent structures. However, the 
used formulation in both studies is only applicable for adjacent buildings 
that deform like pure shear beams. 

Rama et al. [18] and Halperin et al. [19] developed methodologies to 
improve the seismic performance of buildings with FVDs, however, both 
studies do not contemplate intermediate modes of lateral deformation, 
neither SSI. 

Apostolakis and Dargush [20] proposed a computational framework 
for the optimal distribution and design of yielding metallic buckling 
restrained braces and/or friction dampers within steel moment-resisting 
frames, which could be applied to other passive dissipation systems such 
as FVDs. On the other hand, the distribution of FVDs among different 
bays may be of crucial importance in view of the increase of axial loads 
induced by FVDs that may cause overstressing of columns [9]. 

Several studies [21–26] focus on active structural control of build-
ings including SSI, which show that the ratio of the fundamental natural 
period of the structure to that of the surface ground is a key parameter 
for characterizing the optimal placement of FVDs. However, all these 
studies [21–26] were based on multi-degree-of-freedom (MDOF) shear 
building models. 

For designing a building structure with supplemental linear FVDs, 
the damping coefficient of the dampers can be easily determined cor-
responding to a desired added damping ratio and the fundamental dy-
namic properties such as the vibration mode shape and natural period of 
a structure. The formulas commonly used to calculate the supplemen-
tary damping of the FVDs are those proposed by FEMA 273/274 and 
FEMA 356 [27],however, the relative vertical deformation between the 
ends of the FVD was not considered when such formulas were derived. 
This has resulted into the lack of accuracy for predicting the added 
damping ratio of medium-rise to high-rise buildings, where the flexural 
deformation is as significant as the shear deformation. To solve that 
problem, Hwang et al. [28] developed new design formulas for FVDs 
that take into account the relative vertical and horizontal deformation 
between the two ends of a viscous damper so that the axial deformation 
of the damper and thus the dissipated energy by the damper can be 
better captured for medium-rise and high-rise buildings. 

Hwang et al. [29] compared various methods for distributing 
damping coefficients of FVDs along the height of three planar frames 
with fixed base. Motivated by the concept of composite damping ratio 
weighted by the element strain energy, Hwang et al. [29] proposed to 
distribute the FVDs in proportion to the storey shear strain energy, 
concluding that this method may provide the better choices for the 
practical design of FVDs. 

De Domenico, Ricciardi and Takewaki [9] presented an overview of 
the most popular methodologies from the abundant literature for design 
of FVDs for seismic protection of buildings structures, focusing on the 
optimal damping coefficients and the optimal placement of FVDs. This 
study demonstrates that existing methodologies for design of FVDs do 
not contemplate intermediate modes of lateral deformation and SSI 
because they are also based on MDOF shear buildings models with fixed 
base, in spite of the notorious dependence of distribution methods [29] 
on the fundamental period and its associated mode shape. 

FVDs have been extensively studied through fixed-base MDOF shear 
buildings models [9–19,29], on the contrary, these passive energy 
dissipation devices have been little studied through flexible-base MDOF 
shear buildings models [21–26]. However, these simplified models 
[9–26,29] do not contemplate intermediate modes of lateral deforma-
tion despite the added damping provided by FVDs depend directly on 
the lateral deformation of the building [28,29]. In this paper, linear 
FVDs are incorporated to the flexible-base CTB model [8] in order to 
evaluate the effects of different lateral deformations and SSI on three 
distribution methods for FVDs: uniform-distribution (UD), 
story-shear-proportional-distribution (SSPD) and story-shear-strain 
-energy-distribution (SSSED). 

2. Flexible-base CTB model with FVDs 

A flexible-base N-story tall building with different brace configura-
tions of FVDs can be schematically represented as shown in Fig. 1. 

Fig. 1 reflects a parallel coupling of the building’s bending and shear 
stiffnesses. The shear wall (bending deflection) and rigid frame (shear 
deformation) are connected in parallel by a finite number of axially rigid 
members that allows the consideration of intermediate modes of lateral 
deformation. The lateral relative displacement of the jth story of the 
building is defined as ujðtÞ, where j¼1,2,3,…,N. The foundation of the 
building rests on an elastic half-space, where ps, Vs and vs are defined, 
respectively as soil density, shear-wave velocity of soil and soil Poisson’s 
ratio. In addition, cd;j(j¼1,2,3,…,N) and fj(j¼1,2,3,…,N) represent 
respectively the damping coefficient and magnification factor of the jth 
FVD. Values of fj(j¼1,2,3,…,N) for some common brace configurations 
[30–33] are depicted in Fig. 1. 

Experiments carried out on FVDs have revealed that the damper 
force can reasonably be considered proportional to the relative velocity 
between the ends of the device [34]. According to the sketch in Fig. 1, 
the FVD force at the jth story is 

fd;j¼ cd;j
�
�Δ _wj

�
�ηj sgn

�
Δ _wj
�

(1)  

where cd;j (j¼1,2,3,…,N) and ηj(j¼1,2,3,…,N) represent the damping 
coefficient and power law exponent of the jth FVD, respectively, and Δ _wj 

is the relative velocity at the ends of the jth FVD, which may be different 
from the interstory velocity at the jth story Δ _uj ¼ _uj � _uj� 1. In a general 
way, the value of Δ _wjis related to the interstory velocity through the 
magnification factorfj, that is, Δ _wj ¼ fj Δ _uj. Values of ηj are generally less 
than one, however, for a pre-design stage, it is usually assumed a linear 
behavior for the FVDs [15], that is, ηj ¼ 1. Adopting a simplified linear 
model, the FVD force at the jth story is 

fd;j¼ cd;j Δ _wj ¼ cd;j fj Δ _uj (2) 

The linear forces exerted by the N FVDs may be expressed as 
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�
fd;j
�

N�1¼ ½Cd�N�Nf _uðtÞgN�1 (3)  

where f _uðtÞgN�1 is a column vector containing the relative velocities of 
the stories and 

½Cd�N�N ¼ ½R�
T
½D�½R� (4) 

For interstory dampers implemented at every story through common 
brace configurations (see Fig. 1), matrices ½R� and ½D� shown in Eq. (4) 
are given by Ref. [9]. 

½R� ¼

2

6
6
6
6
6
6
4

f1 0 … 0
� f2 f2 0 … 0
0 � f3 f3 0 … 0
⋮ ⋱ ⋮
0 … 0 � fN� 1 fN� 1 0
0 … 0 � fN fN

3

7
7
7
7
7
7
5

(5)  

½D� ¼

2

4
cd;1

⋱
cd;N

3

5 (6) 

For nonlinear FVDs (ηj 6¼ 1), equivalent linear damping coefficients 
for the FVDs can be computed through linearization procedures 
[10–14]; however, for pre-design purposes, the nonlinear behavior of 
FVDs can be neglected [15]. For linear FVDs (ηj ¼ 1), the damping co-
efficients of the FVDs can be computed through some distribution 
methods [29]: uniform-distribution (UD), storey-shear-propor 
tional-distribution (SSPD) and storey-shear-strain-energy-distribution 
(SSSED), among others. 

The UD method assumes that the damping coefficients cd;j are 
identical at every storey and equal to 

cd;j¼
4πξd

T1

PN

i¼1
mi φ2

1;i

Pnd

j¼1
f 2

j

�
φ1;j � φ1;j� 1

�2
(7)  

where nd is the number of FVDs; ξd is the supplemental damping ratio 

contributed by the nd FVDs, T1 is the fundamental period of vibration of 
the flexible-base building, mi (i¼1,2,3,…,N) is the lumped mass at the ith 
story, φ1 is the first eigenvector of the undamped flexible-base building 
and fj is the magnification factor (see Fig. 1). 

The SSPD method proposes to distribute the FVDs in proportion to 
the design story shears Vs;j, assuming that the value of Vs;j at the storey j 
is proportional to the parameter Sj ¼

PN
i¼jmi φ1;i. Accordingly, the 

damping coefficients cd;j are equal to 

cd;j¼
4 π ξd

T1

Sj
PN

i¼1
mi φ2

1;i

Pnd

j¼1
Sj f 2

j

�
φ1;j � φ1;j� 1

�2
(8) 

The SSSED method proposes to distribute the FVDs in proportion to 
the storey shear strain energy, which can be considered proportional to 
the parameter ψ j ¼ Sjðφ1;j � φ1;j� 1Þ, where Sj has already been intro-
duced above. Accordingly, the damping coefficients cd;j are equal to 

cd;j¼
4 π ξd

T1

ψj
PN

i¼1
mi φ2

1;i

Pnd

j¼1
ψj f 2

j

�
φ1;j � φ1;j� 1

�2
(9) 

Hwang et al. [29] introduced an additional distribution method as a 
refinement of the SSSED, in which the dampers are distributed only in 
those storeys in which the strain energy exceeds the average strain en-
ergy, which was called storey-shear-strain-energy-to-effi 
cient-storeys-distribution (SSSEESD). De Domenico et al. [9] demon-
strated that added damping ratio and displacement profiles are com-
parable between SSSED and SSSEESD, however, for SSSEESD and a 
non-regular-in elevation structure, the response in terms of interstory 
drifts and absolute floor accelerations increases significantly for the 
higher stories wherein no dampers are installed. Only the UD, the SSPD 
and the SSSED are considered in this paper. 

According to the classification presented by De Domenico, Ricciardi 
and Takewaki [9], the three distribution methods of linear FVDs used in 

Fig. 1. Sketch of an N-story shear wall-frame building with FVDs including SSI.  
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this paper belong to the heuristic class; therefore, they do not achieve an 
optimum response against any response indicator of the building, that is, 
the interstory drift ratio, the peak displacement, the absolute accelera-
tion, among others. 

Reasonable and economical values for added damping ratio ξd vary 
between 5-15%, introducing negligible influence on the fundamental 
natural period of the structure [28]. 

The lateral resisting system and SSI significantly modify the dynamic 
properties of the building (periods, mode shapes and damping), how-
ever, Eqs. (7)–(9) have only been used in fixed-base MDOF shear 
buildings models [9–19,29]. For this reason, a simplified discrete model 
of the sketch shown in Fig. 1 is developed in this paper (see Fig. 2), 
which is only valid for planar models, that is, the proposed model is not 
able to consider torsional effects. 

The proposed model represents an N-story building with flexible base 
and nd FVDs ðN ¼ ndÞ, which can be subjected to the horizontal ground 
acceleration €ugðtÞ or to the wind forces Fðz; tÞ. The proposed CTB model 
(see Fig. 2) consists of a flexural cantilever beam and a shear cantilever 
beam connected in parallel by a finite number of axially rigid members 
that allow the consideration of intermediate modes of lateral deforma-
tion. The total height of the building H is divided into N stories with 
length Lj(j¼1,2,3,…,N); this means that each beam of the CTB model is 
divided into N finite elements. The jth node of the flexural cantilever 
beam is connected to the jth node of the shear cantilever beam by an 
axially rigid member denoted as ka

j →∞ (j¼1,2,3,…,N), which allows the 
coupling between both beams. m0 and I0 are defined, respectively as 
mass and mass moment of inertia of the foundation. kt and kθ are 
defined, respectively as the translational spring stiffness and rotational 
spring stiffness of the foundation. ct and cθ are defined, respectively as 
the translational damping coefficient and rotational damping coefficient 
of the foundation. In addition, cd;j (j¼1,2,3,…,N) is the damping coef-
ficient of the jth FVD for any of common brace configurations shown in 
Fig. 1. 

Literature features refined models of soil that contemplate various 
effects such as the nonlinearity of soil behavior [35–37], however, for 
practical engineering purposes, the soil model adopted in this paper is 
the simplest one, which is based on static foundation stiffnesses. Kausel 

[38] developed a concise review of the state of art of such static solu-
tions. Under these assumptions and considering a rigid circular foun-
dation, the coefficients of the springs and dashpots for the translational 
and rotational motions of the foundation are computed using the 
following formulas [39]: 

kt ¼
8Gsr0

2 � vs
(10)  

kθ ¼
8Gsr0

3

3ð1 � vsÞ
(11)  

ct ¼
4:6ρsVsr2

0

2 � vs
(12)  

cθ ¼
0:4 ρs Vs r4

0

1 � vs
(13)  

where 

Gs¼
Es

2ð1þ vsÞ
(14)  

Vs¼

ffiffiffiffiffi
Gs

ρs

s

(15) 

In Eqs. 10–15, Gs is the shear modulus of soil, r0 is the equivalent 
radius of the foundation, vs is the soil Poisson’s ratio, ρs is the soil 
density, Vs is the shear-wave velocity of soil and Es is the soil Young’s 
modulus. Once these parameters are known, it is possible to determine 
the stiffness and damping matrices that represent the flexible base of the 
flexural beam and the shear beam, which are given by 

�
KF

s

�
¼
�
KS

s

�
¼

2

6
6
4

kθ

2
kt

2

3

7
7
5 (16)  

Fig. 2. CTB model for a flexible-base tall building with FVDs.  
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�
CF

s

�
¼
�
CS

s

�
¼

2

6
4

cθ

2
ct

2

3

7
5 (17)  

where superscripts F and S are associated with the flexural beam and 
shear beam, respectively. 

The flexible-base CTB model with FVDs (see Fig. 2) consists of 2N þ 4 
equations of motion if it is considered that N ¼ nd. The equations can be 
grouped in a matrix system given by 

½MCTB� f€uCTBðtÞgþ ½CCTB� f _uCTBðtÞgþ ½KCTB� fuCTBðtÞg¼ fFCTBðtÞg (18) 

The external forces of the building are divided into two proportional 
parts for each cantilever beam in such a way that 

fFCTBðtÞg¼
� �

FF
Ψ ðtÞ

� �
FS

Ψ ðtÞ
� �T (19)  

where for seismic loads (see Fig. 2a) 

�
Fλ

Ψ ðtÞ
�
¼ � €ugðtÞ

(
XN

j¼1
zj mλ

j
m0

2
þ
XN

j¼1
mλ

j

n
mλ

j

o

1�N

)

(20)  

assuming the superscript λ ¼ F ¼ S, mF
j is the lumped mass at jth node of 

the flexural cantilever beam and mS
j is the lumped mass at jth node of the 

shear cantilever beam. For wind loads (see Fig. 2b), 

�
FF

Ψ ðtÞ
�
¼
�

FS
Ψ ðtÞ

�
¼

�XN

j¼1

zj FjðtÞ
2

PN

j¼1

FjðtÞ
2

1
2
�

FjðtÞ
�

1�N

�

(21) 

In equations (20) and (21), the external forces associated with each 
cantilever beam are composed of 3 subvectors: the overturning moment, 
the shear base force and the lateral external forces related to each story. 

The displacements of the matrix equation (18) are given by 

fuCTBðtÞg¼
� �

uF
Ψ ðtÞ

� �
uS

Ψ ðtÞ
� �T (22)  

where 
�

uF
Ψ ðtÞ

�
¼
�

uS
Ψ ðtÞ

�
¼
�

θ0ðtÞ u0ðtÞ
�

ujðtÞ
�

1�N

�
(23) 

In Eq. (23), θ0ðtÞ is the rotation of the foundation of the building, 
u0ðtÞ is the lateral displacement of the foundation of the building, and 
ujðtÞ is the lateral relative displacement of the jth story of the building. 
The total displacement of the jth story of the building is given by 

utotal;jðtÞ¼ u0ðtÞþ zj θ0ðtÞ þ ujðtÞ (24) 

The mass matrix of the matrix equation (18) is given by 

½MCTB� ¼

" �
MF

Ψ

�
½0�ðNþ2Þ�ðNþ2Þ

½0�ðNþ2Þ�ðNþ2Þ

�
MS

Ψ

�

#

(25) 

The total mass of the building is divided into two proportional parts 
for each cantilever beam, in a similar way, the mass of each finite 
element of both beams (see Fig. 2) is divided into two proportional parts 
for each node. Considering these assumptions, the lumped mass matrix 
of the decoupled flexural beam, ½MF

Δ�N�N, and the lumped mass matrix of 
the decoupled shear beam, ½MS

Δ�N�N, are assembled. The jth elements of 
diagonal matrix ½MF

Δ�N�N and diagonal matrix ½MS
Δ�N�N are represented by 

mF
j (j¼1,2,3,…,N) and mS

j (j¼1,2,3,…,N), respectively; where mF
j þ mS

j 

represents the lumped mass at the jth story of the building. The sub-
matrices of matrix ½MCTB� shown in Eq. (25) are given by 

�
Mλ

Ψ

�
¼

2

6
6
6
6
6
6
6
6
4

Im;0

2
þ
XN

j¼1

�
Im;j

2
þ mλ

j z2
j

�
PN

j¼1
mλ

j zj

n
mλ

j zj

o

1�N

XN

j¼1
mλ

j zj
m0

2
þ
XN

j¼1
mλ

j

n
mλ

j

o

1�N

n
mλ

j zj

o

N�1

n
mλ

j

o

N�1

�
Mλ

Δ

�

N�N

3

7
7
7
7
7
7
7
7
5

(26)  

where λ ¼ F is referred to the flexural beam and λ ¼ S is referred to the 
shear beam; Im;j is the mass moment of inertia of the jth story of the 
building and zj (j¼1,2,3,…,N) is the height at jth node. 

The stiffness matrix of the matrix equation (18) is given by 

½KCTB� ¼

" �
KF

Ψ

� �
KC

Ψ

�

�
KC

Ψ

� �
KS

Ψ

�

#

(27)  

where 

�
Kλ

Ψ

�
¼

" �
Kλ

s

�
½0�2�N

½0�N�2

�
Kλ

Δ

�

N�N þ
�
KA�

#

(28)  

�
KC

Ψ

�
¼

�
½0�2�2 ½0�2�N
½0�N�2 �

�
KA�

�

(29)  

the superscript λ ¼ F ¼ S, ½KF
s � and ½KS

s � are the soil’s stiffness matrices 
defined in Eq. (16), ½KF

Δ�N�N is the condensed stiffness matrix of the 
decoupled flexural beam and ½KS

Δ�N�N is the condensed stiffness matrix of 
the decoupled shear beam. On the other hand, the axially rigid members 
(see Figs. 1-2) are assembled in a diagonal matrix given by 

�
KA�¼

2

6
6
4

ka
1→∞

⋱
ka

N→∞

3

7
7
5 (30) 

The condensed stiffness matrices ½KF
Δ�N�N and ½KS

Δ�N�N are defined 
once the global 2N� 2N stiffness matrices of both decoupled beams are 
assembled, where the axial deformation is assumed to be negligible. For 
the jth finite element of each cantilever beam (see Fig. 2), the node j and 
the node jþ1 are denoted as node A and node B, respectively. Neglecting 
axial deformation, each node of each cantilever beam has two degrees of 
freedom: a nodal displacement and a nodal rotation. Accordingly, the 
stiffness matrix of each finite element is composed by 4 submatrices 
ð½Kj;AA�; ½Kj;AB�; ½Kj;BA�; ½Kj;BB�Þ, where each submatrix represents the forces 
applied in the first node (A or B) that generate unit displacements and 
unit rotations in the second node (A or B). Accordingly, the stiffness 
matrix of the jth finite element of the flexural cantilever beam (see 
Fig. 2) is given by 

h
KF
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i
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h
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i h
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i
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(31)  

and the stiffness matrix of the jth finite element of the shear cantilever 
beam (see Fig. 2) is given by 
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where E I is the corresponding flexural rigidity of the jth story of the 
building, ðE IÞS is an equivalent flexural rigidity for the jth finite element 
of the shear cantilever beam (see Fig. 2) and δ is the non-dimensional 
stiffness parameter of a discrete Timoshenko beam. In equation (32), 
ðE IÞS→∞, which means that the radius of gyration also tends to infinity, 
thus guaranteeing a pure shear deformation regardless of the slender-
ness ratio of the shear cantilever beam. If floor masses and lateral 
stiffnesses are assumed to remain constant along the height of the 
building, E I and δ can be deduced through a mathematical adjustment 
[7,8] based on the CTB continuous model [2] as follows: 

EI¼
4m π2 H4

�
T*

1γ1
�2
ðγ2

1 þ α2Þ
(33)  

δ¼
12 ðE IÞS

G AS L2
j
¼

3 ðE IÞS
�
T*

1 γ1
�2� γ2

1 þ α2
�

m
�
π α H Lj

�2 (34)  

where m is the mass per unit length of the building; H is the total height 
of the building; Lj is the length of the jth finite element; T*

1 is the 
fundamental period of vibration of the fixed-base building, which can be 
computed by any of the existing empirical formulas [40–44]; G AS is the 
effective shear rigidity of the jth story of the building; ðE IÞS→ ∞; and γ1 
is an eigenvalue parameter related to the first mode shape of the 
fixed-base CTB continuous model, that is, the first root of the following 
characteristic equation [2].  

where i¼1,2,3,…, ∞ and 

α¼H
ffiffiffiffiffiffiffiffiffiffi
G AS

E I

r

(36) 

The parameter α is the non-dimensional lateral stiffness ratio that 
controls the degree of participation of overall flexural and overall shear 
deformations in the CTB model. A value of α→0 represents a pure 
flexural model (Euler–Bernoulli beam), whereas a value of α→ ∞ rep-
resents a pure shear model. Miranda and Reyes [45] indicated that 
lateral deflected shapes of buildings whose lateral resisting system 
consists only of structural walls can usually be approximated by using 
values of α between 0 and 2. The same study indicated that for buildings 
with dual lateral resisting systems consisting of a combination of 
moment-resisting frames and shear walls or a combination of 
moment-resisting frames and braced frames, values of α are typically 
between 1.5 and 6; while for buildings whose lateral resisting system 
consists only of moment-resisting frames, values of α are typically be-
tween 5 and 20. Miranda and Reyes [45] also indicated that α ¼ 20 
represents a model very close to the pure shear model (α→ ∞). 

The stiffness matrices of each finite element (Eqs. (31)-(32)) are 

assembled by the conventional numerical assembly technique for the 
finite element method in order to obtain the global 2N� 2N stiffness 
matrices of the decoupled flexural and shear beams. It is necessary to 
perform a static condensation [46] of the 2N� 2N stiffness matrices in 
such a way that only translational degrees of freedom remain active. In 
this way, the condensed stiffness matrix of the decoupled flexural beam, 
½KF

Δ�N�N, and the condensed stiffness matrix of the decoupled shear 
beam, ½KS

Δ�N�N, are obtained, which only depend on a few parameters: m, 
H, T*

1, γ1 and α. 
Rayleigh damping [46] is assumed for both decoupled beams (see 

Fig. 2). The damping matrix of the decoupled flexural beam and the 
damping matrix of the decoupled shear beam are represented by ½CF

Δ�N�N 

and ½CS
Δ�N�N, respectively. Both matrices are computed with the prior 

knowledge of wF
j , wS

j , ξ1 and ξ2; where ξ1 and ξ2 are the modal damping 
ratios corresponding to the first and second mode of vibration of the 
fixed-base building in a particular translational direction. On the other 
hand, wF

j (j ¼ 1, 2, 3,…, N) and wS
j (j ¼ 1, 2, 3,…, N) are defined, 

respectively as the jth angular frequency of the decoupled flexural beam 
and the jth angular frequency of the decoupled shear beam, which are 
computed by solving the corresponding systems of eigenvalues and ei-
genvectors for each decoupled beam. 

The assumption of classical damping is not appropriate if the system 
to be analyzed consists of two of more parts with significantly different 
level of damping, which is the case; therefore, in this paper, the damping 

matrix for the complete system is constructed by directly assembling the 
damping matrices for the subsystems through the substructure 
approach. Accordingly, the damping matrix of matrix equation (18) is 
assembled as 

½CCTB� ¼

" �
CF

Ψ

�
þ
�
CF

d

�
½0�ðNþ2Þ�ðNþ2Þ

½0�ðNþ2Þ�ðNþ2Þ

�
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�
þ
�
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d

�

#

(37)  

where 

�
Cλ

Ψ

�
¼

" �
Cλ

s

�
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½0�N�2

�
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Δ

�

N�N

#

(38)  

�
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�
¼
�
CS

d

�
¼

2

4

½0�2�2 ½0�2�N

½0�N�2
1
2
½Cd�N�N

3

5 (39)  

the superscript λ ¼ F ¼ S; ½CF
s � and ½CS

s � are the soil’s damping matrices 
defined in Eq. (17); and ½Cd�N�N is the damping matrix of the added 
linear FVDs, which was defined in Eq. (4). 

Based on equation (39), the linear forces exerted by the N FVDs are 

2þ
�

2þ
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γ2
i ðα2 þ γ2

i Þ

�

cosðγiÞcosh
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¼ 0 (35)   
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(32)   
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split in one half to the flexural cantilever beam and the other half to the 
shear cantilever beam. This assumption was motivated by mathematical 
simplicity and is justified and validated in the appendix of this paper by 
comparing the lateral response between the proposed flexible-base CTB 
model with FVDs on hard rock and the classic shear-type MDOF system 
with fixed base and FVDs. 

Non-classically damped systems are associated with complex-valued 
natural modes of vibration, therefore, the concept of modal participating 
mass ratio, widely used in classical modal analysis, is no longer appli-
cable. Based on the subsystem approach, De Domenico et al. [47] pro-
posed an improved response-spectrum analysis procedure for 
base-isolated buildings considering the dynamic interaction between 
the base-isolation-system and the superstructure. On the other hand, De 
Domenico and Ricciardi [48] introduced two novel measures related to a 
generalized modal mass ratio and to a modal dissipation ratio of each 
mode in the complex modal analysis framework for structures equipped 
with FVDs and base-isolated buildings. In this paper, it is assumed that in 
the linear range, the system has classic modes, that is, undamped mode 
shapes, which are necessary for the computation of the damping co-
efficients of the FVDs. Accordingly, the ith angular frequency wi and the 
ith mode shape fφig of the flexible-base CTB model are obtained by 
solving the corresponding system of eigenvalues and eigenvectors, 
where i ¼ 1,2,3,…, (2N þ 4). The ith effective modal mass of the 
flexible-base CTB model is given by 

meff ;i¼
ðfφig

T
½MCTB�f1gð2Nþ4Þ�1Þ

2

fφig
T
½MCTB�fφig

(40) 

In this paper, Eq. (18) is solved in time domain by the state space 
approach [15] due to the non-classically damping of the flexible-base 
CTB model with FVDs. 

3. Numerical examples 

The main advantage of the flexible-base CTB model with FVDs is the 
possibility of considering intermediate modes of lateral deformation. In 
this section, the proposed CTB model (see Fig. 2) is used to evaluate the 
dynamic behavior of two tall buildings with different types of lateral 
deformation. 

3.1. 37-story building 

A 37-story building located in Mexico City (see Fig. 3a) was 
considered for the application of the proposed model. Breadth, depth 
and height of the building are 44 m, 22 m and 144.24 m, respectively. 
Each story is assumed to have a height of 3.8984 m. The mass per unit 
length of the building is 235664 kg/m. The building have composite 
steel deck floors with 4-cm concrete slabs (see Fig. 3b). 

The lateral resisting system of the building in x direction consists of 
moment-resisting frames. On the other hand, the lateral resisting system 
of the building in y direction consists of a combination of 12-cm masonry 
shear walls and braced frames. The mechanical properties of the 
building materials are shown in Table 1. 

According to Fig. 3b, the primary steel I-beams (I-2 and I-3) divide 
the xz plane and yz plane in 37-storey 4-bay frames and 37-storey 2-bay 
frames, respectively. The dimensions of primary steel I-beams (I-2 and I- 
3) and secondary steel I-beams (I-1, I-4 and I-5) are shown in Table 2. 

Three of the five frames in yz plane are reinforced by 12-cm masonry 
shear walls and cross steel braces consisting of 356 mm � 122.1 kg/m 
steel I-sections: central frame and both external frames. Each story have 
15 steel-concrete composite columns (see Fig. 3b) consisting of 356 mm 
� 122.1 kg/m steel I-sections encased in rectangular concrete sections 
that vary along the height (see Table 3). 

In order to determine the best values for α in both translational di-
rections, a 3D finite element model (FEM) of the fixed-base 37-story 
building was developed in a commercial software (see Fig. 4a). The 
first lateral modes of vibration of the fixed-base 3D FEM are shown in 
Fig. 4(b) and 4(c). 

Fig. 3. 37-story building located in Mexico City.  

Table 1 
Mechanical properties of the 37-story building.  

Material Structural element ρ [kg/m3]  E [GPa]  ν  

Concrete Floor system 2400 21.57 0.2 
Columns 2400 30.4 0.2 

Steel Beams, columns and braces 7849 200 0.3 
Masonry Shear walls 1300 0.5148 0.3  

Table 2 
Steel I-beams of the 37-story building.  

Steel I-beam Height [mm] Mass per unit length [kg/m] 

I-1 457 59.8 
I-2 838 175.7 
I-3 762 147.4 
I-4 305 28.2 
I-5 406 46.2  

Table 3 
Steel-concrete composite columns of the 37-story building.  

Column Stories Dimensions [m x m] 

C-1 1 - 9 1.40 x 1.10 
C-2 10 - 16 1.40 x 1.00 
C-3 17 - 32 1.20 x 1.00 
C-4 33 - 37 0.80 x 0.80  
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According to the 3D FEM of the fixed-base 37-story building (see 
Fig. 4), the first periods in xz plane and yz plane are 3.65 s and 3.44 s, 
respectively. On the other hand, the first torsional period is equal to 
3.11 s due to asymmetrical plan of the 37-story building, however, the 
torsion modes are omitted in this paper because the CTB model is only 
valid for lateral modes of vibration. For buildings with special features, 

it is highly recommended to perform a more refined analysis. 
Fig. 5 compares the computed first lateral mode shapes between the 

fixed-base 3D FEM and the fixed-base CTB continuous model [2]. Ac-
cording to Fig. 5, α→∞ (pure shear behavior) for xz plane, where it is 
assumed that α ¼ 1� 10100 and γ1 � π=2. On the other hand, a value of 
α ¼ 3:5 fits very well for yz plane, where γ1 ¼ 1:9235. 

In this numerical example, it was assumed that ðE IÞS ¼ 1�
10100 N m2 in Eqs. (32) and (34). In addition, it was assumed that all 
axially rigid members (see Fig. 2) have a spring stiffness ka

j ¼ 1�
1015 N=m (j ¼ 1, 2, 3,…, 37), guaranteeing the coupling between 
flexural cantilever beam and shear cantilever beam. A comparison be-
tween the CTB continuous model [2] and the 3D FEM is shown in Table 4 
for the periods and effective modal masses of the fixed-base 37-story 
building, which proves that the assumed values of α also adequately 
represent the higher modes of vibration. 

A rigid circular foundation on the ground surface was adopted to 
explore SSI. For this particular example, it is assumed that the structural 
plan of the 37-story building has a rectangular shape of 44 m � 22 m; 

Fig. 4. First lateral modes of vibration of the fixed-base 3D FEM: 37-story building.  

Fig. 5. First modes shapes of the fixed-base 37-story building: 3D FEM vs CTB continuous model.  

Table 4 
Periods and effective modal masses of the fixed-base 37-story building: CTB 
model vs 3D FEM.  

Mode Period [s] Effective modal mass [%] 

xz plane yz plane xz plane yz plane 

CTB 3D 
FEM 

CTB 3D 
FEM 

CTB 3D 
FEM 

CTB 3D 
FEM 

1 3.65 3.65 3.44 3.44 80.89 77.26 67.94 66.01 
2 1.22 1.25 0.89 0.98 8.84 8.86 13.17 10.62 
3 0.73 0.75 0.38 0.48 3.08 2.76 5.71 3.57  

Table 5 
Parameters of the soils and the foundation of the 37-story building.  

Soil type vs  ρs[kg/m3]  Vs[m/s]  Gs[GPa]  kt[GN/m]  kθ[TN m]  ct[GN s/m]  cθ[GN s m]  

Hard rock 0.25 2700 2722 20 1600 384 5.95 372 
Dense soil 0.33 2400 500 0.6 50.4 12.9 1.02 68 
Stiff soil 0.48 1900 300 0.171 15.8 4.74 0.531 41.6 
Soft soil 0.49 1800 100 0.018 1.67 0.509 0.169 13.4  

I.F. Huergo et al.                                                                                                                                                                                                                                



Soil Dynamics and Earthquake Engineering 131 (2020) 106042

9

therefore, the radius for an equivalent circular foundation is r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
A0=π

p
, where A0 is the area of the foundation. Accordingly, m0, Im;0 

and r0 are 1.84 x 106 kg, 1.41 x 108 kg m2 and 17.55 m, respectively. 
Four types of soil [49] were chosen to carry out the dynamic analysis of 
the 37-story building: (1) hard rock, (2) dense soil, (3) stiff soil and (4) 
soft soil. Table 5 summarizes parameters of the soils and the foundation 
of the 37-story building. 

For both translational directions and the parameters of Table 5, 
Table 6 shows the periods of vibration and effective modal masses of the 
first four modes of vibration computed by the flexible-base CTB model. 

The effect of soil flexibility on different lateral resisting systems can 
be studied thanks to the similar values of Txz;1 and Tyz;1 for the four soil 
types (see Table 6), in spite of the remarkable difference between the 

lateral resisting systems of the 37-story building: α ¼ 1� 10100and α ¼
3:5 for xz plane and yz plane, respectively. Table 6 shows that the first 
mode of vibration changes significantly as the soil flexibility increases, 
but the higher modes of vibration are less affected. On the other hand, 
periods of higher modes increase as the flexural rigidity of the building 
decreases. For xz plane (α ¼ 1� 10100), the first effective modal mass 
decreases as the soil flexibility increases; conversely, for yz plane (α ¼
3:5), the first effective modal mass increases as the soil flexibility in-
creases. The effective modal masses of higher modes are also affected as 
the soil flexibility and lateral resisting system change. 

For a particular translational direction, the three distribution 
methods for linear FVDs [29] (UD, SSPD and SSSED) depend on the first 
period of vibration and its associated mode shape (Eqs. (7)–(9)). For this 
reason, only the first mode shape of the 37-story building is shown in 
Fig. 6 for the four soil types and both translational directions. 

For a pre-design stage, it is assumed that the high-rise building has 
37 K-brace chevron linear FVDs (one per each story), in other words, this 
means that all magnifications factors fj(j¼1,2,3,…,37) are equal to 1. 
Assuming that ξd ¼ 0:15, the damping coefficients of the FVDs were 
computed for the 37-story building through the three distribution 
methods [29] (see Figs. 7–10). 

Figs. 7–10 show that for a UD, the damping coefficients of the FVDs 
increase as the flexural rigidity of the building decreases; which shows 
that the typical MDOF shear building model overestimates the damping 
coefficients of uniform FVDs in medium-rise to high-rise buildings, 
where the flexural deformation is as significant as the shear deforma-
tion. For SSPD and SSSED methods, the damping coefficients of the FVDs 
vary along the height of the building depending on the lateral resisting 
system. For the three distribution methods and the same lateral defor-
mation, the damping coefficients of the FVDs decrease as the soil flexi-
bility increases. 

3.1.1. Earthquake-induced vibrations 
As is well known, earthquakes having different origins affect Mexico 

City. There exist four groups: (1) local earthquakes; (2) continental-plate 
earthquakes; (3) normal-faulting earthquakes and (4) subduction 
earthquakes. It has been observed that the normal-faulting [50–53] and 
subduction earthquakes [54,55] are the most dangerous events for 
Mexico City. For building code purposes, the subsoil of Mexico City has 
been divided in three zones: (1) the hill zone, characterized by a surface 
layer of lava flows or volcanic tuff; (2) the transition zone, composed of 
alluvial sandy and silty layers with occasional intervals of clay layers; 
and (3) the lake bed zone, consisting of 10 to 80 m deposit of highly 
compressible and high water content clay underlain by resistant sands. 
The relative amplification of ground motions in the lake bed zone with 
respect to those in the hill zone of the city is a well-known phenomenon, 
the motion in the lake bed zone is 8 to 50 times in the frequency domain 
with respect to a hill zone site. This was dramatically demonstrated 
during the September 1985 earthquakes that caused significant damage 

Table 6 
Periods and effective modal masses of the 37-story building: flexible-base CTB 
discrete model.  

Mode Soil 
type 

Period [s] Effective modal mass [%] 

xz planeðα ¼
1 � 10100Þ

yz 
planeðα ¼
3:5Þ

xz planeðα ¼
1 � 10100Þ

yz 
planeðα ¼
3:5Þ

1 Hard 
rock 

3.65 3.43 80.97 67.99 

Dense 
soil 

3.75 3.54 80.74 68.50 

Stiff 
soil 

3.92 3.71 80.42 69.31 

Soft 
soil 

5.67 5.53 78.42 73.41 

2 Hard 
rock 

1.22 0.90 8.93 13.24 

Dense 
soil 

1.22 0.90 9.25 13.26 

Stiff 
soil 

1.23 0.91 9.76 13.37 

Soft 
soil 

1.30 0.97 13.50 15.48 

3 Hard 
rock 

0.73 0.38 3.16 5.71 

Dense 
soil 

0.74 0.39 3.12 5.89 

Stiff 
soil 

0.74 0.40 3.07 6.25 

Soft 
soil 

0.76 0.48 2.79 7.35 

4 Hard 
rock 

0.53 0.21 1.57 3.11 

Dense 
soil 

0.53 0.21 1.59 3.40 

Stiff 
soil 

0.53 0.22 1.63 4.01 

Soft 
soil 

0.55 0.29 1.80 2.22  

Fig. 6. First mass normalized mode shapes of the 37-story building: flexible-base CTB discrete model.  
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and the loss of thousands of lives in this city, the heavy damage to 
mid-rise (7-15-storey) buildings was quite impressive, in spite of the 
light damage to low-rise and high-rise buildings, and other structures. 
The predominant periods of ground surface in disastrous areas were in 
the range of 1.5 a 2.5 s [56]. Site effects in Mexico City are increasing as 
a consequence of ground subsidence produced by groundwater with-
drawal [57,58]. 

The application of several recorded ground motions from different 
seismic sources that affect buildings in Mexico [50,54,55] will be carried 

out in future works, since the objective of this paper is only the proposal 
of the flexible-base CTB model with FVDs (see Fig. 2). For this reason, it 
was considered that the 37-story building was subjected to the hori-
zontal ground accelerations recorded at station Central--
de-Abastos-Frigorífico (CDAF) during the Mexico City earthquake of 
September 19, 1985. Station CDAF is located in Mexico City on the lake 
bed zone (clay soil). The horizontal ground accelerations and elastic 
input energy spectrum with a modal damping ratio of 5% are shown in 
Fig. 11 for the Mexico City earthquake of September 19, 1985 at station 

Fig. 7. Damper coefficient distribution for different design methods: 37-story building on hard rock.  

Fig. 8. Damper coefficient distribution for different design methods: 37-story building on dense soil.  

Fig. 9. Damper coefficient distribution for different design methods: 37-story building on stiff soil.  
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CDAF; where the peak input energy per unit mass (6.67 m2/s2) is related 
to a period of vibration of 3.05 s. 

A time-history elastic analysis was carried out for the 37-story 
building when it is subjected to the horizontal ground accelerations 
shown in Fig. 11a. The soil-foundation parameters and the FVDs pa-
rameters were taken from Table 5 and Figs. 7–10, respectively. The total 
peak displacement profiles are shown in Figs. 12 and 13, considering a 
structural damping of 5% for the first two modes of vibration of the 
fixed-base building. 

Figs. 12 and 13 show that total peak displacements increase as the 
flexural rigidity of the building increases; which shows that the typical 
MDOF shear building model underestimates the seismic response in 

medium-rise to high-rise buildings, where the flexural deformation is as 
significant as the shear deformation. For no FVDs case, the smallest 
displacements occur on a soft soil because the periods of the first mode 
in both translational directions elongate too enough to avoid the reso-
nance of the 37-story building (see Fig. 11 b). For the same soil type and 
the same value of, the three distribution methods achieve practically the 
same total peak displacements; on the contrary, the seismic response 
control varies significantly as the soil type and lateral resisting system 
change. For the three distribution methods and the same value of α, 
there is a significant decrease in controlling earthquake-induced vibra-
tions as the soil flexibility increases. 

Fig. 10. Damper coefficient distribution for different design methods: 37-story building on soft soil.  

Fig. 11. Mexico City earthquake of September 19, 1985: station CDAF (lake bed zone).  

Fig. 12. Total seismic peak displacement profiles: xz plane of the 37-story building at station CDAF.  
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3.1.2. Wind-induced vibrations 
The 37-story building is located in a suburban area with a roughness 

length of 0.3 m. Assuming an annual probability of 0.02, the mean wind 
velocity at 10 m height is equal to 15.02 m/s [59]. Synthetic along-wind 
time series were simulated assuming a rectangular tall building with 
drag coefficients of 1.1 and 1.45 for xz plane and yz plane, respectively 
[60]. The simulated along-wind time series for the 37-story building are 
shown in Fig. 14. 

A time-history elastic analysis was carried out for the 37-story 
building when it is subjected to the along-wind forces shown in 
Fig. 14. The soil-foundation parameters and the FVDs parameters were 
taken from Table 5 and Figs. 7–10, respectively. For a total dynamic 

response, the peak displacements and RMS accelerations are shown in 
Figs. 15 to 18. RMS accelerations are usually used to check the 
serviceability limit state, which is why these are shown instead of the 
peak accelerations. A structural damping of 1% was considered for the 
first two modes of vibration of the fixed-base building. 

Figs. 15 to 18 show that the total dynamic response increases as the 
flexural rigidity of the building increases; in a similar way, the total 
dynamic response increases as the soil flexibility increases. Therefore, 
the along-wind response in medium to high-rise buildings will be 
underestimated if a fixed-base MDOF shear building is used instead the 
flexible-base CTB model. For the same soil type and the same value of α, 
the three distribution methods achieve practically the same total 

Fig. 13. Total seismic peak displacement profiles: yz plane of the 37-story building at station CDAF.  

Fig. 14. Along-wind forces for the 37-story building.  

Fig. 15. Total along-wind peak displacement profiles: xz plane of the 37-story building.  
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dynamic response; on the contrary, the along-wind response control 
varies significantly as the soil type and lateral resisting system change. 
For the three distribution methods and the same value of α, there is a 
significant decrease in controlling wind-induced vibrations as the soil 
flexibility increases. Generally speaking, FVDs are more effective for 
controlling RMS accelerations compared to peak displacements induced 
by along-wind loads. 

3.2. 25-story building 

A 25-story building located in Mexico City (see Fig. 19a) was 
considered for the application of the proposed model. Breadth, depth 

and height of the building are 25 m, 25 m and 93.65 m, respectively. 
Each story is assumed to have a height of 3.746 m. The mass per unit 
length of the building is 112500 kg/m. The lateral resisting system 
consists of a combination of braced frames and shear walls (see 
Fig. 19b). The mechanical properties and dimensions of the structural 
elements of the 25-story building are described in detail by Huergo and 
Hern�andez [7]. 

In this numerical example, only the yz plane of the 25-story building 
is analyzed (see Fig. 19b). For the yz plane, T*

1, α and γ1 are 2.09 s, 6.5 
and 1.8143, respectively [7]. It was assumed that ðE IÞS ¼ 1�
10100 N m2 and ka

j ¼ 1� 1015 N=m, where j ¼ 1, 2, 3,…, 25. A rigid 
circular foundation on the ground surface was adopted to explore SSI. 

Fig. 16. Total along-wind peak displacement profiles: yz plane of the 37-story building.  

Fig. 17. Total along-wind RMS acceleration profiles: xz plane of the 37-story building.  

Fig. 18. Total along-wind RMS acceleration profiles: yz plane of the 37-story building.  
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m0, Im;0 and r0 are 8.43 x 105 kg, 3.29 x 107 kg m2 and 12.5 m, 
respectively [8]. A comparison between the CTB continuous model [2] 
and the 3D FEM [7] is shown in Table 7 for the periods and effective 
modal masses of the fixed-base 25-story building, where a value of α ¼
6:5 develops an excellent match for the yz plane of the 25-story building 
because the evident nature of parallel coupling of the lateral resisting 
system. 

Four types of soil [49] were chosen to carry out the dynamic analysis 

of the 25-story building: (1) hard rock, (2) dense soil, (3) stiff soil and (4) 
soft soil. Table 8 summarizes parameters of the soils and the foundation 
of the 25-story building. 

For the soil parameters of Table 8, Table 9 shows the periods of vi-
bration and effective modal masses of the first four modes of vibration 
computed by the flexible-base CTB model. 

For a pre-design stage, it is assumed that the high-rise building has 
25 K-brace chevron linear FVDs (one per each story), in other words, this 
means that all magnifications factors fj(j¼1,2,3,…,25) are equal to 1. 
Assuming that ξd ¼ 0:15, the damping coefficients of the FVDs were 
computed for the 25-story building through the three distribution 
methods [29] (see Fig. 21). 

For the three distribution methods (UD, SSPD and SSSED), Fig. 21 
shows that the damping coefficients of FVDs of the 25-story building 
decrease as the soil flexibility increases. 

3.2.1. Earthquake-induced vibrations 
In this numerical example, only earthquake-induced vibrations are 

considered. The application of several recorded ground motions from 

Fig. 19. 25-story building in Mexico City.  

Fig. 20. Mass normalized mode shapes of the flexible-base 25-story building: yz plane (α ¼ 6.5).  

Table 7 
Periods and effective modal masses of the fixed-base 25-story building: yz plane 
[7].  

Mode Period [s] Effective modal mass [%] 

Fixed-base 
CTBðα ¼ 6:5Þ

Fixed-base 
3D FEM 

Fixed-base 
CTBðα ¼ 6:5Þ

Fixed-base 
3D FEM 

1 2.09 2.09 72.30 74 
2 0.62 0.62 10.57 17 
3 0.31 0.30 4.77 4.22  

Table 8 
Parameters of the soils and the foundation: yz plane of the 25-story building.  

Soil type vs  ρs[kg/m3]  Vs[m/s]  Gs[GPa]  kt[GN/m]  kθ[TN m]  ct[GN s/m]  cθ[GN s m]  

Hard rock 0.25 2700 2722 20 1140 139 3.02 95.7 
Dense soil 0.33 2400 500 0.6 35.9 4.66 0.516 17.5 
Stiff soil 0.48 1900 300 0.171 11.3 1.71 0.270 10.7 
Soft soil 0.49 1800 100 0.018 1.19 0.184 0.0857 3.45  
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different seismic sources that affect buildings in Mexico [50,54,55] will 
be carried out in future works. It was assumed that the 25-story building 
was subjected to the horizontal ground accelerations recorded at station 
SCT1 during the Mexico City earthquake of September 19, 1985. Station 
SCT1 is located on the lake bed zone (clay soil). The horizontal ground 

accelerations and elastic input energy spectrum with a modal damping 
ratio of 5% are shown in Fig. 22 for the Mexico City earthquake of 
September 19, 1985 at station SCT1; where the peak input energy per 
unit mass (21.83 m2/s2) is related to a period of vibration of 2.05 s. 

A time-history elastic analysis was carried out for the 25-story 

Table 9 
Periods and effective modal masses of the flexible-base 25-story building: yz plane (α ¼ 6.5). The mode shapes related to Table 9 are shown in Fig. 20.  

Mode Period [s] Effective modal mass [%] 

Hard rock Dense soil Stiff soil Soft soil Hard rock Dense soil Stiff soil Soft soil 

1 2.10 2.16 2.27 3.36 72.28 72.54 72.98 75.16 
2 0.62 0.62 0.62 0.66 10.55 10.66 10.88 13.68 
3 0.31 0.31 0.31 0.35 4.76 4.82 4.96 5.89 
4 0.18 0.18 0.18 0.23 2.76 2.89 3.20 2.71  

Fig. 21. Damper coefficient distribution for different design methods: yz plane of the 25-story building.  

Fig. 22. Mexico City earthquake of September 19, 1985: station SCT1 (lake bed zone).  

Fig. 23. Total seismic peak displacement profiles: yz plane of the 25-story building at station SCT1.  
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building when it is subjected to the horizontal ground accelerations 
shown in Fig. 22a. The soil-foundation parameters and the FVDs pa-
rameters were taken from Table 8 and Fig. 21, respectively. The total 
peak displacements are shown in Fig. 23, considering a structural 
damping of 5% for the first two modes of vibration of the fixed-base 
building. 

Fig. 23 shows that the smallest displacements occur on a soft soil 
because the first period in yz plane elongates too enough to avoid the 
resonance of the 25-story building (see Fig. 22 b). For the same soil type, 
the three distribution methods achieve practically the same total peak 
displacements for the yz plane of the 25-story building. On the other 
hand, the three distribution methods achieve a significant decrease in 
controlling earthquake-induced vibrations as the soil flexibility 
increases. 

4. Conclusions 

Low-rise buildings laterally deform like pure shear beams; however, 
in medium-rise to high-rise buildings, the flexural deformation is as 
significant as the shear deformation due to the evolution of lateral 
resisting systems. The most recent distribution methods for FVDs 
strongly depend on the fundamental mode of vibration, which changes 
depending on the soil flexibility and the type of lateral resisting system 
of the building. However, scientific literature shows that MDOF shear 
building models are commonly used to represent low-, medium- and 
high-rise buildings with FVDs, either with or without SSI. 

The CTB model seems the better model for estimating the frequencies 
and mode shapes in buildings with different lateral resisting systems, 
particularly in shear wall-frame buildings and tube-and-core construc-
tions with the parallel nature of the two-beam model in which transverse 
displacements due to bending and to shear are identical. In this paper, a 
flexible-base CTB model with FVDs is presented to compute the dynamic 
response in time domain of two high-rise buildings with different types 
of lateral deformation and considering different soil types and three 
different distribution methods for linear FVDs (UD, SSPD and SSSED). 
The proposed formulation is only valid for planar models, that is, it is not 
able to consider torsional effects. 

Accordingly, the following conclusions were obtained for the dy-
namic properties of the two high-rise buildings:  

(a) The first period of vibration significantly elongates as the soil 
flexibility increases. Conversely, the periods of higher modes 
slightly elongate as the soil flexibility increases.  

(b) For a pure shear behavior, a cumulative effective modal mass 
adding up to 90% of the total mass is reached when the first two 
modes of vibration are considered. On the other hand, the same 
cumulative effective modal mass is reached when the first four 
modes of vibration are considered for a lateral deformation close 
to a pure flexural beam.  

(c) For a lateral deformation close to a pure shear beam, the first 
effective modal mass decreases as the soil flexibility increases. 
Conversely, for a lateral deformation close to a pure flexural 

beam, the first effective modal mass increases as the soil flexi-
bility increases. 

On the other hand, the following conclusions were obtained for the 
same value of the supplemental damping ratio, different soil types and 
three different distribution methods for linear FVDs (UD, SSPD and 
SSSED):  

(d) For a UD, the damping coefficients of the FVDs increase as the 
flexural rigidity of the building decreases; which shows that the 
typical MDOF shear building model overestimates the damping 
coefficients of uniform FVDs in medium-rise to high-rise build-
ings, where the flexural deformation is as significant as the shear 
deformation.  

(e) For SSPD and SSSED methods, the damping coefficients of the 
FVDs vary along the height of the building depending on the 
lateral resisting system. For a lateral deformation close to a pure 
flexural beam, the damping coefficients of the FVDs are greater in 
the upper stories; whereas, for a lateral deformation close to a 
pure shear beam, the damping coefficient of the FVDs are greater 
in the lower stories.  

(f) For the three distribution methods (UD, SSPD and SSSED) and the 
same lateral deformation, the damping coefficients of the FVDs 
decrease as the soil flexibility increases.  

(g) For the same soil type and the same lateral deformation, the three 
distribution methods (UD, SSPD and SSSED) achieve practically 
the same total dynamic response.  

(h) For the three distribution methods (UD, SSPD and SSSED) and the 
same lateral deformation, there is a significant decrease in con-
trolling earthquake-induced vibrations and wind-induced vibra-
tions as the soil flexibility increases. 

In future works, nonlinear FVDs will be studied by the proposed 
model through existing linearization procedures considering several 
ground motions from different seismic sources and several simulated 
along-wind time series with different turbulence intensities. In addition, 
the proposed CTB scheme will be implemented with incorporation of an 
optimal design strategy for the FVD distribution along the building 
height. On the other hand, possible extensions of the procedure to 
spatial 3D frames will also be studied in future works. 
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APPENDIX 

The pre-design stage of buildings with FVDs is usually based on fixed-base MDOF shear building models [9], where mj(j¼1,2,3,…,N), kj(j¼1,2,3,…, 
N) and cj(j¼1,2,3,…,N) represent, respectively the mass, the lateral stiffness and the damping coefficient of the jth story of the shear building. 
Establishment and solution of the equations of motion of a fixed-base MDOF shear building with linear FVDs has been widely studied in literature [9]. 

The 37-story building (see Fig. 4) deforms like a pure shear beam in the xz plane ðα →∞Þ, on the contrary, it has intermediate modes of lateral 
deformation in the yz planeðα ¼ 3:5Þ. Therefore, the validation of the flexible-base CTB model with FVDs (see Fig. 2) only can be performed for the xz 
plane of the 37-story building if it is assumed a hard rock condition. Accordingly, it is assumed that the fixed-base MDOF shear building model with 
FVDs [9] can reproduce the same results for the xz plane of the 37-story building on hard rock. 

The lateral stiffness of the columns of the 37-story building (see Fig. 4) decreases along height (see Table 3); however, Miranda and Reyes [45] 
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concluded that maximum interstory drift demands in the fixed-base CTB continuous model [2] were not significantly influenced by reductions in 
stiffness along the height, provided that no abrupt reductions in stiffness occur. Assuming a fixed-base shear building model in the xz plane of the 
37-story building, mj(j¼1,2,3,..,36), m37 andkj(j¼1,2,3,..,37) are 9.1871 x 105 kg, 4.5935 x 105 kg and 1.5071 x 109 N/m, respectively. For the 
horizontal ground accelerations shown in Fig. 11a, the damping coefficients cj(j¼1,2,3,…,N) are computed assuming a Rayleigh damping [46] and 
structural damping ratios equal to 5%. 

Table A.1 shows the periods of vibration and effective modal masses of the first four modes of vibration computed by both models for the xz plane 
of the 37-story building.  

TABLE A.1Periods and effective modal masses of the 37-story building on hard rock: xz plane  

i Period [s] Effective modal mass [%] 

Fixed-base MDOF shear building CTB on hard rockðα ¼ 1 � 10100Þ Fixed-base MDOF shear building CTB on hard rockðα ¼ 1 � 10100Þ

1 3.65 3.65 81.06 80.97 
2 1.22 1.22 9.01 8.93 
3 0.73 0.73 3.24 3.16 
4 0.52 0.53 1.65 1.57  

Tables A.2 shows the elastic seismic response at rooftop level when the 37-story building is subjected to the horizontal ground accelerations shown 
in Fig. 11a.  

TABLE A.2Total seismic peak displacements [cm] at rooftop level for a hard rock condition: xz plane  

Design methodology Fixed-base MDOF shear building CTB on hard rock ðα ¼ 1 � 10100Þ

No FVDs 77.72 77.77 
UD for 37 K-brace chevron FVDs (ξd ¼ 15%)  45.99 46.13 
SSPD for 37 K-brace chevron FVDs (ξd ¼ 15%)  46.81 46.96 
SSSED for 37 K-brace chevron FVDs (ξd ¼ 15%)  47.45 47.56  

Tables A.1 and A.2 show that periods, effective modal masses and elastic seismic response are equal for engineering purposes, which validates the 
flexible-base CTB model with FVDs (see Fig. 2). 
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