
Journal of Systems Architecture 110 (2020) 101779

Contents lists available at ScienceDirect

Journal of Systems Architecture

journal homepage: www.elsevier.com/locate/sysarc

Enhancing Internet of Things Security using Software-Defined Networking

Bander Alzahrani a , ∗ , Nikos Fotiou

b

a Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia
b Mobile Multimedia Laboratory, Department of Informatics, School of Information Sciences and Technology, Athens University of Economics and Business, Athens,

Greece

a r t i c l e i n f o

Keywords:

Access control

Software-Defined Networking

Constrained application protocol

Internet of Things

a b s t r a c t

Access control technologies are fundamental for addressing the security and privacy requirements of the Internet

of Things (IoT). This paper proposes an access control solution for Constrained Application Protocol (CoAP)-

based IoT services. The proposed solution considers a network of a single provider that interconnects various

IoT endpoints. It leverages the Software-Defined Networking (SDN) paradigm and implements application aware

policy enforcement at the network level. All operations are transparent to the IoT endpoints and no modifications

are required to the IoT communication protocol. Furthermore, our solution is built on standard OpenFlow, hence

it is realistic and it can be easily deployed to an existing network. We prove the feasibility of our solution through

a proof of concept implementation using network emulation.

1

c

r

h

m

p

r

i

o

t

d

b

c

t

a

c

t

c

o

e

t

t

t

a

r

l

f

t

“

t

b

w

n

c

s

D

a

t

o

c

t

h

R

A

1

. Introduction

Nowadays, many aspects of our life are controlled–or assisted–by
yber-physical systems. The so-called Internet of Things (IoT) is al-
eady used in many domains, including agriculture, patient monitoring,
ome automation, well-being, smart cities, and many others. The IoT is
ainly composed of devices which may be deprived of computational
ower, continuous network connectivity, energy, or even physical secu-
ity. Therefore, it comes as no surprise that applying security solutions
n this environment is a challenging problem. In this paper, we focus
n a particular aspect of security, that is access control. We consider
he case of a network of a single operator that interconnects various IoT
evices. These devices provide resources or actuation services, and can
e accessed using the Constrained Application Protocol(CoAP) [1] .

In order to motivate our solution, we consider the use case of a smart
ity management system. This system is composed of IoT sensors (e.g.,
emperature sensors) and actuators (e.g., switches). Our goal is to en-
ble system administrators to define context-aware access control poli-
ies that will mediate access to the IoT devices. More formally, we want
o provide a Mandatory Access Control (MAC) solution where policies are
entrally defined by the system administrators and cannot be modified
r overridden by end users. An example of such policy, in our refer-
nce system, is the case of a switch that turns on and off street lights; in
hat case the system administrator could create an access control policy
hat defines that “street lights switches can be turned on after 8pm and
urned off after 6am, and all operations should originate from the man-
gement center building ”. It can be observed that this policy defines the
∗ Corresponding author.

E-mail address: baalzahrani@kau.edu.sa (B. Alzahrani).

t

ttps://doi.org/10.1016/j.sysarc.2020.101779

eceived 29 October 2019; Received in revised form 29 January 2020; Accepted 3 A

vailable online 26 April 2020

383-7621/© 2020 Elsevier B.V. All rights reserved.
esource (switch), the action (turn on/off), and defines constrains re-
ated to the time that an action can take place and the physical location
rom which it can originate.

It can be argued that it is possibly to implement such an access con-
rol system by following a distributed approach, using more powerful
gateways ” attached to the IoT devices. We postulate, however, that
his approach has many disadvantages, such as (i) policy management
ecomes difficult, since policy updates have to be “pushed ” to all gate-
ays, (ii) action “logging ” is harder, (iii) a gateway may not have the
ecessary information to perform an access control decision (e.g., the lo-
ation from which a request originated), and (iv) unauthorized requests
till use network resources hence, they may be used for attacks such as
enial of Service (DoS). Instead, in this paper we follow a centralized
pproach where access control decisions are made by a centralized en-
ity and they are enforces close to message senders. In order to achieve
ur goal, we leverage Software-Defined Networking (SDN) [2] and Edge
omputing [3] paradigms, and the OpenFlow [4] protocol. In summary,
his paper makes the following contributions:

• We design, build, and evaluate a mandatory access control (MAC)
system for the IoT.

• We propose a fine-grained context-aware access control mechanism
that operates over network flows.

• We make our solution transparent to IoT endpoints.
• We build our solution using standardized protocols without requir-

ing any modification.

The rest of this paper is organized as follows. In Section 2 , we in-
roduce CoAP and SDN, and we discuss related work in this area. We
pril 2020

https://doi.org/10.1016/j.sysarc.2020.101779
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sysarc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysarc.2020.101779&domain=pdf
mailto:baalzahrani@kau.edu.sa
https://doi.org/10.1016/j.sysarc.2020.101779

B. Alzahrani and N. Fotiou Journal of Systems Architecture 110 (2020) 101779

g

i

a

2

2

H

c

t

U

o

d

t

o

y

o

a

w

t

m

i

p

f

c

c

p

2

t

n

d

“

t

w

fl

i

c

p

a

f

s

2

r

t

t

C

c

n

o

o

p

c

B

i

m

w

t

m

O

t

t

i

a

r

s

t

s

g

l

F

f

o

p

s

c

m

t

e

c

n

a

e

3

3

d

S

(

N

f

N

t

t

(

s

c

a

t

a

t

r

t

i

C

i

a

o

1 This assumption has been made for facilitating the implementation of our

solution. Our implementation can be extended to support packet fragmentation.

In any case, considering that
ive a high level overview of our system in Section 3 , and we present
ts design in Section 4 . Finally, we evaluate our approach in Section 5 ,
nd present our conclusions and plans for future work in Section 6 .

. Background and related work

.1. The constrained application protocol

The Constrained Application Protocol (CoAP) [1] aims to become the
TTP equivalent for the IoT. CoAP specifies two main entities, the CoAP

lient and the CoAP server . A CoAP server offers a resource which is iden-
ified by a CoAP-URI, i.e., a URI that follows the same syntax as HTTP
RIs. A CoAP client may request to access or modify a resource using
ne of the CoAP methods: GET, PUT, POST, DELETE. CoAP has been
esigned to be used over unreliable transport protocols (e.g., UDP) for
his reason it specifies acknowledgment mechanisms. A salient feature
f CoAP is that it allows CoAP clients to request a resource that is not
et available. In that case, the CoAP server acknowledges the reception
f the request and responds whenever the requested resource becomes
vailable: in order for a CoAP client to be able to match a response
ith a request, it includes a token in the request, which is repeated by

he server in the response. Our solution takes advantage of this token
echanism.

In addition to the two main entities, CoAP RFC (i.e., RFC 7257) spec-
fies an optional entity, i.e., the CoAP proxy. A CoAP proxy can be trans-
arent, or clients and/or servers may be aware of it. Proxies are used
or providing additional functionality (e.g., caching), as well as proto-
ol translation (e.g., CoAP-to HTTP proxies and vice versa). Our solution
onsiders CoAP proxies that translates CoAP messages into the appro-
riate protocol invocations of our system.

.2. Software-Defined Networking

Software-Defined Networking (SDN) [2] is an emerging technology
hat has received wide attention and has already been adopted by major
etwork providers. SDN decouples the network control plane from the
ata forwarding plane. The latter is implemented by SDN switches using
rules ” defined by a (logically) centralized component, i.e., the SDN con-

roller . Using a separate control network, the controller “installs ” flow-
ide rules to switches that specify how a switch should handle network
ows. The communication between SDN switches and the controller is

mplemented using protocols such as the OpenFlow protocol [4] .
Flow rules include filters that are applied over various fields of in-

oming or outgoing flows, and define the actions that a switch should
erform in case of a match. Generally, all flows should be matched to
 rule: in case a switch is not able to find a rule for a specific flow it
orwards the corresponding packet to the controller which in return re-
ponds with the appropriate instructions.

.3. Related work

SDN technology as enabler for the IoT has been studied by numerous
esearch efforts (for a survey in this area interested readers are referred
o [5,6]). Our work is orthogonal to these efforts. We are concerned with
he application layer and we design an access control mechanism for
oAP-based IoT services. Our mechanism is compatible with any proto-
ol that uses the request-response communication paradigm to retrieve
amed resources, and has support for proxies (e.g., HTTP). Similarly,
ur solution concerns the communication among IoT endpoints and it is
rthogonal to systems that secure access to IoT data stored in a centralized

owerful node (see for example [7])
Hong et al. [8] propose an SDN-based framework for enforcing ac-

ess control policies on user mobile devices in corporate networks (a.k.a
ring Your Own Device–BYOD). In contrast to our work, the solution

n [8] considers a legacy network without SDN switches and proposes
odifications to user devices. Our work follows the opposite approach:
e make no modifications to end-devices and we rely on SDN switches
o enforce our access control decisions.

Sonchack et al. [9] leverage SDN to provide in-network security
echanisms. However, in their approach they do not rely on standard
penFlow, instead they propose and implement OpenFlow extensions

hat enable SDN switches to evaluate more complex rules. With these ex-
ensions, SDN switches can perform security-related operations without
nteracting with the controller. Similarly, Voellmy et al. [10] proposed
 language, code-named Procera, for defining more complex rules that
eact in conditions such as user authentication, or time of the day. Our
olution does not require modifications to the OpenFlow protocol. Fur-
hermore, in order to decrease the amount of traffic between the SDN
witches and the controller, we shift some of the control plane intelli-
ence from the controller to the edge of the network.

Various systems, such as FRESCO [11] and OpenSec [12] , define high
evel access control definition languages that are translated into Open-
low rules. These systems can by used by our solution as mechanisms
or creating access control policies.

The system proposed by River et al. [13] has the same goals with
ur work but in a different context: this system is tailored to robotic ap-
lications and the Robotic Operations System (ROS). ROS is a publish-
ubscribe system which in addition to the communicating endpoint, it
onsiders an intermediate entity responsible for the “topic ” manage-
ent. The proposed solution requires modifications (in the form of ex-

ensions) to all elements of a ROS system.
Papachristou et al. [14] propose runtime and routing policies for

nhancing the security and the quality of service in SDN-based IoT ar-
hitectures. The work in that paper is a high level approach and does
ot discuss how these policies can be implemented. Our work defines
 mechanism that allows SDN controllers and network edge nodes to
nforce user-defined access control policies.

. System overview

.1. Underlay architecture

The underlay architecture of our solution is based on the systems
escribed in [15] and [16] . In the core of our architecture there is an
DN network, at the edges of which there exist Network Attachment Points

NAPs). Each NAP is identified by a NAP id and all NAPs know all NAP id s .
APs are connected to the SDN network using an SDN switch; in the

ollowing, when it is stated that an “OpenFlow rule is installed in a
AP ” it is meant in the SDN which that the NAP uses for connecting to

he network.
There are CoAP endpoints (i.e., CoAP clients and servers) attached

o each NAP. Each CoAP server offers a resource which is associate with
at least) one CoAP URI. It should be noted that there can be multiple re-
ources, belonging to different CoAP servers, sharing the same URI (e.g.,
oap://city/lights). Each NAP knows all CoAP URIs of all CoAP servers
ttached to it (e.g., through a configuration file or a CoAP discovery pro-
ocol such as CoRE resource directory [17]). NAPs act as CoAP proxies
nd CoAP clients are configured to communicate through the proxy of
he NAP in which they are attached. Therefore, all CoAP requests are
outed through a NAP and NAPs are able to parse these requests and ex-
ract information. All CoAP messages are sent using the IPv6 protocol,
t is assumed that all CoAP requests include a token, and that a single
oAP message fits in a single network packet, i.e., packet fragmentation

s not required. 1

Packet forwarding among NAPs is implemented using Bloom filters
pproach [18] which has been described in [19] . In a nutshell, each link
f the core network is identified by a bit array , referred to as the link

B. Alzahrani and N. Fotiou Journal of Systems Architecture 110 (2020) 101779

i

fi

i

a

o

a

F

I

l

t

p

p

r

r

o

i

b

p

c

N

N

r

f

w

e

e

3

(

m

P

a

t

n

i

a

t

h

e

(

r

t

o

w

3

i

t

o

a

p

t

p

p

a

t

c

t

h

c

s

t

4

4

p

fi

a

p

i

i

d

i

P

a

4

dentifier; the path that a packet should follow is encoded in a Bloom
lter, referred to as the path identifier, constructed by ORing the link

dentifiers of the appropriate links. Path identifiers are stored in the IPv6
ddress fields, hence it is easy to construct the appropriate flow rules in
rder to achieve Bloom filter-based forwarding. In particular, and from
 high level perspective, 2 each SDN switch is configured with an Open-
low rule per interface, this rule performs a subnet mask check on the
Pv6 destination address (i.e., it checks if the destination address be-
ongs to the network defined by the netmask) and if the check succeeds
he packet is forwarded from the corresponding interface; this check is
erformed for all interfaces, hence a packet may be forwarded to multi-
le interfaces (achieving this way multicast). The netmask used in each
ule is the link identifier of the corresponding link. 3 The OpenFlow rules
equired for implementing Bloom filter-based forwarding are installed
nce, during the network setup phase.

Path identifiers in our architecture are bi-directional, i.e., a path
dentifier used for forwarding a packet from a NAP A to a NAP B , can
e used for forwarding packets from B to A as well. Another interesting
roperty of path identifiers is that they can be combined to create multi-
ast trees. For example, given a path identifier Path A → B of the path from
AP A to NAP B and another path identifier Path A → C of the path from
AP A to NAP C , then Path A → B | Path A → C (where | denotes bitwise OR)

esults to a new path identifier that can be used for multicasting packets
rom NAP A to NAPs B and C .

Finally, our system assumes that the SDN controller knows the net-
ork topology, all link identifiers, and the CoAP URIs associated with

ach NAP, and it provides a “Northbound ” API that allows resource own-
rs to install, update, or remove access control policies.

.2. System entities and interactions

Our system is composed of the following entities.

• System administrator . This is a real world entity (although this role
can be simultaneously assigned to multiple real world entities) which
is responsible for defining the access control policies that govern
access to IoT resources.

• CoAP clients . These are applications that interact with CoAP servers
(see below) using the CoAP protocol. CoAP clients abide by the CoAP
RFC and are oblivious about our access control solution.

• CoAP servers . These are applications that may provide a resource
or an actuation service using the CoAP protocol. Similar to CoAP
clients, CoAP servers abide by the CoAP RFC and are oblivious about
our access control solution.

• Policy Decision Point (PDP). The PDP is a centralized system en-
tity located alongside the SDN controller. It is responsible for inter-
preting an access control policy and deciding (based on this policy)
whether or not a CoAP operation can be permitted.

• Policy Enforcement Point (PEP). The PEP is a distributed system
entity located in each NAP. It is responsible for implementing the
access control decision of the PDP.

From a high level perspective these entities interact with each other
through the underlay architecture) as follows (Fig. 1). The system ad-
inistrator uses the controller’s northbound API to interact with the
DP and define the desired access control policies. A CoAP client issues
 CoAP request that reaches the NAP in which the client is attached. If
he PEP of the NAP does not know how to handle this request it commu-
icates with the PDP (green line). The PDP inspects the request, exam-
nes if there exists any applicable access control policy, and makes the
ppropriate decision (red line). Based on the PDP decision, the PEP ei-
her allows the request to reach the intended CoAP server(s) or drops it
2 Interested readers can find details about this approach in [19]
3 OpenFlow specifications allow “arbitrary ” network masks, i.e., masks do not

ave be a series of 1s followed by 0s, instead they can be any bit array with size

qual to the size of an IPv4/v6 address.

c

a

i

a
orange line). A positive PDP decision is accompanied by an OpenFlow
ule which is used by the NAP in order to forward the CoAP request to
he network. This rule may have a limited lifetime, defined (implicitly
r explicitly) by the access control policy on which the policy decision
as based.

.3. Security assumptions

In this paper we assume that the SDN network is trusted, therefore
t is not possible for an attacker to affect the operation of the SDN con-
roller, to view/edit SDN control messages, or manipulate the flow rules
f the SDN switches. Furthermore, NAPs are also considered trusted and
 secure “network attachment ” process is assumed, i.e., it should not be
ossible for an attacker to attach a new NAP to the network nor to at-
ach himself to an existing NAP by bypassing the network attachment
rocess.

Furthermore, our system assumes that system administrators are
roperly authenticated, therefore access control policies are protected
gainst unauthorized modifications. Similarly, NAPs are able to authen-
icate CoAP servers and verify the ownership of a CoAP URI.

Our system treats all CoAP clients as anonymous users and it is not
oncerned with CoAP clients’ authentication. Similarly, it is assumed
hat the secrecy and the integrity of CoAP messages is protected using
igher layer mechanisms which are out of the scope of this paper.

Given the above security assumptions, the threat model of our system
onsiders malicious CoAP clients wishing to access a protected CoAP
erver; although these CoAP clients are authorized to attach to a NAP
hey are not authorized to access the resource in question.

. System design

.1. Policy definition

Policies are expressed in our system using an adapted version of the
olicy definition language defined in [8] . This XML-based language de-
nes four basic elements:

• Target . This element defines the CoAP-URI of the resource(s) con-
trolled by that policy. Wildcard characters can be used to indicate a
CoAP-URI prefix.

• Match . This element defines a filter, in the form of an OpenFlow rule,
that can be used for associating network flows to policies (e.g., a
policy is applied if a flow has originated by a particular mac address–
that may correspond to the MAC address of a NAP).

• Predicate . This element defines filters for context-aware matching.
Currently the predicate element supports time-based and CoAP
method-based filtering.

• Actions . This element defines the OpenFlow rules that should be in-
stalled in the NAP that sent the request.

Two policies should not use the same values for the target, match,
nd predicate elements. The actions element allows the definition of a
ath, which can be used as a variable in the OpenFlow rules. The path
dentifier is calculated at runtime and the corresponding rules are mod-
fied accordingly. Figure 1 shows an example of an access control policy
efinition. This policy is evaluated when the URI “coap://city/lights ” is
nvoked form a particular network location, after 8pm, using the CoAP
UT method; a path identifier is calculated towards some NAPs and the
ppropriate OpenFlow rule is created.

.2. NAP to controller communication

In the following subsection we will present operations that require
ommunication between a NAP and the SDN controller. This function-
lity has been implemented as follows. As already discussed each NAP
s connected to an SDN switch. These switches are configured with
n OpenFlow rule that instructs them to forward all packets that use

B. Alzahrani and N. Fotiou Journal of Systems Architecture 110 (2020) 101779

Fig. 1. High-level overview of the proposed solution. A

CoAP request from a client is forwarded to the PDP (green

line); the PDP installs the appropriate rules (red line); the

PEP forwards the request to the CoAP server (orange line).

(For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this

article.)

Listing 1. Access control policy definition.

“

f

“

S

o

s

i

“

4

w

S

s

r

t

t

e

N

a

I

p

n

c

a

r

t

C

a

c

i

t

t

a

F

5

a

t

e

a

m

m

s

l

4 https://libcoap.net/ .
00:00:00:00:00:01 ” as an Ethernet destination to the controller. There-
ore, if a NAP sets the Ethernet destination address of a packet to
00:00:00:00:00:01 ”, this packet will eventually reach the controller.
imilarly, when a controller receives such a packet, it creates a Packet-

ut OpenFlow message, that contains the controller’s response and in-
tructs the SDN switch to forward this message to port in which the NAP
s connected.

In the rest of this paper, we hide this detail and we simply say that
a NAP sends a packet to the controller ”.

.3. CoAP request and response handling

Whenever a CoAP request arrives to a NAP, the NAP should decide
hich path identifier to use for forwarding the request to the network.
imilarly, whenever a CoAP response arrives from the network, a NAP
hould be able to decide the CoAP client to which it will forward the
esponses. In order to achieve this functionality, each NAP maintains
wo data structures, a request forwarding table and a pending responses

able .
The request forwarding table contains rows of the form [URI, Path ID ,

xpires] . Whenever a packet that contains a CoAP request arrives at a
AP, the NAP extracts the URI of the resource included in the request,
nd searches the forwarding table for an existing, non-expired entry.
f an entry is found, the NAP replaces the IPv6 destination field of the
acket with the corresponding path identifier, and forwards it to the
etwork. Otherwise, the NAP sends the request to the controller, the
ontroller extracts all the required information, evaluates the appropri-
te access control policies, and responds accordingly. If the controller’s
esponse includes a path identifier, then the NAP updates the forwarding
able, modifies the packet, and sends it to the network.

The pending responses table contains rows of the form [token,

lient IP] . Whenever a packet that contains a CoAP request arrives at
 NAP, the NAP extracts the CoAP client IP address and the token in-
luded in the request and updates the pending responses table accord-
ngly. The corresponding CoAP response must include the same token,
herefore, whenever a response arrives at a NAP, the NAP extracts the
oken, retrieves the client’s IP address from the pending responses table
nd replaces the path identifier of the packet with the clients address.
inally, the NAP forwards the response to the client.

. Evaluation

We implemented our solution using Open vSwitch [20] SDN switch
nd the POX [21] SDN controller. We implemented CoAP endpoints and
he CoAP proxy (located at the NAPs) using the libcoap library. 4 We
valuated our implementation using the mininet network emulator [22] .

Our solution requires from the NAPs to maintain two data structures,
s well as to occasionally forward CoAP requests to the controller. We
easure this overhead using the workload of the temperature measure-
ent sensors deployed in the testbed of SmartSantander, a large-scale

mart city deployment located in Santander, northern Spain. The work-
oad, as reported in [23] , is composed of 70 temperature sensors, gener-

https://libcoap.net/

B. Alzahrani and N. Fotiou Journal of Systems Architecture 110 (2020) 101779

Fig. 2. Number of entries of the request forwarding table, and number of mes-

sages to the controller, as a function of the path identifier timeout.

a

s

C

a

fi

f

s

o

r

t

n

o

c

T

a

i

t

c

t

f

f

a

o

p

r

w

a

p

5

c

C

a

t

m

p

l

t

t

b

r

Fig. 3. Number of entries of the request forwarding table, and number of mes-

sages to the controller, as a function of the number of clients of a NAP.

c

i

a

s

5

i

a

N

c

m

t

b

c

p

t

c

o

6

c

a
ting a temperature measurement approximately every 5 min. We con-
ider that each temperature sensor is identified by a CoAP URI. For each
oAP URI there is a single access control policy that “accepts ” a request
nd creates a path identifier: the expiration time of each path identi-
er is used as a variable in our measurements, and as we discuss in the

ollowing subsection this creates a security-performance tradeoff. We as-
ume that each client-side NAP can accommodate a maximum number
f clients (used as a variable in our experiments, as well). Each client
equests a randomly selected sensor measurement. Clients’ request in-
erval follow a normal distribution with average 1 min. The maximum
umber of entries that responses table may contain equals to the number
f clients connected to a NAP. This represents the extreme case that all
lients have made a CoAP request and no response has been received.
he size of each entry in this table is 24 bytes (16 bytes for client IPv6
ddress and 8 bytes for the CoAP token–this is the maximum value spec-
fied by [1])).

We now measure the number of entries in the request forwarding
able of a NAP, as well as the number of requests a NAP sends to a
ontroller. Each experiment begins with a warming up period equal to
he path identifier timeout. Then we continue to run the experiment
or 1 h. Fig. 2 shows the maximum number of entries of the request
orwarding table and the total number of requests sent to the controller
s function of the path identifier timeout. In this experiment the number
f CoAP clients per NAP is set to 10. The same experiment has been
erformed with the number of clients varying from 5 to 20 and the
esults follow a similar pattern.

Fig. 3 shows the maximum number of entries of the request for-
arding table and the total number of requests sent to the controller
s function of the number of clients per NAP. In this experiment the
ath expiration time is set to 10 min.

.1. Security evaluation

Our solution does not consider network properties of the clients (e.g.,
urrently it is not possible to define an access control policy based on a
oAP client network address), neither considers the context of the client
pplications (e.g., it does not perform user authorization and access con-
rol.) Furthermore, our solution requires that NAPs are trusted, since a
isbehaving PEP (located in a NAP) may ignore a PDP decision (or a
ath identifier timeout) and use a path identifier that is already known.

An interesting security-performance tradeoff of our solution is re-
ated to the path identifier timeout. As shown in the previous subsec-
ion, large timeouts result in significantly less messages sent to the con-
roller. This not only decreases the overhead imposed to the controller,
ut it also results in CoAP clients experiencing faster responses to their
equests (since a request is forwarded by the NAP without communi-
ating with the controller). On the other hand, while a path identifier
s valid a CoAP client may access a resource for which is not anymore
uthorized. For this reason, path identifiers timeouts must be carefully
elected.

.2. Discussion

Our system takes full advantage of the forwarding solution presented
n [19] . All OpenFlow rules required for implementing this approach
re installed in all SDN switches during setup: once a packet leaves a
AP, it is forwarded directly to its destination(s) without any further
ommunication with the controller. Furthermore, and as discussed in
ore detail in [15] , the number of forwarding rules in only related to

he number of NAPs and not to the number of the IoT devices.
Another aspect that affects the performance of our system is the num-

er and the complexity of access control policies. Of course, this is a
oncern that all access control systems share. For this reason, in this pa-
er we decided to not focus on this aspect. However, it should be noted
hat the only entity affected by the complexity of the access control poli-
ies is the (centralized) PDS: all other entities, including IoT devices, are
blivious to the policies.

. Conclusions and future work

In this work we proposed an SDN-based solution for enforcing access
ontrol in CoAP-based IoT applications. Our solution does not require
ny modification to the IoT endpoints, and it is built using standard

B. Alzahrani and N. Fotiou Journal of Systems Architecture 110 (2020) 101779

O

i

a

p

e

u

o

c

f

D

i

t

A

a

T

fi

R

[

[

[

[

[

[

[

[

[

[

[

[

[

[

penFlow functionality. Our solution can be deployed using existing
nfrastructure and imposes minimal overhead.

A strong security requirement of our solution is that the network
ttachments points (NAPs), which also act as the policy enforcement
oints (PEPs) to be trusted and to not use path identifiers that have
xpired. Our approach can be protected against misbehaving NAPs by
sing mechanisms that render a path identifier useless after the time-
ut period, e.g., link identifiers may not be constant, instead they may
hange after some time related to the path identifier timeout. It is in our
uture work plans to explore solutions towards this direction.

eclaration of Competing Interests

The authors declare that they have no known competing financial
nterests or personal relationships that could have appeared to influence
he work reported in this paper.

cknowledgments

This project was funded by the Deanship of Scientific Research (DSR)
t King Abdulaziz University , Jeddah, under grant no. G-235-611-1440 .
he author, therefore, acknowledge with thanks DSR for technical and
nancial support.

eferences

[1] Z. Shelby , K. Hartke , C. Bormann , The Constrained Application Protocol (CoAP),
RFC, IETF, 2014 .

[2] W. Xia, Y. Wen, C.H. Foh, D. Niyato, H. Xie, A survey on software-
defined networking, IEEE Commun. Surv. Tutor. 17 (1) (2015) 27–51,
doi: 10.1109/COMST.2014.2330903 .

[3] A. Yousefpour , C. Fung , T. Nguyen , K. Kadiyala , F. Jalali , A. Niakanlahiji , J. Kong ,
J.P. Jue , All one needs to know about fog computing and related edge computing
paradigms: a complete survey, J. Syst. Archit. 98 (2019) 289–330 .

[4] A. Lara, A. Kolasani, B. Ramamurthy, Network innovation using open-
flow: a survey, IEEE Commun. Surv. Tutor. 16 (1) (2014) 493–512,
doi: 10.1109/SURV.2013.081313.00105 .

[5] N. Bizanis , F.A. Kuipers , Sdn and virtualization solutions for the internet of things:
a survey, IEEE Access 4 (2016) 5591–5606 .

[6] S. Bera , S. Misra , A.V. Vasilakos , Software-defined networking for internet of things:
asurvey, IEEE Internet Things J. 4 (6) (2017) 1994–2008 .

[7] M. Wazid , A.K. Das , R. Hussain , G. Succi , J.J. Rodrigues , Authentication in cloud–
driven IoT-based big data environment: survey and outlook, J. Syst. Archit. 97
(2019) 185–196 .

[8] S. Hong , R. Baykov , L. Xu , S. Nadimpalli , G. Gu , Towards SDN-Defined Pro-
grammable BYOD (Bring Your Own Device) security, 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San Diego, California, USA,
February 21–24, 2016, 2016 .

[9] J. Sonchack , J.M. Smith , A.J. Aviv , E. Keller , Enabling practical software-defined net-
working security applications with OFX, 23rd Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2016, San Diego, California, USA, February 21–24,
2016, 2016 .

10] A. Voellmy , H. Kim , N. Feamster , Procera: A language for high-level reactive network
control, in: Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, in: HotSDN ’12, ACM, New York, NY, USA, 2012, pp. 43–48 .

11] S. Shin , P. Porras , V. Yegneswaran , M. Fong , G. Gu , M. Tyson , FRESCO: modular
composable security services for software-defined networks, Internet Society NDSS.,
2013 .
12] A. Lara , B. Ramamurthy , Opensec: policy-based security using software-defined net-
working, IEEE Trans. Netw. Serv. Manage. 13 (1) (2016) 30–42 .

13] S. Rivera , S. Lagraa , C. Nita-Rotaru , S. Becker , R. State , Ros-defender: Sdn-based
security policy enforcement for robotic applications, in: 2019 IEEE Security and
Privacy Workshops (SPW), 2019, pp. 114–119 .

14] K. Papachristou , T. Theodorou , S. Papadopoulos , A. Protogerou , A. Drosou , D. Tzo-
varas , Runtime and routing security policy verification for enhanced quality of ser-
vice of IoT networks, in: 2019 Global IoT Summit (GIoTS), 2019, pp. 1–6 .

15] N. Fotiou, V.A. Siris, G. Xylomenos, G.C. Polyzos, K.V. Katsaros, G. Petropoulos,
Edge-icn and its application to the internet of things, in: 2017 IFIP Networking Con-
ference (IFIP Networking) and Workshops, 2017, pp. 1–6, doi: 10.23919/IFIPNet-
working.2017.8264880 .

16] N. Fotiou, D. Mendrinos, G.C. Polyzos, Edge-assisted traffic engineering and ap-
plications in the IoT, in: Proceedings of the 2018 Workshop on Mobile Edge
Communications, in: MECOMM’18, ACM, New York, NY, USA, 2018, pp. 37–42,
doi: 10.1145/3229556.3229561 .

17] Z. Shelby , K. Koster , C. Bormann , P. van der Stok , C. Amsuess , CoRE Resource Di-
rectory, Internet-draft, IETF, 2019 .

18] B.H. Bloom , Space/time trade-offs in hash coding with allowable errors, Commun
ACM 13 (7) (1970) 422–426 .

19] M.J. Reed, M. Al-Naday, N. Thomos, D. Trossen, G. Petropoulos, S. Spirou, Stateless
multicast switching in software defined networks, in: 2016 IEEE International Con-
ference on Communications (ICC), 2016, pp. 1–7, doi: 10.1109/ICC.2016.7511036 .

20] B. Pfaff, J. Pettit , T. Koponen , E. Jackson , A. Zhou , J. Rajahalme , J. Gross , A. Wang ,
J. Stringer , P. Shelar , K. Amidon , M. Casado , The design and implementation of open
vswitch, in: 12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), USENIX Association, Oakland, CA, 2015, pp. 117–130 .

21] N. Gude , T. Koponen , J. Pettit , B. Pfaff, M. Casado , N. McKeown , S. Shenker , NOX:
Towards an operating system for networks, SIGCOMM Computer Communications
Review 38 (3) (2008) 105–110 .

22] B. Lantz , B. Heller , N. McKeown , A network in a laptop: Rapid prototyping for soft-
ware-defined networks, in: Proceedings of the 9th ACM SIGCOMM Workshop on Hot
Topics in Networks, in: Hotnets-IX, ACM, New York, NY, USA, 2010, pp. 19:1–19:6 .

23] V.A. Siris , N. Fotiou , A. Mertzianis , G.C. Polyzos , Smart application-aware IoT data
collection, J. Reliab. Intell. Environ. 5 (1) (2019) 17–28 .

Bander A Alzahrani is an associate professor at King Ab-
dulaziz University, Saudi Arabia. He completed his M.Sc. in
Computer Security (2010), and his Ph.D. in Computer Science
(2015), both from University of Essex , United Kingdom. His
research interests include Wireless sensor networks, Informa-
tion centric networks, Bloom filter data structure and its ap-
plications, secure content routing, authentication protocols in
IoT. Bander has published more than 37 research papers in
International Journals and conferences.

NIKOS FOTIOU received the Dipl. in information and com-
munication systems engineering from the University of the
Aegean, Samos, Greece in 2005, the M.Sc. degree in Internet-
working from the Royal Institute of Technology (KTH), Stock-
holm, Sweden in 2007, and the Ph.D. degree in computer sci-
ence, for the Athens University of Economics and Business
(AUEB), Athens, Greece, in 2014. Since 2014, he has been
a Researcher in the Mobile Multimedia Laboratory at AUEB.
His research interests include future Internet architectures, se-
curity and privacy, IoT systems, and applications of the dis-
tributed ledgers technology.

https://doi.org/10.13039/501100004054
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0001
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0001
https://doi.org/10.1109/COMST.2014.2330903
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0003
https://doi.org/10.1109/SURV.2013.081313.00105
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0005
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0006
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0007
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0008
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0009
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0010
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0011
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0012
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0013
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0014
https://doi.org/10.23919/IFIPNetworking.2017.8264880
https://doi.org/10.1145/3229556.3229561
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0017
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0018
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0018
https://doi.org/10.1109/ICC.2016.7511036
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0020
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0021
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0022
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0023
http://refhub.elsevier.com/S1383-7621(20)30073-4/sbref0023

	Enhancing Internet of Things Security using Software-Defined Networking
	1 Introduction
	2 Background and related work
	2.1 The constrained application protocol
	2.2 Software-Defined Networking
	2.3 Related work

	3 System overview
	3.1 Underlay architecture
	3.2 System entities and interactions
	3.3 Security assumptions

	4 System design
	4.1 Policy definition
	4.2 NAP to controller communication
	4.3 CoAP request and response handling

	5 Evaluation
	5.1 Security evaluation
	5.2 Discussion

	6 Conclusions and future work
	Declaration of Competing Interests
	Acknowledgments
	References

