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Abstract—In this paper, an optimised framework utilising a Differential Evolution algorithm is presented to 

optimally integrate multiple distributed generation sources simultaneously into the distribution grid. By 

considering the important power system constraints, the proposed algorithm optimises the location, sizing and 

power factor setting for each distributed generation source to minimise network losses and maximise distributed 

generation integration. Various case studies were conducted at constant or varying levels of load and generation 

in both the planning stage and the real-time operation stage. The results of all case studies revealed that the 

proposed Differential Evolution-based algorithm delivered better performance in terms of network loss 

reduction and maximised distributed generation compared to other existing methods. The network loss reduction 

of 95.71% was achieved when all three parameters of placement, sizing and power factor of distributed 

generation were optimised simultaneously. In addition, a practical framework with a varying optimal power 

factor for distributed generation was designed. The optimal power factor setting for each distributed generation 

source was dynamically adjusted during real-time power grid operation, resulting in further minimisation of the 

system loss reduction. The overall loss reduction achieved was 96.04% relative to the base case of no distributed 

generation connection. 

Keywords—Differential Evolution, distributed generation, optimal allocation, optimisation, power factor

1. Introduction

In recent decades, global warming has resulted in worldwide desert expansion, temperature increase 

and rise in sea level. If this global warming issue is not addressed properly, some of the main landmasses and 

islands will eventually become uninhabitable. In the energy sector, the conventional electricity generation 

process based on the burning fossil fuels emits greenhouse gases, which are known to be the main cause of 
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global warming. The use of Renewable Energy (RE) serves as an excellent countermeasure to the effects of 

global warming because RE is a non-depleting indigenous resource that produces insignificant waste pollutants 

[1]. Therefore, RE-based Distributed Generation (DG) has emerged as a preferred choice in the energy sector to 

reduce the amount of greenhouse gases emission [2].

Despite the environmental benefits, the technical aspects of RE-based DG integration to the power grid 

must be carefully assessed because these resources are intermittent in nature and rely heavily on weather 

conditions [3]. While integrating a small portion of RE into a large power grid is relatively easy to accomplish, 

the escalating penetration of RE is posing new challenges to both system planning and operation [4]. In the 

literature, researchers have reported various technical impacts on the grid due to DG connection to the power 

network [5]. The main impacts are grid voltage rise, reverse power flow and power quality problems. Severe 

grid voltage rise occurs if DG sources are connected in a weak power network [6]. Reverse power flow, which 

occurs during periods with high DG power generation and low demand, may affect the existing power 

protection schemes [7]. Moreover, power quality problems, such as harmonics and flickers, are caused by the 

switching of DG inverters [8]. 

In order to maximise the DG potential without compromising the power grid performance, the 

development of appropriate optimal strategies for DG allocation has become a crucial task. Various methods 

and strategies for DG allocation have been introduced in the literature. The simplest method is the direct search 

method, which guarantees a global optimal solution in its search boundary [9]. The major drawback of this 

method is that it requires lengthy computation time to search through all the available options and hence 

requires limitation of the number of controlling variables. On the contrary, the analytical method requires a short 

computation time [10]. Nevertheless, this method requires assumptions be made for several factors. Because 

power system functions are principally complex and not all of them are differentiable, the use of the analytical 

method becomes limited for solving power system problems [11]. Furthermore, the Evolutionary Algorithms 

such as Genetic Algorithm (GA) and Particle Swarm Optimisation (PSO) integrates the good qualities of the 

aforementioned methods. These algorithms can deliver global or near global optimal results within an 

acceptable period without reducing the search space and limiting the considerations [12]. 

It is also important to place the DG source of practical size at the optimal location because 

inappropriate selections of the location and size of DG sources may lead to greater system losses [13]. Reports 

of extensive research studies on optimal DG allocation can be found in the literature. Although the formulation 

of the objective function in these optimisation algorithms differed from study to study, the main goals were 

generally to minimise system loss, cost and emissions as well as to improve the voltage profile and grid 

resilience. For example, the authors in [14] proposed a Mixed-Integer Linear Programming (MILP) formulation 

to optimise DG location and sizing simultaneously, with the loss expressions considered in the algorithm for 

better accuracy of system representation. An optimal DG allocation strategy was proposed in [15] to minimise 

the annual comprehensive cost of the distribution network and the active power cut-off of DG via active 

management. Alternatively, a multi-objective DG planning model considering correlations among the dynamic 

parameters was presented in [16], with the objectives of minimising annual total costs and system risks. In [17], 

comparative analyses of various optimisation techniques on the protection coordination of optimally allocated 

DGs were presented. Furthermore, some studies assessed the long-term investments in RE-based DG in isolated 
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microgrids, such as remote communities and islands. A multi-objective optimisation algorithm was proposed in 

[18] to optimise sizing and placement of solar photovoltaic (PV) and batteries in an off-grid system to achieve 

minimisation of electricity cost, carbon emissions and grid voltage deviations. An efficient planning algorithm 

with the optimal allocation of DGs, energy storages and converters for microgrid was presented in [19] to 

achieve reliable supply and cost savings. Similarly, a hybrid microgrid planning model with the objective of 

minimising the total planning costs by determining the optimal DG sizing and location was demonstrated in [20]. 

In [21], the study revealed that investing in new PV generation would improve the overall microgrid system 

costs because the diesel DG was more costly due to logistics of fuels.

In the literature, the optimal setting of the DG source’s power factor has not been extensively 

investigated. The power factor of DG source is usually pre-assumed to be set to a specific value before the main 

optimisation process occurs. This assumption may result in the optimisation algorithm reaching a non-optimally 

global result; hence, this issue should be further assessed. Moreover, the auto-adjustment of DG operating 

power factor in operation phase has also not been addressed in literature. In fact, the power factor of each DG 

source installed in the power grid can be optimally and dynamically varied to actively support the system. This 

approach is feasible for the inverter-based DG sources, such as solar photovoltaic panels and wind turbines, 

because of the fast switching in the converter's operation. As compared to a fixed power factor setting, the 

consideration of the optimal setting of a DG source's power factor can bring additional benefits, such as further 

reductions in system losses and voltage fluctuations.

To address the aforementioned issues, in this paper, an optimised DG framework using the Differential 

Evolution (DE) algorithm to optimise the location and sizing of multiple DG sources in the power grid as well 

as to optimise the power factor of each connected DG source is presented. The development of the framework 

was conducted using the commercial DIgSILENT Powerfactory 15.1 software [22], and the proposed algorithm 

was programmed in the Python programming language. The commercial DIgSILENT Powerfactory 15.1 

software is a leading power system analysis software application for use in analysing generation, transmission, 

distribution and industrial systems. It covers the full range of functionality from standard features to highly 

sophisticated applications including distributed generation, real-time simulation and performance monitoring for 

system testing and supervision. This software also offers great interface on the simulation of distribution 

network with the integration of RE, as well as the ability of using the popular Python language for automation 

tasks. The performance of the proposed algorithm was assessed in different case studies of constant or varying 

amounts of load and generation. 

The main contributions of the paper are summarised as follows: (i) an optimal DG algorithm was 

successfully designed to simultaneously optimise the placement, sizing and power factor of each connected DG 

to achieve minimisation of network losses and maximisation of DG integration in the planning stage, (ii) the 

proposed algorithm was also developed to be utilised in the operation phase by adjusting the DG operating 

power factor automatically to the optimal value and (iii) comparative analyses were performed in various case 

studies with different number of connected DGs to validate the advantages of the proposed algorithm compared 

to existing methods in literature with the same inputs and considerations.

The rest of the paper is organised into several sections. Section 2 describes the proposed optimal DG 

algorithm utilising the DE algorithm. The formulation of algorithm objectives and constraints are discussed in 
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Section 3, while the modelling of test system with component profiles are presented in Section 4. In Section 5, 

the results of the optimal DG planning are presented; in particular, the proposed algorithm is compared with 

other techniques. Section 6 explains the optimal operation of DG sources via variation of their power factors 

throughout the day. Section 7 concludes the paper.

2. Design of the proposed optimal DG algorithm

In this paper, the proposed optimal DG algorithm is developed using DE. DE, which is an Evolutionary 

Algorithm (EA) developed by Storn and Price in 1997 [23], has been applied in various scientific fields. DE is 

simple to be programmed and requires a small number of control variables. In addition, DE can deliver better 

performance compared to other algorithms of similar type [24]. Although DE is not biologically motivated as 

for typical EAs, such as GA or PSO, it is a population-based algorithm in which each individual is a vector of 

dimension  (where  is an integer value predefined by users according to the problem). As suggested by the 𝐷 𝐷

name of the algorithm, the main operation of DE is vector difference, which initially was an attempt by Storn to 

solve the Chebychev Polynomial fitting problem. The processes of population initialisation, mutation, crossover 

and customisation for this study will be described in subsequent subsections.

2.1. Initialisation of the population

As mentioned previously, the dimension of each vector, denoted as , is to be initially defined, and it 𝐷

should be of value similar to the number of controlling variables. For example, if all three parameters of location, 

sizing and power factor of three DGs are to be optimised, then  should be set to nine. The total number of 𝐷

individuals in the population, denoted as , should be set to five to ten times the value of . The population can 𝑁 𝐷

be expressed as (1) [23]:

Population = ; in which each individual [𝑥1, 𝑥2, …, 𝑥𝑁] 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, …, 𝑥𝑖𝐷] (1)

Because DE supports mix-integer optimisation, each parameter of  can either be a discrete or 𝑥𝑖

continuous value. For the case of three DGs, the first three parameters of  denote the locations (Loc.) of the 𝑥𝑖

three DGs, which are generated randomly in the range of available bus numbers (integer values). The next three 

parameters indicate the sizing (Size) of three DGs, and the last three parameters represent their power factor (pf) 

values. All of these parameters are continuous values randomly chosen in their own range. A graphical 

representation of an individual for this case is illustrated in Fig. 1.

Fig. 1. Example of a 9-dimensional vector in the population for the case of three DGs.
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2.2. Mutation process

After population is initialised,  mutated vectors are created by adding a scalar-weighted difference of 𝑁

two vectors into a third vector. For version ‘DE/rand’, these three vectors are chosen randomly in the population. 

A mutated vector  is calculated as follows [23]:𝑣𝑖

𝑣𝑖,𝐺 + 1 = 𝑥𝑟1, 𝐺 +  𝐹(𝑥𝑟2, 𝐺 ―  𝑥𝑟3, 𝐺) (2)

where  are random integer numbers [1, ] that represent the positions of the vectors in the population; 𝑟1,𝑟2,𝑟3  𝑁

 is the number of the current iteration that denotes the  generation; and the weight  is a predefined value 𝐺 𝐺𝑡ℎ 𝐹

[0, 2] and is set to 0.8 in this study.

All parameters in the mutated vector  are likely to have a continuous value after the calculation 𝑣𝑖

because of the weight factor multiplication. Hence, some parameter values must be rounded to the nearest 

integer number, especially for the parameters that represent the location of DGs. Subsequently, all the 

parameters of the mutated vector are checked to determine whether they remain in their own ranges, which are 

bound by the constraints. If the condition is not met, then the particular mutated vector should be re-generated. 

Fig. 2 demonstrates the mutation process for the case of the 2-dimensional population.

Fig. 2. Example of the DE mutation process for the case of a 2-dimensional population.

2.3. Crossover process

  trial vectors  are created during the crossover process by mixing them with the mutated 𝑁 𝑢𝑖,𝐺 + 1

vectors, , and the target vector, . The conditions are as follows [24]:𝑣𝑖,𝐺 + 1 𝑥𝑖

 if   or , for [1, ]𝑢𝑖𝑗,𝐺 + 1 = 𝑣𝑖𝑗,𝐺 + 1 𝑟𝑎𝑛𝑑𝑏𝑗 ≤  𝐶𝑅 𝑗 =  𝑟𝑟𝑗 𝑗  𝐷 (3)

or

 if   and , for [1, ]𝑢𝑖𝑗,𝐺 + 1 = 𝑥𝑖𝑗,𝐺 𝑟𝑎𝑛𝑑𝑏𝑗 >  𝐶𝑅 𝑗 ≠  𝑟𝑟𝑗 𝑗  𝐷 (4)
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where the  parameter of  is denoted as , respectively;  is a uniform random 𝑗𝑡ℎ 𝑢𝑖,𝑥𝑖,𝑎𝑛𝑑 𝑣𝑖 𝑢𝑖𝑗,𝑥𝑖𝑗,𝑎𝑛𝑑 𝑣𝑖𝑗 𝑟𝑎𝑛𝑑𝑏𝑗

value [0, 1] that is re-generated for each parameter  of ;  is the crossover rate, which is a predefined  𝑗 𝑢𝑖 𝐶𝑅

value [0, 1] and is set to 0.9 in this study; and  is a random integer [1, D] to ensure at least one of the  𝑟𝑟𝑗 
parameters in trial vector  has been mixed between  and . Fig. 3 illustrates the crossover process for 𝑢𝑖 𝑣𝑖,𝐺 + 1 𝑥𝑖

the case of three DGs where the dimension, , is set to nine. 𝐷

Fig. 3. Example of the DE crossover process to create a trial vector from a mutant and a target vector (9-

dimensional).

2.4. Stopping criteria

The population is only required to be initialised in the first generation. Subsequently, the mutation and 

crossover processes will be repeated to produce new generations, and the iterations will continue. Unlike several 

studies that used a fixed number of iterations to stop the algorithm, the stopping criteria for this proposed 

algorithm is that all individuals in the population must have a very close value for each of their parameters. The 

mathematical representation of the stopping condition is presented as follows [24]:

For each  [1, ]: |  | ,  [1, ], ≠ 𝑗  𝐷 𝑥𝑎𝑗–𝑥𝑏𝑗 <  δ𝑗  𝑎, 𝑏  𝑁 𝑎 𝑏 (5)
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The tolerance value of  is set based on the controlling variable that parameter  represents. For δ𝑗 𝑗𝑡ℎ

instance, if the parameter represents location of the DG, then  = 1. Moreover,  is set to 0.05 or 0.005 if the δ𝑗 δ𝑗

parameter represents DG sizing (in kW) or power factor, respectively.

3. Formulation of algorithm objectives and constraints

3.1. Power and energy loss

The network power loss at time , which is denoted as , is determined using load flow analysis 𝑡 𝑃𝑙𝑜𝑠𝑠(𝑡)

in DIgSILENT software.  includes the power losses of all the lines in the network and the DG step-up 𝑃𝑙𝑜𝑠𝑠(𝑡)

transformer losses. For the case studies that consider load and generation variations, the daily energy loss is also 

calculated to measure the overall performance. The time step, , is usually predetermined and is set as one hour ∆𝑡

in this study. The equation for 24-hour energy loss of the system is expressed in (6):

𝐸𝑙𝑜𝑠𝑠 =
24

∑
𝑡 = 0

𝑃𝑙𝑜𝑠𝑠(𝑡) . ∆𝑡 (6)

3.2. Power infeed

The power infeed, which is denoted as , is the active power that is imported from the 𝑃𝑖𝑛𝑓𝑒𝑒𝑑(𝑡)

upstream substation to the test system and is calculated as follows:

𝑃𝑖𝑛𝑓𝑒𝑒𝑑(𝑡) = 𝑃𝑙𝑜𝑠𝑠(𝑡) + 𝑃𝑙𝑜𝑎𝑑(𝑡) ― ∑PDG(𝑡) (7)

where  is total active power of all loads in the system at time ; and  is the total amount of 𝑃𝑙𝑜𝑎𝑑(𝑡) 𝑡 ∑PDG(𝑡)

active power that is generated by the installed DGs at time .𝑡

3.3. Constraints

In this paper, the proposed DG algorithm optimises the placement, sizing and power factor of each 

connected DG while satisfying several practical constraints. The constraints for this optimisation study are listed 

as follows:

 Bus voltage must be within ± 5% of its nominal value at any time.

 1,2,…,   0.95 𝑝.𝑢. ≤  𝑉𝑖 ≤  1.05 𝑝.𝑢.,  𝑖 𝑁𝑏𝑢𝑠 (8)

 The power rating of each DG is limited to the maximum demand of the test network.

 1,2,…,   0 ≤  𝑃𝐷𝐺,𝑗 ≤  𝑃𝑙𝑜𝑎𝑑, 𝑚𝑎𝑥,  𝑗 𝑁𝐷𝐺 (9)

 The power factor of each DG is limited to the range from 0.8 (either lagging or leading) to unity.
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0.8 ≤  𝑝𝑓𝐷𝐺,𝑗 ≤  1 (10)

 The power infeed at the primary substation should not be negative at any time to alleviate reverse 

power flow from the test network to the upstream network. 

 ≥𝑃𝑖𝑛𝑓𝑒𝑒𝑑(𝑡)  0,  𝑡 (11)

4. Modelling of test system with component profiles

4.1. System load curve

The hourly load variation considered in this study is depicted in Fig. 4 by averaging the seasonal load 

curves that are described in IEEE Reliability Test System (IEEE-RTS) [25].

Fig. 4. Hourly load curve of the test system.

4.2. Variation of DG generation

The output variations of solar PV and wind turbine systems are shown in Fig. 5. The curves are 

produced by averaging the data of solar irradiance and wind speed for one year (July 2014 to July 2015) at a 

time interval of 15 minutes. This data were recorded by a weather station in the USA [26].
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Fig. 5. Hourly output curves of solar PV and wind turbine systems.

4.3. Test system

The network used in this paper consists of 69 buses with a base voltage of 12.66 kV [27]. This network 

was commonly used by similar studies in literature [11, 27-31]. Hence, the use of this test system allows the 

results from this research to be directly compared with the findings from similar studies, which can eventually 

verify the performance of the proposed algorithm. The total base load of the network is at 4 MW and 2.8 MVAr. 

The initial power loss without any DG installed is 225 kW. By considering the load curve depicted in Fig. 4 and 

without any DG interconnection, the daily energy loss and energy infeed are 3.75 MWh and 79.47 MWh, 

respectively. These values will be used as references to benchmark the performance of the proposed 

optimisation algorithm. Fig. 6 illustrates the test system.

Fig. 6. 69-bus test system under study.

5. Optimal DG planning

In this section, the optimal planning of the integration of single or multiple DG(s) into the test system is 

presented. The key parameters of each DG system, including location, sizing and power factor, are determined 

such that the best result of objective function is obtained. The following two case studies are presented: 1) 

constant load and generation and 2) varied load and generation. 

5.1. Constant load and generation

5.1.1. Optimisation results for multiple objectives

As load and generation were constant, the objective for this case study was to minimise the network 

active power loss with optimal placement and sizing of DG systems. Table 1 shows the optimal results for 1, 2 

and 3 DG(s) connection with power factor preset to unity . The results were compared with several existing 𝑝𝑓

studies to validate the performance of the proposed algorithm. For all cases of single, double and triple DG 
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integration, it can be observed that the proposed algorithm (DE-based) delivered similar or better performance 

(higher loss reduction) compared to other methods described in [11, 28-30]. It should be noted that the cases of 

double and triple DGs were not reported in [11] and [30]; hence, results cannot be compared for these cases. The 

proposed algorithm performed even better when more DGs were connected to the system (such as in the case of 

3 DGs), indicating its advantage of solving the problem with a high number of controlling variables or a large 

search space. 

Table 1. Comparative results of interconnection of 1, 2 and 3 DG(s) with unity power factor for case study of 

constant load and generation.

Optimal sizing in kW (Optimal bus number)
Scenario Algorithm

DG1 DG2 DG3
 (kW)𝑃𝑙𝑜𝑠𝑠 Loss Reduction (%)

No DG - - - - 225.003 0.00

CPLS [11] 1850.0 (B61) - - 83.235 63.01
IA [28] 1900.0 (B61) - - 83.244 63.00
CF-PSO [29] 1806.2 (B61) - - 83.372 62.95
HCF [30] 1900.0 (B61) - - 83.244 63.00

1 DG

DE 1872.3 (B61) - - 83.218 63.01
IA [28] 1700.0 (B61) 510.0 (B17) - 71.945 68.02
CF-PSO [29] 1806.2 (B61) 511.0 (B17) - 71.705 68.132 DGs
DE 1870.6 (B61) 531.9 (B17) - 71.672 68.15
IA [28] 1700.0 (B61) 510.0 (B17) 340.0 (B11) 69.962 68.91
CF-PSO [29] 1806.2 (B61) 511.0 (B17) 719.0 (B50) 70.188 68.813 DGs
DE 1718.7 (B61) 381.1 (B18) 525.2 (B11) 69.423 69.15

CPLS is Combined Power Loss Sensitivity; IA is Improved Analytical; CF-PSO is Constriction-Factor Particle Swarm Optimisation; HCF 

is Heuristic Curve-Fitting; and DE is Differential Evolution (proposed).

Table 2 presents another set of optimal results for 1, 2 and 3 DG(s) integration with non-prefixed 

power factor. In other words, all three parameters of placement, sizing and power factor were optimised 

simultaneously with the objective to minimise the network active power loss. Similarly, the results were 

compared with other studies to prove the performance of the proposed DE algorithm. Again, the comparative 

results showed that the proposed DE-based algorithm delivered similar or better performance (higher loss 

reduction) compared to other methods for all the cases of single, double and triple DGs integration. In details, 

for the case of single DG, all the methods agreed on the best bus (Bus 61), but the proposed DE algorithm had 

the slight edge over the other methods by giving a better loss reduction. Similar results were also observed for 

the case of double DGs. For the case of triple DGs, the proposed DE algorithm outputted different optimal buses 

for DG2 and DG3 with different sizing and power factor, which resulted in significant advantages on the 

network loss reduction compared to the other methods. Study in [30] did not report any finding for the case of 

double DGs, while studies in [30] and [31] did not present result for the case of triple DGs. Therefore, their 

results cannot be compared with the proposed DE algorithm in these cases. Table 2 also shows that the network 

loss reduction was more effective when the power factor of DGs was optimised rather than prefixed at the 
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beginning of study. Another finding was the optimal power factors listed were all lagging ; this finding was 𝑝𝑓

expected because many under-voltage buses were present in the test network before the interconnection of any 

DG.

The results in Table 1 and Table 2 have validated the performance of the proposed DE algorithm. The 

proposed DE algorithm converged and delivered the best optimal results among all the methods, given the same 

inputs and considerations using the network described in Section 4.3. No major assumption was made and the 

comparison can be easily verified with a simple simulation. It should be noted that it is apparently impossible to 

run a direct search algorithm to find the best result in this study, due to the complexity of this problem with too 

many control variables in the network. A direct search algorithm will take too much time to calculate the power 

flow for every possible answer. Hence, the proposed DE algorithm was utilized in this paper to optimise the 

location, sizing and power factor setting for each distributed generation source to minimise network losses and 

maximise distributed generation integration.

Table 2. Comparative results of interconnection of 1, 2 and 3 DG(s) with optimal power factor for the case study 

of constant load and generation.

Optimal sizing in kVA/Optimal power factor
(Optimal bus number)Scenario Algorithm

DG1 DG2 DG3
 (kW)𝑃𝑙𝑜𝑠𝑠

Loss 
Reduction (%)

No DG - - - - 225.003 0.00

IA [28] 2243.0/ 0.8200 𝑝𝑓 
(B61)

- - 23.184 89.70

CF-PSO [29] 2207.0/ 0.8241 𝑝𝑓 
(B61)

- - 23.260 89.66

HCF [30] 2300.0/  0.8500 𝑝𝑓
(B61)

- - 23.984 89.34

ABC [31] 2200.0/  0.8500 𝑝𝑓
(B61)

- - 23.920 89.37

1 DG

DE 2242.9/  0.8150 𝒑𝒇
(B61)

- - 23.171 89.70

IA [28] 2195.0/  0.8200 𝑝𝑓
(B61)

659.0/  0.8200 𝑝𝑓
(B17)

- 7.410 96.71

CF-PSO [29] 2107.5/  0.8272 𝑝𝑓
(B61)

641.6/  0.8161 𝑝𝑓
(B17)

- 7.309 96.75

ABC [31] 2100.0/  0.8500 𝑝𝑓
(B61)

600.0/  0.8500 𝑝𝑓
(B17)

- 7.999 96.44
2 DGs

DE 2140.4/  0.8140 𝒑𝒇
(B61)

628.7/  0.8280 𝒑𝒇
(B17)

- 7.207 96.80

IA [28] 2073.0/  0.8200 𝑝𝑓
(B61)

622.0/  0.8200 𝑝𝑓
(B17)

829.0/  0.8200 𝑝𝑓
(B50)

5.071 97.75

CF-PSO [29] 2086.0/  0.8318 𝑝𝑓
(B61)

613.4/  0.8279 𝑝𝑓
(B18)

845.4/  0.8276 𝑝𝑓
(B50)

5.168 97.703 DGs

DE 2057.8/  0.8140 𝒑𝒇
(B61)

454.9/  0.8340 𝒑𝒇
(B18)

608.8/  0.8130 𝒑𝒇
(B11)

4.268 98.10

IA is Improved Analytical; CF-PSO is Constriction-Factor Particle Swarm Optimisation; HCF is Heuristic Curve-Fitting; ABC is Artificial 

Bee Colony; and DE is Differential Evolution (proposed).
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5.1.2. Result comparison on voltage profile improvement

Besides network power loss reduction, another finding of optimally installing DGs was voltage profile 

improvement. Fig. 7 shows the voltage profile of all buses in the test network, with the results obtained from the 

proposed DE algorithm in Table 2. From the results, it can be concluded that better voltage deviation reduction 

was attained when more DGs were optimally integrated to the test network. Fig. 8 depicts a comparison of the 

voltage profile results of the proposed algorithm with those of other optimisation techniques presented in the 

literature. The comparison was conducted for the scenario of 3 DGs interconnection, as presented in Table 2. 

The proposed DE-based method achieved the lowest value of voltage deviation relative to the other techniques. 

The acquired standard deviation of voltage level for IA [28], CF-PSO [29] and DE was 0.0018 p.u., 0.0017 p.u. 

and 0.001 p.u., respectively.

Fig. 7. Voltage profile of the test network with and without DG installation after the implementation of the 

proposed DE-based algorithm.

Fig. 8. Result comparison of the voltage profile with optimal installation of 3 DGs using different methods.
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5.2. Varied load and generation

5.2.1. Optimisation results for multiple objectives

In this case study, the location, sizing and power factor of 3 DGs of different types, namely, solar 

photovoltaic (SPV), wind turbine (WT) and biogas generator (BG), were optimised by considering the variation 

in system generation and loading, as shown in Fig. 4 and Fig. 5. The output of the BG was assumed to be 

constant throughout the day. The objective functions were chosen from two perspectives, i.e. to minimise the 

network energy loss from the grid owner’s viewpoint and to maximise DGs penetration from the RE developer’s 

viewpoint. To simplify the process, these objectives were converted into the minimisation of energy loss and 

energy infeed using the formulas described in Sections 3.1 and 3.2. The optimisation of these objectives should 

be achieved with no violation of the constraints defined in Section 3.3. Table 3 presents the optimal results for 

each objective as well as when they were combined with the same weight factor of 0.5. The optimal sizing, 

power factor and placement for each objective are also presented in Table 3.

Table 3. Comparative results of interconnection of 1, 2 and 3 DG(s) with optimal power factor for the case study 

of varied load and generation.

Objective function

Optimised parameter Minimisation of energy loss 
(grid owner’s viewpoint)

Minimisation of energy 
infeed/maximisation of DG 
penetration (RE developer’s 

viewpoint)

Minimisation of energy loss 
and energy infeed (50%–

50% weight factor for each 
objective)

Energy loss (kWh) 161.05 1044.36 363.76

Energy loss reduction 
(Initially was 3754 kWh) 95.71% 72.18% 90.31%

Energy infeed (kWh) 31231.32 7327.04 7541.61

Energy infeed reduction 
(Initially was 79469 kWh) 60.7% 90.78% 90.51%

Solar Photovoltaic (SPV) 362.48 kW/ 0.813 𝑝𝑓 
lagging (B64)

100.00 kW  0.802 /𝑝𝑓
lagging (B27)

131.23 kW/  0.800 𝑝𝑓
lagging (B24)

Wind Turbine (WT) 620.50 kW/  0.828 𝑝𝑓
lagging (B17)

1908.55 kW/  0.819 𝑝𝑓
lagging (B14)

1768.26 kW/ 0.931 𝑝𝑓 
lagging (B11)

Biogas Generator (BG) 1334.41 kW/  0.814 𝑝𝑓
lagging (B61)

1587.39 kW/  0.800 𝑝𝑓
lagging (B61)

1634.23 kW/  0.853 𝑝𝑓
lagging (B61)
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Several findings can be highlighted based on the results in Table 3. When the objective of the 

optimisation algorithm was to minimise the network energy loss (grid owner's viewpoint), the energy loss 

reduction achieved compared to base case was 95.71%, which represents an excellent performance. However, 

the energy infeed was not appropriately reduced, with a reduction of only 60.7%. In contrast, when the objective 

of the optimisation algorithm was set to minimise the energy infeed or maximise the DG penetration (RE 

developer's viewpoint), the results obtained were completely opposite, with excellent performance of energy 

infeed reduction of 90.78%, but a relatively low performance for energy loss reduction of 72.18%. Furthermore, 

when the objective of the proposed optimisation algorithm was set to achieve both energy loss minimisation and 

energy infeed reduction with weight factor split evenly to 0.5, excellent optimal results were attained for both 

objectives with over 90% of reduction accomplished. Therefore, the optimal results of this multiple objectives 

algorithm appeared to be the best selection in this case study.

5.2.2. Impact of different power factors on the optimisation results

As mentioned before, the assumption of setting the power factor of DGs to fixed values in the 

initialisation stage might not result in the best solution to the optimal DG problem. Fig. 9 shows the comparative 

results of the optimal location and sizing of DG when different power factors were applied. It can be observed 

that if the power factor of DGs was set to unity  according to a quite common practice of many researches in 𝑝𝑓

the literature, the network loss reduction compared to the base case was not significant, with a value of nearly 

67%. In contrast, the best network loss reduction with 95.71% was achieved when the power factor of DG was 

optimised simultaneously with the other parameters of location and sizing. The network loss reduction result 

was even worse if a leading power factor was set to DGs, and the optimal DG locations were also considerably 

deviated from the other cases.

Fig. 9. Impact of different operating power factors setting on the optimal result of the DG sizes and locations for 

the case study with the objective of minimisation of the network energy loss.

 

 

 

Journal Pre-proof



15

6. Optimal DG operation

6.1. Variation of the DG's power factor

The planning study for DG optimisation is a great source of information for engineers to proceed with 

the installation of DGs in the system. Such optimisation provides the best solution for the particular objective 

required, assuming that all optimal parameters are fixed during the system lifetime. However, with the recent 

rapid development of inverter control technology, the ability to continuously adjust the power factor of inverter-

based DG has become feasible. This dynamic variation should be implemented in an optimal manner to bring 

additional benefits to the system compared to the deployment of an optimal fixed power factor value, as 

presented in the previous section. This implementation can further reduce power losses and mitigate voltage 

fluctuations, especially when the DGs are based on intermittent resources, such as solar or wind.

In order to compare the results between a fixed power factor and a variable power factor, it is assumed 

that the 3 DGs of solar, wind and biogas had been installed with optimal parameters of location and size 

determined by DE method for the objective of minimisation of network energy loss, as presented in the first case 

in Table 3. The power factor of each DG was optimised every 15 minutes, which matched the time step used in 

the planning study. As the location and sizing of DG were optimally fixed, the controlling variable only 

included the power factor of the DGs; as a result, the dimension  for the DE algorithm was set to 3. 𝐷

Fig. 10 shows the results of optimal power factor variation for each DG, where the result for solar PV 

technology was only applicable during daytime periods. The additional benefits of varied power factor can be 

examined by comparing the network power loss between the two cases, as shown in Fig. 11. When the DG's 

power factor was adjusted continuously and optimally according to the variation in load and generation, the 

system loss reduction was further minimised. The new daily energy loss was at 148.58 kWh, which was 7.74% 

lower than its corresponding value of the previous DG planning study (161.05 kWh) presented in Table 3. The 

overall loss reduction was 96.04% compared to the base case, which was the case without any DG installation.

Fig. 10. Optimal variation of the power factor of 3 DGs throughout the day.
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Fig. 11. Result comparison between varied power factor and fixed power factor with the objective function of 

power loss minimisation.

6.2. Practical application

The advantages of actively adjusting the power factor of DG during its operation compared to a fixed 

optimal power factor value were clearly highlighted and explained in Section 6.1. Nevertheless, there are several 

factors that must be considered to ensure the practicality of this application in real-time operation.

 In common distribution feeders, the information of the active power ( ) and reactive power ( ) values 𝑃 𝑄

are only available at the primary substation (beginning of the feeder) and not for the load at each bus.

 Frequent changes of the power factor setting of the biogas generator may cause stresses to the 

synchronous generator; in contrast, this issue is not a burden for the inverter-based DGs, such as solar 

PV and WT systems. 

The first limitation can be solved by adopting the load estimation method, taking inputs of  and  𝑃 𝑄

readings at the main substation as well as  and  generated by each DG at every time step. The load estimation 𝑃 𝑄

can be performed utilising the feeder load scaling function, which is available in DIgSILENT software. This 

function scales all the load proportionally according their base values to achieve similar  and  values that are 𝑃 𝑄

read by power meters in the main substation. Subsequently, the proposed DE algorithm is implemented with the 

new estimated load values to determine the optimal power factor for DGs during the specific time. For the 

second concern, the time step for each DG should be set independently in the optimisation algorithm based on 

the technology. For instance, the time step of three minutes is set for the solar PV and WT systems, while the 

time step of one hour is set for the BG. Figs. 12 and 13 show the schematic and block diagram of the overall 

processes for the implementation of varied optimal DG's power factor in real-time operation.
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Fig. 12. Schematic diagram showing the inputs and outputs of the optimal DG operation program.

In order to demonstrate the viability of the program, a case study was performed to test its functionality. 

In this case study, 3 DGs of different types (SPV, WT and BG, with each sized at 1.25 MW) were assumed to be 

connected to Bus-27, Bus-46 and Bus-65 of the network in Fig. 6. These network buses were at the end of the 

feeder branches, which are the locations typically preferred by engineers to install DGs for solving the under-

voltage problem. Note that this proposed program is applicable to any DG type installed at any network 

location/bus. Because the program required the absolute values of  and  flowing at the primary substation as 𝑃 𝑄

well as  and  generated by DG at each time step, the curves in Fig. 4 and 5 were not be used for this case 𝑃 𝑄

study. Instead, a set of absolute values were assumed for these parameters. Figs. 14 and 15 show the required 

input data of  and  for upstream network and DG outputs. It can be observed that only six hours during 𝑃 𝑄

daytime periods were demonstrated because the high sampling rate of three minutes was applied for each time 

step. The variation in the value from the upstream network in Fig. 14 was caused by the system being directly 𝑃 

affected when DGs changed their outputs.

 

 

 

Journal Pre-proof



18

Fig. 13: Processes of varied optimal DG's power factor in real-time operation.
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Fig. 14. Input data of  and  from the upstream grid.𝑃 𝑄

Fig. 15. Input data of the power generated by the DGs.

The program successfully outputted the optimal power factors for 3 DGs at each time step, as 

illustrated in Fig. 16. The power factor of BG changed hourly, while the power factors of SPV and WT changed 

every 3 minutes. One of the observations from this case study was that the pattern of the optimal power factor 

for each type of DG was closely related to the pattern of its real power output, as depicted in Fig. 15. This 

response was expected because a sudden drop in DG’s real power output will cause a drop in its power factor 

value (lagging) to provide higher reactive power to the network for voltage fluctuation reduction. Moreover, the 

time taken to output the optimal results for each step was generally between 0.5 and 1.5 seconds, representing 

relatively fast performance. The proposed program can be applied to any new or existing network for real-time 

operation with optimal DG's power factor.
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Fig. 16. Program output with optimal power factor for each DG and the time taken to deliver the results.

7. Conclusion

In this paper, a DE-based optimisation algorithm was designed to optimise the placement, sizing and 

power factor of DGs in a distribution test network. Comprehensive studies were performed for both the planning 

stage and the real-time operation stage. In DG planning, multiple DGs were integrated into the power grid from 

the perspectives of both the Distribution Company and RE developers to achieve the objective functions of 

minimisation of network losses and maximisation of DGs penetration. The case studies were performed for 

constant or varying amounts of load and generation with the consideration of the crucial power system 

constraints. The results of all case studies revealed that the proposed DE-based algorithm delivered similar or 

better performance of network loss reduction compared to other existing methods. Another finding was that a 

better grid voltage deviation reduction was attained when more DGs were optimally integrated into the test 

network. Moreover, the network loss reduction was also more effective when the power factors of DGs was 

optimised instead of being preset at the beginning of the study. The network loss reduction of 95.71% was 

achieved when the power factor of DG was optimised simultaneously along with other parameters, such as DG's 

location and sizing. 

Furthermore, a novel framework of varied optimal operational power factors for multiple DGs was 

introduced. When each DG source's power factor was adjusted continuously and optimally according to the 

variations in the load and generation, the system loss reduction was further minimised. The overall loss 

reduction achieved was 96.04% compared to the base case of no DG connection. The overall processes of the 

framework were comprehensively explained, and the practicality of the framework was validated in real-time 

DG operation. 
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Highlights

 Algorithm design to optimise the placement, sizing and power factor of DG

 Design of DG framework to minimise network losses and maximise DG 
integration

 Inclusion of various power system constraints for practicality

 Comparative analyses in planning and real-time operation for algorithm 
validation
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