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Abstract

Convolutional neural networks are a promising tool for solving the problem of pattern recognition. Most well-known
convolutional neural networks implementations require a significant amount of memory to store weights in the process of
learning and working. We propose a convolutional neural network architecture in which the neural network is divided into
hardware and software parts to increase performance and reduce the cost of implementation resources. We also propose to use
the residue number system (RNS) in the hardware part to implement the convolutional layer of the neural network. Software
simulations using Matlab 2018b showed that convolutional neural network with a minimum number of layers can be quickly
and successfully trained. The hardware implementation of the convolution layer shows that the use of RNS allows to reduce the
hardware costs on 7.86%–37.78% compared to the two’s complement implementation. The use of the proposed heterogeneous
implementation reduces the average time of image recognition by 41.17%.
c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The modern development of science and technology implies the widespread introduction of data mining methods.
The range of tasks requiring the use of artificial intelligence methods in the field of image processing is constantly
expanding: personal identification [5], scene recognition [6], information processing from external sensors in
unmanned land and aircraft vehicles [28], medical diagnostics [23], and so on. The use of intelligent methods
based on artificial neural networks is a promising tool for solving the problem of image recognition [35].

The idea of using artificial neural networks for processing visual information was proposed in [15] to solve the
problem of automating the recognition of handwritten numbers. The architecture proposed in this paper was called
the Convolutional Neural Network (CNN). The combination of convolutional layers, realizing the extraction of
visual signs, and a multilayer perceptron, realizing the recognition operation according to the convolution results, is
its main feature. The evolution of this scientific idea and the development of computer technology have led to the fact
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that at present the theory of CNN and its practical application methods are developing along the path of an extensive
increase in the number of layers of CNN, which leads to the high computational complexity of the implementation
of such systems. For example, the network architecture [14], which showed the best ImageNet image recognition
result in 2010, contains about 650 thousand neurons, 60 million tunable parameters and requires 27 GB of disk
space for training. The paper [30] presents the development of Google, which showed the best image recognition
result of ImageNet base in 2014. This CNN performs more than one and a half billion computational operations for
image recognition, which motivated Google to develop a special tensor processing unit to optimize the operation of
this CNN [13]. Summarizing, modern CNN architectures are very resource intensive, which limits the possibilities
for their wide practical application. A unified approach to reducing resource costs in the implementation of CNN
in practice is not currently available.

The paper [3] presents the parallel hardware architecture Verilog HDL to neural network training, which may
be synthesized for FPGA or ASIC. The method of acceleration of the training process of the neural network using
FPGA is presented in the work [27]. The ASIC implementation to an acceleration of the training process of the
deep neural network is shown in [19]. In this paper, the fully digital neuron was developed and its performance was
optimized due to pipelining of the arithmetical unit with floating point format, and memory bandwidth problems
were solved using the proposed architecture bandwidth memory. Then, several neurons were connected to create a
small deep neural network, further, neurons were extrapolated to a standard dataset. The paper [26] aims to create
fast and accuracy universal fuzzy neural network controller Neuro-Fuzzy based on FPGA hardware. The library
VHDL was created to achieve this goal. The proposed controller is compared with its software realization based
on the microprocessor. The results showed that the hardware controllers are faster and more accurate than software
ones. During the learning phase, offline learning algorithms (based on Matlab’s Neuro-Fuzzy toolbox) are used
to estimate the controller’s structure and the values of its parameters. The hardware implementation architecture
of the softmax layer in the deep neural network is presented in [34]. To the neural network training, the use of
the simplified activation function is proposed in [10]. In this paper are presented the hardware implementation of
nonlinear activation function to apply in the different artificial neural network, including wavelet neural networks.
Similar solutions can be used in fuzzy neural networks. The work [16] presents the accelerator of CNN, which
optimizes the use of equipment and data bandwidth by the flexible and effective architecture to achieve CNN
acceleration in real time. The efficient hardware architectures to acceleration deep CNN models are proposed in [33].
This paper presents the theoretical conclusion of the parallel fast algorithm with finite impulse response (FIR). The
fast convolution units are developed by FIR. The authors propose new storage and data reuse schemes, in which
all intermediate pixels are stored on a chip and bandwidth requirements are reduced. In the paper, one of the
largest and most accurate networks VGG16 was chosen as an example and implemented on Xilinx Zynq ZC706
and Virtex VC707. The paper [11] proposes CNN architecture based on FPGA mapping all its layer on the chip
and pipeline at the same time. A comprehensive mapping and optimization methodology is proposed. It based on
the optimization model, which can ensure optimal using of resources and computational efficiency. Furthermore, to
facilitate the programming process, the development environment is proposed, which can provide developers with a
universal function to create the accelerator with the proposed optimization method. The recent existing methods of
acceleration the deep learning network on FPGA are discussed in [29]. The author identifies key functions used by
various methods to improve acceleration performance and provides recommendations on how to increase the use
of FPGA to accelerate CNN.

The Residue Number System (RNS) is one of the promising tools for improving the technical characteristics
of CNN [8,17,20,21]. A method using Sobel filters in the convolutional layer of CNN and its hardware FPGA
implementation was proposed in [8]. The authors show an increase in the speed of the device and a reduction in
equipment costs in comparison with the implementation of the two’s complement representation. The disadvantage
of the method presented in [8] is the fixation of the coefficients of the convolutional layer, which significantly slows
down the learning time of CNN.

The goal of this paper is to reduce the hardware resources required to build and operate CNNs. We present the
heterogeneous architecture of CNN in this paper, which is divided into hardware and software parts. We propose
to use RNS with special moduli set in the hardware part, which implements the convolutional layer of CNN.
For the hardware implementation of the convolution operation, a representation of the filter masks weights in a
fixed-point format is required. To solve this problem, a quantization method for the coefficients of a convolutional
layer is proposed. We will demonstrate the effectiveness of using the proposed approach with the help of hardware
implementation on FPGA Xilinx.
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Fig. 1. The procedure of obtaining the feature maps in the convolutional layer of the CNN.

2. Convolutional neural networks

CNN consists of input and output layers, as well as several hidden layers. The hidden part of CNN consists of a
convolutional layer, pooling layer, and a fully connected classifier, which is a perceptron that processes the features
obtained on the previous layers. Consider the part of CNN, which is responsible for the selection of features, and
consists of a spatial convolution layer and a pooling layer that implements the max pooling operation [15].

Suppose that the image I consisting of R rows, C columns and D color components is the input of CNN. Images
in the RGB format have a D = 3 for example, and red, green and blue levels of image pixels are color components.
The CNN input can be described as a three-dimensional function I (x, y, z) in this case, where 0 ≤ x < R,
0 ≤ y < C and 0 ≤ z < D are the spatial coordinates, and the amplitude I at any point with coordinates
(x, y, z) is the intensity of the pixels at that point. Procedure for obtaining characteristics in arrays convolutional
layer can be represented as

I f (x, y) = b +

t∑
i=−t

t∑
j=−t

D−1∑
k=0

Wi, j,k I (x + i, y + j, k), (1)

where: I f — feature maps; Wi, j,k — w × w × D filter for processing D two-dimensional arrays; b — offset [8]
and t =

w−1
2 . The procedure for obtaining the feature maps is shown in Fig. 1.

CNN usually uses a large number of filters in the convolutional layer. This leads to a sharp increase in the amount
of data processed in the network. The pooling layer of max pooling in some considered neighborhood is used to
reduce them. Fig. 2 schematically shows a max pooling operation using a filter mask of size w × w and stride w.
The output of this layer is transmitted to the input of the classifier, which is organized as a traditional multilayer
perceptron.

We propose to use RNS to improve the technical characteristics of CNN. A brief description of RNS is given
in the next section.

3. Background on RNS

The RNS numbers are represented in the basis of pairwise coprime numbers, called moduli {m1, . . . , mn}. The
product of all moduli RNS M = m1m2...mn is called the dynamic range of the system. Any integer 0 ≤ X < M
can be uniquely represented in RNS as a vector (x1, x2, . . . , xn), where, xi = |X |mi = X mod mi in accordance
with the Chinese Remainder Theorem (CRT) [22]. The operations of addition, subtraction and multiplication in
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Fig. 2. The principle of operation of the pooling layer that implements the max pooling operation.

RNS are determined by the formulas

A ± B =
(
|a1 ± b1|m1

, . . . , |ak ± bk |mn

)
, (2)

A · B =
(
|a1 · b1|m1

, . . . , |ak · bk |mn

)
. (3)

Equalities (2) and (3) show the parallel nature of RNS, free of carrying propagation. The main advantages of
representing numbers in RNS are [4]:

1. Large numbers are encoded into a set of small residues, which reduces the arithmetic complexity of
computations.

2. Independence of the residues of the number from each other opens the possibility of their parallel processing,
which allows speeding up the calculation process.

3. RNS is a nonpositional system with independent arithmetic units. Therefore, an error in one channel does
not apply to others. Thus the processes of error detection and error correction are simplified.

The main disadvantages of representing numbers in RNS are [4]:

1. Inefficient implementation of nonmodular operations, such as division, extraction of roots, comparison of
numbers.

2. The limitation of the action by the sphere of integer numbers.
3. The absence of simple signs of the output of the results of operations beyond the dynamic range of the

system.

3.1. Selection of moduli RNS

The selection of the moduli set {m1, . . . , mn} is an important task in the development of an application system
that uses computations in RNS. The modulus 2α , α ∈ N , where N — the set of natural numbers, is used in most
modern works devoted to the application of RNS. This is explained by the fact that calculations modulo 2α are the
simplest from the point of view of hardware implementation since they can be implemented as ordinary arithmetic
devices of a two’s complement with a bit-width α. Using the modulus 2α , as well as the requirement of pairwise
coprime all moduli RNS leads to the fact that all other moduli must be odd, that is, to have a look 2α

± k, α ∈ N ,
k = 1, 3, 5, . . .. Since in this paper we use RNS to implement the most resource-consuming convolutional layer
of CNN, which implements the calculations using formula (1), then the costliest, from a hardware point of view,
the elements of an arithmetic unit will be modular adders. Since the implementation of calculations using formula
(1) requires the summation of a large number of terms, it is necessary to use multi-input adders. Currently, the
most effective techniques summing a large number of terms of absolute value, similar to those used in conventional
two’s complement, are designed only to form 2α

± 1, α ∈ N [31]. Practical implementation computing modulo
2α

+ 1, α ∈ N , requires the introduction of additional logic diminished-1 method for tracking the null code word.
It is undesirable in the development system with minimal hardware and time consuming [32]. Thus, it is advisable
to use a type of moduli 2α

− 1, α ∈ N , as odd moduli, for design calculations on the basis of CNN in RNS.



236 M.V. Valueva, N.N. Nagornov, P.A. Lyakhov et al. / Mathematics and Computers in Simulation 177 (2020) 232–243

3.2. Conversion from two’s complement to RNS

Consider the moduli set of a special type {2p1 , 2p2 − 1, . . . , 2pn − 1}. Conversion of the number in RNS is
carried out by finding the remainder of the division for each modulus [22]. The operation of calculating the
remainder of the modulo 2p division is performed by leaving the p lower bits and dropping the remaining upper bits.
Calculation of the remainder of the division for the modulus 2p

−1 is more complicated. Let X = Xg−1 Xg−2 . . . X0
— g-bit enabled strong initial number. Divide it into s = ⌈g/p⌉ parts of the p bits. We add to the X
right 0 to the dimension g′

= s · p for that. Now X ′
= Xg′−1 Xg′−2 . . . X0, then Y0 = X p−1, . . . , X1, X0,

Y1 = X2p−1, . . . , X p+1, X p, . . . , Ys = Xg′−1, . . . , X (s−1)p+1, X (s−1)p — parts of X ′. Imagine the number X ′ as
X ′

= Y0 + Y1 · 2p
+ Y2 · 22p

+ · · · + Ys · 2sp. Transformations using number-theoretic properties give the following
chain of equalities⏐⏐X ′

⏐⏐
2p−1 =

⏐⏐Y0 + Y1 · 2p
+ Y2 · 22p

+ · · · + Ys · 2sp
⏐⏐
2p−1

=

⏐⏐⏐|Y0|2p−1 +
⏐⏐Y1 · 2p

⏐⏐
2p−1 +

⏐⏐Y2 · 22p
⏐⏐
2p−1 + · · · +

⏐⏐Ys · 2sp
⏐⏐
2p−1

⏐⏐⏐
2p−1

=

⏐⏐⏐|Y0|2p−1 +
⏐⏐Y1 · 2p

+ Y1 − Y1
⏐⏐
2p−1 +

⏐⏐Y2 · 22p
+ Y2 − Y2

⏐⏐
2p−1 + · · · +

⏐⏐Ys · 2sp
+ Ys − Ys

⏐⏐
2p−1

⏐⏐⏐
2p−1

=

⏐⏐⏐|Y0|2p−1 +
⏐⏐Y1 ·

(
2p

− 1
)
+ Y1

⏐⏐
2p−1 +

⏐⏐Y2 ·
(
22p

− 1
)
+ Y2

⏐⏐
2p−1 + · · · +

⏐⏐Ys ·
(
2sp

− 1
)
+ Ys

⏐⏐
2p−1

⏐⏐⏐
2p−1

=
⏐⏐|Y0|2p−1 + |Y1|2p−1 + |Y2|2p−1 + · · · + |Ys |2p−1

⏐⏐
2p−1 = |Y0 + Y1 + Y2 + · · · + Ys |2p−1

We get the following equality in this case⏐⏐X ′
⏐⏐
2p−1 = |Y0 + Y1 + Y2 + · · · + Ys |2p−1 . (4)

That is, the calculation of the remainder of the modulo 2p
−1 division is reduced to the addition of p-bit numbers

modulo 2p
−1. The Kogge–Stone adders with cyclic modulo transfer, proposed in [31], are used for modulo 2p

−1
addition.

3.3. Conversion from RNS to two’s complement

The use of the CRT is the most generalized method for obtaining an equivalent weighted number [9]. Calculate
the weighted number X from the representation in the RNS, i.e. (x1, x2, . . . , xn), based on moduli set {m1, . . . , mn}

as follows

X =

⏐⏐⏐⏐⏐
n∑

i=1

⏐⏐M−1
i

⏐⏐
mi

Mi xi

⏐⏐⏐⏐⏐
M

, (5)

where Mi = M/mi and
⏐⏐M−1

i

⏐⏐
mi

— is a multiplicative inverse Mi modulo mi for i = 1, 2, . . . , n. We must
calculate the remainder of dividing by a large number M to implement CRT. The implementation of this operation
in hardware leads to an increase in area and delay. The modified CRT, which uses fractional values and is called the
approximate CRT, was first introduced in [12] to determine the sign and division in RNS. The effective hardware
implementation of this approach based on the addendum compression technique and Kogge–Stone adder modulo 2α

is presented in [18]. The described method was used to implement the conversion from RNS to two’s complement.

4. Convolution in the RNS

The use of RNS is most effective where the calculations require performing mainly operations of addition and
multiplication. Formula (1) shows that the convolution uses only these operations. Thus, RNS can be effectively used
for the hardware implementation of the convolutional layer of CNN. The high complexity of the implementation
of the comparison operation in RNS makes it difficult to use it to implement the layer of max pooling and a fully
connected layer of neurons. This prompts to propose an approach consisting in dividing CNN into hardware and
software parts. It is proposed to use a hardware device to implement the convolutional part of CNN in RNS and
use the software simulation for the remaining layers of CNN. Fig. 3 shows the convolution operation using RNS.

The coefficients Wi, j,k and the offset b from formula (1) are constants in trained CNN. Therefore, the convolution
device must implement multiplication by constants with the subsequent addition of the result. The hardware
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Fig. 3. The scheme of convolution in RNS.

implementation of calculations in the convolutional layer of CNN by formula (1) makes it necessary to quantize the
filter coefficients Wi, j,k , which entails the emergence of quantization noise. The offset b from formula (1) has no
effect when rounding the filter coefficients, therefore it is not associated with the error of the convolution result. Let
the filter of the convolutional layer have a size w×w×3, where 3 — is the number of color components. Multiply
its coefficients by 2N , where N — is the scaling parameter, and round up them. The result of the convolution in
RNS divided into 2N and rounded down. This approach has the following advantages.

1. Rounding errors will have different signs and partially compensate each other. This will reduce the effect of
quantization noise of the convolution result.

2. Applying rounding operations in exactly this order requires less resource in hardware implementation than
rounding operations to the nearest integer. This is explained by the fact that the coefficients of the filters
are known a priori and their quantization with rounding up can be performed in advance. The convolution is
performed using arithmetic logic devices and the rounding down of its result is performed simply by dropping
the fractional part and does not require additional hardware and time costs.

3. The operations of multiplication and division by 2N in binary notation correspond to a comma shift by N
signs to the right or left, respectively, which greatly simplifies and speeds up their implementation.

The effect of quantization noise of the convolution result decreases with increasing value of the scaling parameter
N . But the hardware and time costs increase for its execution. The question arises about the choice of a parameter
value N , that is effective from the point of view of hardware implementation on modern devices, and which is
necessary to maintain the convolution result of acceptable quality. We estimate the effect of quantization noise of
the convolution result to answer this question. Define the absolute error AE+ and AE− of rounding positive and
negative coefficients Wi, j,k of formula (1), respectively

AE+ =

∑
Wi, j,k>0

(⌈
2N Wi, j,k

⌉
− 2N Wi, j,k

)
, AE− =

∑
Wi, j,k<0

(⌈
2N Wi, j,k

⌉
− 2N Wi, j,k

)
. (6)

Hence, we find the limited absolute error L AE1 of rounding coefficients Wi, j,k

L AE1 = max {AE+, AE−} . (7)

Denoting the maximum value of the brightness of the image as B, L AE2 of the convolution result equal to

L AE2 = L AE1 · B. (8)

L AE3 of normalized convolution result can be obtained from L AE2 after taking into account the parameter N

L AE3 =
L AE2

2N
= 2−N B · L AE1. (9)

If we denote by λ ∈ [0, 1) the fractional part of the exact convolution result, then L AE4 of rounding the
normalized convolution result can be found as follows

L AE4 = L AE3 + λ − ⌊L AE3 + λ⌋ (10)

The exact value of a convolution is rarely an integer. Thus, L AE4 depends not only on L AE3, but also on λ.
L AE4 in formula (10) is an unrecoverable error when L AE3 = 0. It correlates with L AE3 and always influences
the accuracy of the calculations of the researching method. The effect of this error on the result of calculations
decreases with increasing N .
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The resulting error of the convolution L AE5 is rounded down the normalized convolution result.

L AE5 = |L AE3 − L AE4| . (11)

Formula (11) suggests that the rounding error to smaller convolution results L AE4 partially compensates for
the convolution result L AE3, based on rounding up the filter coefficients Wi, j,k . These two errors will become
commensurate in their absolute value at a certain stage of increase N . The resulting error L AE5 will have the least
value at this stage in practice. The error L AE3 will begin to decrease with a further increase N , in contrast to
L AE4. This will increase L AE5.

The λ is one of the parameters affecting the magnitude of the L AE5. The specific value of λ when conducting
theoretical calculations cannot be determined. Eliminate it, given the impact they have on the result of calculations.
Express in the formula (11) L AE4 through L AE3 and λ according to formula (10) for this.

L AE5 = |L AE3 − (L AE3 + λ − ⌊L AE3 + λ⌋)| = |⌊L AE3 + λ⌋ − λ| . (12)

Let us consider two cases:

1. ⌊L AE3 + λ⌋ − λ > 0 ⇒ ⌊L AE3 + λ⌋ ≥ 1. The larger ⌊L AE3 + λ⌋, the larger L AE5 in this case. Thus,
⌊L AE3 + λ⌋ = ⌊L AE3⌋ + 1 and λ represents the addition of the L AE3 fractional part to one, that is
λ = ⌊L AE3⌋ + 1 − L AE3. Substitute the resulting expression in formula (12).

L AE5 = ⌊L AE3 + ⌊L AE3⌋ + 1 − L AE3⌋ − (⌊L AE3⌋ + 1 − L AE3) = L AE3. (13)

2. ⌊L AE3 + λ⌋ − λ ≤ 0 ⇒ ⌊L AE3 + λ⌋ ≤ λ ⇒ ⌊L AE3 + λ⌋ = 0 ⇒ L AE5 = |0 − λ| = λ. The larger λ, the
larger L AE5 in this case. But ⌊L AE3 + λ⌋ = 0 ⇒ L AE3 + λ = 1 − ε ⇒ λ = 1 − ε − L AE3. Using AE3
instead of L AE3, and equating its value to zero. Thus, formula (11) takes the following form.

L AE5 = |⌊0 + 1 − ε⌋ − (1 − ε)| = 1 − ε, (14)

where ε — machine epsilon.
Formula (13) is advantageous to use for L AE3 ≥ 1 since the value L AE5 is the maximum possible error value.

Thus, L AE5 can be uniquely determined depending on the values L AE3 and independently of specific values λ

from formulas (13) and (14).

L AE5 =

{
L AE3, L AE3 ≥ 1,

1 − ε, L AE3 < 1.
(15)

Rewrite formula (15) using expression (9).

L AE5 =

{
2−N B · L AE1, 2−N B · L AE1 ≥ 1,

1, 2−N B · L AE1 < 1;
(16)

Peak signal-to-noise ratio (P SN R) after performing these actions can be found by follows.

P SN R = 10 lg
B2

L AE2
5

= 20 lg
B

L AE5
. (17)

Transform formula (17) using expression (16).

P SN R =

⎧⎪⎨⎪⎩
20 lg

2N

L AE1
, 2N

≤ B · L AE1,

20 lg
B

1 − ε
, 2N > B · L AE1.

(18)

Formula (18) describes the dependence P SN R of the convolution result according to formula (1) on the value
of the scaling parameter N , the size w × w × 3 of the filter convolutional layer and the maximum brightness value
B of the image. The practical application of formula (18) can be described as follows: it is necessary to choose the
smallest values of N , which allows maintaining an acceptable quality of the processed image. This will minimize
hardware costs for the implementation of convolution. The bit-width r of the filter coefficients after quantization is
determined by follows.

r = max
−t≤i≤t
−t≤ j≤t

0≤k≤D−1

{ri, j,k}, (19)
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Fig. 4. Database image classes [25].

where ri, j,k — the number of digits required to store the quantized coefficient
⌈

2N Wi, j,k
⌉

, determined by follows.

ri, j,k = 1 +
⌈

log2

(⏐⏐⌈2N Wi, j,k
⌉⏐⏐ + 1

)⌉
. (20)

Software simulation using derived formulas is presented below. The principle of formulas is demonstrated by
the example of a specific filter.

5. Software simulation

CNN was developed for recognizing 8 classes of 161 images from the University of Illinois image base [25] as
an experimental base. The image classes from this dataset are shown in Fig. 4. All base images are converted to
resolution 256 × 192 pixel using the bicubic interpolation algorithm embedded in Adobe Photoshop CS6.

Minimizing the hardware and time spent on training and implementation of CNN was the main purpose of
the simulation. The minimum possible number of layers used for that. In addition, RNS arithmetic is used in the
convolutional layer of CNN instead of two’s complement.

The developed CNN architecture is shown in Fig. 5. The RGB images of size 256 × 192 are fed to CNN input.
The first two layers are responsible for highlighting features of the image. The first layer performs a convolution
using 8 filters of size 3 × 3 × 3 and stride 3. 8 feature maps of size 85 × 64 are the calculation result of the first
layer are. The second layer performs the max pooling operation using a mask with a size 2 × 2 and stride 2. 8
feature maps of size 42 × 32 are the output of the second layer and are connected to the inputs of the last two
layers responsible for the image classification. The third layer consists of 10 neurons, and the fourth layer consists
of 8 neurons, each of which corresponds to a particular class.

The convolution takes a significant part of the working time. We divided CNN architecture into hardware and
software parts to increase the speed of work. The convolutional layer is the hardware part implemented on the
FPGA using RNS calculations. The layer of max pooling and a fully connected network are implemented in the
simulation since the comparison operations and the nonlinear activation function are difficult to implement in RNS.

CNN is trained in Matlab R2018b using the Neural Pattern Recognition Toolbox tool. The calculations were
performed on a PC with an Intel (R) Core (TM) i7-4790K CPU @ 4.00 GHz processor with 16.0 GB of RAM and
64-bit Windows 10. 161 images from 8 classes [25] were used for training. The neural network is trained in 30
iterations within 57 s.

3D mask of one filter from the convolutional layer of trained CNN before and after quantization is shown in
Table 1. The values of the filter coefficients are reduced to an 8-bit representation for the hardware implementation.
Bit-width r = 8 is determined by the formula (19) at N = 11. The selected value of scaling parameter N is the
smallest, at which the result of image processing with a filter of size 3 × 3 × 3 is guaranteed to reach 40 dB quality
according to formula (18). This value describes the difference between the two images, almost imperceptible to the
viewer [24].

Hardware implementation using quantized filter mask from Table 1 is presented below.



240 M.V. Valueva, N.N. Nagornov, P.A. Lyakhov et al. / Mathematics and Computers in Simulation 177 (2020) 232–243

Fig. 5. Proposed CNN architecture using RNS in the convolution layer.

Table 1
3D mask of one filter from the convolutional layer of trained CNN.

Layer Filter mask before quantization Filter mask after quantization

R

⎛⎝−0.0394456 −0.0257306 −0.0239846
−0.0312350 −0.0403409 −0.0520126
−0.0434387 −0.0364724 −0.0520036

⎞⎠ ⎛⎝−80 −52 −49
−63 −82 −106
−88 −74 −106

⎞⎠
G

⎛⎝−0.0280364 −0.0397294 −0.0528939
−0.0423464 −0.0429127 −0.0613428
−0.0128505 −0.0548165 −0.0599076

⎞⎠ ⎛⎝−57 −81 −108
−86 −87 −125
−26 −112 −122

⎞⎠
B

⎛⎝−0.0304336 −0.0289807 −0.0600239
−0.0578725 −0.0404073 −0.0482339
−0.0492809 −0.0410201 −0.0474128

⎞⎠ ⎛⎝ −62 −59 −122
−118 −82 −98
−100 −84 −97

⎞⎠
Bias −0.0003320 0

6. Hardware implementation

Hardware implementation was performed on FPGA Kintex7 xc7k480tffg901-2 in Xilinx Vivado 18.3 with the
parameters “High Performance Optimized”. Comparison of RNS and two’s complement is the main purpose of the
implementation.
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Table 2
The delay of the convolution operation of the CNN for different moduli.

Modulus Delay (ns) LUTs A × D

22
− 1 6.868 74 508,232

23
− 1 7.461 126 940,086

24
− 1 8.470 252 2134,440

25
− 1 8.936 409 3654,824

26
− 1 9.510 628 5972,280

27
− 1 9.758 842 8216,236

28
− 1 10.042 1150 11548,300

29
− 1 9.862 1395 13757,490

210
− 1 10.041 1930 19379,130

27 6.955 345 2399,475
28 7.696 456 3509,376
29 8.052 611 4919,772
210 8.396 806 6767,176

Hardware implementation results are presented for only one filter but can be generalized to the other seven
since they have the same structure and differ only in weighting coefficients. The FPGA implementation of the
CNN filters was implemented in the form of a combinational circuit without using memory to achieve maximum
performance. Kogge Stone Adders (KSAs) and Carry Save Adders used for the implementation of the convolution
operation [31]. Thus, all eight filters of the convolutional layer of the considered CNN can be implemented. At the
same time, the universality of the implemented approach allows us to generalize the conclusion obtained for one
filter to all others. The distribution and general use of hardware blocks Slice and LUT Slices with this approach
are performed automatically based on algorithms built into the Computer-aided design (CAD) system (in our case
Xilinx Vivado 18.3). We used VHDL to develop the hardware architectures. All source files are available at [1].

Implementation of a convolution is performed for various moduli of the form 2p and 2p
− 1. The results are

presented in Table 2. We use metric A × D to compare implementation results which is calculated as the product
of the number of LUTs by the device delay and allows us to estimate the area and time resources consumed by the
device. The delay varies from 6.868 ns to 10.042 ns.

The dynamic range of RNS must satisfy the condition M ≥ 2 · 255 · max {0, 2326} = 1186260 [7], where:
2 — factor, the presence of which is explained by the need to represent negative numbers in RNS; 255 —
the maximum brightness value of the image; 0 — the sum of positive filter coefficients; 2326 — module of
the sum of its negative coefficients. This condition, as well as the data from Table 2, allows us to choose to
implement a complete RNS system with three sets of moduli

{
23

− 1, 24
− 1, 25

− 1, 29
}
,
{
24

− 1, 29
− 1, 29

}
and

{
25

− 1, 27, 29
− 1

}
, having the lowest delay and spanning the dynamic range M , for conversion from two’s

complement to RNS, convolution and reverse conversion from RNS to two’s complement.
The obtained implementation results using RNS and two’s complement are presented in Table 3. The implemen-

tation showed that using RNS with moduli set
{
23

− 1, 24
− 1, 25

− 1, 29
}

reduces the hardware costs by 7.86%,{
25

− 1, 27, 29
− 1

}
— by 2.07% compared to the two’s complement. The use of moduli set

{
24

− 1, 29
− 1, 29

}
allows to reduce the device area, but it increases the device delay, therefore this moduli set requires 8.26% more
hardware resources compared to the two’s complement. This allows us to conclude that the use of RNS for
hardware implementation of the convolutional layer of CNN is more efficient in the area of the device, compared
to the implementation in two’s complement. The generalization of the results obtained in the case of large filter
masks requires further research in practice. The comparison was made with the implementation of the convolution
function of a single CNN filter obtained by the HDL Coder converter built into Matlab into a code written in
VHDL to demonstrate the advantages of the proposed method. Consequently, the proposed approach using RNS{
23

− 1, 24
− 1, 25

− 1, 29
}

reduces the hardware resources by 37.78% compared to automatically generated code
in Matlab.

The difference between the two’s complement implementations is the use of different adders. In the case of
our two’s complement implementation, we used KSAs, which can reduce the delay, but lead to an increase in the
device area. And in the case of the automatically generated code by Matlab, carry propagate adders were used,
which increase the delay, but reduce the area of the device.
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Table 3
Hardware implementation results of the CNN convolutional layer.

Number system Parameters Delay (ns) LUTs A × D

RNS

{
23

− 1, 24
− 1, 25

− 1, 29} 16.251 2900 47127.900{
24

− 1, 29
− 1, 29} 15.975 3490 55752.750{

25
− 1, 27, 29

− 1
}

16.040 3123 50092.920

Two’s Using KSAs 12.746 4013 51149.698
complement Generated by Matlab 33.124 2324 76980.176

Table 4
Average image recognition time.

Architecture System components Time (s)

Software implementation
Convolutional layer 0.038000
The remaining CNN layers 0.054000
Total processing time in the software implementation 0.092000

Proposed heterogeneous architecture

Image transfer to FPGA 0.000015
Convolutional layer 0.000089
Result transfer to the workstation 0.000018
The remaining CNN layers 0.054000

Total processing time in the hardware–software implementation 0.054122

The software part of CNN is implemented in Matlab. We use AXI4 as the data interface between the FPGA
module and the workstation [2]. The transfer time of the image to the FPGA module is 0.000015 s, and the return
transfer of the result to workstation takes 0.000018 s. Data on the average recognition time of one image is shown
in Table 4. Thus, we can conclude that the use of the proposed hardware and software implementation reduces the
average time of image recognition by 41.17%.

The fact that resource costs are reduced compared to using traditional two’s complement representation is the
main conclusion on the results of software simulation and hardware implementation of CNN with calculations
in RNS in the convolutional layer. The developed architecture of CNN can be widely used to create efficient
video surveillance systems, in the recognition of handwriting text, persons, objects and terrain in various practical
applications.

7. Conclusion

The paper presents a method of the hardware implementation of the CNN for pattern recognition using
computations in the RNS. The minimized configuration of the CNN includes a convolutional layer, a layer of max
pooling, and a classifier, which is organized as a traditional multilayer perceptron. The hardware implementation of
the convolution layer shows that the use of RNS allows to reduce the hardware costs on 7.86%–37.78% compared
to the two’s complement. The use of the proposed heterogeneous implementation reduces the average time of
image recognition by 41.17%. The generalization of the obtained results in the case of large filter masks requires
further research in practice. The research results can be applied to create effective video surveillance systems, for
recognizing handwriting, individuals, objects and terrain.
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