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A B S T R A C T

A factor that directly impacts the lifespan of a power transformer is the hot-spot temperature, and its monitoring
is vital to prevent faults, reduce costs, keep the safety, and provide a reliable service to consumers. In this paper,
we propose two forecasting models to predict the hot-spot temperature of power transformers. The first is the
implementation of Set-Membership in the evolving Participatory Learning with Kernel Recursive Least Squares.
And the second is a combination of the evolving Participatory Learning with Kernel Recursive Least Squares and
the improved version of the Set-Membership concept, named Enhanced Set-Membership. Both Set-Membership
and the Enhanced Set-Membership approaches are implemented to update the rate of change of the arousal
index, which is a parameter that controls the creation of rules. A data set collected from an experimental
transformer is adopted to evaluate the model’s performance. The obtained results are compared with the per-
formance of the original evolving Participatory Learning with Kernel Recursive Least Squares and with the
performance of other classical models suggested in the literature. The proposals have lower errors and a com-
petitive number of final rules, suggesting that the models are efficient approaches to modeling complex data with
high accuracy.

1. Introduction

The power transformer is a critical equipment in power distribution
[1]. It is responsible for stepped-up the voltage before to be transmitted
over long distances to reduce waste, and stepped-down the voltage to
provide the energy to consumers safely [2,3]. Due to the composition of
a power transformer, it is the most expensive apparatus in energy dis-
tribution [4]. In the case of a power transformer’s failure, when the
recovering process is possible, it is slow and inefficient [5]. Thereof,
monitoring is vital to prevent faults, reduce costs, keep the safety, and
provide a reliable service to consumers [6,7]. The annual spent on
power transformers’ monitoring hardware will increase more than $
642 million in eight years until 2020, according to [8,9], indicating the
importance of the power transformers in power distribution.

Internal failures are about 10% of the total faults, and, among them,
winding and bushing defects represent approximately 44% [10]. The
bushing is a fragile component constituted of four parts: insulation,
conductor, connection clamp, and accessories[11,12]. In the present

work, we considered power transformers composed of Resin-bonded
paper bushings (RBP) [13].

The principal factor in bushing failures is the hot-spot temperature,
representing 32% of the total causes [11]. The hot-spot temperature is
the highest temperature near to the top of the power transformers high-
voltage (HV)/low-voltage (LV) windings [7,14] and represents the main
limiting factor in the load capacity of the transformer [14], since in-
creases in this temperature reduces the lifespan of the insulation and
may determine the end life of the power transformer [15].

As the estimation of the hot-spot is a complex task, many models
have been proposed in the literature with the purpose of estimating the
hot-spot temperature of power transformers. Among them, the most
commonly used in practice is the model based on the IEEE Standard
C57.91-2011 [16] which is based on transient heating equations and
specific thermal characteristics and parameters of power transformers.
This deterministic model is imprecise due to assumed simplifications,
and consequently, the power transformer must operate below the
maximum capacity to prevent damages [7]. This conservative attitude
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increases the operational cost to the company [17]. Therefore, more
advanced techniques are necessary to optimize the use of the power
transformer’s capacity and its lifetime without put at risk its function-
ality and security [18].

In literature, we found applications of several works in power
transformers monitoring. Paper [19] suggests a formulation to calculate
the expected cost to repair a power transformer. In paper [19–21] was
used artificial neural networks (ANN) for diagnostics and in [22] the
ANN is proposed to analyze faults in dissolved gas-in-oil. Paper [23]
suggests fuzzy sets and [18] presents neuro-fuzzy hybrids. Reference
[17] introduces the use of participatory learning (PL) to train a hybrid
neuro-fuzzy network, and in paper [24] is used as an evolving multi-
variable Gaussian (eMG). Cortez proposed a fault prognosis provided by
an intelligent system based on cognitive systems [25] and a vector
machine (SVM) was proposed in Bacha et al. [26], Ganyun et al. [27] to
the same purpose. In paper [28], the use of a fuzzy expert system in-
dicates the best moment to repair a power transformer based on its
current state.

The main contributions of this work are summarized as follows:

• We introduce a novel forecasting model based on the Set-
Membership (SM) filtering [29–31] to adjust the parameter that
controls the rate of change of the arousal index in the evolving
Participatory Learning with Kernel Recursive Least Squares (ePL-
KRLS). This model was named Set-Membership evolving Participa-
tory Learning with Kernel Recursive Least Squares (SM-ePL-KRLS).
• We implemented a new filtering strategy to update the rate of
change of the arousal index in the ePL-KRLS. This proposal is so-
called Enhanced Set-Membership evolving Participatory Learning
with Kernel Recursive Least Squares (ESM-ePL-KRLS), which is an
improved version of the SM-ePL-KRLS.
• We evaluate the performance of the proposed models in terms of
errors and the number of final rules, using data set from thermal
modeling of power transformers. Additionally, we compare the
performance with other approaches suggested in the literature
(evolving Multivariable Gaussian [32], Multilayer Perceptron (MLP)
[33], Adaptative Neurofuzzy Inference System (ANFIS) [34], and
IEEE Deterministic Model [16])

Our major conclusions are as follows:

• Both proposed models achieved the lowest errors, suggesting that
these forecasting models can predict complex data with high accu-
racy.
• The proposed models obtained the lowest number of final rules in all
simulations, indicating these models have a low computational cost.
• The monitoring of the hot-spot temperature by the introduced
models is efficient to control the load current and improves the
lifespan of the power transformers.

This work aims to propose two forecasting models able to predict
the hot-spot temperature with high accuracy, and consequently, im-
proving the load capacity and increasing the lifetime of a power
transformer. Proposed models are classified as an evolving fuzzy system
(eFS). Their main benefit is the adaptability of the model according to
the data, which occurs in a continuous learning process through the
creation and exclusion of rules [35].

The remainder of this paper is organized as follows. Section 2 pre-
sents the approach of the deterministic model. Section 3 details the
proposed models. Section 4 presents the achieved results and discusses
them. And finally, Section 5 presents the conclusions.

2. Problem formulation

Nowadays, the most used model in practice for the prediction of the
hot-spot temperature of power transformers is the deterministic model

proposed in the IEEE Standard C57.91-2011 [16]. This model consists
of a series of differential equations whose calculation requires knowl-
edge of load curves and operating conditions for which values usually
conservative are fixed [36].

As presented in Hell et al. [18], the main steps of the hot-spot cal-
culation made by the IEEE deterministic model can be summarized as
follows:

The deterministic modeling starts by calculating the ultimate top oil
rise (ΔΘTO,U), using the following Equation:

= +
+

K R
R

1
1TO U TO R

n

, ,
2

(1)

where ΔΘTO,R is the rated top oil temperature rise over the environ-
ment, K is the load current, R is the ratio of load loss at rated-load to no-
load loss at applicable tap position and n is the empirically derived
value depending on the cooling.

Using Eq. (1) and the environment temperature (ΘA), the increment
in the top oil temperature (ΘTO) is found by the differential equation
expressed below:

= +d
dt
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where τTO is the top oil rise time constant.
The next step consists of calculating the last hot-spot rise over top

oil (ΔΘH,U), as follows:

= KH U H R
m

, ,
2 (3)

where ΔΘH,R is the rated hot-spot rise over top oil.
We calculate the increment in hot-spot rise above top oil tempera-

ture (ΔΘH) using the value of ΔΘH,U obtained from Eq. (3), as the fol-
lowing differential equation:

=d
dtH

H
H U H, (4)

where τH is the hot-spot rise time constant and ΔΘH is the hot-spot rise
above top oil temperature.

Finally, the hot-spot temperature is calculated as a function of ΘTO

and ΔΘH according to Eq. (5), where these parameters are obtained
from Eqs. (2) and (4) respectively.

= +H TO H (5)

As mentioned before, the model presented in this section presumes a
series of simplification assumptions, and its use makes that the power
transformer operates between 70% to 80% of their nominal capacity
[7] which implies a loss of more than one power transformer at every
five [17]. In this sense, the main goal of the proposed models is to
introduce an algorithm able to predict the hot-spot with high accuracy
and low computational cost in order to increase system operation
margin mainly in the presence of overload conditions [37].

3. Proposed models

In this section, we introduce the proposed models. First, we discuss
the ePL-KRLS algorithm. Then, we explain the Set-Membership (SM)
concept. And finally, we present the Enhanced Set-Membership (ESM)
filtering.

3.1. ePL-KRLS algorithm

The ePL-KRLS is a fuzzy evolving model based on Takagi-Sugeno
(TS) rules [38,39]. This model clusters the input space according to the
degree of similarity in the knowledge process [32,40]. This technique of
clustering uses the concept of participatory learning (PL). The PL pro-
cedure is based on human learning [41,42]. Every cluster has a local
output, obtained as a function of the consequent parameters associated
with each cluster, that contributes as a weighted average to calculate
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the global output [43–45]. The ePL-KRLS estimates the consequent
parameters using the kernel recursive least squares [46,47]. The
learning structure of ePL-KRLS is represented in Fig. 1.

The compatibility index ( i
k) and the arousal index (ai

k) are calcu-
lated from Eqs. (6) and (7), respectively.

= X V
m
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k
i
k

(6)

where = …X x x[ , , ]k
m
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1 is input data at step k, m is dimension of X,Vi
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the center at step k of ith rule.
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where β ∈ [0, 1] controls the growth rate of ai
k.

The compatibility index is a measure of similarity between the new
input vector and created rules. A result of the compatibility index equal
to one represents the input vector has the maximum similarity with a
created rule, and a result zero represents the minimum similarity. The
interval of these variables is the follow: = …a i R, [0, 1], 1, , ,i

k
i
k k

where R is the number of rules at kth step.
The value of the arousal index indicates the need to create a new

rule. The compatibility index is used to calculate the arousal index,
which reduces the effect of outliers in the model. If the lowest arousal
index is higher than a threshold, i.e., > ,i

k where =i argmaxi i
k and

= , then a new rule is created. Otherwise, the input vector is included
in the most compatible rule, expressed in the following Equation:
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where < <10 105 1 is the learning rate.
The local output is calculated as follows:
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=
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where θi is the consequent parameters of ith rule, dij is the jth element of
the local dictionary in ith rule and κ⟨., .⟩ is the Gaussian-Kernel function
shown in Eq. (10) [48].

=X X exp X X,
2
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i j 2
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where ν is positive and represents the size of the kernel. The ν is found
minimizing the error function using Eq. (11) and it is based on a re-
cursive Levenberg-Marquardt model [49].
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where Pi
k is calculated from Eq. (12), i

k is the gradient of error ex-
pressed in (13) and =e y y˜ ^k k k is the error, which yk is the actual
value and ŷ k is the predicted value.
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where =P I,i
1 Ω ∈ ]0, 1000[ and =v 0.5i1

1 .
The model output is computed from local outputs as follows:

=
=
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where Γi(X) is the normalized firing degree expressed in Eq. (15).
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where i is the fuzzy set of ith rule.
The mechanism of clusters the input space and calculate the global

output according to the importance degree improve the precision of the
model and better predicts nonlinear data. The next step is to calculate
the consequent parameter from Eq. (16).

When the model creates a new rule, the initialization of the vari-
ables are as following: =a 0,i

k =D Xi
k k and the Eq. (16) are used to

calculate the consequent parameter.

= + X X y[ ( , )]i
k k k k1 1 (16)

where [10 , 10 ]5 2 is a parameter of regularization.
Otherwise, the consequent parameter is updated using Eq. (17).

When Eq. (18) is satisfied, if the addition of the input vector to the local
dictionary reduces the error, the model makes this inclusion. This
technique of sparcification aims to reduce the computational cost and is
called novelty criterion [50,51].
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To eliminate redundant rules, the value of compatibility measure,
obtained from Eq. (19), is calculated at the end of each iteration. If

> i j, ,ij
k where = 1 , then the rules i and j are merged ac-
cording Eq. (20).

=
=

v v
m

1ij
k

l

m
il
k

jl
k

1 (19)

=
+

V
V V

2i
k i

k
j
k

(20)

3.2. Set-membership (SM)

The Set-Membership (SM) is an adaptative algorithm that adjusts a
chosen parameter as a function of the model errors. The updating is

Fig. 1. Mechanism of learning of ePL-KRLS model [47].

K.S.T.R. Alves, et al. Electric Power Systems Research 184 (2020) 106334

3



performed comparing the error with a default value. If the error value is
higher than a threshold (γbar), then the rate of change of the arousal
index (β) increases to improve the model learning. Otherwise, β is
zeroed to reduce the computational cost. The SM is a filtering proposed
by Clarke and de Lamare [30] to limit the increase of the error, reduce
the computational complexity, and improve the capacity of con-
vergence [29]. The mechanism to update β performs, as shown below:

=
>if e1 , ˜

0, otherwise
e

k
bar˜

bar
k

(21)

where ẽi
k is the error at ith iteration.

To β not becomes less than zero, an inferior limit (IL) prevents it.
There are alternatives proposed calculations of SM. Eq. (22) de-

monstrate an alternative calculation of the SM using average errors
[29,30].
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where = ẽq
k

k
q

1
1 is the average error at step k.

3.3. Enhanced set-membership (ESM)

The ESM is an improvement of the SM. Its mechanism of work is to
adjust the β as a function of the error. However, instead of β becomes
zero as the SM, the ESM reduces the chosen parameter when the error is
lower than γbar as presented below:

=
+ >×

×

if e, ˜

, otherwise
k

k e k
bar

k e

1 ˜
10

1 ˜
10

k
gr bar

k
dr bar (23)

where gr dr, are the rate of parameter increase and decrease, re-
spectively.

An inferior limit (IL) and a superior limit (SL) are predefined to limit
β to improve the results of the predictions, and to β does not achieve
values inconsistently. In other words, β ∈ [IL, SL], where IL≥ 0, SL≤ 1
and IL ≤ SL.

Finally, we update the dependent parameters of β as follow: =
and = 1 . The ESM-ePL-KRLS algorithm is shown in Fig. 2.

The algorithm of SM-ePL-KRLS can be observed by replacing
Algorithm 2 (see Fig. 3) for the algorithm shown in Fig. 2.

4. Experimental results

To evaluate the effectiveness of the method proposed in this work,
the models presented in previous sections are applied in the estimation
of the hot-spot temperature of a real transformer whose characteristics
are shown in Table 1.

The data sets collected from this transformer are the same presented
in Galdi et al. [36] and were obtained through a measurement system
composed by three fiber-optical-based temperature sensors and a hall-
effect current sensor. The first two temperature sensors (S1 and S2)
were inserted in the spacer between the disks at the top of the high-
voltage and low-voltage windings, as shown in Fig. 4. The aggregation
of the values obtained from these two sensors provides a measure of the
actual value of the transformer’s hot-spot temperature (ΘH). The third
temperature sensor (S3) was inserted at the top of the tank and provides
the actual value of top oil temperature (ΘTO). The hall-effect current
sensor (S4) provides the actual value of the load current (K). Fig. 4
shows the location of these sensors in the experimental transformer
used in this work.

In our experiments, two data sets composed of the records of the
temperatures and load current acquired from each sensor in an interval
of 24 h with a 5-min sample rate were used to evaluate the proposed

models. To cover all the transformers operating conditions, two dif-
ferent load conditions were considered: i) Data set 1: without overload
and ii) Data set 2: with overload. Figs. 5 and 6 shows the behavior of the
hot-spot and top-oil temperatures for a given load current for these two
data sets.

Therefore, the purpose of the proposed models is to estimate the
hot-spot temperature from the load current and the top-oil temperature.
Different studies [17,36] and experimental trial and error tests indicate
that the relevant model inputs for this case are the load current (K), the
top oil temperature (ΘTO) and one step delayed load current (q 1 K,
where q 1 is the delay operator). This choice has shown to reduce the
model sensitivity concerning fluctuations in the thermal parameters,
which can vary considerably from one transformer to another [52].

The root mean squared error (RMSE), non-dimensional index error
(NDEI), and mean absolute error (MAE) are error measures used to
evaluate the precision of the models. The formulas of RMSE, NDEI, and
MAE are shown in Eqs. (24)–(26) respectively.

=
=

RMSE
T

y y1 ( ^ )
k

T k k
1

2
(24)

=
…

NDEI RMSE
std y y([ , , ])T1 (25)

=
=

MAE
T

y y1 | ^ |
k

T
k k

1 (26)

where ŷ k is the kth forecasted value, yk the kth actual value and T is the
sample size.

Additionally, the number of final rules was used to estimate the
computational cost of the evaluated models [47].

Thus, initially, we used the two models proposed in this work, the
SM-ePL-KRLS and ESM-ePL-KRLS models, as well as the original ePL-
KRLS model, as presented in Section 3, in the estimation’s problem of
the hot-spot temperature for the two data sets previously presented.
Also, to test the evolving characteristics of the proposed models, we
have also implemented another evolving model shown in the literature,
the evolving Multivariable Gaussian (eMG) model proposed in Souza
et al. [24].

The parameters of ePL-KRLS, SM-ePL-KRLS and ESM-ePL-KRLS are
defined as follows: = 0.01, = 0.18, = 0.18, = 0.82, = 0.05,

= 10 4 and =v 0.50 . In addition, the SM-ePL-KRLS has the following
parameters: = 0.011bar for the data set 1 and = 0.01106bar for the data
set 2. And the ESM-ePL-KRLS has the following parameters: the =IL 0,

=SL 0.6, =gr 1, =dr 0, and = 0.01120bar for the data set 1 and
=IL 0.01, =SL 0.35, =gr 1, =dr 0, and = 0.0172bar for the data set 2.

The adopted γbar was chosen as the best result among 1439 simulations
starting at = 0.00001bar and finishing at = 0.07196bar . Tables 2 and 3
shows the results of the simulations for all implemented evolving
models.

As can be seen in Tables 2 and 3 the proposed models achieved the
best results in terms of estimation accuracy than the other models. In
particular, the ESM-ePL-KRLS model showed higher accuracy with a
competitive computational cost if compared to all other models when
applied to the data set 2, i.e., in the presence of an overload condition in
the transformer’s operation. It is worth mentioning that one of the main
applications of the hot-spot temperature estimation is concerned in the
computing the load capability rate in real-time to increase system op-
eration margin in the presence of overload conditions. This makes the
ESM-ePL-KRLS model emerge as a promising alternative in the solution
of the proposed problem.

The better performance of the proposals is a consequence of the
updating of β, τ and γ according to the error increase or decrease. The
adjustment of β is a function of the magnitude of the error, limiting the
maximum error, and implying more ability to treat nonlinear data. The
rate of creation of new rules increases if the error increases more than
γbar. Otherwise, the number of rules tends to decrease.
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In order to statistically validate the performance of the proposed
models we also perform the Morgan-Granger-Newbold test (MGN) in-
troduced in Diebold and Mariano [53].

The statistical test is performed as follow:

=MGN ŝd

n
1 ^

1
sd

2

(27)

where ŝd is the correlation coefficient between s and d, with = +s r r ,1 2
=d r r ,1 2 r1 is the residual of model 1 and r2 is the residual of model 2.
This statistical test is a student’s t distribution with n 1 degrees of

freedom. Tables 4 and 5 present the results of the tests for the two
presented data sets, considering a significant level (α) of 5%. If the p-
value is lower than α, we reject the null hypothesis, which assumes the
models have equal accuracy. In this way, it is possible to see in Tables 4
and 5 that both proposed models, SM-ePL-KRLS and ESM-ePL-KRLS,

showed a statistically proven better accuracy than ePL-KRLS.
To prove the efficiency of evolving models in the estimation of the

hot-spot temperature of power transformers, they were also compared
with other non-evolving (fixed structure) models described in the lit-
erature. These models include the deterministic model based on IEEE
Standard C57.91-2011 (IEEE-DM) describe in Section 2, a model based
on a Multi-layer Perceptron Neural Network (MLP) and a model based
on an Adaptative Neurofuzzy Inference System (ANFIS) [34].

In the deterministic modeling (IEEE-DM) the experimental trans-
former characteristic parameters used in this work were the following:

=R 4, = 5H R, C, = 54TO R, C, = 80H R, C
= 21A R, C, =q 0.8, =m 0.8, = 3TO h, = 0.1H h

The MLP neural network was implemented with a single hidden
layer with 4 neurons trained with the backpropagation algorithm. The
ANFIS model was implemented with four fuzzy sets for each input
variable and four fuzzy rules generated by means of the fuzzy c-means

Fig. 2. ESM-ePL-KRLS algorithm.
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clustering procedure [54]. Tables 6 and 7 show the results obtained for
all models implemented in this work.

In Figs. 7 and 8 graphical depictions of the results obtained in this
work are presented. For visualization purposes only the models pro-
posed in this work and the IEEE-DM model, which is the most used
model in practice for the prediction of the hot-spot temperature, are
shown in the Figure.

Fig. 3. SM model.

Table 1
Characteristics of the experimental power transformer.

Copper losses 776 W
Factory year MACE/1987
Iron losses 195 W
Nameplate rating 25 kVA
Tank dimensions 64 × 16 × 80 cm3

Top oil temperature rise at full load 73.1 ∘C
Type of cooling ONAN
Vprimary/Vsecondary 10 kV / 380 kV
Weight of core and coil assembly 136 kg
Weight of oil 62 kg

Fig. 4. Sensor’s location in the experimental transformer.

Fig. 5. Data set 1: no overload condition.

Fig. 6. Data set 2: with overload condition.

Table 2
Results of evolving models - Data set 1: no overload condition.

Algorithm γbar RMSE NDEI MAE Rules

eMG [24] – 0.01180 0.18560 0.00900 1
ePL-KRLS – 0.01367 0.21529 0.01010 1
SM-ePL-KRLS 0.01100 0.01032 0.16244 0.00756 1
ESM-ePL-KRLS 0.01120 0.01026 0.16158 0.00750 1

K.S.T.R. Alves, et al. Electric Power Systems Research 184 (2020) 106334
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As can be seen in Tables 6 and 7, the proposed models maintain a
better performance than their non-evolving counterparts. In the same
way as seen previously, the prediction accuracy of the ESM-ePL-KRLS
model surpasses all others in the presence of an overload condition in
the operation of the transformer. Once again, this model appears as a
promising alternative to integrate decision-making systems to assist
during the operational planning of the electrical system.

It is worth mentioning that although the data presented in this work
have been collected in experimental equipment, the proposed model
can be easily applied to real-world transformers through small mod-
ifications in this equipment. These modifications include the installa-
tion of a hall effect sensor to measure the load current and the insertion
of only one temperature fiber-optical based sensor in the transformer’s
inspection cover to measure the top oil temperature.

In addition to these modifications being non-invasive and having a
low implementation cost, many transformers in operation already have
such sensors installed, which makes the proposed approach highly ap-
plicable to the real-world problem of estimating the hot-spot tem-
perature of power transformers.

5. Conclusions

In this paper, two forecasting models are suggested to deal with the
problem of power transformers’ hot-spot temperature estimation: the
ESM-ePL-KRLS and SM-ePL-KRLS. These models were tested with data
sets collected from a real experimental transformer, where two load
conditions were considered: with and without an overload condition.

The evaluation of these models was measured in terms of error and
number of final rules and showed that both models have better accu-
racy and lower computational cost when compared to other evolving
and fixed-structure (non-evolving) models suggested in the literature.
Another benefit of the introduced models is that their structure makes
the knowledge process continuous and more adaptable as the data
changes than its evolving counterparts. In addition, a MGN statistical
test supports that the proposed models have better accuracy than the
original ePL-KRLS model.

In particular, the ESM-ePL-KRLS model shown higher accuracy if
compared to all others in the presence of an overload condition in the
operation of the transformer. Besides, the number of rules of the SM-
ePL-KRLS model presented a considerable variation and reached a high
number during the evolving process, indicating a high computational
cost. These facts suggest that the ESM-ePL-KRLS model appears as a
better choice to integrate a decision support tool to assist the opera-
tional planning of the electrical power system.

Future studies include the integration of the proposed method into a
system that will predict, from the hot-spot temperature, the effects of an
eventual overload during operation on the transformer’s residual life
and the implementation of a mechanism to update the value of the
Enhanced Set-Membership parameters: γbar, gr and dr. This im-
plementation will make the model more flexible according to the input

Table 3
Results of evolving models - Data set 2: with overload condition.

Algorithm γbar RMSE NDEI MAE Rules

eMG [24] – 0.0303 0.1444 0.0184 2
ePL-KRLS – 0.03304 0.16146 0.02420 2
SM-ePL-KRLS 0.01106 0.02647 0.12933 0.01870 1
ESM-ePL-KRLS 0.01720 0.02519 0.12308 0.01855 1

Table 4
Results of the MGN test - Data set 1.

Model 1 × Model 2 MGN p-value

ESM-ePL-KRLS × ePL-KRLS 5.5747 0.0000
SM-ePL-KRLS × ePL-KRLS 5.4579 0.0000

Table 5
Results of the MGN test - Data set 2.

Model 1 × Model 2 MGN p-value

ESM-ePL-KRLS × ePL-KRLS 5.2614 0.0000
SM-ePL-KRLS × ePL-KRLS 5.02844 0.0000

Table 6
Comparing performance with non-evolving models - Data set 1.

Algorithm RMSE NDEI MAE Rules

Deterministic Model (IEEE-DM) [16] 1.0245 16.1089 0.7524 –
Multilayer Perceptron (MLP) [33] 0.0467 0.7336 0.0343 4
Adapt. Neurofuzzy Inf. Sys. (ANFIS) [34] 0.0124 0.1952 0.0091 4
Evolving Multivariable Gaussian (eMG)

[24]
0.0118 0.1856 0.0090 1

ePL-KRLS 0.0137 0.2153 0.0101 1
SM-ePL-KRLS 0.0103 0.1624 0.0076 1
ESM-ePL-KRLS 0.0103 0.1616 0.0075 1

Table 7
Comparing performance with non-evolving models - Data set 2.

Algorithm RMSE NDEI MAE Rules

Deterministic Model (IEEE-DM) [16] 0.4005 1.9446 0.2769 –
Multilayer Perceptron (MLP) [33] 0.0317 0.1539 0.0219 4
Adapt. Neurofuzzy Inf. Sys. (ANFIS) [34] 0.0481 0.2340 0.0333 4
Evolving Multivariable Gaussian (eMG) [24] 0.0303 0.1444 0.0184 2
ePL-KRLS 0.0330 0.1615 0.0242 2
SM-ePL-KRLS 0.0265 0.1293 0.0188 1
ESM-ePL-KRLS 0.0252 0.1231 0.0186 1

Fig. 7. Hot-spot estimation - Data set 1.

Fig. 8. Hot-spot estimation - Data set 2.
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data varies along time and consequently, it will improve the perfor-
mance of the hot-spot temperature’s estimation. We hope to address
these issues in the near future.
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