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energy efficiency has gradually become an important part in complex petrochemical industries. There-
fore, this paper introduced the main methods and the latest research results of energy efficiency eval-
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uation of complex petrochemical industries. These methods are mainly divided into three parts,
including the mechanism methods based on TT-RG, the data-driven artificial intelligence methods, and
the hybrid methods combining the mechanism and the data-driven. Then, different methods are
compared and described in detail. Moreover, the best method for evaluating the energy efficiency can be
found to provide theoretical guidance for energy saving and emission reduction of complex petro-

chemical industries. Finally, the future development direction for energy efficiency evaluation in complex
petrochemical industries is given.
© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

With the continuous development of economy, China has
become the second largest economy nation in the world. As a pillar
of modern economy, energy has greatly promoted the economy
development. However, problems of environmental pollution and
high energy consumption become more and more serious. The
comparison of carbon dioxide (CO,) emissions and energy con-
sumption between China and other countries (or regions) in 2018
are shown in Fig. 1 and Fig. 2, respectively, where the data are from
the World Energy Statistics Yearbook. It can be seen from Figs. 1 and
2 that improving the energy efficiency and reducing pollutants
emission have been in a highly strategic position for the sustainable
development of all countries in the world [1]. In the process of
energy utilization, the ratio of the working energy to the actual
consumed energy is the energy efficiency. How to improve the
energy efficiency is the main goal of the energy development. The
energy efficiency evaluation can provide the most effective indi-
cator for this goal, which explores ways to improve the energy ef-
ficiency by establishing mathematical models of production
processes, or to reach the same or more output with less energy
input [2]. The complex petrochemical industry in China is a high
energy consumption industry with large scales. Therefore, by
evaluating the energy efficiency, finding efficient ways of energy
utilization, and then reducing pollutants emission such as CO, are
hot research topics for energy saving and emission reduction [3]. At
the same time, it has far-reaching significance for the sustainable
development of economy and society [4].

The complex petrochemical industry, which has characteristics
of large-scale equipment, large production scale, strong continuity,
high-dimension and noise data, not only is an important industry
related to national production and life but is a high pollution and
high carbon emissions industry. Due to the continuous expansion
of energy application in the complex petrochemical industry, the
information is coupled and intersected, and the structure becomes
complicated in the system [5]. In addition, because of the multi-
operation factors and their interrelationships in the energy trans-
fer system, it is difficult to describe the process in a reasonable way
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Fig. 1. CO, emissions comparison between China and other countries (or regions) in
2018.

by traditional mechanism methods based on momentum transport,
energy transport, quality transport (TT) and reaction engineering
(RG) (TT-RG) [6]. The TT-RG methods are mainly based on a direct
mathematical description of the actual process including the ma-
terial balance and thermal balance, the laws of thermodynamics
and energy balance and the specific chemical process flow with
thermodynamic analysis. Therefore, they are not only increased the
difficulty of modeling but have the shortcoming of the long cycle
analysis, low efficiency and heavy manual workload [7].

With the rapid development of big data and neural network, and
breakthrough of key technologies, more and more scholars at home
and abroad have adopted data-driven methods to evaluate the
energy efficiency of complex petrochemical industries which
included the fuzzy analytic hierarchy process [8], the DEA (data
envelopment analysis) method [9], respected classification method
[10] and extreme learning machine (ELM) neural network [11]. The
data-driven methods can learn and make decisions independently,
which make the researcher classify and extract the key factors for
logistics, energy flows, and information flows in complex and dy-
namic petrochemical production systems [12]. The data-driven
methods made up these shortcomings of traditional mechanism
methods and greatly simplified the energy efficiency analysis pro-
cess [13]. The data-driven methods mainly include data-driven
statistical methods, data-driven artificial intelligence methods
and data-driven hybrid methods. The data-driven statistical
methods include the regression analysis, the classification and the
clustering method. The data-driven artificial intelligence methods
usually include various artificial neural networks (ANNs) and data-
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Fig. 2. Energy consumption comparison between China and other countries (or re-
gions) in 2018.
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driven hybrid methods which combine statistical methods and
ANNs. With the development of the ANN, deep learning methods
also began to applied in energy efficiency evaluation for its
powerful learning ability, such as the convolutional neural network
(CNN), which allows the computer to learn pattern features auto-
matically and incorporates features into the modeling process to
reduce the incompleteness caused by traditional feature extraction
methods.

However, a large number of data-driven methods are mainly
based on the relationship between input and output variables in
the experiment and the neural network with simple structures,
which are more effective within the scope of the experiment, so it
will be not widely extended [ 14]. Therefore, the methods combined
mechanism methods and data-driven methods were adopted by
some scholars, which included the prediction of carbon content in
converter end point [15], the endpoint control model of converter
steelmaking [16], the control technology of converter blowing and
limestone residue behavior [17] and the steel industry multi-type
energy optimized scheduling [18]. Although energy efficiency
evaluation methods in complex petrochemical industries have
gradually become a hot topic in the research, it still faces great
challenges [19]. This paper summarized the research work of en-
ergy efficiency evaluation methods in complex petrochemical in-
dustries in recent years. On the basis of mathematical models, these
methods are divided into three classes including the mechanism
methods based on the TT-RG, the data-driven methods and the
mixed methods combined the mechanism and the data-driven.
Then these methods are introduced, compared and summarized
comprehensively. Finally, summing up the current research situa-
tion, this paper presents problems and future directions of energy
efficiency evaluation methods in complex petrochemical
industries.

The rest of the chapters are arranged as follows: section 2 in-
troduces the energy efficiency evaluation methods including
mechanism methods based on TT-RG, data-driven methods and the
methods combining mechanism and data-driven. The discussion is
described in section 3. section 4 and section 5 present the devel-
opment in the future and the conclusion, respectively.

2. Energy efficiency evaluation methods

With the development of complex petrochemical industries, the
energy consumption scale increases continuously. Energy saving
and emission reduction become the main goal of the complex
petrochemical industry. Therefore, how to improve the energy
production, and reduce the energy consumption and cost are the
key problems in domestic and abroad [20]. High-effective energy
efficiency evaluation in complex petrochemical industries is un-
doubtedly an important way to improve the output and reduce the
energy consumption [21].

At present, there are many researches on energy efficiency
evaluation of the complex petrochemical industry. In this paper,
energy efficiency evaluation methods are mainly divided into three
categories: mechanism methods based on TT-RG, data-driven
methods and methods combining mechanism and data-driven.
Based on this classification, the main evaluation methods are
analyzed, sorted and summarized as shown in Fig. 3.

2.1. The mechanism methods based on TT-RG

The mechanism method is established by equations which
describe the process of mechanism and then verified by experi-
ments [22]. It is a direct mathematical description of the actual
process and also reflection of the process essence. Therefore, it is
easy to generalize [23]. There are three steps for the mechanism

method to describe the petrochemical production process. First,
reasonable assumptions are proposed according to the selected
method. On the premise of satisfying the application need, under-
standing of objects and ignoring of the secondary factors are
considered. Second, according to the internal mechanism of the
petrochemical production process, the balance relation of material,
energy and momentum, and the chemical equation constitute the
mathematical model. Finally, as long as satisfying the control en-
gineering of the petrochemical industry, the proposed method is
simplified as much as possible [24]. In the complex petrochemical
industry, the mechanism method generally has the following as-
pects with one based on the material balance and thermal balance
to establish a mathematical relationship, one based on the laws of
thermodynamics and energy balance to establish a mathematical
relationship, and another combining specific chemical process flow
with thermodynamic analysis to establish the mathematical rela-
tionship. The characteristics, advantages and disadvantages of
these above methods are shown in Table 1.

Elisa et al. [25] proposed a thermal fluid dynamics model to
reduce effectively primary energy consumption. Combining dry
quenching systems with waste heat utilization systems, Cheng et al.
[26] calculated and analyzed the coking process of coke oven based
on material balance and heat balance to realize the recycling of
leftover heat and waste heat, improve coke products and by-
products energy, and further increase economic and environ-
mental benefits. Han et al. [27] studied the method of non-catalytic
thermal conversion reaction of aromatic hydrocarbons in aromatic
liquids adopted by domestic and foreign scholars in recent years,
summarized the law of thermal conversion reaction of aromatic
hydrocarbons, and reduced raw materials consumption. As a typical
industry of the petrochemical industry, the ethylene industry is a
complex process with multiple inputs, as shown in Fig. 4. A simple
proportional relationship could not fully evaluate its energy effi-
ciency [28]. Therefore, Hua et al. [29] proposed a "three-link"
analysis method based on the thermodynamic law, which mean
that the craft flow process was divided into the energy conversion
subsystem, utilization subsystem and recycling subsystem. At the
same time, the energy balance equation was established by
analyzing the subsystem data with the thermodynamic law, and
further the energy loss was analyzed. From the perspective of the
ethylene production plant, Yan et al. [30] proposed relevant opti-
mization measures to reduce the energy consumption and improve
the overall utilization rate of the ethylene plant. Since then, based
on the extensive status of CO; in the smelting flue gas of magnesite,
some scholars carried out thermodynamic analysis on the thermal
parameters of each node in the process, found the greatest irre-
versible loss in the process, and pointed out the direction for
energy-saving and optimization of the process industry, such as the
CO, capture system [31], the CO;, hydrogenation to the methanol
system [32] and characteristic and model of the thermal decom-
position [33]. Zhang et al. [34] summarized the catalytic cracking
application in the production of diesel oil and gasoline, reducing
the olefin content in petroleum products based on the process flow
of catalytic cracking in petroleum refining.

The mechanism method is an accurate mathematical method
based on the internal mechanism of objects, the production process
or the transfer mechanism of materials flow. It has advantages of
clear physical meaning of parameters, strong adaptability, and can
be largely extended. However, this method also has disadvantages,
such as difficulty to determine the mathematical expression of
some complex objects, and needs of a large number of parameters.
If these parameters cannot be well obtained, the modeling result
will be affected [35]. Besides, the energy efficiency evaluation based
on mechanism methods spend much time and large manual
workload, which make this method inefficient in evaluating the
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Fig. 3. The classification of energy efficiency evaluation methods in complex petrochemical industries.
Table 1

Comparison of mechanism evaluation methods.

Mechanism method Core idea Advantage

Disadvantage Stability

Based on material
balance and
thermodynamic
equilibrium

Based on the laws of Analyze subsystem data using
thermodynamics and thermodynamic laws and establish
energy balance energy balance equations

All substances and products in the
reaction process are mass and heat
distributed according to the reaction

Combing specific

Quantitatively grasp important
parameters in the reaction process
and discover weakness

Wide range of application

Parameters are determined according to Reduce the energy consumption to Accurately control the

High cost and difficulty. Depend on whether there is a
spontaneous reaction trend during the
reaction

Energy balance is
obtained based on
complete material
balance

Depend on the correctness of physical
property data such as heat capacity
and specific heat capacity

Generally stable

chemical process with the process flow and analyzed by the law a certain extent under certain load progress of the reaction

thermodynamic of heat

analysis

energy efficiency. Therefore, these mechanism methods are suit-
able for the condition of clear parameters and simple processes.

2.2. The data-driven methods

With the development of artificial intelligence and big data,
data-driven methods have gradually become a very common
modeling tool, which build the model based on the actual data [36].
At present, data-driven methods mainly include data-driven sta-
tistical methods, data-driven artificial intelligence methods and

data-driven hybrid methods. The data-driven hybrid methods
include statistical methods integrating with the neural network
and the neural network integrating other artificial intelligence
methods. The characteristics, advantages and disadvantages of
these methods are shown in Table 2. In the following, detailed
classification and comparison of these above three methods will be
analyzed, and emphasis on the important method will be laid.

2.2.1. Data-driven statistical methods
Data-driven statistical methods are suitable for nonlinear and
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Fig. 4. The process of the ethylene production system.

Table 2
Comparison of data-driven evaluation methods.

Data-driven method Idea Advantage

Disadvantage Stability

Data-driven
statistical method

Easily process the data by statistical methods

Suitable for nonlinear and uncertain Difficult to handle high-dimensional, redundant Weak
systems with lower data dimension or messy data

Data-driven artificial Directly use artificial intelligence methods such Process high-dimensional redundant When the data is too large, redundant or messy, Medium

intelligence
method

as neural networks for modeling and analysis data

its performance will be affected. strong

Data-driven hybrid Filter and extract the data by statistical methods Handle high dimensional redundant The effect is within the scope of the experiment, Strong

method and then modeling by neural networks data better

and it should not be promoted to a large extent

uncertain systems. In the complex petrochemical industry, the
statistical methods are mainly divided into three aspects with the
general statistical method, the DEA methods and the DEA com-
bined with statistical methods. General statistical methods include
the regression analysis method, support vector machine (SVM)
method and so on. Regression analysis includes linear and
nonlinear regression. Linear regression means the input and output
variables are linear correlation, that is to say, the relationship be-
tween input and output variables are satisfying a multivariate

linear equation which can be shown in Eq. (1). Where the f/ is
prediction value, x is the sample data, w and b are the regression
coefficient. And then, by constructing the loss function, the pa-
rameters w and b can be got when the loss function is minimum.
The express of loss function as Eq. (2) described. Where the y is
actual value. Finally, by least square method or gradient descent
method to minimize the loss function and then get the w and b.

A
Y =WiX] + WXy + <+« + WpXp + b (1)

1 n A 2
L*E;(.Vi =) (2)

There are few statistical methods related with energy efficiency
functions and energy implementation based on regression analysis
presented by scholars [37,38]. However, the linear regression
cannot describe the nonlinear characteristics of complex processes
comprehensively. As usual, the nonlinear regression problem is
transformed into a linear problem to be solved, which results in
poor robustness in fitting complex nonlinear relations [39].

The SVM method has been widely applied in the petrochemical
field at home and abroad in recent years for modeling of steam
cracking of naphtha [40], predicting water source heat pump en-
ergy demand [41] and Forecasting of consumers heat load in dis-
trict heating systems [42]. This method transforms the machine
learning problem into a quadratic programming problem, which
can obtain the best solution. The SVM can get different classifiers
and function approximators by selecting different kernel functions
and parameters [43], more flexible in design and has good
modeling effect. In the sample classification space, the hyperplane
equation of the SVM is described as Eq. (3).
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wlextbh=0 3)

Where, the w is the normal vector of the hyperplane, b is the offset
from the test origin to the hyperplane, and x is the sample data. The
hyperplane can be described as Eq. (4). Therefore, when the dis-
tance between two support vector planes is 2b, the plane separa-
tion is maximum.

~1<wlx+b<1 (4)

Yao et al. [44] proposed an improved SVM based on the feature
expansion to simplify the selection of kernel functions, and used
the seismic data from the Guanyin field in Sichuan to predict the oil
and gas. Compared with the traditional prediction method, the
result showed that the error rate was reduced by about 50%. Taking
coal characteristics and the oven heating system as reference, Cui
et al. [45] used the SVM to predict the coke quality, testifying that
this method has high accuracy and strong generalization ability for
coke quality prediction. However, these methods are difficult to
train the large-scale data. Considering the whole production sys-
tem of the complex petrochemical industry, the energy efficiency is
a multi-index evaluation result that integrates various inputs and
outputs [46]. Taking the ethylene production as an example, the
weights of input and output cannot be determined in calculating
the energy efficiency, making the general multi-index evaluation
method based on the SVM not suitable. The DEA, serving as a non-
parametric statistical and classical performance evaluation method
[47], is widely used in the complex petrochemical industry. It
evaluates decision making units (DMUs) of multi-input and multi-
output of the same type based on the relative efficiency [48]. The
principle of the DEA method is to evaluate and calculate weights of
inputs and outputs of each DMU, so as to determine whether each
DMU is effective [49].

The calculation steps are shown as follows: supposing there are
n DMUs, and each DMU has m inputs and s outputs, respectively.
For the jth DMU, the input vector is X; = (X1j,Xpj,-..Xmj) > 0, and x;;
represents the ith input of DMU;. The output vector is y; = (¥15, Y2,
~Ysi) >0y = (V1j, Y2, ---¥sj) > 0, and yj, represents the kth output
of DMU;. 6; is the efficiency value of DMUj as shown in Eq. (5).

D ke UiV

g —
J m
D ic1ViXij

(5)

Where, u;, and v;v; are the weight coefficients of the kth output and
the ith input of DMU;, respectively. There is no fixed expression of
the weight coefficient, which is a maximum value under the actual
situation. If the efficiency value f; cannot reach the optimal value of
1, this DMUj is considered invalid. Therefore, the DEA method can
improve the energy efficiency of complex petrochemical industries
by adjusting the production structure timely [50].

The DEA structure model is shown in Fig. 5. However, in the
complex petrochemical industry, it is difficult to analyze the
effectiveness of multiple DMUs based on the traditional DEA
method, which does not consider the impact of the uncertain data.
Therefore, many experts and scholars have improved the DEA
method and combined it with statistical methods to evaluate the
energy efficiency.

Azadeh et al. [51] used the principal component analysis (PCA)
and other methods to verify the effectiveness of the DEA in energy
efficiency evaluation and energy saving, and introduced structural
indicators to analyze the energy consumption for energy-intensive
manufacturing industry. Bian et al. [52] extended a radial random
DEA method based on probability constraints to a non-radial

Begin )

) 4

g

—

=

|

Fig. 5. The DEA structure model.

method, to evaluate the energy efficiency and CO, emission in
China. Fan et al. [53] used the log-mean divisia index (LMDI)
decomposition method to evaluate the main influencing factors of
carbon emission of China petrochemical industry, and pointed out
that the economic growth was the main factor and the industrial
structure had a certain impact on carbon emission. Then the carbon
emission could be reduced by reasonably balancing the allocation
of these influencing factors. The DEA evaluation method combined
with the statistical method is widely studied and analyzed by
scholars which including the novel DEA [54], the DEA cross-model
integrated analytic hierarchy process [55] and the DEA integrated
analytic hierarchy process [56]. These evaluation methods can
guarantee the consistency and precision of the data, and improve
the efficiency of the DEA for energy efficiency evaluation. In addi-
tion to the evaluation methods combining general statistical
methods with the DEA, there are other evaluation methods
combining different statistical methods. For example, Wang et al.
[57] preprocessed the raw data with the PCA method to effectively
extract the characteristic information of the data. The collinearity
between variables was eliminated, and the optimization and eval-
uation model of the energy efficiency was established with the
SVM.

The statistical method is a general data analysis method applied
in all fields, especially in the complex petrochemical industry. Due
to the large production scale, a large amount of data is generated.
The data-driven statistical method has a good effect on the
modeling process in the complex petrochemical industry [58].
However, due to the strong intersection and high spatial dimension
of the raw data in complex petrochemical industries, these statis-
tical methods have slow response speed and poor approximation
ability to nonlinear models.

2.2.2. Data-driven artificial intelligence methods

Due to the popularity of artificial intelligence, more and more
artificial intelligence methods have been used in mechanical en-
gineering fields [59]. In the complex petrochemical industry, data-
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driven artificial intelligence methods are mainly based on neural
networks to evaluate the energy efficiency [60]. There are many
characteristics such as high dimensionality and nonlinearity in
petrochemical processes, which makes the modeling process
complex [61]. The ANN has been widely used in energy efficiency
evaluation of petrochemical processes [62] for its fast response
speed [63], without considering internal mechanism [64] and
strong nonlinear approximation ability [65]. In complex petro-
chemical industries, taking the ethylene production for example,
the resources that produce ethylene and other products are served
as inputs of the neural network, and the ethylene yield or other by-
products yields are as outputs, forming the evaluation model of the
energy efficiency. By analyzing the predicted value and the real
value of the ethylene yield, the input of raw material is adjusted,
and the energy efficiency is analyzed and evaluated [66].

Among all the neural networks, the back propagation (BP)
neural network and radial basis function (RBF) neural network are
classical neural network, which have been applied in the complex
petrochemical industry for energy efficiency evaluation including
the optimization of the reaction dehydration to ethylene [67], the
modeling of atmospheric and vacuum distillation unit [68], the
prediction of 350 °C content in atmospheric distillation of refinery
[69], the multi-objective optimization of rectification process [70]
and the modeling of production prediction and energy-saving [71].
The BP neural network adopts gradient descent algorithm to
gradually approach the minimum error of actually value and pre-
diction value by continuously adjusting the weights of neurons
[72]. Its learning rate is fixed, so the convergence speed of the
network is slow and easy to fall into local extremum [73]. In
addition, for some complex problems, the training time of the
network will be increased [74]. The RBF neural network is an effi-
cient feedforward network, which has the best approximation
performance and global optimal characteristics that other feed-
forward networks do not have. In addition, its structure is simple
and the training speed is fast [75], but its generalization ability is
weak. Due to the insufficiency of the BP neural network and the RBF
neural network, the evaluation is not accurate in energy efficiency
analysis in the petrochemical industry and has limitations in
improving the energy efficiency [76]. In 2004, Huang et al. [77]
proposed the ELM neural network, which could solve the above
problems well and was widely used in various fields.

The ELM neural network can approximate any linear and
nonlinear functions almost with zero error [78], and the network
has excellent generalization ability, simple structure and fast
training speed [79]. It is a simple and effective feedforward neural
network with a single hidden layer. The weight between the input
layer and the hidden layer is directly obtained by Gaussian distri-
bution in the training process, while the weight between the hid-
den layer and the output layer is calculated by generalized inverse
of the vector [80]. Therefore, the ELM neural network has advan-
tages of easy parameter selection [81], fast learning speed and
strong robustness [82]. The training process of the ELM neural
network is shown as follows: suppose the input layer contains n
vectors, the hidden layer contains L nodes (L is much smaller than
n), and the output layer contains m vectors. The optimal solution of
the ELM can be obtained by setting the number of nodes in the
hidden layer. The connection weights between the input layer and
the hidden layer, the hidden layer and the output layer are W and V,
respectively.

Wi Wi Wiz 0 Wiy
w w w ow
w= |52 = T P (6)
wir Wit W2 o Win | 1«n
Wi W11 W12 . . . Wi
W3 Wa1 W22 . . . Wpp
W = =
(7)
WL Wit W . . . Windixn
Vi Vi1 v12 0 Vim
1% 1% 1% R
N
VL vi1 V2 VimJd Lxm
The threshold of the hidden layer is:
by
b
b= |P2 (8)
by

The activation function is g(x), and the output including n
samples can be expressed as:

Y=HV Y =HV 9)

YeR™M _ H: The output matrix of the hidden layer, and the
expression of H is shown as follows:

g(wrxq +br)
g(Wixy +by)

g(wax1 +by)
g(waxy + by)

[ g(W1X1 +by)
g(wixa +by)

L g(W1Xm +b1)  g(W2Xm + by) g(WLXm + byr)

[ g(wixq +bq) g(wixq + by)

| §(W1Xm + bq) g(wWixm + by)

(10)

W and b are arbitrarily specified before training, and stay un-
changed during the training process. It can be known from Eqgs. (7),
(9) and (10) that the output weight of the hidden layer is:

O:HJrY (11)

Where HTH* is the generalized inverse of the output matrix of the
hidden layer. The ELM simplifies the complex training process of
the neural network and changes it into the problem of matrix in-
verse, which greatly improves the learning speed [83]. Because of
the simple network structure and strong generalization ability of
the ELM, it is widely used in energy efficiency evaluation of the
complex petrochemical industry and other process industries
including the prediction of flood gas velocity in packed tower liquid
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Fig. 6. The structure of the ELM.

[84], the modeling of near infrared spectroscopy [85], the quanti-
tative analysis of near infrared spectroscopy [86] and the kinetic
separation of propylene over propane in a microporous meta [87].
The structure of the ELM is shown in Fig. 6.

Data-driven artificial intelligence methods also include the ge-
netic algorithm (GA) and the particle swarm optimization (PSO)
method. The GA is an iterative optimization algorithm, which takes
variables to be optimized in practical problems as the initial pop-
ulation, and then calculates the fitness of each variable in the
population [88]. After selection, crossover and mutation, the new
population is generated, and then the new fitness value is calcu-
lated again. After multiple iterations, the individual with the
maximum fitness is finally obtained, which is also the optimal so-
lution [89]. The PSO is also an iterative optimization algorithm [90].
First, a group of random solutions is initialized and the corre-
sponding fitness values are calculated. According to the fitness
values, the optimal local and global values are found, and the ve-
locity and the position of each particle are updated. After the iter-
ation, the optimal solution is obtained [91]. The procedure of data-
driven GA or PSO method in energy efficiency evaluation of com-
plex petrochemical industries is shown as follows: all the raw
materials of a certain chemical product are used as the initial
population or a group of particles to be optimized. Then the indi-
vidual (i.e. the raw material) with the greatest fitness or the global
optimal value is found. Finally, the selected materials of a certain
chemical product are used to predict and evaluate the energy ef-
ficiency, and judge whether the energy efficiency is significantly
improved.

Essiet et al. [92] proposed an improved GA to optimize energy
utilization by balancing load scheduling and the contribution of
renewable energy. Allahyarzadeh et al. [93] selected the most
important parameters that affected the given output based on the
GA to obtain fuel consumption and hydrocarbon liquid recovery,
which greatly improved product recovery and energy efficiency.
Wang et al. [94] constructed a dynamic constrained multi-objective
optimization algorithm based on the PSO to solve the optimization
problem of batch reactors in the chemical process. Geng et al. [95]
proposed an adaptive multi-objective PSO algorithm based on dy-
namic analytic hierarchy process (AHP) integrating the fuzzy
consistent matrix to select the global optimal solution and ensure
correct direction of the evolution, which effectively solved the
multi-target operation optimization problem and provided a viable
solution for the ethylene cracking furnace.

At present, the data-driven artificial intelligence methods
gradually replace the traditional statistical methods because of the
fast response speed, no needs to consider the internal mechanism,
and strong nonlinear approximation ability [96]. However, due to

the cross-redundancy of the production data and the complicated
production structure in the complex petrochemical industry, the
generalization performance of simple artificial intelligence algo-
rithms (such as neural networks) is still not satisfactory.

2.2.3. Data-driven hybrid methods

Data-driven hybrid methods are the most widely used and
efficient methods for energy efficiency evaluation in the complex
petrochemical industry [97,98]. The actual data of the complex
petrochemical industry are processed by statistical methods, such
as clustering, dimension reduction and feature extraction. Then the
processed data is taken as the input of neural networks to establish
the energy efficiency model. The flow chart of data-driven hybrid
methods in the complex petrochemical industry is shown in Fig. 7.
Due to the complexity of the petrochemical industry, there are
usually a large number of independent variables. Every indepen-
dent variable not only contains useful information for modeling,
but also interference information. Moreover, these variables also
interact with each other [99]. Therefore, taking all the variables
directly as the input of the network not only increases the training
time of the neural network, but also affects the training accuracy
[100]. Combine the statistical methods with neural networks can
not only reduce the dimension of input variables of neural net-
works, but also simplify the structure and improve the learning
efficiency [101], as well as the accuracy of the energy efficiency
evaluation. In recent years, there are many energy efficiency eval-
uation methods based on data-driven hybrid methods, such as
neural network methods based on data attribute partitioning [102],
based on principal component analysis [103], based on the clus-
tering [104] and based on the traditional DEA [105].

Sanchez et al. [106] proposed an ELM based on the variable
neighborhood search algorithm to obtain a set of features most
relevant to the initial features. After the features were selected, the
ELM was used to build an exponential prediction model. The results
showed that this method had strong robustness. In view that the
ELM cannot effectively solve the high-dimensional data modeling
in petrochemical processes, Peng et al. [107] combined it with the
self-associative neural network to filter the redundant information
existed in the input data and extract the features. Then, the
extracted features were taken as inputs of the ELM neural network.
Finally, a self-associative ELM based on the feature extraction was
proposed. Han et al. [108] proposed an ANN method based on the
DEA. This method firstly divided all DMUs into valid DMUs and
invalid DMUs by processing the data based on the DEA method,
then optimized the invalid DMUs according to valid DMUs, and
finally combined them with the ANN to establish a new energy
efficiency evaluation model. Geng et al. [109] proposed an energy



Y. Han et al. / Energy 203 (2020) 117893

©

Adjusting neural
o ] network
Artificial intelligence weight param eters
methods

Statistical
methods

Reduce
input
dim ension

Guide productior

4
-

Fig. 7. The flow chart of data-driven hybrid methods.

efficiency evaluation method based on the RBF neural network
integrating fuzzy C-means and the PCA algorithm. The PCA algo-
rithm was used to eliminate the noise and reduce the data
dimension and thus to reduce the training time. The fuzzy C-means
was used to separate each fuzzy class in the input space and
determine the number of neurons in the hidden layer of the RBF
neural network, improving the accuracy of the energy efficiency
evaluation in complex petrochemical industries. In addition, Geng
et al. [110] proposed an ELM method based on fuzzy C-means and
analytic hierarchy process. The fuzzy C-means algorithm was used
to cluster the input attributes of the high-dimensional data.
Through the analytic hierarchy process based on the entropy
weight, the redundant information was filtered and the feature
components were extracted. Finally, the fusion data was used as the
input of the ELM to predict the complex petrochemical yield and
improve the energy efficiency. Zhu et al. [111] proposed an energy
efficiency evaluation method based on the ELM and exponential
decomposition analysis. This method used exponential decompo-
sition analysis to decompose the high-dimensional data into three
energy performance indicators with activity effect, structure effect
and intensity. Then, these indicators and complex petrochemical
output were taken as inputs and outputs of the ELM, respectively.
Finally, energy efficiency prediction and evaluation of ethylene
production and the purified terephthalic acid (PTA) production in
complex petrochemical process were obtained. Zhu et al. [112]
proposed a robust extreme learning machine (RELM) based on
principal component extraction (PCE). By extracting the principal
component features of the hidden layer of the ELM, the linear
correlation between variables was removed, which reduced the
influence of the number of hidden layer nodes on the accuracy of
the model and realized rapid selection of the number of hidden
layer nodes, and improved the robustness of the ELM. Then, this
method was applied in the PTA production process, and the results
showed that the PCE-based RELM method was effective. Han et al.
[113] proposed an improved evaluation method based on the ELM
and the interpretative structural model (ISM), which used the ISM
based on the partial correlation coefficient to analyze key param-
eters that affected the system energy and carbon emissions. The

L

model was used to remove noise and reduce the dimensionality of
the data, and the processed data were taken as inputs of the ELM to
establish an energy efficiency evaluation model for the ethylene
production in the complex petrochemical industry. Later, Han et al.
[114] proposed a novel capacity analysis and energy efficiency
prediction evaluation method. This method clustered the multi-
dimensional data of the complex petrochemical industry with the
affinity propagation (AP) to extract the main influencing factors.
These factors were taken as inputs of the ELM to predict the energy
output. This method was compared with the k-means clustering
method. The results showed that this method greatly improved the
prediction accuracy.

The above researches show that data-driven hybrid methods
can tackle the shortcomings of single neural networks in energy
efficiency evaluation, with high accuracy of modeling and strong
stability. In order to further analyze data-driven hybrid evaluation
methods, the following five typical methods including the ELM
method based on the AP clustering (AP-ELM), the ELM method
based on k-means clustering (K-means-ELM), the single ELM
method, the single BP method, and the single RBF method are
compared based on the real ethylene data. The experimental data
are from 2009 to 2013 of ethylene production industries [114]. The
ratio of raw materials and ingredients, which include crude oil, fuel,
steam, water and electricity. The main materials affected the
ethylene production is crude oil, which include Naphtha (NAP),
carbon3, carbon4, carbon5 (C345), Residual fluid (REF), Hydroge-
nated tail oil (HDL), Light diesel oil (LDO), Light hydrogenation tail
oil (LHY), and other materials (OTH). The output is the ethylene
yield. The results in Fig. 8 and Table 3 showed that for prediction of
ethylene yields under the same training set and test set, the pre-
diction accuracy of the ELM is higher than that of the BP neural
network and the RBF neural network, and the prediction accuracy
of the neural network combined with the statistical method is
higher than that of the single neural network.

However, the most data-driven methods are based on the neural
network with the simple structure, such as the BP, which are
limited to extracting the more effective features of complex
petrochemical data. Therefore, deep learning methods began to be
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Fig. 8. The ethylene yield prediction based on five typical methods.

Table 3
The error comparison of five typical methods for ethylene yield prediction.
BP RBF ELM k-means-ELM  AP-ELM
Number of training sets 199 199 199 199 199
Number of test sets 12 12 12 12 12
Average error 0.073 0.110 0.071 0.068 0.060

used for energy efficiency evaluation. For the purpose of improving
the energy efficiency in the complex petrochemical industry, an
energy optimization and prediction model based on the improved
CNN integrating the cross-feature (CF) is proposed by Geng et al.
[115]. The CF can combine the correlation between features to
obtain the input of the CNN, which can avoid the over-fitting
problem caused by fewer features. Then the CNN is designed as a
three-layer structure and the Rectified Linear Unit (RLU) is intro-
duced to achieve better generalization capability and stability. Han
et al. [116] proposes a production capacity analysis and energy
saving model using long short-term memory (LSTM) based on
attention mechanism (AM) to directly control raw materials con-
sumption and effectively measure the product quality. Therefore,
the deep learning methods are suitable for large-scale data and can
extract the better features of these data.

Among data-driven hybrid methods, in addition to the combi-
nation of statistical methods and neural networks, there is also a
kind of hybrid method that combine neural networks with other
artificial intelligence algorithms, such as neural networks with the
PSO [117,118], and neural networks with the GA [119] or ant colony
algorithm [120]. They are designed to select the most optimal
influencing factors, rather than simple feature extraction. There-
fore, this kind of method is also one of the most popular energy
efficiency evaluation method at present [121]. Kong et al. [122]
proposed an evaluation method combining the GA with the BP
neural network, to get the raw material ratio under the condition of
given quality index and optimal product performance by estab-
lishing the relationship between the decision variable and the
objective function, and selecting the best decision variable based on
the GA. Data-driven hybrid methods can solve the problem of data

cross-redundancy well in petrochemical industries and optimize
the generalization performance of artificial intelligence methods,
which perform well under experimental conditions.

2.3. The methods combining mechanism method and data-driven
method

For the complex petrochemical industry, the mechanism
method based on the traditional TT-RG is easy to be limited by
practical conditions, and the application scope is limited. Moreover,
the data-driven method is only effective in experiments and not
suitable to be widely promoted. Therefore, the methods combining
mechanism method and data-driven method have been proposed.
The methods not only inherit advantages of mechanism methods,
but also simplify the energy efficiency evaluation method by
appropriately ignoring some parameters which are difficult to
determine. The flow chart of the mixed method is shown in Fig. 9.
This kind of energy efficiency evaluation method includes mecha-
nism methods integrating ANNs or mechanism methods inte-
grating other artificial intelligence methods.

Recently, Palagi et al. proposed an organic ranking cycle multi-
objective optimization algorithm based on the ANN, which can
select the best cyclic thermodynamic parameters, and has been
proved very suitable for solving typical high-nonlinear problems in
energy systems [123]. With the continuous growth of the energy
demand, in order to improve the energy efficiency, Arshad et al.
[124] proposed a thermodynamic analysis and optimization
method for double effect absorption refrigeration system using the
GA. Due to the low accuracy of the distillation column model, He
et al. [125] proposed a measurement method of the alcohol distil-
lation column based on the mechanism method and neural
network compensation, not only improved the distillation accuracy
and efficiency, but also the extrapolation ability of the neural
network. In order to improve the estimation accuracy of model
parameters, Yu et al. [126] took a methanol synthesis tower as the
research object and proposed an improved wolf group algorithm
through in-depth analysis of the reaction mechanism of the
methanol synthesis process. The modified wolf pack algorithm was
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Fig. 9. The flow chart of the combined method.

used to estimate parameters of the methanol conversion mecha-
nism method, which could more accurately predict the methanol
conversion at the exit of the synthesis tower and improved the
energy efficiency. In order to realize the refined control of the en-
ergy flow network, Liu et al. [127] proposed an input-output
method of the converter based on the mechanism and data-
driven method, to analyze the input and output in the converter
process, and obtain relevant parameters of the converter refining
by using mathematical statistics and regression methods. Then,
they calculated the output parameters according to the mechanism
method, and used the neural network to predict the temperature of
the molten steel end point for improving the accuracy of the model.
In addition, based on the actual production data, Xu et al. [128]
proposed analysis methods of oxygen consumption and gas re-
covery, based on the mechanism method combining with the data-
driven method, for the steelmaking-continuous casting process.
The method reduced the process consumption and realized sec-
ondary energy recycling. The blast furnace smelting process is
characterized by strong nonlinearity, time delay and under regu-
lation. Most of its internal parts are coupled complex dynamic
systems, so it is difficult to achieve a good effect by constructing its
model by the single mechanism. Combined with the blast furnace
smelting mechanism, operational data, and expert experience, Li
et al. [129] used the measured data of the sensor to construct a
method of the blast furnace in the complex industry.

At present, the combined evaluation method is not widely used
in the production system of petrochemical industries, but its effect
is improved obviously. Although the combined method has

achieved good results in the energy efficiency evaluation of the
petrochemical industry, and is easy to be promoted. However,
because of the high cost and complexity, it is not easy to establish
appropriate production and energy efficiency evaluation model.
Therefore, this combined methods are suitable for the petro-
chemical industry with the urgent needing to extend but not get-
ting all meanings of parameters.

3. Discussion

In this paper, we have introduced many energy efficiency eval-
uation methods in complex petrochemical industries. These
methods are mainly divided into three parts with the mechanism
methods based on TT-RG, the data-driven artificial intelligence
methods, and the hybrid methods combining the mechanism and
the data-driven. The mechanism methods based on TT-RG, which is
established by describing the mechanism process, is a direct
mathematical description and the essence reflection of the actual
production process. Therefore, it is not only easy to extend but also
has the advantages of clear physical meaning of parameters, strong
adaptability. However, these mechanism methods also have visible
disadvantages for difficulty to determine the mathematical
expression of some complex objects with a large number of pa-
rameters. What's more, if the parameters cannot be well obtained,
the modeling result will be inaccurate.

With the development of artificial intelligence and big data,
data-driven methods have gradually become a very common
evaluation modeling tool based on the actual data. The data-driven
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method makes up the shortcomings of mechanism methods based
on TT-RG. Through addressing the high dimensionality and
nonlinearity in petrochemical processes effectively, the modeling
process is become more simpler [70]. Besides, the data-driven
methods based on the ANN have the advantages of its fast
response speed, without considering internal mechanism, and
strong nonlinear approximation ability. However, it is difficult to
build the accurate evaluation model of the complex petrochemical
industry with multi-dimensional and multi-level characteristics
due to the limitation of the ANN itself. Therefore, some scholars
began to used data-driven hybrid methods that combine statistical
analysis with the ANN to build energy efficiency evaluation model,
which improved the prediction accuracy. However, many statistical
methods have certain requirements on the data, such as requiring
the data to obey normal distribution. Regression analysis is mainly
based on the dependency relationship and the internal laws be-
tween data. If the correlation of the data is not large, this method
loses its value. The PCA can extract the main impact factors and
ignore the secondary factors, which may loss some useful infor-
mation after data processing. The cluster analysis mainly uses
different rules to make similar data into clusters, and then selects
the cluster center from different clusters as the representative of
each category, which finally achieves effective data fusion.

And then, these five typical methods including the AP-ELM
method, the k-means-ELM method, the single ELM method, the
single BP method, and the single RBF method are compared based
on the real ethylene data. Compared with the K-means-ELM, the
ELM, the BP, and the RBF under the same condition, the average
error of the AP-ELM decreased 0.8%, 1.1%, 1.3% and 5%, respectively.
Furthermore, because the ANN with the simple structure cannot
extract the more effective features of complex petrochemical data,
the deep learning method with the CNN and the recurrent neural
network (RNN) is becoming more and more popular for evaluating
the energy efficiency in the complex petrochemical industry.

For the complex petrochemical industry, the application scope
of the mechanism method based on the traditional TT-RG is limited
by practical conditions. And the data-driven method is more
effective in experiments and not suitable to be widely promoted.
Therefore, the hybrid methods combining the mechanism method
and the data-driven method have been proposed and become
another trend for energy efficiency evaluation. The hybrid methods
not only inherit advantages of mechanism methods, but also
simplify the energy efficiency evaluation process by appropriately
ignoring some parameters which are difficult to determine. How-
ever, this method still has some limitations for the difficult in
modeling and some parameters are difficult to determine of the
energy efficiency evaluation. Despite the above defects, the mech-
anism methods based on the TT-RG and data-driven methods still
should be studied and focused as the support and foundation for
the hybrid method.

4. Development in the future

Through comprehensive introduction, comparison and sum-
mary for existing energy efficiency evaluation methods in the
complex petrochemical industry, we find that the better and
effective energy efficiency evaluation methods constructed in the
petrochemical production system are the following two methods.
The data-driven hybrid method which combining statistical
methods and deep learning methods such as the CNN can abstract
high-level features with having better effect in evaluate energy
efficiency modeling. And the hybrid methods combining mecha-
nism methods and data-driven methods can simplify the energy
efficiency evaluation process and easy to widely promoted. How-
ever, if these evaluation methods are analyzed and used well, there

are mainly focused on three aspects. First, how to extract and fuse
main factors that affect the energy efficiency from the raw data
with high coupling and complexity by clustering and reducing the
dimension. Second, how to use less training data and less numbers
of iteration, so as to obtain better generalization ability. Finally, how
to meet the actual production process as much as possible, and
make these methods extrapolated substantially. Therefore, the
future research is shown as follows.

4.1. More intelligence data analysis method

In this paper, we have introduced many statistical and artificial
intelligence methods. Generally, the statistical method means that
the raw data is simplified by classifying and analyzing the high-
dimensional data of the complex petrochemical industry. Tradi-
tional data analysis methods include clustering algorithms,
dimension reduction algorithms, feature extraction methods and
the DEA. However, with application of the computer technology,
the intelligent manufacturing and the cloud platform, a large
number of multi-dimensional, multi-level and high-coupled data
are produced in complex petrochemical production systems.
Therefore, efficient data-processed methods can help to deal with
these intricate data well [130]. Currently, the more efficient
methods are optimization algorithms including traditional opti-
mization algorithms and improved optimization algorithms. The
traditional optimization algorithm is based on the single solution,
such as the hill climbing algorithm, the tabu search (TS) algorithm,
the greedy algorithm and the simulated annealing (SA) algorithm.
However, the outputs of traditional optimization algorithms are the
same and start from a solution to look for the best, which easy to
fall into the local best. The improved optimization algorithms based
on the population can process multiple individuals in the group
simultaneously and evaluate multiple solutions in the search space,
which reduce the risk of falling into the local solution, and the al-
gorithm itself is easy to parallelize. Generally, the improved opti-
mization algorithms including the GA and the swarm intelligence
optimization algorithm. The swarm intelligence optimization al-
gorithm including the PSO, the Ant Colony Algorithm (ACO), the
Artificial Bee Colony Algorithm (ABC), the Artificial Fish School
Algorithm (AFSA), the Shuffled Frog Leaping Algorithm (SFLA) and
the Bacterial foraging optimization (BFO). These improved opti-
mization algorithms have grate advantage in dealing with redun-
dant and complex data in complex petrochemical industries.

Moreover, the effective energy efficiency evaluation knowledge
can be obtained through novel optimization algorithm and
knowledge discovery, which can build the energy efficiency model
more easily. Above all, the advanced data processing method is one
of necessary means for future development of energy efficiency
evaluation in complex petrochemical industries.

4.2. Deep learning method

Deep learning is the gradual development of the ANN, which
contains multiple hidden layers. The deep learning can combine
low-level features to form more abstract high-level features that
represent attribute categories, and then to discover distributed
features of the data. Therefore, the deep learning which contains
multi-layer perceptions, has great advantages for solving complex
data problems and good generalization ability. The CNN is one
typical deep learning method with multi-layer structures for the
feature extraction. And the CNN uses spatial relative relationship to
reduce the number of parameters, which not only improves the
training performance, but also improves the precision of multi-
dimensional and multi-level energy efficiency evaluation model
in complex petrochemical processes. And the RNN can take the
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time sequence data as the input to learn the nonlinear features, and
has excellent characteristics of the memory and parameter sharing.
Because the LSTM introduces a memory unit to replace the hidden
layer node in the traditional RNN, the LSTM can avoid the problem
of gradient explosion or gradient disappearance that may occur
when the RNN returns the gradient. And the bidirectional recurrent
neural network (BIRNN) considers the information of the next time
step and the previous time step simultaneously to make the deci-
sion of the current time step, so the BIRNN has been applied in the
sequence labeling task of Natural language processing (NLP) suc-
cessfully. Therefore, the deep learning will be used to extract more
features of energy efficiency data in complex petrochemical
industries.

4.3. Method model extension

The extension of the energy efficiency evaluation method in
complex petrochemical industries mainly includes two aspects. On
one hand, the energy efficiency evaluation method can be extended
from experiments to the real production processes. The predictive
performance learned from one task can be migrated to another
task. On the other hand, the method combining the data-driven
statistical method with the deep learning has low cost and can
avoid many inconveniences in the actual production process.
However, the simulation environment is still different from the
actual production, and the effect of the method is not very good in
the real production. Therefore, how to apply the method with the
good performance from experiments to the actual petrochemical
industry is one of the key issues in energy efficiency analysis and
optimization.

5. Conclusion

Compared with traditional process methods in complex petro-
chemical industries, the methods combining data-driven with the
artificial intelligence have advantages of data fusion and energy
optimization. It can dynamically adapt to the unstructured pro-
duction environment of various energy sources in complex petro-
chemical industries. Furthermore, it overcomes defects of lacking
index analysis of the intermediate process and simple calculation of
energy consumption indexes in previous energy efficiency analysis.
It can also analyze and evaluate the specific device of different
technologies and sizes from multi-dimensional and multi-objective
perspective. Moreover, it provides technical reference and industry
benchmark for decision makers, which can find the main factors
and better direction of improving the energy efficiency to achieve
good results and economic benefits.

The development of artificial intelligence technology has pro-
vided some new technologies and opened up some new idea for
energy efficiency evaluation for the complex petrochemical in-
dustry. Compared with the light industry and the infant industry,
the complex petrochemical industry requires higher price and
costs. Currently, how to combine the new data-driven method with
the mechanism method and the deep learning method to improve
the energy efficiency and reduce pollutant emissions of the com-
plex petrochemical industry is a new direction of the research.
Therefore, by reviewing these energy efficiency evaluation
methods, not only the most suitable evaluation methods can be
found to evaluate the energy efficiency of complex petrochemical
industry, but also can provide theoretical guidance for energy
conservation and emission reduction further. Besides, there have
been a certain understanding of energy efficiency evaluation
methods in the petrochemical industry. Such as, which data fusion
method are appropriate to deal with the petrochemical data and
what is the easiest evaluation methods for analyzing the energy

efficiency.

In addition, for the current research situation and characteristics
of big data in the petrochemical process, the density of data
collection should be increased to achieve real-time analysis for
petrochemical production processes.
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